矩形的性质和判定
矩形的性质与判定
矩形的性质与判定 校区:平湖 年级:九 层次:A/B 编写人:李永佳 审核人:翟威 日期:星期日【知识要点】1.矩形的定义:有一个角 的平行四边形叫做矩形.2.矩形的性质:矩形的四个角都 ;矩形的对角线 .3.矩形的判定定理: 1.有一个角 的 叫做矩形。
2.对角线 的平行四边形是矩形。
3.有三个角是 的四边形是矩形。
4.直角三角形斜边上的中线等于斜边的 .5.矩形的面积等于底乘以高.6.矩形是轴对称图形,也是中心对称图形.【例题精讲】例1:矩形具有而平行四边形不一定具有的性质是( )A .对角相等B .对边相等C . 对角线相等D .对角线互相平分例2:如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长为( )A .7cmB .8cmC .9cmD .12cm例3:如图,矩形ABCD 中,AB=2,BC=4,点A 、B 分别在y 轴、x 轴的正半轴上,点C 在第一象限,如果∠OAB=30°,那么点C 的坐标是 .例4:已知:如图所示的一张矩形纸片ABCD (AD >AB ),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于点E ,交BC 边于点F ,分别连结AF 和CE .(1)求证:四边形AFCE 是菱形;(2)若AB=4,BC=8,求△ABF 的面积;A CB D【巩固练习】一、选择题。
1.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD2.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DCC.∠ADB=90°D.CE⊥DE3.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()A.AB=CD,AD=BC,AC=BD B.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BD D.∠A=∠B=90°,AC=BD4.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A.17 B.18 C.19 D.205.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A.10cm B.8cm C.6cm D.5cm6.如图所示,在矩形ABCD中,AB=,BC=2,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A.B.C.1 D.1.57.如图,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分别过点B、C作BE⊥AG于点E,CF⊥AG于点F,则(AE﹣GF)的值为()A.1 B.C.D.8.如图,在矩形ABCD中,AB=6,AD=8,P是AD上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E、F,则PE+PF的值为()A.10 B.4.8 C.6 D.59.在△ABC中,点D、E、F分别在BC、AB、CA上,且DE∥CA,DF∥BA,则下列三种说法:①如果∠BAC=90°,那么四边形AEDF是矩形②如果AD平分∠BAC,那么四边形AEDF是菱形③如果AD⊥BC且AB=AC,那么四边形AEDF是菱形其中正确的有()A.3个B.2个C.1个D.0个10.如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是()A.7 B.8 C.9 D.10二、填空题。
矩形的性质和判定
矩形的性质和判定基础知识点1、矩形的性质和判定:定 义矩 形有一个内角是直角的平行四边形。
性质边对边平行,对边相等。
角 四个角相等,都是直角。
对角线互相平分,相等。
判定有一个角是直角的平行四边形是矩形。
有三个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
2、在直角三角形中,斜边的中线等于斜边的一半。
3、矩形是轴对称图形,对称轴是对边中点的连线所在的直线。
例题剖析例1、 已知矩形ABCD 中,AB=2BC ,点E 在边DC 上,且AE=AB ,求∠EBC 的度数.【变式练习】矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F ,•求证:BE=CF .【变式练习】在矩形ABCD 中,AC ,BD 是对角线,过顶点C 作BD•的平行线与AB 的延长线相交于点E ,求证:△ACE 是等腰三角形.例2、折叠矩形ABCD 纸片,先折出折痕BD ,再折叠使A 落在对角线BD 上A ′位置上,折痕为DG ,AB=2,BC=1。
求AG 的长。
GA`DCBA【变式练习】如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在F 的位置,BF 交AD 于E ,AD=8,AB=4,求△BED 的面积。
EDC BAF例3、在△ABC中,∠ABC=90°,BD是△ABC的中线,延长BD到E,•使DE=BD,连结AE,CE,求证:四边形ABCE是矩形.【变式练习】在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形。
求证:四边形ADCE是矩形。
例4、已知:如图,在△ABC中,AB=AC,点D为BC中点,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.【变式练习】(2011•青岛)在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC ,当CA=CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论【变式练习】E 为□ABCD 外一点,AE ⊥CE,BE ⊥DE ,求证:□ABCD 为矩形例5、□ABCD 中,AE 、BF 、CG 、DH 分别是各内角的平分线,E 、F 、G 、H 为它们的交点, 求证:四边形EFGH 的矩形。
矩形的判定(5种题型)(解析版)
矩形的判定(5种题型)【知识梳理】一、矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)要点诠释:②证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.二.矩形的判定与性质(1)关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.在处理许多几何问题中,若能灵活运用矩形的这些性质,则可以简捷地解决与角、线段等有关的问题.(2)下面的结论对于证题也是有用的:①△OAB、△OBC都是等腰三角形;②∠OAB=∠OBA,∠OCB=∠OBC;③点O到三个顶点的距离都相等.【考点剖析】题型一:矩形的判定定理的理解例1.(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AD B.AC⊥BD C.AB=AC D.AC=BD【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A.∵▱ABCD中,AB=AD,∴▱ABCD是菱形,故选项A不符合题意;B.∵▱ABCD中,AC⊥BD,∴▱ABCD是菱形,故选项B不符合题意;C.▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项C不符合题意;D.∵▱ABCD中,AC=BD,∴▱ABCD是矩形,故选项D符合题意;故选:D.【点评】本题考查了矩形的判定、菱形的判定、平行四边形的性质等知识;熟练掌握矩形的判定和菱形的判定是解题的关键.【变式】已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,那么下列结论中正确的是()A.当AB=BC时,四边形ABCD是矩形B.当AC BD⊥时,四边形ABCD是矩形C.当OA=OB时,四边形ABCD是矩形D.当ABD CBD∠=∠时,四边形ABCD是矩形【答案】C【解析】C答案中,当OA=OB时,可知四边形ABCD的对角线相等,则可得平行四边形ABCD是矩形.【总结】考察矩形的证明方法.题型二:添加一个条件使四边形是矩形例2.(2022•甘肃)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是.【分析】先证四边形ABCD是平行四边形,再由矩形的判定即可得出结论.【解答】解:需添加的一个条件是∠A=90°,理由如下:∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,又∵∠A=90°,∴平行四边形ABCD是矩形,故答案为:∠A=90°(答案不唯一).【点评】本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.【变式】(2022•前进区一模)如图,已知四边形ABCD为平行四边形,对角线AC与BD交于点O,试添加一个条件,使▱ABCD为矩形.【分析】根据对角线相等的平行四边形是矩形可添加的条件是AC=BD.【解答】解:∵AC=BD,四边形ABCD为平行四边形,∴四边形ABCD为矩形.故答案为:AC=BD.【点评】本题考查矩形的判定,熟练掌握矩形的判定方法是解决本题的关键.题型三:证明四边形是矩形例3.(2022•巴中)如图,▱ABCD中,E为BC边的中点,连接AE并延长交DC的延长线于点F,延长EC 至点G,使CG=CE,连接DG、DE、FG.(1)求证:△ABE≌△FCE;(2)若AD=2AB,求证:四边形DEFG是矩形.【分析】(1)由平行四边形的性质推出AB∥CD,根据平行线的性质推出∠EAB=∠CFE,利用AAS即可判定△ABE≌△FCE;(2)先证明四边形DEFG是平行四边形,再证明DF=EG,即可证明四边形DEFG是矩形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠CFE,又∵E为BC的中点,∴EC=EB,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);(2)∵△ABE≌△FCE,∴AB=CF,∵四边形ABCD是平行四边形,∴AB=DC,∴DC=CF,又∵CE=CG,∴四边形DEFG是平行四边形,∵E为BC的中点,CE=CG,∴BC=EG,又∵AD=BC=EG=2AB,DF=CD+CF=2CD=2AB,∴DF=EG,∴平行四边形DEFG是矩形.