2020年贵州省中考数学试卷(含答案解析)

合集下载

贵州省贵阳市中考数学试卷含答案解析(word版)

贵州省贵阳市中考数学试卷含答案解析(word版)

贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣13.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°4.5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.6.6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.68.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m二、填空题:每小题4分,共20分11.不等式组的解集为.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为.三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.19.某校为了解该校九年级学生适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.20.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣【考点】相反数.【分析】根据两个互为相反数的数相加得0,即可得出答案.【解答】解:与﹣6的和为0的是﹣6的相反数6.故选A.2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣1【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00129这个数用科学记数法可表示为1.29×10﹣3.故选:C.3.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°【考点】平行线的性质.【分析】由平角的定义求出∠MBC的度数,再由平行线的性质得出∠2=∠MBC=52°即可.【解答】解:如图所示:∵AB⊥BC,∠1=38°,∴∠MBC=180°﹣90°﹣38°=52°,∵a∥b,∴∠2=∠MBC=52°;故选:B.4.5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.【考点】概率公式.【分析】直接根据概率公式即可得出结论.【解答】解:∵共有200辆车,其中帕萨特60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率==.故选C.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线,故选:C.6.6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差【考点】统计量的选择.【分析】由于有45名同学参加全省中小学生器乐交流比赛,要取前23名获奖,故应考虑中位数的大小.【解答】解:共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.我们把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖.故选:A.7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.6【考点】相似三角形的判定与性质.【分析】根据DE∥BC,得到△ADE∽△ABC,得出对应边成比例,即可求DE的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∵BC=12,∴DE=BC=4.故选:B.8.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm【考点】三角形的外接圆与外心;等边三角形的性质.【分析】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程进行即可解决问题.【解答】解:过点A作BC边上的垂线交BC于点D,过点B作AC边上的垂线交AD于点O,则O为圆心.设⊙O的半径为R,由等边三角形的性质知:∠OBC=30°,OB=R.∴BD=cos∠OBC×OB=R,BC=2BD=R.∵BC=12,∴R==4.故选B.9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.【考点】函数的图象.【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m【考点】抛物线与x轴的交点.【分析】利用图象法,画出抛物线y=(x﹣a)(x﹣b)与直线y=1,即可解决问题.【解答】解:如图抛物线y=(x﹣a)(x﹣b)与x轴交于点(a,0),(b,0),抛物线与直线y=1的交点为(n,1),(m,1),由图象可知,n<b<a<m.故选D.二、填空题:每小题4分,共20分11.不等式组的解集为x<1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x<2,故不等式组的解集为:x<1.故答案为:x<1.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15.【考点】利用频率估计概率.【分析】利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.【解答】解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b.【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.【考点】垂径定理;解直角三角形.【分析】作OM⊥AB于M,由垂径定理得出AM=BM=AB=4cm,由勾股定理求出OM,再由三角函数的定义即可得出结果.【解答】解:作OM⊥AB于M,如图所示:则AM=BM=AB=4cm,∴OM===2(cm),∵PM=PB+BM=6cm,∴tan∠OPA===;故答案为:.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为x=4或x≥8.【考点】全等三角形的判定;等腰直角三角形.【分析】分析:过点B作BD⊥AC于点D,则△△ABD是等腰直角三角形;再延长AD到E点,使DE=AD,再分别讨论点C的位置即可.【解答】解:过B点作BD⊥AC于D点,则△ABD是等腰三角形;再延长AD到E,使DE=AD,①当点C和点D重合时,△ABC是等腰直角三角形,BC=4,这个三角形是唯一确定的;②当点C和点E重合时,△ABC也是等腰三角形,BC=8,这个三角形也是唯一确定的;③当点C在线段AE的延长线上时,即x大于BE,也就是x>8,这时,△ABC也是唯一确定的;综上所述,∠BAC=45°,AB=8,要使△ABC唯一确定,那么BC的长度x满足的条件是:x=4或x≥8三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.【考点】分式的化简求值.【分析】原式第二项利用除法法则变形,约分后两项利用同分母分式的减法法则计算得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当a=+1时,原式=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是0;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.【考点】列表法与树状图法.【分析】(1)由于控制第二排灯的开关已坏,所以所有灯都亮起为不可能事件;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图展示所有12种等可能的结果数,再找出关掉第一排与第三排灯的结果数,然后根据概率公式求解.【解答】解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮,所以将4个开关都闭合时,所以教室里所有灯都亮起的概率是0;故答案为0;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率==.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.19.某校为了解该校九年级学生适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为150;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据统计图可知,C等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A等级的学生数,B等级和D等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人),故答案为:150;(2)A等级的学生数是:150×20%=30,B等级占的百分比是:69÷150×100%=46%,D等级占的百分比是:15÷150×100%=10%,故补全的条形统计图和扇形统计图如右图所示,(3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.111120.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买蓝球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买蓝球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)【考点】解直角三角形的应用-坡度坡角问题.【分析】首先过点D作DF⊥BC于点F,延长DE交AC于点M,进而表示出AM,DF的长,再利用AE=,求出答案.【解答】解:过点D作DF⊥BC于点F,延长DE交AC于点M,由题意可得:EM⊥AC,DF=MC,∠AEM=29°,在Rt△DFB中,sin80°=,则DF=BD•sin80°,AM=AC﹣CM=1790﹣1700•sin80°,在Rt△AME中,sin29°=,故AE==≈238.9(m),答:斜坡AE的长度约为238.9m.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;菱形的性质.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和抛物线的交点坐标即可.【解答】解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x+,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)【考点】圆的综合题.【分析】(1)由角平分线的基本作图即可得出结果;(2)由等腰三角形的性质和圆周角定理得出∠CAD=∠B,再由角平分线得出∠CAD=∠DAB=∠B,由圆周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,即可求出∠B的度数;(3)证出∠OEB=90°,在Rt△OEB中,求出OE=OB=2,由勾股定理求出BE,再由三角形的面积公式和扇形面积公式求出△OEB的面积=OE•BE=2,扇形BOD的面积═,所求图形的面积=扇形面积﹣△OEB的面积,即可得出结果.【解答】解:(1)如图1所示,AP即为所求的∠CAB的平分线;(2)如图2所示:∵AC=CD,∴∠CAD=∠ADC,又∵∠ADC=∠B,∴∠CAD=∠B,∵AD平分∠CAB,∴∠CAD=∠DAB=∠B,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90°,∴∠B=30°;(3)由(2)得:∠CAD=∠BAD,∠DAB=30°,又∵∠DOB=2∠DAB,∴∠BOD=60°,∴∠OEB=90°,在Rt△OEB中,OB=AB=4,∴OE=OB=2,∴BE===2,∴△OEB的面积=OE•BE=×2×2=2,扇形BOD的面积==,∴线段ED,BE,所围成区域的面积=﹣2.24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是2<AD<8;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【考点】三角形综合题.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.【考点】二次函数综合题.【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【解答】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(﹣1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=﹣x2+4x+5;(2)如图1,∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=﹣x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=﹣x+5,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),则d=|﹣n2+4n+5﹣(﹣n+5)|,由题意可知:﹣n2+4n+5>﹣n+5,。

2020年贵州省黔西南州中考数学试卷(含解析)

2020年贵州省黔西南州中考数学试卷(含解析)

2020年贵州省黔西南州中考数学试卷一、选择题(本题10小题,每题4分,共40分)1.(4分)(2020•黔西南州)2的倒数是()A.﹣2B.2C.﹣D.2.(4分)(2020•黔西南州)某市为做好“稳就业、保民生”工作,将新建保障性住房360000套,缓解中低收入人群和新参加工作大学生的住房需求.把360000用科学记数法表示应是()A.0.36×106B.3.6×105C.3.6×106D.36×1053.(4分)(2020•黔西南州)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A.B.C.D.4.(4分)(2020•黔西南州)下列运算正确的是()A.a3+a2=a5B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6 5.(4分)(2020•黔西南州)某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A.4,5B.5,4C.4,4D.5,56.(4分)(2020•黔西南州)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为()A.37°B.43°C.53°D.54°7.(4分)(2020•黔西南州)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.米B.4sinα米C.米D.4cosα米8.(4分)(2020•黔西南州)已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2B.m≤2C.m<2且m≠1D.m≤2且m≠1 9.(4分)(2020•黔西南州)如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y═(k≠0)的图象上,则反比例函数的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=10.(4分)(2020•黔西南州)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=16二、填空题(本题10小题,每题3分,共30分)11.(3分)(2020•黔西南州)把多项式a3﹣4a分解因式,结果是.12.(3分)(2020•黔西南州)若7a x b2与﹣a3b y的和为单项式,则y x=.13.(3分)(2020•黔西南州)不等式组的解集为.14.(3分)(2020•黔西南州)如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=3,则BD的长度为.15.(3分)(2020•黔西南州)如图,正比例函数的图象与一次函数y=﹣x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是.16.(3分)(2020•黔西南州)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为.17.(3分)(2020•黔西南州)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2020次输出的结果为.18.(3分)(2020•黔西南州)有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了个人.19.(3分)(2020•黔西南州)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为.20.(3分)(2020•黔西南州)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D 为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.三、解答题(本题6小题,共80分)21.(12分)(2020•黔西南州)(1)计算(﹣2)2﹣|﹣|﹣2cos45°+(2020﹣π)0;(2)先化简,再求值:(+),其中a=﹣1.22.(12分)(2020•黔西南州)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.23.(14分)(2020•黔西南州)新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是名;(2)扇形统计图中表示A级的扇形圆心角α的度数是,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为;(4)某班有4名优秀的同学(分别记为E、F、G、H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.24.(14分)(2020•黔西南州)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?25.(12分)(2020•黔西南州)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.26.(16分)(2020•黔西南州)已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(﹣1,0),交y轴于点C.(1)求抛物线的解析式和顶点坐标;(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴,y轴的平行线,交直线AC于点D,E,当PD+PE取最大值时,求点P的坐标;(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标.2020年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题(本题10小题,每题4分,共40分)1.(4分)(2020•黔西南州)2的倒数是()A.﹣2B.2C.﹣D.【考点】17:倒数.【专题】11:计算题.【分析】根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1(a≠0),就说a(a≠0)的倒数是.【解答】解:2的倒数是,故选:D.【点评】此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(4分)(2020•黔西南州)某市为做好“稳就业、保民生”工作,将新建保障性住房360000套,缓解中低收入人群和新参加工作大学生的住房需求.把360000用科学记数法表示应是()A.0.36×106B.3.6×105C.3.6×106D.36×105【考点】1I:科学记数法—表示较大的数.【专题】511:实数;62:符号意识.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:360000=3.6×105,故选:B.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.(4分)(2020•黔西南州)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得四个并排的正方形,如图所示:故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(4分)(2020•黔西南州)下列运算正确的是()A.a3+a2=a5B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6【考点】46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【专题】512:整式;66:运算能力.【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:A、a3+a2,不是同类项,无法合并,故此选项错误;B、a3÷a=a2,故此选项错误;C、a2•a3=a5,正确;D、(a2)4=a8,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.5.(4分)(2020•黔西南州)某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A.4,5B.5,4C.4,4D.5,5【考点】W4:中位数;W5:众数.【专题】542:统计的应用;65:数据分析观念.【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【解答】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,这组数据的中位数为4;众数为5.故选:A.【点评】本题考查了众数、中位数的知识,解答本题的关键是掌握众数及中位数的定义.6.(4分)(2020•黔西南州)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为()A.37°B.43°C.53°D.54°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线;67:推理能力.【分析】根据平行线的性质,可以得到∠2和∠3的关系,从而可以得到∠3的度数,然后根据∠1+∠3=90°,即可得到∠1的度数.【解答】解:∵AB∥CD,∠2=37°,∴∠2=∠3=37°,∵∠1+∠3=90°,∴∠1=53°,故选:C.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.7.(4分)(2020•黔西南州)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.米B.4sinα米C.米D.4cosα米【考点】T8:解直角三角形的应用.【专题】55E:解直角三角形及其应用;66:运算能力.【分析】过点A′作A′C⊥AB于点C,根据锐角三角函数的定义即可求出答案.【解答】解:过点A′作A′C⊥AB于点C,由题意可知:A′O=AO=4,∴sinα=,∴A′C=4sinα,故选:B.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.(4分)(2020•黔西南州)已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2B.m≤2C.m<2且m≠1D.m≤2且m≠1【考点】AA:根的判别式.【专题】523:一元二次方程及应用;66:运算能力.【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.【解答】解:∵关于x的一元二次方程(m﹣1)x2﹣2x+1=0有实数根,∴,解得:m≤2且m≠1.故选:D.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,找出关于m的一元一次不等式组是解题的关键.9.(4分)(2020•黔西南州)如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y═(k≠0)的图象上,则反比例函数的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【考点】G7:待定系数法求反比例函数解析式;L8:菱形的性质.【专题】534:反比例函数及其应用;66:运算能力.【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为2,∴OC=2,∠COB=60°,∴点C的坐标为(﹣1,),∵顶点C在反比例函数y═的图象上,∴=,得k=﹣,即y=﹣,故选:B.【点评】本题考查待定系数法求反比例函数解析式、菱形的性质,解答本题的关键是明确题意,求出点C的坐标.10.(4分)(2020•黔西南州)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=16【考点】H2:二次函数的图象;H3:二次函数的性质.【专题】31:数形结合;535:二次函数图象及其性质;554:等腰三角形与直角三角形;55E:解直角三角形及其应用;66:运算能力;67:推理能力.【分析】由抛物线y=ax2+bx+4交y轴于点A,可得点A的坐标,然后由抛物线的对称性可得点B的坐标,由点B关于直线AC的对称点恰好落在线段OC上,可知∠ACO=∠ACB,再结合平行线的性质可判断∠BAC=∠ACB,从而可知AB=AD;过点B作BE⊥x 轴于点E,由勾股定理可得EC的长,则点C坐标可得,然后由对称性可得点D的坐标,则OC•OD的值可计算;由勾股定理可得AD的长,由双根式可得抛物线的解析式,根据以上计算或推理,对各个选项作出分析即可.【解答】解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.【点评】本题考查了二次函数的性质、等腰三角形的判定与性质及勾股定理,熟练掌握二次函数的相关性质并数形结合是解题的关键.二、填空题(本题10小题,每题3分,共30分)11.(3分)(2020•黔西南州)把多项式a3﹣4a分解因式,结果是a(a+2)(a﹣2).【考点】55:提公因式法与公式法的综合运用.【专题】512:整式;66:运算能力.【分析】首先提公因式a,再利用平方差进行二次分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.(3分)(2020•黔西南州)若7a x b2与﹣a3b y的和为单项式,则y x=8.【考点】42:单项式.【专题】512:整式;66:运算能力.【分析】直接利用合并同类项法则进而得出x,y的值,即可得出答案.【解答】解:∵7a x b2与﹣a3b y的和为单项式,∴7a x b2与﹣a3b y是同类项,∴x=3,y=2,∴y x=23=8.故答案为:8.【点评】此题主要考查了单项式,正确得出x,y的值是解题关键.13.(3分)(2020•黔西南州)不等式组的解集为﹣6<x≤13.【考点】CB:解一元一次不等式组.【专题】524:一元一次不等式(组)及应用;66:运算能力.【分析】首先分别计算出两个不等式的解集,再确定不等式组的解集即可.【解答】解:,解①得:x>﹣6,解②得:x≤13,不等式组的解集为:﹣6<x≤13,故答案为:﹣6<x≤13.【点评】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.(3分)(2020•黔西南州)如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=3,则BD的长度为2.【考点】KO:含30度角的直角三角形;KQ:勾股定理.【专题】554:等腰三角形与直角三角形;67:推理能力.【分析】首先证明DB=AD=CD,然后再由条件BC=3可得答案.【解答】解:∵∠C=90°,∠ADC=60°,∴∠DAC=30°,∴CD=AD,∵∠B=30°,∠ADC=60°,∴∠BAD=30°,∴BD=AD,∴BD=2CD,∵BC=3,∴CD+2CD=3,∴CD=,∴DB=2,故答案为:2.【点评】此题主要考查了含30°角的直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.15.(3分)(2020•黔西南州)如图,正比例函数的图象与一次函数y=﹣x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是y=﹣2x.【考点】FF:两条直线相交或平行问题.【专题】533:一次函数及其应用;69:应用意识.【分析】根据图象和题意,可以得到点P的纵坐标,然后代入一次函数解析式,即可得到点P的坐标,然后代入正比例函数解析式,即可得到这个正比例函数的解析式.【解答】解:∵点P到x轴的距离为2,∴点P的纵坐标为2,∵点P在一次函数y=﹣x+1上,∴2=﹣x+1,得x=﹣1,∴点跑的坐标为(﹣1,2),设正比例函数解析式为y=kx,则2=﹣k,得k=﹣2,∴正比例函数解析式为y=﹣2x,故答案为:y=﹣2x.【点评】本题考查两条直线相交或平行问题、一次函数的性质、正比例函数的性质,解答本题的关键是明确题意,利用数形结合的思想解答.16.(3分)(2020•黔西南州)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为.【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【专题】152:几何综合题;64:几何直观;66:运算能力;67:推理能力.【分析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.【解答】解:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°,则NG=AM,故AN=NG,∴∠2=∠4,∵EF∥AB,∴∠4=∠3,∴∠1=∠2=∠3=∠4=×90°=30°,∵四边形ABCD是矩形,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,∴AE=AD=BC=1,∴AG=2,∴EG==,故答案为:.【点评】此题主要考查了翻折变换的性质以及矩形的性质,正确得出∠2=∠4是解题关键.17.(3分)(2020•黔西南州)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2020次输出的结果为1.【考点】1G:有理数的混合运算;33:代数式求值.【专题】511:实数;66:运算能力.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…依此类推,以5,1循环,(2020﹣2)÷2=1010,即输出的结果是1,故答案为:1【点评】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.18.(3分)(2020•黔西南州)有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了10个人.【考点】AD:一元二次方程的应用.【专题】12Z:其他问题.【分析】设每轮传染中平均每人传染了x人.开始有一人患了流感,第一轮的传染源就是这个人,他传染了x人,则第一轮后共有(1+x)人患了流感;第二轮传染中,这些人中的每个人又传染了x人,则第二轮后共有[1+x+x(x+1)]人患了流感,而此时患流感人数为121,根据这个等量关系列出方程.【解答】解:设每轮传染中平均每人传染了x人.依题意,得1+x+x(1+x)=121,即(1+x)2=121,解方程,得x1=10,x2=﹣12(舍去).答:每轮传染中平均每人传染了10人.【点评】共有121人患了流感,是指患流感的人和被传染流感的人的总和,和细胞分裂问题有区别.19.(3分)(2020•黔西南州)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为57.【考点】38:规律型:图形的变化类.【专题】2A:规律型;61:数感;66:运算能力.【分析】根据图形的变化规律即可得第⑦个图形中菱形的个数.【解答】解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.【点评】本题考查了规律型﹣图形的变化类,解决本题的关键是观察图形的变化寻找规律.20.(3分)(2020•黔西南州)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D 为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为﹣.【考点】MO:扇形面积的计算.=S四【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH,求得扇形FDE的面积,则阴影部分的面积即可求得.边形DMCN【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),=S四边形DMCN=.∴S四边形DGCH则阴影部分的面积是:﹣.故答案为﹣.【点评】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.三、解答题(本题6小题,共80分)21.(12分)(2020•黔西南州)(1)计算(﹣2)2﹣|﹣|﹣2cos45°+(2020﹣π)0;(2)先化简,再求值:(+),其中a=﹣1.【考点】15:绝对值;2C:实数的运算;6D:分式的化简求值;6E:零指数幂;T5:特殊角的三角函数值.【专题】513:分式;66:运算能力.【分析】(1)直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;(2)直接将括号里面通分运算进而利用分式的混合运算法则计算得出答案.【解答】解:(1)原式=4﹣﹣2×+1=4﹣﹣+1=5﹣2;(2)原式=[+]•=•=,当a=﹣1时,原式==.【点评】此题主要考查了实数运算以及分式的混合运算,正确掌握相关运算法则是解题关键.22.(12分)(2020•黔西南州)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是B;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(1)(3)(5)(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有C个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【考点】N4:作图—应用与设计作图;R3:旋转对称图形;R5:中心对称图形.【专题】123:增长率问题;558:平移、旋转与对称;64:几何直观.【分析】(1)根据旋转图形,中心对称图形的定义判断即可.(2)旋转对称图形,且有一个旋转角是60度判断即可.(3)根据旋转图形的定义判断即可.(4)根据要求画出图形即可.【解答】解:(1)是旋转图形,不是中心对称图形是正五边形,故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为(1)(3)(5).(3)命题中①③正确,故选C.(4)图形如图所示:【点评】本题考查旋转对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.23.(14分)(2020•黔西南州)新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40名;(2)扇形统计图中表示A级的扇形圆心角α的度数是54°,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为75人;(4)某班有4名优秀的同学(分别记为E、F、G、H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图;X6:列表法与树状图法.【专题】543:概率及其应用;65:数据分析观念.【分析】(1)由题意可得本次抽样测试的学生人数是:12÷30%=40(人),(2)首先可求得A级人数的百分比,继而求得∠α的度数,然后补出条形统计图;(3)根据A级人数的百分比,列出算式即可求得优秀的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小明的情况,再利用概率公式即可求得答案.【解答】解:(1)本次抽样测试的学生人数是:12÷30%=40(人);(2)∵A级的百分比为:×100%=15%,∴∠α=360°×15%=54°;C级人数为:40﹣6﹣12﹣8=14(人).如图所示:(3)500×15%=75(人).故估计优秀的人数为75人;(4)画树状图得:∵共有12种等可能的结果,选中小明的有6种情况,∴选中小明的概率为.故答案为:40;54°;75人.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.24.(14分)(2020•黔西南州)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?【考点】8A:一元一次方程的应用;B7:分式方程的应用;FH:一次函数的应用.【分析】(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a 之间的关系式,由a的取值范围就可以求出y的最大值.【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得=,解得:x=2000.经检验,x=2000是原方程的根.答:去年A型车每辆售价为2000元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=(1800﹣1500)a+(2400﹣1800)(60﹣a),y=﹣300a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y随a的增大而减小.∴a=20时,y有最大值∴B型车的数量为:60﹣20=40辆.。