【点评】本题考查了矩形的判定,平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定与性质,证明△ABE≌△FCE是解题的关键.【变式1】(2022•六盘水)如图,在平行四边形ABCD中,AE平分∠BAC,CF平分∠ACD.(1)求证:△ABE≌△CDF;(2)当△ABC AECF是矩形?请写出证明过程.【分析】(1)由ASA证△ABE≌△CDF即可;(2)由(1)可知,∠CAE=∠ACF,则AE∥CF,再由全等三角形的性质得AE=CF,则四边形AECF是平行四边形,然后由等腰三角形的在得∠AEC=90°,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AB∥CD,∴∠BAC=∠ACD,∵AE平分∠BAC、CF平分∠ACD,∴∠BAE=∠CAE=∠BAC,∠DCF=∠ACF=∠ACD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)解:当△ABC满足AB=AC时,四边形AECF是矩形,理由如下:由(1)可知,∠CAE=∠ACF,∴AE∥CF,∵△ABE≌△CDF,∴AE=CF,∴四边形AECF是平行四边形,又∵AB=AC,AE平分∠BAC,∴AE⊥BC,∴∠AEC=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形的判定、全等三角形的判定与性质、等腰三角形的性质等知识,熟练掌握矩形的判定是解题的关键.【变式2】(2022•十堰)如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设=k,当k为何值时,四边形DEBF是矩形?请说明理由.【分析】(1)利用平行四边形的性质,即可得到BO=OD,EO=FO,进而得出四边形BFDE是平行四边形,进而得到BE=DF;(2)先确定当OE=OD时,四边形DEBF是矩形,从而得k的值.【解答】(1)证明:如图,连接DE ,BF ,∵四边形ABCD 是平行四边形,∴BO =OD ,AO =OC ,∵E ,F 分别为AO ,OC 的中点,∴EO =OA ,OF =OC ,∴EO =FO ,∵BO =OD ,EO =FO ,∴四边形BFDE 是平行四边形,∴BE =DF ;(2)解:当k =2时,四边形DEBF 是矩形;理由如下:当BD =EF 时,四边形DEBF 是矩形,∴当OD =OE 时,四边形DEBF 是矩形,∵AE =OE ,∴AC =2BD ,∴当k =2时,四边形DEBF 是矩形.【点评】本题主要考查了平行四边形的判定与性质,矩形的判定,注意对角线互相平分的四边形是平行四边形.题型四:矩形的性质与判定求线段长 例4.(2022秋·广东佛山·九年级校考阶段练习)如图,在ABCD Y 中,AE BC ⊥于点E ,延长BC 至点F ,使CF E =,连接DF ,AF 与DE 交于点O .(1)求证:四边形AEFD 为矩形;(2)若3AB =,2OE =,5BF =,求DF 的长.【答案】(1)见解析 (2)125【分析】(1)根据线段的和差关系可得BC EF =,根据平行四边形的性质可得AD ∥BC ,AD BC =,即可得出AD EF =,可证明四边形AEFD 为平行四边形,根据AE BC ⊥即可得结论;(2)根据矩形的性质可得AF DE =,可得BAF 为直角三角形,利用“面积法”可求出AE 的长,即可得答案.【详解】(1)BE CF =,BE CE CF CE ∴+=+,即BC EF =, ABCD 是平行四边形,AD ∴∥BC ,AD BC =,AD EF ∴=, AD ∥EF ,∴四边形AEFD 为平行四边形,AE BC ⊥,90AEF ∴∠=︒,∴四边形AEFD 为矩形.(2)四边形AEFD 为矩形,AF DE ∴=,DF AE =,2OE =,∴4DE =,∵3AB =,5BF =,∴222AB AF BF +=,BAF ∴为直角三角形,90BAF ∠=︒,∴1122ABFS AB AF BF AE=⨯=⨯,∴125 AE=,∴125 DF AE==.【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.【变式】如图,平行四边形ABCD中P是AD上一点,E为BP上一点,且AE=BE=EP.(1)求证:四边形ABCD是矩形;(2)过E作EF⊥BP于E,交BC于F,若BP=BC,S△BEF=5,CD=4,求CF.【答案】(1)证明:AE=BE=EP,∴∠EAB=∠EBA,∠EAD=∠EPA,∵∠ABE+∠EAB+∠EAP+∠APE=180°,2∠EAB+2∠EAP=180°,∴∠EAB+∠EAP=90°,∴∠BAD=90°,∵平行四边形ABCD∴四边形ABCD为矩形;(2)解:如图连接PF,作PM⊥BC于M,EN⊥BC于N,∵四边形ABCD为矩形,∴∠C=∠D=∠PMC=90°,∴四边形PMCD为矩形,同理四边形ABMP为矩形,∴PM=CD=4,∠PMC=∠PMF=90°,∵BE=EP,EN∥PM,∴BN=NM ,∴EN=12PM=2, ∵12·BF ·EN=5,∴BF=5,∵EF ⊥BP ,BE=EP∴PF=BF=5,∴FM=3,∴AP=BM=8,∴BC=BP=∴CF=BC-BF=.题型五:矩形的性质与判定求面积例5.(2022•云南)如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°.(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .【分析】(1)由四边形ABCD 是平行四边形,得∠BAE =∠FDE ,而点E 是AD 的中点,可得△BEA ≌△FED (ASA ),即知EF =EB ,从而四边形ABDF 是平行四边形,又∠BDF =90°,即得四边形ABDF 是矩形;(2)由∠AFD =90°,AB =DF =3,AF =BD ,得AF ===4,S 矩形ABDF =DF •AF =12,四边形ABCD 是平行四边形,得CD =AB =3,从而S △BCD =BD •CD =6,即可得四边形ABCF 的面积S 为18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)解:由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,∴AF===∴S矩形ABDF=DF•AF=3×4=12,BD=AF=4,∵四边形ABCD是平行四边形,∴CD=AB=3,∴S△BCD=BD•CD=×4×3=6,∴四边形ABCF的面积S=S矩形ABDF+S△BCD=12+6=18,答:四边形ABCF的面积S为18.【点评】本题考查平行四边形性质及应用,涉及矩形的判定,全等三角形判定与性质,勾股定理及应用等,解题的关键是掌握全等三角形判定定理,证明△BEA≌△FED.【变式1】已知ABCD 的对角线AC ,BD 相交于O ,△ABO 是等边三角形,AB =4,求这个平行四边形的面积.【答案】 解: ∵四边形ABCD 是平行四边形.∴△ABO ≌△DCO又∵△ABO 是等边三角形∴△DCO 也是等边三角形,即AO =BO =CO =DO∴AC =BD∴ ABCD 为矩形.∵AB =4,AC =AO +CO∴AC =8在Rt △ABC 中,由勾股定理得:BC =∴矩形ABCD 的面积为:AB BC =16 【变式2】(2023春·江苏南京·九年级统考期中)如图,O 为矩形ABCD 的对角线AC 的中点,过O 作EF AC ⊥分别交AD ,BC 于点E ,F .(1)求证:四边形AFCE 是菱形.(2)若6AB =,12BC =,求菱形AFCE 的面积.【答案】(1)见解析(2)45【分析】(1)先根据矩形的性质可得OA OC =,AD BC ∥,再根据ASA 定理证出AOE COF ≌,根据全等cm cm cm cm 2cm三角形的性质可得OE OF =,然后根据菱形的判定即可得证;(2)设菱形AFCE 的边长为x ,则12BF x =−,在Rt ABF 中,利用勾股定理求出x 的值,然后根据菱形的面积公式即可得.【详解】(1)证明:四边形ABCD 是矩形,∴OA OC =,AD BC ∥,OAE OCF ∴∠=∠,∵O 为矩形ABCD 的对角线AC 的中点,∴OA OC =,在AOE △和COF 中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA AOE COF ∴≌, OE OF ∴=,∴四边形AECF 是平行四边形,又EF AC ⊥,∴四边形AECF 是菱形.(2)解:四边形ABCD 是矩形,90ABC ∴∠=︒,设菱形AFCE 的边长为x ,则AF CF x ==,12BC =,12BF BC CF x ∴=−=−,在Rt ABF 中,222AB BF AF +=,即()222612x x +−=,解得7.5x =, 7.5CF ∴=,则四边形AFCE 的面积为7.5645CF AB ⋅=⨯=.【点睛】本题考查了矩形的性质、菱形的判定与性质、勾股定理等知识点,熟练掌握菱形的判定与性质是解题关键.【过关检测】一、单选题 1.(2023·河北邯郸·统考模拟预测)如图,在四边形ABCD 中,给出部分数据,若添加一个数据后,四边形ABCD 是矩形,则添加的数据是( )A .4CD =B .2CD =C .2OD = D .4OD =【答案】D 【分析】根据对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形即可得到答案.【详解】解:当4OD =时,由题意可知,4AO CO ==,4BO DO ==,∴四边形ABCD 是平行四边形,∵8AC BD ==,∴四边形ABCD 是矩形,故选:D【点睛】此题考查了矩形的判定,熟练掌握矩形的判定方法是解题的关键.2.(2023·浙江湖州·统考模拟预测)如图,在Rt △ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 的中点,AC =8,BC =6,则四边形CEDF 的面积是( )A .6B .12C .24D .48【答案】B【分析】利用三角形的中位线定理,先证明四边形DECF 是矩形,再利用矩形的面积公式进行计算即可. 