2020年贵州省安顺市中考数学试卷解析版

2020年贵州省安顺市中考数学试卷解析版

2020年贵州省安顺市中考数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.计算(-3)×2的结果是()A. -6B. -1C. 1D. 62.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A. B. C. D.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A. 直接观察B. 实验C. 调查D. 测量4.如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A. 150°B. 120°C. 60°D. 30°5.当x=1时,下列分式没有意义的是()A. B. C. D.6.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A. B.C. D.7.菱形的两条对角线长分别是6和8,则此菱形的周长是()A. 5B. 20C. 24D. 328.已知a<b,下列式子不一定成立的是()A. a-1<b-1B. -2a>-2bC. a+1<b+1D. ma>mb9.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A. 无法确定B.C. 1D. 210.已知二次函数y=ax2+bx+c的图象经过(-3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A. -2或0B. -4或2C. -5或3D. -6或4二、填空题(本大题共5小题,共20.0分)11.化简x(x-1)+x的结果是______.12.如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为______.13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是______.14.如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是______度.15.如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为______.三、解答题(本大题共10小题,共100.0分)16.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.17.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.52 2.53 3.54人数/人26610m4()本次共调查的学生人数为,在表格中,;(2)统计的这组数据中,每天听空中黔课时间的中位数是______,众数是______;(3)请就疫情期间如何学习的问题写出一条你的看法.18.如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.19.如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.20.“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.21.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C 点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).22.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?23.如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.24.2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9 x≤15(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?25.如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是______,位置关系是______;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB 的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.答案和解析1.【答案】A【解析】解:原式=-3×2=-6.故选:A.原式利用乘法法则计算即可求出值.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2.【答案】D【解析】解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.本题主要考查可能性的大小,解题的关键是掌握随机事件发生的可能性(概率)的计算方法.3.【答案】C【解析】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.直接利用调查数据的方法分析得出答案.此题主要考查了调查收集数据的过程与方法,正确掌握基本调查方法是解题关键.4.【答案】A【解析】解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°-∠1=180°-30°=150°.故选:A.根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.本题考查了对顶角相等的性质,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的关键.5.【答案】B【解析】解:A、,当x=1时,分式有意义不合题意;B、,当x=1时,x-1=0,分式无意义符合题意;C、,当x=1时,分式有意义不合题意;D、,当x=1时,分式有意义不合题意;故选:B.直接利用分式有意义的条件分析得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.6.【答案】C【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.7.【答案】B【解析】解:如图所示:∵四边形ABCD是菱形,AC=8,BD=6,∴AB=BC=CD=AD,OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长=4×5=20;故选:B.根据题意画出图形,由菱形的性质求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长.本题考查了菱形的性质以及勾股定理;熟练掌握菱形的性质,由勾股定理求出菱形的边长是解题的关键.8.【答案】D【解析】解:A、在不等式a<b的两边同时减去1,不等号的方向不变,即a-1<b-1,原变形正确,故此选项不符合题意;B、在不等式a<b的两边同时乘以-2,不等号方向改变,即-2a>-2b,原变形正确,故此选项不符合题意;C、在不等式a<b的两边同时乘以,不等号的方向不变,即a<b,不等式a<b的两边同时加上1,不等号的方向不变,即a+1<b+1,原变形正确,故此选项不符合题意;D、在不等式a<b的两边同时乘以m,不等式不一定成立,即ma>mb,或ma<mb,或ma=mb,原变形不正确,故此选项符合题意.故选:D.根据不等式的基本性质进行判断.此题主要考查了不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.【答案】C【解析】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.本题考查作图-基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】B【解析】解:∵二次函数y=ax2+bx+c的图象经过(-3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为-3和1,函数y=ax2+bx+c的对称轴是直线x=-1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为-5,函数y=ax2+bx+c的图象开口向上,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是-4或2,故选:B.根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x的方程ax2+bx+c+n=0 (0<n<m)的两个整数根,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的关系解答.11.【答案】x2【解析】解:x(x-1)+x=x2-x+x=x2,故答案为:x2.先根据单项式乘以多项式法则算乘法,再合并同类项即可.本题考查了单项式乘以多项式和合并同类项法则,能灵活运用法则进行计算是解此题的关键.12.【答案】3【解析】解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.根据反比例函数y=的图象上点的坐标性得出|xy|=3,进而得出四边形OQMP的面积.本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.13.【答案】【解析】解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.随着试验次数的增多,变化趋势接近于理论上的概率.本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.14.【答案】120【解析】解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°,故答案为:120.连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.本题考查了三角形的外接圆与外心,等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.15.【答案】4【解析】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵BD=8,AC=11,∴DH=BH-BD=AC-BD=3,∴HF=HC=8-3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC==4,故答案为:4延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.16.【答案】解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.【解析】(1)构造边长3,4,5的直角三角形即可.(2)构造直角边为2,斜边为4的直角三角形即可(答案不唯一).(3)构造三边分别为2,,的直角三角形即可.本题考查作图-应用与设计,无理数,勾股定理,勾股定理的逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】50 22 3.5h 3.5h【解析】解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5h,∴中位数是3.5h;∵3.5h出现了22次,出现的次数最多,∴众数是3.5h,故答案为:3.5h,3.5h;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m的值;(2)根据中位数、众数的定义分别进行求解即可;(3)如:认真听课,独立思考(答案不唯一).本题考查扇形统计图、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.18.【答案】(1)证明:∵∠四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+EF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE==2,∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD==10,∴四边形AEFD的面积=AB×AD=2×10=20.【解析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=2,再证明△ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的判定和矩形的性质.19.【答案】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式并解得:k=2×3=6,故反比例函数表达式为:y=①;(2)一次函数y=x+1的图象向下平移2个单位得到y=x-1②,联立①②并解得:,故交点坐标为(-2,-3)或(3,2);(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x-6-0,∵两个函数没有公共点,故△=25+24k<0,解得:k<-,故可以取k=-2(答案不唯一),故一次函数表达式为:y=-2x+5(答案不唯一).【解析】(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+1的图象向下平移2个单位得到y=x-1②,联立①②即可求解;(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x-6-0,则△=25+24k<0,解得:k<-,即可求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.20.【答案】解:(1)把《消防知识手册》《辞海》《辞海》分别即为A、B、C,画树状图如图:共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,∴恰好抽到2张卡片都是《辞海》的概率为=;(2)设应添加x张《消防知识手册》卡片,由题意得:=,解得:x=4,经检验,x=4是原方程的解;答:应添加4张《消防知识手册》卡片.【解析】(1)画出树状图,由概率公式即可得出答案;(2)设应添加x张《消防知识手册》卡片,由概率公式得出方程,解方程即可.本题考查了列表法或画树状图法以及概率公式;列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.【答案】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,∴AG⊥EF,EG=∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=,∴DH=,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=,∴CH=,∵CH-DH=CD=8,∴-=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB为14米.【解析】(1)根据题意得到AG⊥EF,EG=∠AEG=∠ACB=35°,解直角三角形即可得到结论;(2)过E作EH⊥CB于H,设EH=x,解直角三角形即可得到结论.本题考查了解直角三角形的应用,轴对称图形,解题的关键是借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.【答案】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100-x)支,根据题意,得:6x+10(100-x)=1300-378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100-x)+a=1300-378,整理,得:x=,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20-78=2;当a=21时,a=4×21-78=6,所以笔记本的单价可能是2元或6元.【解析】(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100-x)支,根据总共的费用为(1300-378)元列方程解答即可;(2)设笔记本的单价为a元,根据总共的费用为(1300-378)元列方程解求出方程的解,再根据a的取值范围以及一次函数的性质求出x的值,再把x的值代入方程的解即可求出a的值.本题考查了一元一次方程解实际问题的运用,一次函数的运用,理清题意,找出相应的等量关系是解答本题的关键.23.【答案】解:(1)证明:∵∠CAD=∠ABD,又∵∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)∵AF是⊙O的切线,∴∠FAB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°,∴∠ABD=∠FAD,∵∠ABD=∠CAD,∴∠FAD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,∵AB=4,BF=5,∴AF=,∴AE=AF=3,∵,∴,∴DE=,∴BE=BF-2DE=,∵∠AED=∠BED,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴,∴,∴,∵∠BDC=∠BAC,∴.【解析】(1)根据圆周角定理得∠ABD=∠ACD,进而得∠ACD=∠CAD,便可由等腰三角形判定定理得AD=CD;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC便可.本题主要考查了圆的切线的性质,圆周角定理,相似三角形的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,解直角三角形的应用,勾股定理,关键是证明三角形全等与相似.24.【答案】解:(1)由表格中数据的变化趋势可知,①当0≤x≤9时,y是x的二次函数,∵当x=0时,y=0,∴二次函数的关系式可设为:y=ax2+bx,由题意可得:,解得:,∴二次函数关系式为:y=-10x2+180x,②当9<x≤15时,y=180,∴y与x之间的函数关系式为:y=;(2)设第x分钟时的排队人数为w人,由题意可得:w=y-40x=,①当0≤x≤9时,w=-10x2+140x=-10(x-7)2+490,∴当x=7时,w的最大值=490,②当9<x≤15时,w=810-40x,w随x的增大而减小,∴210≤w<450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810-40x=0,解得:x=20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,解得m≥,∵m是整数,∴m≥的最小整数是2,∴一开始就应该至少增加2个检测点.【解析】(1)分两种情况讨论,利用待定系数法可求解析式;(2)设第x分钟时的排队人数为w人,由二次函数的性质和一次函数的性质可求当x=7时,w的最大值=490,当9<x≤15时,210≤w<450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y与x之间的函数关系式是本题的关键.25.【答案】PQ=BO PQ⊥BO【解析】解:(1)∵点O为对角线AC的中点,∴BO⊥AC,BO=CO,∵P为BC的中点,Q为BO的中点,∴PQ∥OC,PQ=OC,∴PQ⊥BO,PQ=BO;故答案为:PQ=BO,PQ⊥BO.(2)△PQB的形状是等腰直角三角形.理由如下:连接O'P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,∴∠O'EP=∠FCP,∠PO'E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O'PE≌△FPC(AAS),∴O'E=FC=O'A,O'P=FP,∴AB-O'A=CB-FC,∴BO'=BF,∴△O'BF为等腰直角三角形.∴BP⊥O'F,O'P=BP,∴△BPO'也为等腰直角三角形.又∵点Q为O'B的中点,∴PQ⊥O'B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O'E交BC边于点G,连接PG,O'P.∵四边形ABCD是正方形,AC是对角线,∴∠ECG=45°,由旋转得,四边形O'ABG是矩形,∴O'G=AB=BC,∠EGC=90°,∴△EGC为等腰直角三角形.∵点P是CE的中点,∴PC=PG=PE,∠CPG=90°,∠EGP=45°,∴△O'GP≌△BCP(SAS),∴∠O'PG=∠BPC,O'P=BP,∴∠O'PG-∠GPB=∠BPC-∠GPB=90°,∴∠O'PB=90°,∴△O'PB为等腰直角三角形,∵点Q是O'B的中点,∴PQ=O'B=BQ,PQ⊥O'B,∵AB=1,∴O'A=,∴O'B===,∴BQ=.∴S△PQB=BQ•PQ=×=.(1)由正方形的性质得出BO⊥AC,BO=CO,由中位线定理得出PQ∥OC,PQ=OC,则可得出结论;(2)连接O'P并延长交BC于点F,由旋转的性质得出△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,证得∠O'EP=∠FCP,∠PO'E=∠PFC,△O'PE≌△FPC(AAS),则O'E=FC=O'A,O'P=FP,证得△O'BF为等腰直角三角形.同理△BPO'也为等腰直角三角形,则可得出结论;(3)延长O'E交BC边于点G,连接PG,O'P.证明△O'GP≌△BCP(SAS),得出∠O'PG=∠BPC,O'P=BP,得出∠O'PB=90°,则△O'PB为等腰直角三角形,由直角三角形的性质和勾股定理可求出O'A和O'B,求出BQ,由三角形面积公式即可得出答案.本题是四边形综合题,考查了正方形的性质,旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,中位线定理,矩形的判定与性质,勾股定理,三角形的面积等知识,熟练掌握正方形的性质及全等三角形的判定与性质是解题的关键.。

2020年贵州省贵阳中考数学试卷(附答案与解析)

2020年贵州省贵阳中考数学试卷(附答案与解析)

绝密★启用前2020年贵州省贵阳市初中毕业学业水平(升学)考试数 学同学你好!答题前请认真阅读以下内容:1.全卷共8页,三个大题,共25小题,满分150分.考试时间为120分钟.考试形式闭卷.2.一律在答题卡相应位置作答,在试题卷上答题视为无效.3.不能使用科学计算器.一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.计算(3)2-⨯的结果是( )A .6-B .1-C .1D .6 2.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )ABCD3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫.一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( ) A .直接观察B .实验C .调查D .测量4.如图,直线a ,b 相交于点O ,如果1260∠+∠=︒,那么3∠是( )(第4题图)A .150︒B .120︒C .60︒D .30︒5.当1x =时,下列分式没有意义的是( )A .1x x +B .1x x -C .1x x-D .1x x +6.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )AB CD7.菱形的两条对角线长分别是6和8,则此菱形的周长是( ) A .5B .20C .24D .328.已知a b <,下列式子不一定成立的是( )A .11a b -<-B .22a b ->-C .111122a b +<+D .ma mb >9.如图,Rt ABC △中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 为长的半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G ,若1CG =,P 为AB 上一动点,则GP 的最小值为 ( )(第9题图)A .无法确定B .12C .1D .210.已知二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,关于x 的方程20(0)ax bx c m m +++=>有两个根,其中一个根是3.则关于x 的方程20(0)ax bx c n n m +++=<<有两个整数根,这两个整数根是( )A .2-或0B .4-或2C .5-或3D .6-或4二、填空题:每小题4分,共20分.11.化简(1)x x x -+的结果是________.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------12.如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为________.(第12题图)13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是________.14.如图,ABC △是O 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA EB =,则DOE ∠的度数是________度.(第14题图)15.如图,ABC △中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,8BD =,11AC =,则边BC 的长为________.(第15题图)三、解答题:本大题10小题,共100分.16.(本题满分8分)如图,在44⨯的正方形网格中,每个小格的顶点叫做格点,以格点为项点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数; (3)在图③中,画一个直角三角形,使它的三边长都是无理数.图①图②图③(第16题图)17.(本题满分10分)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如下统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表部分初三学生每天听空中黔课时间的人数统计图(第17题图)(1)本次共调查的学生人数为________,在表格中,m =________;(2)统计的这组数据中,每天听空中黔课时间的中位数是________,众数是________; (3)请就疫情期间如何学习的问题写出一条你的看法.18.(本题满分10分)如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且CF BE =. (1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若90AED ∠=︒,4AB =,2BE =,求四边形AEFD 的面积.(第18题图)19.(本题满分10分)如图,一次函数1y x =+的图象与反比例函数k y x=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数1y x =+的图象向下平移2个单位,求平移后的图象与反比例函数ky x=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数ky x=的图象没有公共点.(第19题图)20.(本题满分10分)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动.规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率; (2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为57,那么应添加多少张《消防知识手册》卡片?请说明理由. 21.(本题满分8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶A 的仰角为35︒,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走8m 到达点D 时,又测得屋檐E 点的仰角为60︒,房屋的顶层横梁12m EF =,EF CB ∥,AB 交EF 于点G (点C ,D ,B 在同一水平线上).(参考数据:sin350.6︒≈,cos350.8︒≈,tan350.7︒≈1.7≈) (1)求屋顶到横梁的距离AG ;(2)求房屋的高AB (结果精确到1m ).图①图②(第21题图)22.(本题满分10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效---------------- 毕业学校_____________ 姓名________________ 考生号________________元?23.(本题满分10分)如图,AB 为O 的直径,四边形ABCD 内接于O ,对角线AC ,BD 交于点E ,O 的切线AF 交BD 的延长线于点F ,切点为A ,且CAD ABD ∠=∠.(第23题图)(1)求证:AD CD =;(2)若4,5AB BF ==,求sin BDC ∠的值. 24.(本题满分12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y (人)与时间x (分钟)的变化情况,数据如下表:(表中9~15表示915x <≤)(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y 与x 之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点? 25.(本题满分12分)如图,四边形ABCD 是正方形,点O 为对角线AC 的中点.(1)问题解决:如图①,连接BO ,分别取CB ,BO 的中点P ,Q ,连接PQ ,则PQ与BO 的数量关系是________,位置关系是________;(2)问题探究:如图②,AO E '△是将图①中的AOB ∆绕点A 按顺时针方向旋转45︒得到的三角形,连接CE ,点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .判断PQB ∆的形状,并证明你的结论;(3)拓展延伸:如图③,AO E '△是将图①中的AOB ∆绕点A 按逆时针方向旋转45︒得到的三角形,连接BO ',点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .若正方形ABCD 的边长为1,求PQB △的面积.图①图②图③(第25题图)2020年贵州省贵阳市初中毕业学业水平(升学)考试数学答案解析一、1.【答案】A【解析】原式利用异号两数相乘的法则计算即可求出值.解:原式326=-⨯=-,故选:A .【考点】有理数的乘法 2.【答案】D【解析】要求可能性的大小,只需求出各袋中红球所占的比例大小即可.解:第一个袋子摸到红球的可能性110=;第二个袋子摸到红球的可能性;第三个袋子摸到红球的可能性51102==;第四个袋子摸到红球的可能性63105==.故选:D .【考点】可能性大小的计算 3.【答案】C【解析】根据得到数据的活动特点进行判断即可.解:因为获取60岁以上人的年龄进行了数据的收集和整理,所以此活动是调查.故选:C . 【考点】数据的获得方式 4.【答案】A【解析】根据对顶角相等求出1∠,再根据互为邻补角的两个角的和等于180︒列式计算即可得解.解:1260∠∠=︒+,12∠=∠(对顶角相等), 130∴∠=︒,1∠与3∠互为邻补角,3180118030150∴∠=︒-∠=︒-︒=︒.故选:A .【考点】对顶角相等的性质,邻补角的定义 5.【答案】B【解析】由分式有意义的条件分母不能为零判断即可.1xx -,当1x =时,分母为零,分式无意义.故选B. 【考点】分式有意义的条件6.【答案】D【解析】根据太阳光下的影子的特点:①同一时刻,太阳光下的影子都在同一方向;②太阳光线是平行的,太阳光下的影子与物体高度成比例,据此逐项判断即可.选项A 、B 中,两棵小树的影子的方向相反,不可能为同一时刻阳光下的影子,则选项A 、B 错误;选项C 中,树高与影长成反比,不可能为同一时刻阳光下的影子,则选项C 错误;选项D 中,在同一时刻阳光下,影子都在同一方向,且树高与影长成正比,则选项D 正确.故选:D . 【考点】太阳光下的影子的特点 7.【答案】B【解析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.解:如图所示,根据题意得1842AO =⨯=,1=632BO ⨯=, 四边形ABCD 是菱形,AB BC CD DA ∴===,AC BD ⊥,AOB ∴△是直角三角形,5AB ∴==,∴此菱形的周长为:5420⨯=.故选:B .【考点】菱形的性质 8.【答案】D【解析】根据不等式的性质解答.解:A 、不等式a b <的两边同时减去1,不等式仍成立,即11a b --<,故本选项不符合题意;B 、不等式a b <的两边同时乘以2-,不等号方向改变,即22a b ->-,故本选项不符合题意;C 、不等式a b <的两边同时乘以12,不等式仍成立,即:1122a b <,再在两边同时加上1,不等式仍成立,即111122a b ++<,故本选项不符合题意;D 、不等式a b <的两边同时乘以m ,当0m >,不等式仍成立,即ma mb <;当0m <,不等号方向改变,即ma mb >;当0m =时,ma mb =;故Rt CDF △不一定成立,故本选项符合题意,故选:D .【考点】不等式的性质 9.【答案】C【解析】当GP AB ⊥时,GP 的值最小,根据尺规作图的方法可知,GB 是ABC ∠的角平分线,再根据角平分线的性质可知,当GP AB ⊥时,1GP CG ==.解:由题意可知,当GP AB ⊥时,GP 的值最小,根据尺规作图的方法可知,GB 是ABC ∠的角平分线,90C ∠=︒,∴当GP AB ⊥时,1GP CG ==,故答案为:C .【考点】角平分线的尺规作图,角平分线的性质 10.【答案】B【解析】由题意可得方程20ax bx c ++=的两个根是3-,1,方程在y 的基础上加m ,可以理解为二次函数的图象沿着y 轴平移m 个单位,由此判断加m 后的两个根,即可判断选项.二次函数2y ax bx c =++的图象经过(3,0)-与DG BD =两点,即方程20ax bx c ++=的两个根是3﹣和1,20ax bx c m +++=可以看成二次函数y 的图象沿着y 轴平移m 个单位,得到一个根3,由1到3移动2个单位,可得另一个根为5-.由于0n m <<,可知方程20ax bx c n +++=的两根范围在5~3--和1~3,由此判断B 符合该范围.故选B .【考点】二次函数图象与一元二次方程的综合二、11.【答案】2x【解析】直接去括号然后合并同类项即可.解:22(1)x x x x x x x -+=-+=,故答案为:2x .【考点】整式运算,单项式乘以多项式,合并同类项 12.【答案】3【解析】根据反比例函数3y x=的图象上点的坐标性得出3xy =,进而得出四边形OBAC 的面积.解:如图所示:可得3OB AB xy k ⨯===,则四边形OBAC 的面积为:3,故答案为:3. 【考点】反比例函数()0ky xk =≠系数k 的几何意义 13.【答案】16【解析】随着试验次数的增多,变化趋势接近与理论上的概率.解:如果试验的次数增多,出现数字“6”的频率的变化趋势是接近16.故答案为:16.14.【答案】120【解析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS 定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题. 解:连接OA ,OB ,作OH AC ⊥,OM AB ⊥,如下图所示: 因为等边三角形ABC ,OH AC ⊥,OM AB ⊥, 由垂径定理得:AH AM =,又因为OA OA =,故OAH OAM HL △≌△(.OAH OAM ∴∠=∠.又OA OB =,AD EB =,OAB OBA OAD ∴∠=∠=∠,()ODA OEB SAS ∴△≌△,DOA EOB ∴∠=∠,DOE DOA AOE AOE EOB AOB ∴∠=∠+∠=∠+∠=∠.又60C ∠=︒以及同弧AB ,120AOB DOE ∴∠=∠=︒.故本题答案为:120.【考点】圆与等边三角形的综合 15.【答案】【解析】如图,延长BD 到点G ,使DG BD =,连接CG ,则由线段垂直平分线的性质可得CB CG =,在EG 上截取EF EC =,连接CF ,则EFC ECF ∠=∠,G CBE ∠=∠,根据等腰三角形的性质和三角形的内角和定理可得2EFC A CBE ∠=∠=∠,再根据三角形的外角性质和等腰三角形的判定可得FC FG =,设CE EF x ==,则可根据线段间的和差关系求出DF 的长,进而可求出FC 的长,然后根据勾股定理即可求出CD 的长,再一次运用勾股定理即可求出答案.