【详解】解: 点D ,E ,F 分别是边AB ,AC ,BC 的中点,AC =8,BC =6,11//,3,//,4,22DE BC DE BC DF AC DF AC ∴====∴ 四边形DECF 是平行四边形,90,C ∠=︒∴ 四边形DECF 是矩形,3412.DECF S ∴=⨯=矩形故选:.B【点睛】本题考查的是三角形的中位线的性质,矩形的判定与性质,掌握利用三角形的中位线证明四边形是平行四边形是解题的关键. A .3B .【答案】A 【分析】连接AC ,由菱形的性质可证ABC 和ACD 是等边三角形,从而求得2AC =,根据点E 、F 是AB 、CD 的中点可得CE AB ⊥,AF CD ⊥,进而证明四边形AECF 是矩形,再利用勾股定理求出=EC 即可求出结果.【详解】解:连接AC ,∵四边形ABCD 是菱形,ABC ∠︒=60,2AB =,==60B D ∴∠∠︒ ,====2AB BC CD AD ,==120BAD BCD ∠∠︒,==60BAC BCA ∴∠∠︒,==60DAC DCA ∠∠︒,∴ABC 和ACD 是等边三角形,2AC AB ==,∵点E 、F 是AB 、CD 的中点,CE AB ∴⊥,AF CD ⊥,==30CAF ACE ∠∠︒,==90BAF DCE ∴∠∠︒,∴四边形AECF 是矩形, 1==12AE AB ,∴在Rt AEC 中,EC∴矩形AECF 的面积为:=1AE EC ⨯故选:A .【点睛】本题考查了菱形的性质、矩形的判定和性质及等边三角形的判定和性质和勾股定理,熟练运用相关知识,正确作出辅助线是解题的关键. A .232−B .2【答案】C 【分析】根据矩形的性质得出AD BC ∥,得出DEC BCE ∠=∠,证明45ABE AEB ∠==︒,得出2AB AE ==,根据勾股定理求出BE =【详解】解:∵四边形ABCD 是矩形,∴AD BC ∥,∴DEC BCE ∠=∠,∵EC 平分DEB ∠,∴DEC BEC ∠=∠,∴BEC ECB ∠=∠,∴BE BC =,∵四边形ABCD 是矩形,∴90A ∠=︒,∵=45ABE ∠︒,∴45ABE AEB ∠=∠=︒,∴2AB AE ==.∵由勾股定理得:BE ===,∴BC BE ==∴2DE AD AE BC AB =−=−=,故选:C .【点睛】本题主要考查了矩形的性质、角平分线的性质、等腰三角形的性质、勾股定理的应用等知识;要学会添加常用的辅助线,构造特殊三角形来解决问题.熟练掌握矩形的性质、等腰三角形的判定与性质是解决问题的关键. 5.(2023·江苏无锡·校考一模)如图,ABCD Y 的对角线AC 与BD 相交于点O ,添加下列条件不能证明ABCD Y 是菱形的是( )A .ABD ADB ∠=∠ B .AC BD ⊥C .AB BC =D .AC BD =【答案】D 【分析】由菱形的判定、矩形的判定分别对各个选项进行判断即可.【详解】解:A 、∵ABD ADB ∠=∠,∴AB AD =,∴ABCD Y 是菱形,故选项不符合题意;B 、∵四边形ABCD 是平行四边形,AC BD ⊥,∴ABCD Y 是菱形,故选项不符合题意;C 、∵四边形ABCD 是平行四边形,AB BC =,∴ABCD Y 是菱形,故选项不符合题意,D 、∵四边形ABCD 是平行四边形,AC BD =,∴ABCD Y 是矩形,故选项符合题意;故选:D .【点睛】本题考查了菱形的判定、矩形的判定,熟练掌握菱形的判定方法是解题的关键.【答案】C【分析】根据矩形的判定定理逐一判断即可.【详解】解:A 、一组对角相等的平行四边形不一定是矩形,是假命题,不符合题意;B 、对角线相等且平分的四边形是矩形,是假命题,不符合题意;C 、顺次连接菱形四边中点得到的四边形是矩形,是真命题,符合题意;如图所示,在菱形ABCD 中,E F G H 、、、分别是AB BC CD AD 、、、的中点,∴EH 是ABD △的中位线,∴12EH BD EH BD =,∥,同理得111222EF AC EF AC FG BD GH AC ===,∥,,, ∴EH FG EF GH ==,,∴四边形EFGH 是平行四边形,∵四边形ABCD 是菱形,∴AC BD ⊥,∴EH EF ⊥,∴四边形EFGH 是矩形;D 、对角线相等的四边形不一定是矩形,也有可能是等腰梯形,是假命题,不符合题意;故选C .【点睛】本题主要考查了判断命题真假,矩形的判定,熟知矩形的判定定理是解题的关键.【答案】C【分析】连接CM ,先证四边形PCQM 是矩形,得PQ CM =,再由勾股定理得3BD =,当CM BD ⊥时,CM 最小,则PQ 最小,然后由面积法求出CM 的长,即可得出结论.【详解】解:如图,连接CM ,MP CD ⊥于点P ,MQ BC ⊥于点Q ,90CPM CQM ∴∠=∠=︒,四边形ABCD 是矩形,6BC AD ∴==,8CD AB ==,90BCD ∠=︒,∴四边形PCQM 是矩形,PQ CM ∴=,由勾股定理得:10BD ==,当CM BD ⊥时,CM 最小,则PQ 最小, 此时,1122BCD S BD CM BC CD =⋅=⋅△, 即11106822CM ⨯⨯=⨯⨯,245CM ∴=, PQ ∴的最小值为245,故选:C .【点睛】勾股定理、垂线段最短以及三角形面积等知识,熟练掌握矩形的判定与性质是解题的关键. 8.(2023·山东德州·统考二模)如图,矩形ABCD 中,6AB =,4=AD ,点E ,F 分别是AB ,DC 上的动点,EF BC ∥,则BF DE +最小值是( )A .13B .10C .12D .5【答案】B 【分析】延长AD ,取点M ,使得AD DM =,连接MP ,根据全等三角形的判定得到ADE DMF ≌,得到DE MF =,故当B ,F ,M 三点共线时,BF DE +的值最小,即为BM 的值.【详解】延长AD ,取点M ,使得AD DM =,连接MP ,如图∵EF BC ∥,四边形ABCD 是矩形∴四边形AEFD 和四边形EBCF 是矩形∵AD DM =,AE DF =,90EAD FDM ==︒∠∠∴ADE DMF ≌∴DE MF =∴=BF DE BF FM ++∵点E ,F 分别是AB ,DC 上的动点故当B ,F ,M 三点共线时,BF DE +的值最小,且BF DE +的值等于BM 的值在Rt BAM △中,10BM ===故选:B . 【点睛】本题考查了矩形的判定和性质,全等三角形的判定和性质,勾股定理等,做出辅助线,构建DMF 使得ADE DMF ≌是解决本题的关键.二、填空题 9.(2023·甘肃武威·统考三模)如图矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E ,F ,AB =3,BC =4,则图中阴影部分的面积为_____.【答案】6.【分析】首先结合矩形的性质证明△AOE ≌△COF ,得△AOE 、△COF 的面积相等,从而将阴影部分的面积转化为△BCD 的面积.【详解】∵四边形ABCD 是矩形,∴OA =OC ,∠AEO =∠CFO ;又∵∠AOE =∠COF ,在△AOE 和△COF 中,∵AEO CFO OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠∠⎩=,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,∴S 阴影=S △AOE+S △BOF+S △COD =S △AOE+S △BOF+S △COD =S △BCD ;∵S △BCD =12BC•CD =6,∴S 阴影=6.故答案为6.【点睛】本题主要考查矩形的性质,三角形全等的判定和性质定理,掌握三角形的判定和性质定理,是解题的关键.【答案】AE BC ⊥(答案不唯一)【分析】根据矩形的判定方法即可求解.【详解】解:菱形ABCD ,BE DF =,∴AD DF BC BE −=−,即CE AF =,且AF CE =,∴四边形AECF 是平行四边形,根据矩形的判定,①四边形AECF 是平行四边形,AE BC ⊥,∴90AEC ∠=︒,平行四边形AECF 是矩形;②四边形AECF 是平行四边形,若CF AD ⊥,∴90AFC ∠=︒,平行四边形AECF 是矩形;故答案为:AE BC ⊥(答案不唯一).【点睛】本题主要考查矩形,掌握矩形的判定方法是解题的关键. 11.(2023春·吉林·八年级期中)如图,在ABCD Y 中AC BD 、相交于点O ,8AC =,当OD =______时,ABCD Y 是矩形.【答案】4【分析】根据矩形的判定与性质即可解答.【详解】解:四边形ABCD 为平行四边形,∴要使四边形ABCD 为矩形,则8BD AC ==,142OD BD ∴==,故答案为:4.【点睛】本题主要考查了矩形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解题的关键.12.(2023·江苏徐州·统考一模)如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A′B′C′=S △ABC ,BC=B′C′,BC ∥B′C′,∴四边形B′C′CB 为平行四边形,∵BB′⊥BC ,∴四边形B′C′CB 为矩形,∵阴影部分的面积=S △A′B′C′+S 矩形B′C′CB-S △ABC=S 矩形B′C′CB=4×2=8(cm2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【答案】14【分析】有矩形的性质和勾股定理分别求出EJ FJ =AK BK ==【详解】解:在矩形ABCD 中,∵4590BAF ABF ∠=︒∠=︒,,∴45454ABG AFB AB BF ∠=︒∠=︒==,,,∵6BC =,∴2BE CF AH DG ====,∴2HG EF ==,∴EJ FJ =∵4AB =,∴AK BK ===∴(24614S ⎡⎤=⨯−=⎢⎥⎣⎦阴影.故答案为:14.【点睛】本题主要考查矩形的性质、勾股定理,掌握相关知识并理解题意是解题的关键. 统考一模)如图,ABC 的边,将ABC 平移得到A B C ''',且 【答案】62【分析】利用平行的性质可得2BB CC ''==,BC B C ''==A ABC B C '''≌△△,利用两组对边分别相等的四边形是平行四边形,可证四边形BCC B ''是平行四边形,同时可证得ABC A B C S S '''=△△,再证明四边形BCC B ''是矩形,由此可得阴影部分的面积等于矩形BCC B ''的面积,然后利用矩形的面积公式进行计算.