解:如图,延长BD 到点G ,使DG BD =,连接CG ,则CB CG =,在EG 上截取EF EC =,连接CF ,则EFC ECF ∠=∠,G CBE ∠=∠,EA EB =,A EBA ∴∠=∠,AEB CEF ∠=∠,22EFC A CBE G ∴∠=∠=∠=∠, EFC G FCG ∠=∠+∠, G FCG ∴∠=∠, FC FG ∴=,设CE EF x ==,则11AE BE x ==-,8113DE x x ∴=--=-(), 33DF x x ∴=--=(),8DG DB ==, 5FG ∴=,5CF ∴=,在Rt CDF △中,根据勾股定理,得4CD ==,BC ∴===故答案为:【考点】等腰三角形的判定和性质,三角形的内角和定理,三角形的外角性质,勾股定理以及线段垂直平分线的性质三、16.【答案】(1)图①(或其他合理答案)(2)图②(或其他合理答案)(3)图③(或其他合理答案)【解析】(1)画一个边长为3,4,5的三角形即可.具体解题过程参照答案.(2)利用勾股定理,找长为4的线段,画三角形即可.具体解题过程参照答案.(3、.具体解题过程参照答案.【考点】勾股定理的应用 17.【答案】(1)50 22 (2)3.5h3.5h(3)认真听课,独立思考.(或其他合理答案)【解析】(1)根据已知人数和比例算出学生总人数,再利用所占比例求出m 的值.学生人数2560ax x +-=.2x =.故答案为:50,22.(2)根据中位数和众数的概念计算即可.50225÷=,所以中位数为第25人所听时间为3.5h ,人数最多的也是3.5h ,故答案为:3.5h ,3.5h .(3)任写一条正能量看法即可.具体解题过程参照答案. 【考点】扇形统计图,统计基础运算18.【答案】(1)解:四边形ABCD 是矩形,AD BC ∴∥,AD BC =. CF BE =,CF EC BE EC ∴+=+,即EF BC =. EF AD ∴=,∴四边形AEFD 是平行四边形.(2)解:如图,连接ED ,四边形ABCD 是矩形,90B ∴∠=︒,在Rt ABE ∆中,4AB =,2BE =,∴由勾股定理得,216420EA =+=,即EA =AD BC ∥, DAE AEB ∠=∠∴.EH x =,ABE DEA ∴△∽△.BE EAEA AD =∴10AD =. 由(1)得四边形AEFD 是平行四边形, 又10EF =,高4AB =,10440AEFDS EF AB =⋅=⨯=∴.【解析】(1)直接利用矩形的性质结合BE CF =,可得EF AD =,进而得出答案.具体解题过程参照答案.(2)在a中利用勾股定理可计算EA =ABE DEA △∽△得BE EAEA AD=,进而求出AD 长,由AEFDSEF AB =⋅即可求解.具体解题过程参照答案. 【考点】矩形和平行四边形的性质以及判定,相似三角形的判定和性质,勾股定理,熟练运用勾股定理和相似三角形性质求线段长是解题的关键. 19.【答案】解:(1)一次函数1y x =+的图象与反比例函数ky x=的图象的一个交点的横坐标是2,∴当2x =时,3y =,∴其中一个交点是(2,3).236k ∴=⨯=.∴反比例函数的表达式是6y x=.(2)解:一次函数1y x =+的图象向下平移2个单位,∴平移后的表达式是1y x =-.联立6y x=及1y x =-,可得一元二次方程260x x --=,解得12x =-,23x =.∴平移后的图象与反比例函数图象的交点坐标为(2,3)--,(3,2).(3)设一次函数为()0y ax b a =+≠, 经过点(0,5),则5b =,5y ax ∴=+,联立5y ax =+以及6y x=可得:2560ax x +-=, 若一次函数图象与反比例函数图象无交点, 则25240a ∆=+<,解得:2524a <-, 25y x ∴=-+(或其他合理答案). 【解析】(1)将2x =代入一次函数,求出其中一个交点是(2,3),再代入反比例函数ky x=即可解答.具体解题过程参照答案.(2)先求出平移后的一次函数表达式,联立两个函数解析式得到一元二次方程260x x --=即可解答.具体解题过程参照答案.(3)设一次函数为()0y ax b a =+≠,根据题意得到5b =,联立一次函数与反比例函数解析式,得到2560ax x +-=,若无公共点,则方程无解,利用根的判别式得到25240a ∆=+<,求出a 的取值范围,再在范围内任取一个a 的值即可.具体解题过程参照答案.【考点】一次函数与反比例函数图象交点问题,函数图象平移问题20.【答案】解:(1)先将《消防知识手册》《辞海》《辞海》分别记作A ,1B ,2B ,然后列表如下:2张卡片都是《辞海》的有2种:21(,)B B ,12(,)B B所以,P (2张卡片都是《辞海》)2163==; (2)解:设再添加x 张和原来一样的《消防知识手册》卡片,由题意得:1537x x +=+,解得,4x =,经检验,4x =是原方程的根,答:应添加4张《消防知识手册》卡片.【解析】(1)根据题意画出列表,由概率公式即可得出答案.具体解题过程参照答案. (2)设应添加x 张《消防知识手册》卡片,由概率公式得出方程,解方程即可.具体解题过程参照答案. 【考点】列表法,概率公式21.【答案】(1)解:房屋的侧面示意图是轴对称图形,AB 所在直线是对称轴,EF CB ∥,AG EF ∴⊥,162EG EF ==,35AEG ACB ∠=∠=︒.在Rt AGE △中,90AGE ∠=︒,35AEG ∠=°,tan GAE GG A E ∠=,6EG =,tan350.7︒≈. 6tan3542AG ∴=≈°(米)答:屋顶到横梁的距离AG 约是4.2米. (2)过点E 作EH CB ⊥于点H ,设EH x =, 在Rt EDH △中,90EHD ∠=︒,60EDH ∠=︒,tan EH EDH DH ∠=,tan60xDH ∴=︒, 在Rt ECH ∆中,90EHC ∠=︒,35ECH ∠=︒,tan EH ECH CH ∠=,tan35xCH =︒∴. 8CH DH CD -==,8tan35tan60x x-=︒︒∴, tan350.7︒≈1.7≈,解得9.52x ≈.4.29.5213.7214AB AG BG =+=+=≈∴(米)答:房屋的高AB 约是14米.【解析】(1)EF CB ∥可得35AEG ACB ∠=∠=︒,在Rt AGE △中由tan AGEGAEG ∠=即可求AG .具体解题过程参照答案.(2)设EH x =,利用三角函数由x 表示DH 、CH ,由8DH CH -=列方程即可求解.具体解题过程参照答案.【考点】仰角的定义,解直角三角形的应用22.【答案】(1)解:设单价为6元的钢笔买了x 支,则单价为10元的钢笔买了(100x -)支,根据题意,得610(100)1300378x x +-=-,解得:19.5x =.因为钢笔的数量不可能是小数,所以学习委员搞错了.(2)解:设笔记本的单价为a 元,根据题意,得610(100)1300378x x a +-+=-, 整理,得13942x a =+, 因为010a <<,x 随a 的增大而增大,所以19.522x <<, x 取整数,20x ∴=,21.当20x =时,420782a =⨯-=, 当21x =时,421786a =⨯-=, 所以笔记本的单价可能是2元或者6元.【解析】(1)根据题意列出方程解出答案判断即可.具体解题过程参照答案(2)根据题意列出方程得出x 与a 的关系,再由题意中a 的条件即可判断x 的范围,从而得出单价.具体解题过程参照答案 【考点】方程及不等式的列式和计算23.【答案】解:(1)在O 中,ABD ∠与ACD ∠都是AD 所对的圆周角,ABD ACD ∠=∠∴, CAD ABD ∠=∠, ACD CAD ∴∠=∠. AD CD ∴=.数学试卷 第21页(共26页) 数学试卷 第22页(共26页)(2)解:AF 是O 的切线,AB 是O 的直径,90FAB ACB ADB ADF ∴∠=∠=∠=∠=︒. 90FAD BAD ∠+∠=︒,90ABD BAD ∠+∠=︒, FAD ABD ∴∠=∠.又ABD CAD ∠=∠,CAD FAD ∴∠=∠. AD AD =,Rt Rt ()ADE ADF ASA ∴△≌△,AE AF ∴=,ED FD =.在Rt BAF ∆中,4AB =,5BF =,3AF ∴=,即3AE =.1122AB AF BF AD ⋅=⋅, 125AD ∴=. 在Rt ADF ∆中,95FD =, 975255BE =-⨯=∴.BEC AED ∠=∠,且ECB EDA ∠=∠,BEC AED ∴△∽△,BE BC AE AD =∴,即2825BC =. BDC ∠与BAC ∠都是BC 所对的圆周角, BDC BAC ∠=∠∴.在Rt ACB △中,90ACB ∠=︒,7sin 25BC BAC AB ∠==∴,即7sin 25BDC ∠=. 【解析】(1)利用同弧所对的圆周角相等可得ABD ACD ∠=∠,由CAD ABD ∠=∠得ACD CAD ∠=∠,根据等角对等边可得结论.具体解题过程参照答案.(2)先证明FAD ABD ∠=∠,CAD FAD ∠=∠,由ASA 证明Rt Rt ADE ADF △≌△,得AE AF =,ED FD =;再求125AD =,75BE =,再证明BEC AED △∽△得2825BC =,利用BDC BAC ∠=∠可得结论.具体解题过程参照答案.【考点】切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形24.【答案】(1)解:根据表中数据的变化趋势可知: ①当09x ≤≤时,y 是x 的二次函数. 当0x =时,0y =,∴二次函数的关系式可设为2y ax bx =+.当1x =时,170y =;当3x =时,450y =.将它们分别代入关系式得17045093a ba b =+⎧⎨=+⎩,解得10180a b =-⎧⎨=⎩.∴二次函数的关系式为210180y x x =-+.将表格内的其他各组对应值代入此关系式,均满足. ②当915x <≤时,810y =.y ∴与x 的关系式为210180,09810,915x x x y x ⎧-+=⎨⎩≤≤<≤.(2)设第x 分钟时的排队人数是W ,根据题意,得21018040,09,4081040,915x x x x W y x x x ⎧-+-≤≤=-=⎨-<≤⎩, ①当09x ≤≤时,221014010(7)490W x x x =-+=--+.∴当7x =时,490W =最大.数学试卷 第23页(共26页) 数学试卷 第24页(共26页)②当915x <≤时,81040W x =-,W 随x 的增大而减小,210450W ∴≤<.∴排队人数最多时是490人.要全部考生都完成体温检测,根据题意, 得81040=0x -, 解得20.25x =.∴排队人数最多时是490人,全部考生都完成体温检测需要20.25分钟.(3)设从一开始就应该增加m 个检测点, 根据题意,得1220(2)810m ⨯+≥,解得318m ≥.m 是整数,318m ∴≥的最小整数是2.∴一开始就应该至少增加2个检测点.【解析】(1)先根据表中数据的变化趋势猜想:①当09x ≤≤时,y 是x 的二次函数.根据提示设出抛物线的解析式2y ax bx =+,再从表中选择两组对应数值,利用待定系数法求函数解析式,再检验其它数据是否满足解析式,从而可得答案.具体解题过程参照答案.(2)设第x 分钟时的排队人数是W ,列出W 与第x 分钟的函数关系式,再根据函数的性质求排队的最多人数,利用检测点的检测人数列方程求解检测时间.具体解题过程参照答案.(3)设从一开始就应该增加m 个检测点,根据题意列出不等式,利用不等式在正整数解可得答案.具体解题过程参照答案.【考点】根据实际的数据探究各数据符合的函数形式,待定系数法求解函数解析式,二次函数的实际应用,二次函数的性质,一元一次方程的应用,一元一次不等式的应用25.【答案】(1)解:点P 和点Q 分别为CB ,BO 的中点,PQ ∴为BOC △的中位线,四边形ABCD 是正方形,AC BO ∴⊥,12PQ BO ∴=,PQ BO ⊥; 故答案为:12PQ BO =,PQ BO ⊥; (2)解:PQB △的形状是等腰直角三角形.理由如下: 连接O P '并延长交BC 于点F ,由正方形的性质及旋转可得AB BC =,90ABC =︒∠,AO E '△是等腰直角三角形,O E BC '∥,O E O A '='.O EP FCP ∴∠'=∠,'PO E PFC ∠=∠.又点P 是CE 的中点,CP EP ∴=.()O PE FPC AAS ∴'△≌△.''O E FC O A ∴==,'O P FP =. AB O A CB FC ∴-'=-,BO BF ∴'=.'O BF ∴△为等腰直角三角形.'BP O F ∴⊥,'O P BP =.BPO ∴'△也为等腰直角三角形.又点Q 为'O B 的中点,'PQ O B ∴⊥,且PQ BQ =.PQB∴△的形状是等腰直角三角形.(3)解:延长O E'交BC边于点G,连接PG,'O P.四边形ABCD是正方形,AC是对角线,45ECG∴∠=︒.由旋转得,四边形O ABG'是矩形,O G AB BC∴'==,90EGC∠=︒.EGC∴△为等腰直角三角形.点P是CE的中点,PC PG PE∴==,90CPG∠=︒,45EGP∠=︒.'()O GP BCP SAS∴△≌△.O PG BPC∴∠'=∠,O P BP'=.90O PG GPB BPC GPB∴∠'-∠=∠-∠=︒.'90O PB∴∠=︒.O PB∴'△为等腰直角三角形.Q是O B'的中点,∴12PQ O B BQ='=,PQ O B⊥'.1AB =,2O A ∴'=,O B'==4BQ∴=.1132216PQBS BQ PQ∆=⋅==∴.【解析】(1)根据题意可得PQ为BOC△的中位线,再根据中位线的性质即可求解.具体解题过程参照答案.(2)连接O P'并延长交BC于点F,根据题意证出O PE FPC'△≌△,'O BF△为等腰直角三角形,BPO'△也为等腰直角三角形,由'PQ O B⊥且PQ BQ=可得PQB△是等腰直角三角形.具体解题过程参照答案.(3)延长O E'交BC边于点G,连接PG,'O P.证出四边形O ABG'是矩形,EGC△为等腰直角三角形,'O GP BCP△≌△,再证出O PB'△为等腰直角三角形,根据图形的性质和勾股定理求出O A',O B'和BQ的长度,即可计算出PQB△的面积.具体解题过程参照答案.【考点】正方形的性质,等腰直角三角形的判定与性质,旋转图形的性质,三角形中位线定理,全等三角形的判定与性质,勾股定理数学试卷第25页(共26页)数学试卷第26页(共26页)。

2020年贵州省遵义市中考数学试卷含答案解析(word版)

2020年贵州省遵义市中考数学试卷含答案解析(word版)

2020年贵州省遵义市中考数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.在﹣1,﹣2,0,1这4个数中最小的一个是()A.﹣1 B.0 C.﹣2 D.12.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()A.B.C.D.3.2020年我市全年房地产投资约为317亿元,这个数据用科学记数法表示为()A.317×108B.3.17×1010C.3.17×1011D.3.17×10124.如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b 上,则∠1+∠2的值为()A.90°B.85°C.80°D.60°5.下列运算正确的是()A.a6÷a2=a3 B.(a2)3=a5 C.a2•a3=a6D.3a2﹣2a2=a26.已知一组数据:60,30,40,50,70,这组数据的平均数和中位数分别是()A.60,50 B.50,60 C.50,50 D.60,607.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b8.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC9.三个连续正整数的和小于39,这样的正整数中,最大一组的和是()A.39 B.36 C.35 D.3410.如图,半圆的圆心为O,直径AB的长为12,C为半圆上一点,∠CAB=30°,的长是()A.12πB.6πC.5πD.4π11.如图,正方形ABCD的边长为3,E、F分别是AB、CD上的点,且∠CFE=60°,将四边形BCFE沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB于点G,则GE的长是()A.3﹣4 B.4﹣5 C.4﹣2D.5﹣212.如图,矩形ABCD中,AB=4,BC=3,连接AC,⊙P和⊙Q分别是△ABC和△ADC 的内切圆,则PQ的长是()A.B.C.D.2二、填空题(本大题共6小题,每小题4分,共24分)13.计算的结果是.14.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=度.15.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则+=.16.字母a,b,c,d各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为.17.如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE=,S△BDE=,则AC=.18.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为.三、解答题(本题共9小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(π﹣2020)0+|1﹣|+2﹣1﹣2sin45°.20.先化简(﹣),再从1,2,3中选取一个适当的数代入求值.21.某新农村乐园设置了一个秋千场所,如图所,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,则h=m(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55°,问此人是否安全?(参考数据:≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)22.2020年5月9日﹣11日,贵州省第十一届旅游产业发展大会在准一市茅台镇举行,大会推出五条遵义精品旅游线路:A红色经典,B醉美丹霞,C生态茶海,D民族风情,E避暑休闲.某校摄影小社团在“祖国好、家乡美”主题宣传周里,随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图,请解决下列问题.(1)本次参与投票的总人数是人.(2)请补全条形统计图.(3)扇形统计图中,线路D部分的圆心角是度.(4)全校2400名学生中,请你估计,选择“生态茶海”路线的人数约为多少?23.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.24.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD 分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.25.上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招﹣﹣“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是流量与语音的阶梯定价标准.流量阶梯定价标准使用范围阶梯单价(元/MB)1﹣100MB a101﹣500MB 0.07501﹣20GB b语音阶梯定价标准使用范围阶梯资费(元/分钟)1﹣500分钟0.15501﹣1000分钟0.121001﹣2000分钟m【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×=87元】(1)甲定制了600MB的月流量,花费48元;乙定制了2GB的月流量,花费120.4元,求a,b的值.(注:1GB=1024MB)(2)甲的套餐费用为199元,其中含600MB的月流量;丙的套餐费用为244.2元,其中包含1GB的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m的值.26.如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C 不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x的取值范围.(2)当BP=2时,试说明射线CA与⊙P是否相切.(3)连接PA,若S△APE=S△ABC,求BP的长.27.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣8,3),B(﹣4,0),C(﹣4,3),∠ABC=α°.抛物线y=x2+bx+c经过点C,且对称轴为x=﹣,并与y轴交于点G.(1)求抛物线的解析式及点G的坐标;(2)将Rt△ABC沿x轴向右平移m个单位,使B点移到点E,然后将三角形绕点E顺时针旋转α°得到△DEF.若点F恰好落在抛物线上.①求m的值;②连接CG交x轴于点H,连接FG,过B作BP∥FG,交CG于点P,求证:PH=GH.2020年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.在﹣1,﹣2,0,1这4个数中最小的一个是()A.﹣1 B.0 C.﹣2 D.1【考点】有理数大小比较.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小)比较即可.【解答】解:∵﹣2<﹣1<0<1,∴最小的一个数是:﹣2,故选C.2.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边有一个小正方形,故选:C.3.2020年我市全年房地产投资约为317亿元,这个数据用科学记数法表示为()A.317×108B.3.17×1010C.3.17×1011D.3.17×1012【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将317亿用科学记数法表示为:3.17×1010.故选:B.4.如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b 上,则∠1+∠2的值为()A.90°B.85°C.80°D.60°【考点】平行线的性质.【分析】过点C作CD∥a,再由平行线的性质即可得出结论.【解答】解:过点C作CD∥a,则∠1=∠ACD.∵a∥b,∴CD∥b,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°.故选A.5.下列运算正确的是()A.a6÷a2=a3 B.(a2)3=a5 C.a2•a3=a6D.3a2﹣2a2=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,对各选项分析判断后利用排除法求解.【解答】解:A、a6÷a2=a4,故A错误;B、(a2)3=a6,故B错误;C、a2•a3=a5,故C错误;D、3a2﹣2a2=a2,故D正确.故选:D.6.已知一组数据:60,30,40,50,70,这组数据的平均数和中位数分别是()A.60,50 B.50,60 C.50,50 D.60,60【考点】中位数;算术平均数.【分析】平均数的计算公式和中位数的定义分别进行解答即可.【解答】解:这组数据的平均数是:(60+30+40+50+70)÷5=50;把这组数据从小到大排列为:30,40,50,60,70,最中间的数是50,则中位数是50;故选C.7.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b【考点】反比例函数图象上点的坐标特征.【分析】利用反比例函数的增减性可判断a和b的大小关系,可求得答案.【解答】解:∵k>0,∴当x>0时,反比例函数y随x的增大而减小,∵1<3,∴a>b,故选D.8.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC【考点】菱形的判定;平行四边形的性质.【分析】根据菱形的定义和判定定理即可作出判断.【解答】解:A、根据菱形的定义可得,当AB=AD时▱ABCD是菱形;B、根据对角线互相垂直的平行四边形是菱形即可判断,▱ABCD是菱形;C、对角线相等的平行四边形是矩形,不一定是菱形,命题错误;D、∠BAC=∠DAC时,∵▱ABCD中,AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=AC,∴▱ABCD是菱形.故选C.9.三个连续正整数的和小于39,这样的正整数中,最大一组的和是()A.39 B.36 C.35 D.34【考点】一元一次不等式的应用.【分析】设三个连续正整数分别为x﹣1,x,x+1,列出不等式即可解决问题.【解答】解:设三个连续正整数分别为x﹣1,x,x+1.由题意(x﹣1)+x+(x+1)<39,∴x<13,∵x为整数,∴x=12时,三个连续整数的和最大,三个连续整数的和为:11+12+13=36.故选B.10.如图,半圆的圆心为O,直径AB的长为12,C为半圆上一点,∠CAB=30°,的长是()A.12πB.6πC.5πD.4π【考点】弧长的计算.【分析】如图,连接OC,利用圆周角定理和邻补角的定义求得∠AOC的度数,然后利用弧长公式进行解答即可.【解答】解:如图,连接OC,∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∴∠AOC=120°.又直径AB的长为12,∴半径OA=6,∴的长是:=4π.故选:D.11.如图,正方形ABCD的边长为3,E、F分别是AB、CD上的点,且∠CFE=60°,将四边形BCFE沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB于点G,则GE的长是()A.3﹣4 B.4﹣5 C.4﹣2D.5﹣2【考点】翻折变换(折叠问题);正方形的性质.【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得出FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,求出∠DC′F=30°,得出FC′=FC=2DF,求出DF=1,DC′=DF=,则C′A=3﹣,AG=(3﹣),设EB=x,则GE=2x,得出方程,解方程即可.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得:FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,∴∠DFC′=60°,∴∠DC′F=30°,∴FC′=FC=2DF,∵DF+CF=CD=3,∴DF+2DF=3,解得:DF=1,∴DC′=DF=,则C′A=3﹣,AG=(3﹣),设EB=x,∵∠B′GE=∠AGC′=∠DC′F=30°,∴GE=2x,则(3﹣)+3x=3,解得:x=2﹣,∴GE=4﹣2;故选:C.12.如图,矩形ABCD中,AB=4,BC=3,连接AC,⊙P和⊙Q分别是△ABC和△ADC 的内切圆,则PQ的长是()A.B.C.D.2【考点】三角形的内切圆与内心;矩形的性质.【分析】根据矩形的性质可得出⊙P和⊙Q的半径相等,利用直角三角形内切圆半径公式即可求出⊙P半径r的长度.连接点P、Q,过点Q作QE∥BC,过点P作PE∥AB交QE于点E,求出线段QE、EP的长,再由勾股定理即可求出线段PQ的长,此题得解.【解答】解:∵四边形ABCD为矩形,∴△ACD≌△CAB,∴⊙P和⊙Q的半径相等.在Rt△BC中,AB=4,BC=3,∴AC==5,∴⊙P的半径r===1.连接点P、Q,过点Q作QE∥BC,过点P作PE∥AB交QE于点E,则∠QEP=90°,如图所示.在Rt△QEP中,QE=BC﹣2r=3﹣2=1,EP=AB﹣2r=4﹣2=2,∴PQ===.故选B.二、填空题(本大题共6小题,每小题4分,共24分)13.计算的结果是﹣2.【考点】二次根式的加减法.【分析】根据二次根式的性质,可化成同类二次根式,根据合并同类二次根式,可得答案.【解答】解:原式=﹣3=﹣2,故答案为:﹣2.14.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=35度.【考点】线段垂直平分线的性质.【分析】由已知条件和等腰三角形的性质可得∠A=∠C=35°,再由线段垂直平分线的性质可求出∠ABD=∠A,问题得解.【解答】解:∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠ABD=∠A=35°,故答案为:35.15.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则+=﹣2.