【详解】解:∵将ABC 平移2cm 得到A B C ''',∴2BB CC ''==,BC B C ''==A ABC B C '''≌△△, ∴四边形BCC B ''是平行四边形,∵BB BC '⊥,90B BC ∴='∠︒,∴四边形BCC B ''是矩形,∴22BCC B S S ''==⨯=阴影,故答案为:【点睛】本题考查了平移的性质、平行四边形的判定与性质、矩形的判定与性质,熟练掌握平移的性质,证明四边形BCC B ''是矩形是解题的关键.三、解答题 分别是ABC 各边的中点. 请你为ABC 添加一个条件,使得四边形【答案】(1)四边形ADEF 为平行四边形,证明见解析(2)90DAF ∠=︒,四边形ADEF 为矩形,证明见解析【分析】(1)根据三角形中位线定理得到DE AC EF AB ∥,∥,根据平行四边形的判定定理证明结论;(2)根据矩形的判定定理证明.【详解】(1)解:四边形ADEF 为平行四边形,理由如下:∵D ,E ,F 分别是ABC 各边的中点,∴DE AC EF AB ∥,∥,∴四边形ADEF 是平行四边形;(2)90DAF ∠=︒,四边形ADEF 为矩形,理由如下:由(1)得:四边形ADEF 为平行四边形,又∵90DAF ∠=°,∴平行四边形ADEF 是矩形.【点睛】本题考查的是三角形中位线定理、平行四边形和矩形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. (1)求证:四边形ABCF (2)若ED EC =,求证:【答案】(1)见解析(2)见解析【分析】(1)根据,AB DC FC AB =∥,可得四边形ABCF 是平行四边形,再由90BCD ∠=︒,即可求证;(2)根据四边形ABCF 是矩形,90AFD AFC ∠=∠=︒,从而得到90,90DAF D CGF ECD ∠=︒−∠∠=︒−∠,再由ED EC =,可得D ECD ∠=∠,从而得到DAF CGF ∠=∠,进而得到EAG EGA ∠=∠,即可求证.【详解】(1)证明:∵,AB DC FC AB =∥,∴四边形ABCF 是平行四边形.∵90BCD ∠=︒,∴四边形ABCF 是矩形.(2)证明:∵四边形ABCF 是矩形,∴90AFD AFC ∠=∠=︒,∴90,90DAF D CGF ECD ∠=︒−∠∠=︒−∠.∵ED EC =,∴D ECD ∠=∠.∴DAF CGF ∠=∠.∵EGA CGF ∠=∠,∴EAG EGA ∠=∠.∴EA EG =.【点睛】本题主要考查了矩形的判定和性质,等腰三角形的判定和性质,熟练掌握矩形的判定和性质,等腰三角形的判定和性质是解题的关键.【答案】见解析【分析】首先证明四边形ABCD 是平行四边形,得出OA OC =,OB OD =,根据OA OD =,得出AC BD =,即可证明.【详解】解:证明:∵AB CD =,AB CD ∥,∴四边形ABCD 为平行四边形,∴OA OC =,OB OD =.又∵OA OD =,∴AC BD =,∴平行四边形ABCD 为矩形.【点睛】本题考查了矩形的判定、平行四边形的判定与性质;熟练掌握矩形的判定是解题的关键. 18.(2023·湖北恩施·统考二模)如图,在平行四边形ABCD 中,对角线,BD AC 相交于点,,O AE BD BF AC ⊥⊥,垂足分别为,E F .若CF DE =,求证:四边形ABCD 为矩形.【答案】见解析【分析】利用HL 证明ADE BCF ≌,得出AE BF =,利用AAS 证明AOE BOF △≌△,得出AO BO =,结合平行四边形的性质可得出AC BD =,然后利用矩形的判定即可证明.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC =,2AC AO =,2BD BO =,∵,AE BD BF AC ⊥⊥,∴90AED AEO BFC BFO ∠=∠=∠=∠=︒,又CF DE =∴()Rt Rt HL ADE BCF ≌,∴AE BF =,又AOE BOF ∠=∠,∴()AAS AOE BOF ≌,∴AO BO =,又2AC AO =,2BD BO =,∴平行四边形ABCD 是矩形.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,矩形的判定等知识,证明AO BO =是解题的关键. 19.(2023·湖南岳阳·模拟预测)如图所示,ABC 中,D 是BC 中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF BD =,连接BF .请从以下三个条件:①AB AC =;②FB AD =;③E 是AD 的中点,选择一个合适作为已知条件,使四边形AFBD 为矩形.(1)你添加的条件是 ;(填序号)(2)添加条件后,请证明四边形AFBD 为矩形.【答案】(1)①(2)见解析【分析】(1)根据已知可得四边形AFBD 是平行四边形,添加条件能证明四边形是矩形即可求解;(2)先证明四边形AFBD 是平行四边形,①根据三线合一得出AD BD ⊥,能证明四边形是矩形;②只能证明四边形为平行四边形;③证明AFE DCE △≌△,可得AF DC =,进而根据已知得出BD AF =,不能证明四边形是矩形.【详解】(1)解:添加的条件是①故答案为:①.(2)证明:∵AF BC ∥,AF BD =,∴四边形AFBD 是平行四边形,①AB AC =;∵ABC 中,D 是BC 中点,∴四边形AFBD 是矩形;②添加FB AD =;四边形AFBD 是平行四边形,不能证明四边形AFBD 是矩形;③E 是AD 的中点∴AE DE =,∵AF BC ∥,∴FAE DCE ∠=∠,又AEF DEC ∠=∠,∴()AAS AFE DCE ≌,∴DC AF =,又BD CD =,∴BD AF =,∴③不能证明四边形AFBD 是矩形.【点睛】本题考查了矩形的判定,熟练掌握矩形的判定定理是解题的关键. (1)求证:四边形OCED 是矩形;(2)设AC =12,BD =16,求OE 的长.【答案】(1)见解析(2)10【分析】(1)先证明平行四边形ABCD 为菱形,可得AC BD ⊥,通过CE BD ∥,DE AC ∥证明四边形OCED 为平行四边形,结合AC BD ⊥即可证明;(2)由(1)可得平行四边形ABCD 为菱形,故12OC AO AC ==,12OB DO BD ==,结合四边形OCED 是矩形,运用勾股定理即可求得OE 的长. 【详解】(1)∵四边形ABCD 为平行四边形,AB BC =,∴平行四边形ABCD 为菱形,∴AC BD ⊥,∵CE BD ∥,DE AC ∥,∴四边形OCED 为平行四边形,又∵AC BD ⊥,∴四边形OCED 为矩形.(2)∵=12AC ,16BD =, ∴162OC AC ==,182DO BD ==,在Rt COD 中,10CD =,由(1)知四边形OCED 为矩形,∴10OE CD ==.【点睛】本题考查了菱形的判定和性质,矩形的判定和性质,勾股定理等,熟练掌握四边形的判定和性质是解题的关键. 21.(2023·湖南长沙·校考二模)如图,平行四边形ABCD 中,AC BC ⊥,过点D 作∥DE A C 交BC 的延长线于点E ,点M 为AB 的中点,连接CM .(1)求证:四边形ADEC 是矩形;(2)若5CM =,且8AC =,求四边形ADEB 的周长.【答案】(1)证明见解析(2)36【分析】(1)根据平行四边形的性质得到AD BC ∥,由∥DE A C 即可证明四边形ADEC 是平行四边形,再由AC BC ⊥即可证明平行四边形四边形ADEC 是矩形;(2)先根据直角三角形斜边上的中线等于斜边的一半求出10AB =,进而利用勾股定理求出6BC =,再利用平行四边形的性质得到6AD =,由此即可利用矩形周长公式求出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∵∥DE A C , ∴四边形ADEC 是平行四边形,∵AC BC ⊥,即A C C E ⊥,∴平行四边形四边形ADEC 是矩形;(2)解:∵AC BC ⊥,点M 为AB 的中点,5CM =,∴210AB CM ==,在Rt ABC △中,由勾股定理得6BC ==, ∵四边形ABCD 是平行四边形,四边形ADEC 是矩形∴6AD BC CE ===,8DE AC ==∴四边形ADEB 的周长68661036AD DE CE CB AB =++++=++++=.【点睛】本题主要考查了矩形的性质与判定,平行四边形的性质与判定,勾股定理,直角三角形斜边上的中线的性质,熟知矩形的性质与判定定理是解题的关键. 22.(2023·山东济南·统考三模)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,DF ⊥AC 于点F . 求证:AE =DF .【答案】见解析【分析】根据矩形的性质得到OA =OC =OB =OD ,再根据AE ⊥BD ,DF ⊥AC 得出∠AEO =∠DFO ,从而证明出△AOE ≌△DOF 即可.【详解】证明:∵四边形ABCD 是矩形,对角线AC ,BD 相交于点O ,∴OA =OC =OB =OD ,∵AE ⊥BD ,DF ⊥AC ,∴∠AEO =∠DFO =90°,在△AOE 和△DOF 中,AEO DFO AOE DOFAO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△DOF (AAS ),∴AE =DF .【点睛】本题主要考查矩形的性质和三角形全等的判定与性质,解题关键是找到全等三角形,熟练运用全等三角形的判定进行证明. 八年级北京交通大学附属中学校考期中)如图,在ABC 中,点(1)求证:四边形ADFE 为矩形;(2)若30C ∠=︒,2AF =,写出矩形【答案】(1)证明见解析(2)2【分析】(1)连接DE ,先根据三角形的中位线的性质证明四边形ADFE 是平行四边形,再根据对角线相等的平行四边形是矩形证明即可;(2)根据矩形的性质得出90BAC FEC ∠=∠=︒,再根据直角三角形斜边上的中线等于斜边的一半得出4BC =,2CF =,然后解直角三角形求出矩形的边长即可得出矩形的周长.【详解】(1)连接DE ,如图,∵点E ,F 分别是边AC ,BC 的中点,∴EF AB ∥,12EF AB =.∵点D 是边AB 的中点, ∴12AD AB =.∴AD EF =.∴四边形ADFE 是平行四边形.∵点D ,E 分别是边AB ,AC 的中点, ∴12DE BC =. ∵2BC AF =,∴AF DE =.∴平行四边形ADFE 是矩形.(2)∵四边形ADFE 为矩形,∴90BAC FEC ∠=∠=︒.∵2AF =,点F 是边BC 的中点,∴24BC AF ==,2CF AF ==.∵30C ∠=︒,∴1EF =,CE∴AE CE ==∴矩形ADFE 的周长为:())2212AE EF +==.【点睛】本题主要考查了矩形的判定和性质,三角形的中位线的性质,直角三角形的性质以及解直角三角形,熟练掌握矩形的判定和性质是解题的关键.。
18.2.1矩形的性质和判定(教案)
一、教学内容
本节课选自高中数学教材选修18.2.1节“矩形的性质和判定”。教学内容主要包括以下两部分:
1.矩形的性质:讨论矩形的定义及基本性质,如对边平行且相等、对角线互相平分且相等、四个角都是直角等。
2.矩形的判定:学习如何判断一个四边形是否为矩形,包括以下几种情况:
在新课讲授中,我尝试通过案例分析和重点难点解析来帮助学生深入理解矩形的概念。我发现,通过具体的例子和图形展示,学生们更容易接受和理解这些几何性质。然而,我也意识到,对于一些学生来说,将理论知识应用到实际问题中仍然是一个挑战。
实践活动环节,分组讨论和实验操作非常受欢迎,学生们积极参与,热烈讨论。但在小组讨论中,我也注意到有些小组在解决问题时,思路不够清晰,需要更多的引导。这可能是因为他们对矩形性质的应用还不够熟练,或者是团队合作和交流能力还有待提高。
3.提升数学抽象和模型构建能力,通过矩形的性质和判定在实际问题中的应用,培养学生将现实问题转化为数学模型的能力。
4.增强数学运算和数据处理能力,让学生在解决矩形相关问题时,熟练运用几何知识和数学符号进行推导和计算。
5.培养团队合作和交流表达能力,通过小组讨论和课堂展示,提高学生在数学学习中的沟通与合作能力。
同学们,今天我们将要学习的是“18.2.1矩形的性质和判定”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过哪些物体或图形是矩形的?”(如桌子、书本等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索矩形的性质和判定的奥秘。
三、教学难点与重点
1.教学重点
(1)矩形的定义及性质:理解矩形的定义,掌握矩形的对边平行且相等、对角线互相平分且相等、四个角都是直角等基本性质。
专题15 矩形的性质与判定(解析版)
专题15 矩形的性质与判定【考点归纳】(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)(5)①证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.【好题必练】一、选择题1.(2020秋•光明区期末)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5【答案】A【解析】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.2.(2020秋•凤翔县期末)如图,点P是Rt△ABC中斜边AC(不与A,C重合)上一动点,分别作PM⊥AB于点M,作PN⊥BC于点N,连接BP、MN,若AB=6,BC=8,当点P在斜边AC上运动时,则MN的最小值是()A.1.5B.2C.4.8D.2.4【答案】C.【解析】解:∵∠ABC=90°,AB=6,BC=8,∴AC===10,∵PM⊥AB,PN⊥BC,∠C=90°,∴四边形BNPM是矩形,∴MN=BP,由垂线段最短可得BP⊥AC时,线段MN的值最小,此时,S△ABC=BC•AB=AC•BP,即×8×6=×10•BP,解得:BP=4.8,即MN的最小值是4.8,故选:C.3.(2020•竹溪县模拟)下列说法中,错误的是()A.菱形的对角线互相垂直B.对角线互相垂直的四边形是菱形C.矩形的四个内角都相等D.四个内角都相等的四边形是矩形【答案】B【解析】解:A、∵菱形的对角线互相垂直,∴选项A不符合题意;B、∵对角线互相垂直平分的四边形是菱形,∴选项B符合题意;C、∵矩形的四个角都是直角,∴矩形的四个内角都相等,∴选项C不符合题意;D、∵四个内角都相等的四边形是四个角都是直角,∴四个内角都相等的四边形是矩形,∴选项D不符合题意;故选:B.4.(2020秋•武侯区校级月考)如图,在△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则PM的最小值为()A.5B.2.5C.4.8D.2.4【答案】D.【解析】解:连接AP,如图所示:∵∠BAC=90°,AB=6,AC=8,∴BC==10,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP,EF与AP互相平分,∵M是EF的中点,∴M为AP的中点,∴PM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样PM也最短,∴当AP⊥BC时,AP==4.8,∴AP最短时,AP=4.8,∴当PM最短时,PM=AP=2.4.故选:D.5.(2020春•沙坪坝区校级月考)下列说法正确的是()A.矩形的对角线互相垂直且平分B.矩形的邻边一定相等C.对角线相等的四边形是矩形D.有三个角为直角的四边形为矩形【答案】D.【解析】解:A、∵矩形的对角线互相平分且相等,∴选项A不符合题意;B、∵矩形的邻边一定垂直,不一定相等,∴选项B不符合题意;C、∵对角线相等的平行四边形是矩形,∴选项C不符合题意;D、∵有三个角为直角的四边形为矩形,∴选项D符合题意;故选:D.6.(2020春•江夏区期末)如图,点P是Rt△ABC中斜边AC(不与A,C重合)上一动点,分别作PM⊥AB于点M,作PN⊥BC于点N,点O是MN的中点,若AB=6,BC=8,当点P在AC上运动时,则BO的最小值是()A.1.5B.2C.2.4D.2.5【答案】C.【解析】解:连接BP,如图所示:∵∠ABC=90°,PM⊥AB于点M,作PN⊥BC于点N,∴四边形BMPN是矩形,AC===10,∴BP=MN,BP与MN互相平分,∵点O是MN的中点,∴BO=MN,当BP⊥AC时,BP最小===4.8,∴MN=4.8,∴BO=MN=2.4,故选:C.二、填空题7.(2020•顺义区一模)如图,将一矩形纸片ABCD沿着虚线EF剪成两个全等的四边形纸片.根据图中标示的长度与角度,求出剪得的四边形纸片中较短的边AE的长是.【答案】3【解析】解:过F作FQ⊥AD于Q,则∠FQE=90°,∵四边形ABCD是长方形,∴∠A=∠B=90°,AB=DC=4,AD∥BC,∴四边形ABFQ是矩形,∴AB=FQ=DC=4,∵AD∥BC,∴∠QEF=∠BFE=45°,∴EQ=FQ=4,∴AE=CF=×(10﹣4)=3,故答案为:3.8.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.【答案】【解析】解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.9.在△ABC中,AB=6cm,AC=8cm,BC=10cm,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,连接EF,则EF的最小值为cm.【答案】【解析】解:∵AB=6cm,AC=8cm,BC=10cm,∴AB2+AC2=BC2,∴△ABC为直角三角形,∠A=90°,∵PE⊥AB于E,PF⊥AC于F,∴∠AEP=∠AFP=90°,∴四边形AEPF为矩形,连接AP,如图,EF=AP,当AP的值最小时,EF的值最小,当AP⊥BC时,AP的值最小,根据△ABC面积公式,×AB•AC=×AP•BC,∴AP===,∴EF的最小值为.故答案为.10.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是.【答案】【解析】解:连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴AC•BC=AB•PC,∴PC=.∴线段EF长的最小值为;故答案是:.11.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为.【答案】2.4【解析】解:连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故答案为:2.4.三、解答题12.如图,在菱形ABCD中,对角线AC与BD交于点O,过点C作AC的垂线,过点D作BD的垂线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,求四边形的ABCD面积.【答案】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE⊥AC,DE⊥BD,∴平行四边形OCED是矩形;(2)解:由(1)知,四边形OCED是菱形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×4×2=4.【解析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.13.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF =BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.【答案】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.【解析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD 的面积,根据等腰三角形的性质得到结论.14.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.【答案】(1)证明:∵菱形ABCD,∴AD∥BC.∵CF∥AE,∴四边形AECF是平行四边形.∵AE⊥BC,∴平行四边形AECF是矩形;(2)解:∵AE=4,AD=5,∴AB=5,BE=3.∵AB=BC=5,∴CE=8.∴AC=4,∵对角线AC,BD交于点O,∴AO=CO=2.∴OE=2.【解析】(1)根据菱形的性质得到AD∥BC,推出四边形AECF是平行四边形,根据矩形的判定定理即可得到结论;(2)根据已知条件得到得到CE=8.求得AC=4,于是得到结论.15.(2020•石景山区一模)如图,在▱ABCD中,∠ACB=90°,过点D作DE⊥BC交BC的延长线于点E.(1)求证:四边形ACED是矩形;(2)连接AE交CD于点F,连接BF.