【考点】根与系数的关系.【分析】利用韦达定理求得x1+x2=2,x1•x2=﹣1,然后将其代入通分后的所求代数式并求值.【解答】解:∵一元二次方程x2﹣2x﹣1=0的两根为x1、x2,x1+x2=2,x1•x2=﹣1,∴+==﹣2.故答案是:﹣2.16.字母a,b,c,d各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为a⊕c.【考点】推理与论证.【分析】首先根据已知图形中两个图形中共同含有的图形,就可以判断每个符号所代表的图形,即可得出结论.【解答】解:结合前两个图可以看出:b代表正方形;结合后两个图可以看出:d代表圆;因此a代表线段,c代表三角形,∴图形的连接方式为a⊕c故答案为:a⊕c.17.如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE=,S△BDE=,则AC=2.【考点】相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质.【分析】设BC=4x,根据面积公式计算,得出BC=4BD,过E作AC,BC的垂线,垂足分别为F,G;证明CFEG为正方形,然后在直角三角形ACD中,利用三角形相似,求出正方形的边长(用x表示),再利用已知的面积建立等式,解出x,最后求出AC=BC=4x即可.【解答】解:过E作AC,BC的垂线,垂足分别为F,G,设BC=4x,则AC=4x,∵CE是∠ACB的平分线,EF⊥AC,EG⊥BC,∴EF=EG,又S△ACE=,S△BDE=,∴BD=AC=x,∴CD=3x,∵四边形EFCG是正方形,∴EF=FC,∵EF∥CD,∴=,即=,解得,EF=x,则×4x×x=,解得,x=,则AC=4x=2,故答案为:2.18.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为5.【考点】动点问题的函数图象.【分析】由函数图象上的点(6,8)、(10,0)的实际意义可知AB+BC、AB+BC+CD的长及△PAD的最大面积,从而求得AD、CD的长,再根据点P运动到点B时得S△ABD=2,从而求得AB的长,最后根据等腰三角形的中位线定理可求得当P运动到BC中点时,△PAD 的面积.【解答】解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P点运动到C点时,△PAD的面积最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴当P点运动到BC中点时,△PAD的面积=×(AB+CD)×AD=5,故答案为:5.三、解答题(本题共9小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(π﹣2020)0+|1﹣|+2﹣1﹣2sin45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、绝对值、负整数指数幂、二次根式化简、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(π﹣2020)0+|1﹣|+2﹣1﹣2sin45°=1+﹣1+﹣2×=1+﹣1+﹣=.20.先化简(﹣),再从1,2,3中选取一个适当的数代入求值.【考点】分式的化简求值.【分析】首先利用分式的混合运算法则,将原式化简,然后代入求值即可.【解答】解:(﹣)==•=,∵a﹣2≠0,a+2≠0,∴a≠±2,∴当a=1时,原式=﹣3.21.某新农村乐园设置了一个秋千场所,如图所,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,则h= 1.5m(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55°,问此人是否安全?(参考数据:≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)【考点】解直角三角形的应用.【分析】(1)根据余弦定理先求出OE,再根据AF=OB+BD,求出DE,即可得出h的值;(2)过C点作CM⊥DF,交DF于点M,根据已知条件和余弦定理求出OE,再根据CM=OB+DE﹣OE,求出CM,再与成人的“安全高度”进行比较,即可得出答案.【解答】解:(1)在Rt△ANO中,∠ANO=90°,∴cos∠AON=,∴ON=OA•cos∠AON,∵OA=OB=3m,∠AON=45°,∴ON=3•cos45°≈2.12m,∴ND=3+0.6﹣2.12≈1.5m,∴h=ND=AF≈1.5m;故答案为:1.5.(2)如图,过C点作CM⊥DF,交DF于点M,在Rt△CEO中,∠CEO=90°,∴cos∠COE=,∴OE=OC•cos∠COF,∵OB=OC=3m,∠CON=55°,∴OE=3•cos55°≈1.72m,∴ED=3+0.6﹣1.72≈1.9m,∴CM=ED≈1.9m,∵成人的“安全高度”为2m,∴成人是安全的.22.2020年5月9日﹣11日,贵州省第十一届旅游产业发展大会在准一市茅台镇举行,大会推出五条遵义精品旅游线路:A红色经典,B醉美丹霞,C生态茶海,D民族风情,E避暑休闲.某校摄影小社团在“祖国好、家乡美”主题宣传周里,随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图,请解决下列问题.(1)本次参与投票的总人数是120人.(2)请补全条形统计图.(3)扇形统计图中,线路D部分的圆心角是54度.(4)全校2400名学生中,请你估计,选择“生态茶海”路线的人数约为多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用A类人数除以它所占的百分比即可得到调查的总人数;(2)先计算出B类人数,然后补全条形统计图;(3)用360度乘以D类人数所占的百分比即可;(4)用2400乘以样本中C类人数所占的百分比即可.【解答】解:(1)本次参与投票的总人数=24÷20%=120(人);故答案为:120;(2)B类人数=120﹣24﹣30﹣18﹣12=36(人),补全条形统计图为:(3)扇形统计图中,线路D部分的圆心角=360°×=54°,故答案为:54;(4)2400×=600,所以估计,选择“生态茶海”路线的人数约为600人.23.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.【考点】列表法与树状图法;轴对称图形;中心对称图形;概率公式.【分析】(1)若乙固定在E处,求出移动甲后黑色方块构成的拼图一共有多少种可能,其中是轴对称图形的有几种可能,由此即可解决问题.(2)①画出树状图即可解决问题.②不可能出现中心对称图形,所以概率为0.【解答】解:(1)若乙固定在E处,移动甲后黑色方块构成的拼图一共有3种可能,其中有两种情形是轴对称图形,所以若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.故答案为.(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率==.②黑色方块所构拼图中是中心对称图形有两种情形,①甲在B处,乙在F处,②甲在C 处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是.故答案为.24.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD 分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.【考点】矩形的性质;全等三角形的判定与性质.【分析】(1)由矩形的性质得出∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,证出∠E=∠F,AE=CF,由ASA证明△CFP≌△AEQ,即可得出结论;(2)证明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=3,由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE ﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.25.上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招﹣﹣“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是流量与语音的阶梯定价标准.流量阶梯定价标准使用范围阶梯单价(元/MB)1﹣100MB a101﹣500MB 0.07501﹣20GB b语音阶梯定价标准使用范围阶梯资费(元/分钟)1﹣500分钟0.15501﹣1000分钟0.121001﹣2000分钟m【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×=87元】(1)甲定制了600MB的月流量,花费48元;乙定制了2GB的月流量,花费120.4元,求a,b的值.(注:1GB=1024MB)(2)甲的套餐费用为199元,其中含600MB的月流量;丙的套餐费用为244.2元,其中包含1GB的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m的值.【考点】二元一次方程组的应用.【分析】(1)由600M和2G均超过500M,分段表示出600M和2G的费用,由此可得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)设甲的套餐中定制x(x>1000)分钟的每月通话时间,则丙的套餐中定制(x+300)分钟的每月通话时间,先求出丙定制1G流量的费用,再根据“套餐费用=流量费+语音通话费”即可列出关于m、x的二元一次方程组,解方程组即可得出m的值.【解答】解:(1)依题意得:,解得:.∴a的值为0.15元/MB,b的值为0.05元/MB.(2)设甲的套餐中定制x(x>1000)分钟的每月通话时间,则丙的套餐中定制(x+300)分钟的每月通话时间,丙定制了1GB的月流量,需花费100×0.15+×0.07+×0.05=69.2(元),依题意得:,解得:m=0.08.答:m的值为0.08元/分钟.26.如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C 不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x的取值范围.(2)当BP=2时,试说明射线CA与⊙P是否相切.(3)连接PA,若S△APE=S△ABC,求BP的长.【考点】圆的综合题.【分析】(1)过A作AF⊥BC于F,过P作PH⊥AB于H,根据等腰三角形的性质得到CF=AC•cos30°=6×=3,推出∠CEP=90°,求得CE=AC+AE=6+y,列方程PB+CP=x+=6,于是得到y=﹣x+3,根据BD=2BH=x<6,即可得到结论;(2)根据已知条件得到PE=PC=2=PB,于是得到射线CA与⊙P相切;(3)D在线段BA上和延长线上两种情况,根据三角形的面积列方程即可得到结果.【解答】解:(1)过A作AF⊥BC于F,过P作PH⊥AB于H,∵∠BAC=120°,AB=AC=6,∴∠B=∠C=30°,∵PB=PD,∴∠PDB=∠B=30°,CF=AC•cos30°=6×=3,∴∠ADE=30°,∴∠DAE=∠CPE=60°,∴∠CEP=90°,∴CE=AC+AE=6+y,∴PC==,∵BC=6,∴PB+CP=x+=6,∴y=﹣x+3,∵BD=2BH=x<6,∴x<2,∴x的取值范围是0<x<2;(2)∵BP=2,∴CP=4,∴PE=PC=2=PB,∴射线CA与⊙P相切;(3)当D点在线段BA上时,连接AP,∵S△ABC=BC•AF=××3=9,∵S△APE=AE•PE=y•×(6+y)=S△ABC=,解得:y=,代入y=﹣x+3得x=4﹣.当D点BA延长线上时,PC=EC=(6﹣y),∴PB+CP=x+(6﹣y)=6,∴y=x﹣3,∵∠PEC=90°,∴PE===(6﹣y),∴S△APE=AE•PE=x•=y•(6﹣y)=S△ABC=,解得y=或,代入y=x﹣3得x=3或5.综上可得,BP的长为4﹣或3或5.27.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣8,3),B(﹣4,0),C(﹣4,3),∠ABC=α°.抛物线y=x2+bx+c经过点C,且对称轴为x=﹣,并与y轴交于点G.(1)求抛物线的解析式及点G的坐标;(2)将Rt△ABC沿x轴向右平移m个单位,使B点移到点E,然后将三角形绕点E顺时针旋转α°得到△DEF.若点F恰好落在抛物线上.①求m的值;②连接CG交x轴于点H,连接FG,过B作BP∥FG,交CG于点P,求证:PH=GH.【考点】二次函数综合题.【分析】(1)把点C坐标代入y=x2+bx+c得一方程,利用对称轴公式得另一方程,组成方程组求出解析式,并求出G点的坐标;(2)①作辅助线,构建直角△DEF斜边上的高FM,利用直角三角形的面积相等和勾股定理可表示F的坐标,根据点F在抛物线上,列方程求出m的值;②F点和G点坐标已知,可以求出直线FG的方程,那么FG和x轴的交点坐标(设为Q)可以知道,C点坐标已知,CG的方程也可以求出,那么H点坐标可以求出,可以证明△BPH 和△MGH全等.【解答】解:(1)根据题意得:解得:∴抛物线的解析式为:y=x2+x,点G(0,﹣);(2)①过F作FM⊥y轴,交DE于M,交y轴于N,由题意可知:AC=4,BC=3,则AB=5,FM=,∵Rt△ABC沿x轴向右平移m个单位,使B点移到点E,∴E(﹣4+m,0),OE=MN=4﹣m,FN=﹣(4﹣m)=m﹣,在Rt△FME中,由勾股定理得:EM==,∴F(m﹣,),∵F抛物线上,∴=(m﹣)2+(m﹣)﹣,5m2﹣8m﹣36=0,m1=﹣2(舍),;②易求得FG的解析式为:y=x﹣,CG解析式为:y=﹣x﹣,∴x﹣=0,x=1,则Q(1,0),﹣x﹣=0,x=﹣1.5,则H(﹣1.5,0),∴BH=4﹣1.5=2.5,HQ=1.5+1=2.5,∴BH=QH,∵BP∥FG,∴∠PBH=∠GQH,∠BPH=∠QGH,∴△BPH≌△QGH,∴PH=GH.2020年8月12日。

【2020年】贵州省中考数学模拟试卷(含解析)

【2020年】贵州省中考数学模拟试卷(含解析)