若∠ABC=60°,CE=2,求BF的长.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠CAD=∠ACB=90°.又∵∠ACE=90°,DE⊥BC,∴四边形ACED是矩形.(2)解:∵四边形ACED是矩形,∴AD=CE=2,AF=EF,AE=CD.∵四边形ABCD是平行四边形,∴BC=AD=2,AB=CD.∴AB=AE.又∵∠ABC=60°,∴△ABE是等边三角形.∴∠BFE=90°,.在Rt△BFE中,.【解析】(1)根据四边形ABCD是平行四边形,可得AD∥BC.所以∠CAD=∠ACB=90°.又∠ACE =90°,即可证明四边形ACED是矩形;(2)根据四边形ACED是矩形,和四边形ABCD是平行四边形,可以证明△ABE是等边三角形.再根据特殊角三角函数即可求出BF的长.16.(2020春•灌云县期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若△ABC是边长为2的正三角形,求四边形AODE的面积.【答案】(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,∴四边形AODE是矩形;(2)解:∵△ABC是边长为2的正三角形,∴AB=AC=2,∠ABC=60°,∵四边形ABCD为菱形,∴AO=AC=1,OD=OB,∵∠AOB=90°,∴OB===,∴OD=OB=,∵四边形AODE是矩形,∴四边形AODE的面积=×1=.【解析】(1)根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD =90°,继而可判断出四边形AODE是矩形;(2)由菱形的性质和勾股定理求出OB,得出OD,由矩形的面积公式即可得出答案。
《矩形的性质与判定》教案
《矩形的性质与判定》教案教学目标:1.掌握矩形的概念、性质和判别条件.2.提高对矩形的性质和判别在实际生活中的应用能力.教学重点、难点:教学重点:本节课的重点是矩形的性质和常用判别方法的理解和掌握.教学难点:本节课的难点是矩形的性质和常用判别方法的综合应用.教学过程:一.巧设情境问题,引入课题给出活动的平行四边形教具,请学生观察当它的一个内角由锐角变为钝角的过程中,会形成怎样的特殊图形情况.进而引入本节课的主题——矩形.二.讲授新课主要环节:(1)根据演示过程,请学生尝试给矩形下定义.(2)寻找生活中的矩形.(3)从对称的角度再认识矩形.(4)探索矩形的性质.(5)通过练习,加强学生对矩形性质的理解.(6)矩形的判定.(一)矩形的概念、性质矩形是学生比较熟悉的图形,小学甚至更早学生就已经接触到.但是当时对于矩形的理解和认识是停留在表象层面的,即提到矩形,学生往往联想到的是具体的图形和形象,不能离开实物去研究图形.随着学生的思维水平的提高,这里采取的动画的方式,请学生给矩形下定义,就是要让学生在直观从把握矩形的本质特征,从而将对矩形的理解上升到形式化的高度.1.矩形的概念在上面学习和小学的知识基础上,引导学生归纳出矩形的概念.有一角是直角的平行四边形是矩形.让学生举出三个日常生活中的矩形的实例.2.矩形的性质根据上面的定义提问:(1)矩形是不是平行四边形?(2)平行四边形是不是矩形?(3)平行四边形的性质矩形有没有也具备?(4)矩形有没有与平行四边形不同的性质?教师在学生回答的基础上,引导学生得出:矩形不但具备一般平行四边形的所有性质,还具备一般平行四边形没有的特殊性质:3.探究(1)如图,剪出一个矩形纸片ABCD,点O是这个矩形的中心.请你用折叠的方法,验证它是轴对称图形.矩形有几条对称轴,它们都经过矩形的中心吗?(2)拿出准备好的平行四边形活动框架,来做一做:在一个平行四边形活动框架上,用两根像皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状:①随着∠α的变化,两条对角线的长度分别是怎样变化的?②当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?③当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?(学生进行活动,探索矩形的性质)当∠α是锐角或钝角时,两条对角线是不相等的.当∠α是直角时,平行四边形变为矩形,这时两条对角线的长度相等.归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)矩形既是中心对称图形,也是轴对称图形.矩形的性质:定理1.矩形的四个角都是直角;定理2.矩形的对角线相等;教师根据矩形的性质2,画出图形,写出已知、求证,让学生独立完成性质2的证明.已知:如图,AC和BD是矩形ABCD的对角线;求证:AC=BD.教师让学生独立完成证明过程,让一位学生板演,教师是学生完成证明过程后,进行点评指正.4.习题演示如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内.求证:(1)∠PBA =∠PCQ =30°;(2)P A =PQ .证明:(1)∵四边形ABCD 是矩形,∴∠ABC =∠BCD =90°.∵△PBC 和△QCD 是等边三角形,∴∠PBC =∠PCB =∠QCD =60°,∴∠PBA =∠ABC -∠PBC =30°∠PCD =∠BCD -∠PCB =30°.∴∠PCQ =∠QCD -∠PCD =30°.∴∠PBA =∠PCQ =30°.(2)∵AB =DC =QC ,∠PBA =∠PCQ ,PB =PC ,∴△P AB ≌△PQC ,∴P A =PQ .如图,在矩形ABCD 中,点E F 、分别在边AD DC 、上,ABE DEF △∽△,692AB AE DE ===,,,求EF 的长.证明:∵四边形ABCD 是矩形,AB =6∴∠A =∠D =90°,DC =AB =6又∵AE =9∴在Rt △ABE 中,由勾股定理得:BE =117692222=+=+AB AE ,∵ABE DEF △∽△, AC BD PQA B CDE F∴EF BE DE AB =,即EF11726=, ∴EF =3117. (二)矩形的判定我们已知矩形性质:矩形的对角线相等,四个角都是直角.(出示符号语言)1.问题:若平形四边形的对角线相待,则它是矩形吗?(由学生分析)矩形判定:对角线相等的平行四边形是矩形.(出示符号语言)2.矩形的判定定理定理1.对角线相等的平行四边形是矩形;定理2.有三个角是直角的四边形是矩形.3.矩形判断定理的证明(1)证明定理1教师对照右边的图形,写出已知、求证如下.已知:在平行四边形ABCD 在中,AC =BD ,求证:平行四边形ABCD 是矩形.教师做启发性提问:①条件是什么?结论是什么?②要证明一个四边形是矩形,根据矩形的定义,只需证明什么?③要证明有一个角是直角,根据相邻的两个角互补,只需要证明什么?于是就归结为证明怎样的两个三角形全等?④如果选择要证明全等的两个三角形是△ABC 和△DCB ,它们已经满足哪些条件?这些条件能证明它们全等吗?根据是什么?(2)证明定理2教师做启发性提问:①定理的条件是什么?结论是什么?②在没有这个判定定理以前,我们要证明一个四边形是矩形,只能根据什么方法来证明?③因此证明这个定理应该先证明什么?再证明什么?教师在学生回答后,让学生自己独立的完成证明.在学生回答后让学生口述证明过程,教师在指正的基础上同步板书,证明过程略. 4.讲解范题一张四边形的纸板ABCD 的形状如图(1),它的两条对角线互相垂直.如果要从这张纸板中剪出一个矩形,并且使它的四个顶点分别落在四边形ABCD 的四条边上,可以怎么剪?(2)(1)A C教师引导学生利用三角形的中位线定理,分别取AB 、BC 、CD 、DA 的中点E 、F 、G 、H ,任何再利用三角形的中位线定理进行证明,证明过程略.三、课堂小结1.矩形既是轴对称图形,又是中心对称图形,有两条对称轴.2.矩形不但具备一般平行四边形的所有性质,还具备一般平行四边形没有的特殊性质是:(1)矩形的四个角都是直角;(2)矩形的对角线相等.3.针对判定一个四边形是矩形的判定方法进行小结,特别指出要利用判定定理2进行判定时要具备两个条件:(1)这个四边形是平行四边形;(2)对角线要相等.这两个条件缺一不可.四、布置作业1.课本习题6.4的1、2题.2.课本习题6.5的1、2题.3.课本习题6.5的1题.。
1.2矩形的性质与判定1
∠ABC=∠BCD=∠CDA=∠DAB=90°
对角线的性质:
AO=CO,BO=DO AC=BD
矩形性质的延伸
矩形ABCD的对角线AC、BD相交于点O,图中
有多少个直角三角形?有多少个等腰三角形?
有多少对全等三角形?
A
D
O
B
转化 矩形问题
C
直角三角形和等腰三角形问题
矩形性质的应用
1.如图,在矩形ABCD中,对角线相交于点 O,∠AOD=120°,AB=2,求这个矩形的对 角线长和面积。
矩形的四个角都是
直角, 对角线相等,
是轴对称图形
合作交流,解决问题
已知:如图,矩形ABCD中,∠ABC=90°, 对角线AC与BD交于点O.
求证:(1)∠ABC=∠BCD=∠CDA=∠DAB=90° (2)AC=BD
矩形的性质定理:
1 矩形的四个角都是直角. 2 矩形的对角线相等.
矩形的性质
边的性质: AB//CD,AB=CD AD//BC,AD=BC
形是什么图形?
A
D
A
D
一个角是直角
B
C
B
C
2.矩形的定义: 有一个角是直角的平行四边形叫做矩形。
3. 矩形是特殊的平行四边形,具有一般平行四 边形的性质 (1)矩形的边: 对边平行且相等 ( 2)矩形的角: 对角相等,邻角互补 (3)矩形的对角线:对角线互相平分 (4)矩形是中__心__对_称__ 图形
学习目标: (1) 掌握矩形的定义,理解矩形 与平行四边形的关系。 (2) 掌握矩形的性质定理;会用矩 形的性质进行计算和证明。
学习重点难点: 掌握矩形的性质定理,会用性质 定理进行有关的计算与证明
九年级上1.2矩形的性质与判定
1.2 矩形的性质与判定
教ห้องสมุดไป่ตู้:
图中 有哪 些我 们熟 悉的 平面 图形 ?
认识新朋友
4 厘米
5 厘米
4 厘米
发生了什么变 化?
4 厘米
5 厘米
5 厘米
5 厘米
矩形的定义:有一个角是直角的平行四边形是矩形。
注意:长方形和正方形都是矩形
4 厘米
探索矩形的性质
图形
定义
在同一平面内,有两组对边 分别平行的四边形是平行四 边形。
有一个角是直角的平行四 边形是矩形。
1.对边平行且相等;
性 质 2.对角 相等 ;
3.对角线 互相平分 。
我是否也拥有呢?
补全表格
矩形
边
性 质
角
对角线
对称性
矩形的性质
矩形
边
角
对角线
对称性
性 质
对边平行 且相等
四个角都是 直角
对角线相等
中心对称图 形,轴对称 图形
议一议
2019
谢谢聆听
矩形判定的5个方法
矩形判定的5个方法矩形是一种常见的平面几何图形,具有四条边和四个直角。
判定一个图形是否为矩形有多种方法,下面将介绍五种常见的矩形判定方法。
方法一:边长判定法最简单的方法就是判断图形的四条边是否满足矩形的性质,即相邻两边相等且对角线相等。
对于给定的图形,首先判定四条边的长度是否相等,如果相等,则进一步判断对角线的长度是否相等。
如果对角线的长度也相等,则可以确定该图形是矩形。
方法二:角度判定法矩形的特点是四个直角,因此可以通过判断图形的四个角度是否为直角来确定是否为矩形。
测量给定图形的四个角度,如果四个角的度数均为90度,则可以确定该图形是矩形。
方法三:对角线相等判定法矩形的两条对角线相等,利用这个性质可以判定一个图形是否为矩形。
首先测量给定图形的两条对角线的长度,如果两条对角线的长度相等,则可以确定该图形是矩形。
方法四:四个顶点均在同一圆上判定法利用矩形的对称性质,可以通过判断矩形的四个顶点是否都在同一圆上来判定该图形是否为矩形。
将给定图形的四个顶点连接成一个四边形,再绘制一个圆,如果四个顶点都在圆上,则可以确定该图形是矩形。
方法五:重心位置判定法矩形的重心位于对角线的交点上,利用这一性质可以判定一个图形是否为矩形。
首先测量给定图形的四个顶点的坐标,然后计算出重心的坐标。
如果重心的坐标与对角线的交点坐标差距很小,可以认为该图形是矩形。
总结:以上介绍了五种常见的矩形判定方法,它们分别是边长判定法、角度判定法、对角线相等判定法、四个顶点均在同一圆上判定法和重心位置判定法。
每种方法都有其特点和适用范围,根据具体情况可以选择合适的方法进行判定。
需要注意的是,在使用这些方法进行判定时,测量和计算的准确性是非常重要的,只有准确无误地得出结论才能确定给定图形是否为矩形。
此外,对于已知为矩形的图形,还可以通过这些方法验证其是否符合矩形的性质,从而进一步确认。
6.2矩形的性质与判定
6.2矩形的性质与判定定义:有一个角是直角的平行四边形是矩形.性质:(1)矩形具有平行四边形的一切性质.(2)四个角都是直角.(3)对角线相等.(4)是轴对称图形,有4条对称轴.定理:直角三角形斜边中线等于斜边的一半.判定:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形.基础闯关矩形的定义与性质1.矩形具有而一般的平行四边形不一定具有的特征是()。
A.对角相等 B. 对边相等 C.对角线相等 D. 对角线互相平分2.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.矩形的两边长分别为10cm和15cm,其中一个内角平分线分长边为两部分,这两部分分别为()A.6cm和9cm B.5cm和10cm C.4cm和11cm D.7cm和8cm 4.在下列图形性质中,矩形不一定具有的是()A.对角线互相平分且相等 B.四个角相等C.是轴对称图形 D.对角线互相垂直平分5.一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为 .6.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为,短边长为 .7.已知,矩形的一条边上的中点与对边的两个端点的连线互相垂直,且该矩形的周长为24 cm,则矩形的面积为 cm2。
8.如图,矩形ABCD中,E为AD上一点,EF⊥CE交AB于F,若DE=2,矩形ABCD 的周长为16,且CE=EF,求AE的长.9.已知:如图所示,矩形ABCD 中,E 是BC 上的一点,且AE=BC ,︒=∠15EDC .求证:AD=2AB .10.如图,ABCD 是矩形纸片,翻折∠B 、∠D ,使BC 、AD 恰好落在AC 上。
设F 、H分别是B 、D 落在AC 上的两点,E 、G 分别是折痕CE 、AG 与AB 、CD 的交点。
数学矩形知识点归纳
数学矩形知识点归纳矩形1、矩形的定义:有一个角是直角的平行四边形叫做矩形。
2、矩形的性质:⑴ 矩形具有平行四边形的一切性质;⑵ 矩形的四个角都是直角;⑶ 矩形的对角线平分且相等;(AC=BD)⑷ 矩形是轴对称图形,它有2条对称轴。
提示:⑴ “矩形的四个角都是直角”这一性质可用来证两条线段互相垂直或角相等,“矩形的对角线相等”这一性质可用来证线段相等;⑵ 矩形的两条对角线分矩形为面积相等的四个等腰三角形。
3、矩形判定方法:⑴ 定义:有一个角是直角的平行四边形叫做矩形。
⑵ 方法1:对角线相等的平行四边形是矩形。
⑶ 方法2:有三个角是直角的四边形是矩形。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的`两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
初中数学知识点:点的坐标的性质下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。
矩形的性质与判定的综合运用-课件
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年3月4日星期 四2021/3/42021/3/42021/3/4
•
15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/42021/3/42021/3/43/4/2021
•
16、业余生活要有意义,不要越轨。2021/3/42021/3/4Marc h 4, 2021
•
11、越是没有本领的就越加自命不凡 。2021/3/42021/3/42021/3/4M ar-214- Mar-21
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/42021/3/42021/3/4T hursday, March 04, 2021
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/42021/3/42021/3/42021/3/43/4/2021
MK2+NK2= (2x)2+8x2=2 3x,∴MDNN=2 x3x=2 3
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/42021/3/4T hursday, March 04, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/3/42021/3/42021/3/43/4/2021 9:54:09 PM
13.如图,矩形 ABCD 中,AC,BD 相交于点 O,点 E 为矩 形 ABCD 外一点,若 AE⊥CE,求证:BE⊥DE.
解:连接 OE,∵四边形 ABCD 是矩形,∴OA=OC,OB =OD,AC=BD,∵AE⊥CE,∴OE=21AC,∴OE=12BD,∴ OE=OB=OD,可证∠BED=90°,∴BE⊥DE
矩形的性质与判定教学设计
1.2矩形的性质与判定教学目标知识与技能:了解矩形的有关概念,理解并掌握矩形的有关性质;过程与方法:经过探索矩形的概念和性质的过程,发展学生合情理意识,掌握几何思维方法情感态度价值观:培养严谨的推理能力,以及自主合作精神,体会逻辑推理的思维价值重难点关键重点:掌握矩形的性质,并学会应用难点:理解矩形的特殊性关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形教具平行四边形学法探究,逻辑推理教学过程一·情景导入出示实物:平行四边形,提问学生:1这个是什么图形2它具有不稳定性,那么在运动变化中,它还是平行四边形吗什么没有变化,什么发生了变化3如果使它的一个内角变成直角,那么这个平行四边形变成了什么那么我们就把有一个内角是直角的平行四边形叫做矩形,说说生活中有哪些矩形这节课我们就来探究平行四边形的性质与判定;二、探究矩形性质既然矩形是特殊的平行四边形,那么它就应该具有平行四边形的一切性质,那么它具有哪些特殊的性质呢请同学们拿出一张矩形纸片,以小组为单位,进行探究说说矩形特殊的性质矩形的四个角都是直角矩形的对角线相等矩形是轴对称图形如果我们要验证这些命题的正确性,还需要通过逻辑推理的方法来验证它们;请同学们自己来证明前两个猜想,学生板演过程;请同学展示矩形有几条对称轴,以及对称轴的条数三、探究直角三角形的性质观察矩形,1图中有几个三角形,可以归下类吗2图中有几个直角三角形,如果以一个直角三角形为研究对象,观察点O是什么猜猜AO与BD的关系是什么3验证你的猜想;得结论:直角三角形斜边上的中线等于斜边的一半四、巩固练习练一练已知△ABC中,∠ABC=90°,BD是斜边AC上的中线.1若BD=3㎝,则AC=_____㎝;2若∠C=30°,AB=5㎝,则AC=_____㎝,BD=_____㎝.五、小结这堂课你学到了什么作业:习题1.4。
矩形的性质与判定
矩形的性质与判定矩形作为几何形体中的一种,具有其独特的性质与判定方法。
在本文中,我们将探讨矩形的定义、性质以及如何准确判断一个图形是否为矩形。
一、矩形的定义矩形是一种特殊的四边形,它的四个内角均为直角。
矩形的定义可以简洁地表达为:具有四条边且四个内角均为直角的四边形即为矩形。
二、矩形的性质矩形具有以下性质,对于认识矩形的形态和特点非常重要。
1. 边长性质:矩形的相对边长相等,即相对边对应的长度相等。
2. 对角线性质:矩形的对角线相等,即矩形的两条对角线长度相等。
3. 对称性质:矩形具有对称性,即以矩形的任意一条对角线为对称轴,两侧的部分完全相同。
4. 垂直性质:矩形的边两两相交成直角,即任意两边之间的夹角为90度。
5. 平行性质:矩形的相对边平行,即相对的两条边永远平行。
三、矩形的判定如何准确判断一个图形是否为矩形?下面将介绍两种常见的判定方法。
1. 边长判定法:若一个四边形的四条边两两相等,且任意两相邻边夹角为直角,则该四边形是矩形。
例如,若四边形ABCD的边长满足AB=BC=CD=DA,且∠BAD=∠ABC=∠BCD=∠CDA=90°,那么四边形ABCD就是矩形。
2. 对角线判定法:若一个四边形的对角线互相垂直且长度相等,则该四边形是矩形。
例如,若四边形EFGH的对角线EG和FH互相垂直且长度相等,那么四边形EFGH就是矩形。
四、矩形的应用矩形在现实生活中有着广泛的应用。
以下是矩形应用的几个典型例子:1. 建筑设计:在建筑设计中,矩形是常见的几何形状之一。
例如,房屋的窗户、门洞等往往是矩形的形状。
2. 电子屏幕:计算机显示屏、电视屏幕等常常采用矩形的形状,这是因为矩形易于制造和布局,并且能够满足人眼对图像的需求。
3. 图像处理:在图像处理领域,矩形是图像的基本元素之一。
很多图像处理算法和技术都是基于矩形的性质和特点进行设计和实现的。
五、总结矩形作为一种特殊的四边形,在几何学中具有重要的地位。
1.2 矩形的性质与判定_第3课时
练习
已知:如图,四边形ABCD是由两个全等的 等边三角形ABD和CBD组成,M、N分别是BC 和AD的中点. 求证:四边形BMDN是矩形
课堂小结
1、说说你的收获。 2、说说你的困惑。 3、说说你的方法。
作业
• (一)习题1.6 知识技能 1、2、3 联系拓广 4
• (二)如图,四边形ABCD中,对角线相交 于点O,E、F、G、H分别是AD,BD, BC, AC的中点。
求证:四边形ADCE是矩形. 在△ABC中, ∵AB=AC,AD为∠BAC的平分线, ∴AD⊥BC. ∴∠ADC=90°. 又∵CE⊥AN, ∴∠CEA=90° . ∴四边形ADCE为矩形(有三个角是直角的四边形 是矩形).
你还有其他的解法吗?和同学交流
巩固提高
在例题4中,若连接DE,交AC于点F(如图1-16) (1)试判断四边形ABDE的形状,并证明你的结论. (2)线段DF与AB有怎样的关系?请证明你的结论.
• (1)求证:四边形EFGH是平行四边形; • (2)当四边形ABCD满足一个什么条件时,
四边形EFGH是矩形?并证明你的结论。
•9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。20 21/5/1 2021/5/ 1Satur day, May 01, 2021 •10、阅读一切好书如同和过去最杰出 的人谈 话。202 1/5/12 021/5/1 2021/5 /15/1/2 021 9:09:26 AM •11、一个好的教师,是一个懂得心理 学和教 育学的 人。202 1/5/12 021/5/1 2021/5 /1May-211-Ma y-21 •12、要记住,你不仅是教课的教师, 也是学 生的教 育者, 生活的 导师和 道德的 引路人 。2021/ 5/1202 1/5/120 21/5/1 Saturda y, May 01, 2021 13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/ 5/1202 1/5/12 021/5/1 2021/5 /15/1/2 021 •14、谁要是自己还没有发展培养和教 育好, 他就不 能发展 培养和 教育别 人。202 1年5月 1日星 期六202 1/5/12 021/5/1 2021/5 /1 •15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。2021 年5月20 21/5/1 2021/5/ 12021/ 5/15/1/ 2021 •16、提出一个问题往往比解决一个更 重要。 因为解 决问题 也许仅 是一个 数学上 或实验 上的技 能而已 ,而提 出新的 问题, 却需要 有创造 性的想 像力, 而且标 志着科 学的真 正进步 。2021/ 5/1202 1/5/1M ay •17、儿童是中心,教育的措施便围绕 他们而 组织起 来。202 1/5/12 021/5/1 2021/5 /12021 /5/1
初中数学 什么是矩形 它有哪些特点和性质
初中数学什么是矩形它有哪些特点和性质矩形是一种特殊的四边形,具有一些独特的特点和性质。
在本篇文章中,我们将详细探讨矩形的定义、特点和性质。
矩形的定义:矩形是一种四边形,其四个内角都是直角(90度)。
矩形的对边是平行的且相等。
在矩形中,相邻的两条边也是相等的。
矩形的特点和性质:1. 直角特性:矩形的四个内角都是直角(90度)。
这意味着矩形的边与边之间相互垂直。
2. 对边特性:矩形的对边是平行的且相等。
这意味着矩形的相对边长相等,并且它们之间没有交叉。
3. 相邻边特性:矩形的相邻的两条边也是相等的。
这意味着矩形的宽度和长度相等。
4. 对角线性质:矩形的对角线相等且互相平分。
对角线是连接矩形的相对顶点的线段,它们相互垂直且相等长度。
5. 对角线的长度:矩形的对角线长度可以根据矩形的宽度和长度计算得出。
根据勾股定理,对角线的长度等于宽度的平方加上长度的平方的开平方。
6. 面积特性:矩形的面积可以通过宽度和长度的乘积计算得出。
矩形的面积等于宽度乘以长度。
7. 周长特性:矩形的周长可以通过将宽度和长度乘以2,然后相加计算得出。
矩形的周长等于宽度乘以2加上长度乘以2。
8. 对称性:矩形具有对称性。
矩形的中心是对称轴,如果将矩形绕着中心旋转180度,它仍然是自身。
9. 最大面积:对于固定的周长,矩形是能够得到最大面积的四边形。
这是因为矩形的对角线长度最大。
10. 矩形的判定:如果一个四边形的四个内角都是直角,并且相邻边相等,那么它就是矩形。
通过了解矩形的定义、特点和性质,我们可以更好地理解和应用矩形的概念。
矩形在几何学和实际生活中都有广泛的应用,例如建筑物的设计、家具的制作和地图的绘制等。
熟练掌握矩形的特点和性质,可以帮助我们解决与矩形相关的数学问题,并提升我们的几何思维能力。
《矩形的性质与判定》PPT课件
2
= 30°。
又∵∠DAB=90°(矩形的四个角都是直角)
∴BD=2AB=2×2.5=5.
1.本节课你学到了什么?
(1)矩形定义 (2)矩形的性质 (3)直角三角形的性质 (4)矩形的一条对角线把矩形分成两个全等 的直角三角形;两条对角线把矩形分成两对全 等的等腰三角形。因此,矩形的问题可化为直 角三角形或等腰三角形的问题来解决。
(2)根据测量的结果,猜想结论。当矩形的 大小不断变化时,发现的结论是否仍然成立?
(3)通过测量、观察和讨论,你能得到矩形 的特殊性质吗?
矩形的性质定理1: 矩形的四个角都是直角.
矩形的性质定理2: 矩形的对角线相等.
已知:如图,四边形ABCD是矩形,∠ABC=90° 对角线AC与DB相交于点O。
平行四边形是什么图形?
矩形的定义:有一个内角是直角的平行 四边形是矩形
问题1: 既然矩形是平行四边形,那么它具有 平行四边形的哪些性质?
性质 边
角
对角线
对称 性
矩形
对边平行 且相等
对角相等
对角线互 相平分
中心 对称 图形
问题2
(1)请同学们以小组为单位,测量身边的矩 形(如书本,课桌,铅笔盒等)的四条边长 度、四个角度数和对角线的长度及夹角度数, 并记录测量结果;
(1)下列说法错误的是( ).
A.矩形的对角线互相平分 B. 矩形的对角线相等。
C. 有一个角是直角的四边形是矩形 D. 有一个角是直角的平行四边形叫做矩形
(2)已知矩形的一条对角线长为10cm,两条 对角线的一个交角为120°,则矩形的长和 宽分别为 _____。
2、教师评价
• 评选本节课最佳师友组
例1:如图,在矩形ABCD中,两条对角线相交 于点O,∠AOD=120°,AB=2.5cm,求矩形 对角线的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形的性质和判定【知识梳理】
一、定义:有一个是直角的平行四边形是矩形。
二、性质:
①矩形的四个角都是直角
②矩形的对角线相互平分且相等
③矩形既是中心对称图形又是轴对称图形,有两条对称轴
④矩形的面积S=长×宽
三、判定:
①有一个角是直角的平行四边形是矩形;
②有三个角是直角的四边形是矩形;
③对角线相等的平行四边形是矩形;
④对角线相等且互相平分的四边形是矩形。
四、矩形与平行四边形的区别与联系:
①相同点
1、两组对边分别平行
2、两组对边分别相等
3、两组对角分别相等
4、对角线相互平分
②区别
1、有一个角是直角的平行四边形矩形
2、对角线相互平分且相等
【例题精讲】
考点1 矩形的性质
【例1】已知:如图,在矩形ABCD中,BE=CF,求证:AF=DE。
【例2】如图,在矩形ABCD 中,,E F 分别是,BC AD 上的点,且BE DF =。
求证:ABE ∆≌CDF ∆。
【例3】如图,矩形ABCD 的两条对角线相交于点O ,60AOB ∠=︒,2AB =,则矩形的对角线AC 的长是( ) A .2 B .4 C .23 D .43
【变式1】下列性质中,矩形具有而平行四边形不一定具有的是( ) A 、对边相等 B 、对角相等 C 、对角线相等 D 、对边平行
【变式2】矩形ABCD 的对角线AC 、BD 交于O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则边AD 的长
是 。
【变式3】如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,则DAE ∠= 。
F
E
D C
B
A
考点2 矩形的判定
【例4】如图,在△ABC 中,AB=AC ,D 为BC 中点,四边形ABDE 是平行四边形。
求证:四边形ADCE 是矩形。
【例5】如图,在平行四边形ABCD 中,E 是CD 的中点,△ABE 是等边三角形,求证:四边形ABCD 是矩形。
O
D
C B
A
D E
F
C
A
B
【变式6】如图11,已知E 是ABCD 中BC 边的中点,连接AE 并延长AE 交DC 的延长线于点F 。
(1)求证:△ABE ≌△FCE 。
(2)连接AC 、BF ,若∠AEC =2∠ABC ,求证:四边形ABFC 为矩形。
【课堂训练】
1、矩形具有而一般平行四边形不具有的性质是( )
A 、 对角线相等
B 、 对边相等
C 、 对角相等
D 、 对角线互相平分
2、下列对矩形的判定:“(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;
(3)有一个角是直角的四边形是矩形;(4)有四个角是直角的四边形是矩形;(5)四个角都相等的四边是矩形;(6)对角线相等,且有一个直角的四边形是矩形;(7)一组邻边垂直,一组对边平行且相等的四边形是矩形;(8)对角线相等且互相垂直的四边形是矩形”中,正确的个数有( ) A 、3 个 B 、4个 C 、5个 D 、6个 3、已知四边形ABCD 是平行四边形,下列结论中不一定正确的是( )
A 、 A 、AB=CD
B 、AC=BD
C 、当AC ⊥B
D 时,它是菱形 D 、当∠ABC=90°时,它是矩形
4、矩形的两条对角线所成的钝角是120°,若一条对角线的长为2,那么矩形的周长为( ) A 、6
B 、5.8
C 、2(1+ 3 )
D 、5.
5、如图,矩形内有两个相邻的正方形,面积分别为4和9,则阴影部分的面积为______________。
6、如上图,在□ABCD 中,O 为边AB 的中点,且∠AOD=∠BOC 。
求证:□ABCD 是矩形。
第5题图 9
4
B
A
C
D
O
7、如图所示,矩形ABCD中,M是BC的中点,且MA⊥MD,若矩形的周长为36cm,求此矩形的面积。
8、折叠矩形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,如图,若AB=2,BC=1,求AG。
G E
D C
B A
B
A M
N
O
D
C
2.如上右图,在矩形ABCD 中,O 是BC 的中点,∠AOD =90°,若矩形ABCD 的周长为30 cm ,则AB 的长为( )
A.5 cm
B.10 cm
C.15 cm
D.7.5 cm 3.下列命题中正确的是( )
A.有一个角是直角的四边形是矩形
B.三个角是直角的多边形是矩形
C.两条对角线相等的四边形是矩形
D.两条对角线相等的平行四边形是矩形 4.在矩形ABCD 中,AB =2AD ,E 是CD 上一点,且AE =AB ,则∠CBE 等于( )
A.30°
B.22.5°
C.15°
D.以上答案都不对
5. 顺次连结矩形四边中点所得的四边形一定是( )
A.正方形
B .矩形
C .菱形
D .等腰梯形
6. 若顺次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是 ( ) A . 矩形 B . 菱形 C . 对角线互相垂直的四边形 D . 对角线相等的四边形 四、 简答题
1、如图,在△ABC 中,AB =AC ,D 为边BC 上一点,以AB ,BD 为邻边作平行四边形ABDE ,连接AD ,EC 。
(1)求证:△ADC ≅△ECD ;
(2)若BD =CD ,求证四边形ADCE 是矩形。
3、2、如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相较于点O ,与BC 相较于
N ,连接MN DN ,。
(1)求证:四边形BMDN 是菱形; (2) 若4, 8AB AD ==,求MD 的长。