2020年贵州省中考数学模拟试卷含答案一.选择题(共10小题,每小题4分,共40分.)1.4的平方根是()A.2 B.﹣2 C.±2 D.162.2016年某省人口数超过105 000 000,将这个数用科学记数法表示为()A.0.105×109B.1.05×109C.1.05×108D.105×1063.下列运算正确的有()A.5ab﹣ab=4 B.3﹣=3 C.a6÷a3=a3D. +=4.下列图形中是轴对称图形,但不是中心对称图形的是()A.B.C. D.5.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.56.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.58.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.9.如图,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于()A.80 B.60 C.50 D.4010.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE 的面积是9,则k=()A.B.9 C.D.3二、填空题(本题共6小题,每小题4分,共24分)11.把多项式2x2﹣8分解因式得:.12.在函数y=中,自变量x的取值范围是.13.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为.14.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.15.不等式组的解集是.16.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.三、解答题(本题共8小题,共86分)17.计算:(﹣)﹣1﹣|﹣1|+2sin60°+(π﹣4)0.18.先化简﹣÷,再求代数式的值,其中a=﹣3.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.20.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:)21.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.22.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?23.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2,∠CAD=30°时,求劣弧AD的长.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.参考答案与试题解析一.选择题(共10小题,每小题4分,共40分.)1.4的平方根是()A.2 B.﹣2 C.±2 D.16【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.2.2016年某省人口数超过105 000 000,将这个数用科学记数法表示为()A.0.105×109B.1.05×109C.1.05×108D.105×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将105000000用科学记数法表示为1.05×108.故选C3.下列运算正确的有()A.5ab﹣ab=4 B.3﹣=3 C.a6÷a3=a3D. +=【考点】二次根式的加减法;同底数幂的除法;分式的加减法.【分析】直接利用合并同类项法则以及二次根式加减运算法则和同底数幂的除法运算法则、分式加减运算法则分别化简求出答案.【解答】解:A、5ab﹣ab=4ab,故此选项错误,不合题意;B、3﹣=2,故此选项错误,不合题意;C、a6÷a3=a3,正确,符合题意;D、+=+=,故此选项错误,不合题意;故选:C.4.下列图形中是轴对称图形,但不是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:B.5.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【考点】三角形中位线定理;平行四边形的性质.【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故选C.6.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图的定义即可判断.【解答】解:如图所示的几何体的俯视图是D.故选D.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.8.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.9.如图,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于()A.80 B.60 C.50 D.40【考点】三角形的外接圆与外心.【分析】根据圆周角定理计算即可.【解答】解:由圆周角定理得,∠A=∠BOC=40°,故选:D.10.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE 的面积是9,则k=()A.B.9 C.D.3【考点】反比例函数系数k的几何意义.【分析】设点D的坐标为(m,n),则点B的坐标为(4m,n)、点E的坐标为(4m,),由此即可得出BD=3m、BE=n,再利用分割图形求面积法结合反比例函数系数k的几何意义即可得出S△ODE=k=9,解之即可得出k值.【解答】解:设点D的坐标为(m,n),则点B的坐标为(4m,n)、点E的坐标为(4m,),∴BD=AB﹣AD=3m,BE=BC﹣CE=n.∵点D在反比例函数y=的图象上,∴k=mn,∴S△ODE=S矩形OABC﹣S△OAD﹣S△OCE﹣S△BDE=4k﹣k﹣k﹣k=k=9,∴k=.故选C.二、填空题(本题共6小题,每小题4分,共24分)11.把多项式2x2﹣8分解因式得:2(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式分解.【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案是:2(x+2)(x﹣2).12.在函数y=中,自变量x的取值范围是x≠﹣2 .【考点】函数自变量的取值范围.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≠0,解得x≠﹣2.故答案为:x≠﹣2.13.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为10% .【考点】一元二次方程的应用.【分析】等量关系为:原售价×(1﹣降低率)2=降低后的售价,依此列出方程求解即可.【解答】解:设平均每月降价的百分率为x,依题意得:1000(1﹣x)2=810,化简得:(1﹣x)2=0.81,解得x1=0.1,x2=﹣1.9(舍).所以平均每月降价的百分率为10%.故答案为10%.14.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1 .【考点】根的判别式.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣2)2﹣4×1×k>0,然后解不等式即可.【解答】解:∵关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.15.不等式组的解集是<x<2 .【考点】解一元一次不等式组.【分析】分别解两个不等式得到x>和x<2,然后根据大小小大中间找确定不等式组的解集.【解答】解:,解①得x>,解②得x<2,所以不等式组的解集为<x<2.故答案为<x<2.16.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.【考点】翻折变换(折叠问题).【分析】要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求AE.【解答】解:设AE=x,由折叠可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=由折叠可知∠AEF=∠CEF,∵AD∥BC,∴∠CEF=∠AFE,∴∠AEF=∠AFE,即AE=AF=,∴S△AEF=×AF×AB=××3=.故答案为:.三、解答题(本题共8小题,共86分)17.计算:(﹣)﹣1﹣|﹣1|+2sin60°+(π﹣4)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣+1+2×+1=2﹣+1++1=4.18.先化简﹣÷,再求代数式的值,其中a=﹣3.【考点】分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣÷===,当a=﹣3时,原式=.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.【考点】作图﹣旋转变换;作图﹣轴对称变换.【分析】(1)根据网格特点,找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)分别找出点A、B、C绕点O逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,观察可知点B所经过的路线是半径为,圆心角是90°的扇形,然后根据弧长公式进行计算即可求解.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.点B旋转到点B2所经过的路径长为: =π.故点B旋转到点B2所经过的路径长是π.20.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC中,利用三角函数即可求解.【解答】解:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC﹣∠B=60°﹣30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度约为53米.21.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜爱电视剧的人数是69人,占总人数的23%,即可求得总人数;(2)根据总人数和喜欢娱乐节目的百分数可求的其人数,补全即可;利用360°乘以对应的百分比即可求得圆心角的度数;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)69÷23%=300(人)∴本次共调查300人;(2)∵喜欢娱乐节目的人数占总人数的20%,∴20%×300=60(人),补全如图;∵360°×12%=43.2°,∴新闻节目在扇形统计图中所占圆心角的度数为43.2°;(3)2000×23%=460(人),∴估计该校有460人喜爱电视剧节目.22.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设B树苗的单价为x元,则A树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式解答即可.【解答】解:设B树苗的单价为x元,则A树苗的单价为y元,可得:,解得:,答:B树苗的单价为300元,A树苗的单价为200元;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.23.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2,∠CAD=30°时,求劣弧AD的长.【考点】圆的综合题.【分析】(1)作AD的垂直平分线交AC于O,以AO为半径画圆O分别交AB、AC于点E、F,则⊙O即为所求;(2)连结OD,得到OD=OA,根据等腰三角形的性质得到∠OAD=∠ODA,等量代换得到∠ODA=∠CAD,根据平行线的判定定理得到OD∥AC,根据平行线的性质即可得到结论;(3)连接DE,根据圆周角定理得到∠ADE=90°,根据三角形的内角和得到∠AOD=120°,根据三角函数的定义得到AE==4,根据弧长个公式即可得到结论.【解答】(1)解:如图所示,(2)证明:连结OD,则OD=OA,∴∠OAD=∠ODA,∵∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,即BC⊥OD,∴BC与⊙O相切;(3)解:连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠OAD=∠ODA=30°,∴∠AOD=120°,在Rt△ADE中,AE===4,∴⊙O的半径=2,∴劣弧AD的长==π.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据待定系数法,可得函数解析式;(2)根据平行于x轴的直线与抛物线的交点关于对称轴对称,可得P、Q关于直线x=﹣1对称,根据PQ的长,可得P点的横坐标,Q点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM的长,根据等腰直角三角形的性质,可得MH的长,再根据自变量与函数值的对应关系,可得答案.【解答】解:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为y=﹣x+4;(2)PQ=2AO=8,又PQ∥AO,即P、Q关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=×(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣);﹣1+4=3,即Q(3,﹣);P点坐标(﹣5,﹣),Q点坐标(3,﹣);(3)∠MCO=∠CAB=45°,①当△MCO∽△CAB时, =,即=,CM=.如图1,过M作MH⊥y轴于H,MH=CH=CM=,当x=﹣时,y=﹣+4=,∴M(﹣,);当△OCM∽△CAB时, =,即=,解得CM=3,如图2,过M作MH⊥y轴于H,MH=CH=CM=3,当x=﹣3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣,),(﹣3,1).。

2020年贵州省遵义市中考数学试卷(解析版)

2020年贵州省遵义市中考数学试卷(解析版)

2020年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目答案标号涂黑、涂满)1.(4分)﹣3的绝对值是()A.3B.﹣3C.D.±3【分析】根据绝对值的概念可得﹣3的绝对值就是数轴上表示﹣2的点与原点的距离.进而得到答案.【解答】解:﹣3的绝对值是3,故选:A.2.(4分)在文化旅游大融合的背景下,享受文化成为旅游业的新趋势.今年“五一”假期,我市为游客和市民提供了丰富多彩的文化享受,各艺术表演馆、美术馆、公共图书馆、群众文化机构、非遗机构及文物机构累计接待游客18.25万人次,将18.25万用科学记数法表示为()A.1.825×105B.1.825×106C.1.825×107D.1.825×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:18.25万=182500,用科学记数法表示为:1.825×105.故选:A.3.(4分)一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为()A.30°B.45°C.55°D.60°【分析】根据平行线的性质即可得到结论.【解答】解:∠AB∠CD,∠∠1=∠D=45°,故选:B.4.(4分)下列计算正确的是()A.x2+x=x3B.(﹣3x)2=6x2C.8x4÷2x2=4x2D.(x﹣2y)(x+2y)=x2﹣2y2【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:x2+x不能合并,故选项A错误;(﹣3x)2=9x2,故选项B错误;8x4÷2x2=4x2,故选项C正确;(x﹣2y)(x+2y)=x2﹣4y2,故选项D错误;故选:C.5.(4分)某校7名学生在某次测量体温(单位:∠)时得到如下数据:36.3,36.4,36.5,36.7,36.6,36.5,36.5,对这组数据描述正确的是()A.众数是36.5B.中位数是36.7C.平均数是36.6D.方差是0.4【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【解答】解:7个数中36.5出现了三次,次数最多,即众数为36.5,故A选项正确,符合题意;将7个数按从小到大的顺序排列为:36.3,36.4,36.5,36.5,36.5,36.6,36.7,第4个数为36.5,即中位数为36.5,故B选项错误,不符合题意;=×(36.3+36.4+36.5+36.5+36.5+36.6+36.7)=36.5,故C选项错误,不符合题意;S2=[(36.3﹣36.5)2+(36.4﹣36.5)2+3×(36.5﹣36.5)2+(36.6﹣36.5)2+(36.7﹣36.5)2]=,故D 选项错误,不符合题意;故选:A.6.(4分)已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为()A.5B.10C.11D.13【分析】利用根与系数的关系得到x1+x2=3,x1x2=﹣2,再利用完全平方公式得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故选:D.7.(4分)如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则可列方程为()A.(30﹣2x)(40﹣x)=600B.(30﹣x)(40﹣x)=600C.(30﹣x)(40﹣2x)=600D.(30﹣2x)(40﹣2x)=600【分析】设剪去小正方形的边长是xcm,则纸盒底面的长为(40﹣2x)cm,宽为(30﹣2x)cm,根据长方形的面积公式结合纸盒的底面积是600cm2,即可得出关于x的一元二次方程,此题得解.【解答】解:设剪去小正方形的边长是xcm,则纸盒底面的长为(40﹣2x)cm,宽为(30﹣2x)cm,根据题意得:(30﹣2x)(40﹣2x)=600.故选:D.8.(4分)新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A.B.C.D.【分析】乌龟是匀速行走的,图象为线段.兔子是:跑﹣停﹣急跑,图象由三条折线组成;最后同时到达终点,即到达终点花的时间相同.【解答】解:A.此函数图象中,S2先达到最大值,即兔子先到终点,不符合题意;B.此函数图象中,S2第2段随时间增加其路程一直保持不变,与“当它一觉醒来,发现乌龟已经超过它,于是奋力直追”不符,不符合题意;C.此函数图象中,S1、S2同时到达终点,符合题意;D.此函数图象中,S1先达到最大值,即乌龟先到终点,不符合题意.故选:C.9.(4分)如图,在菱形ABCD中,AB=5,AC=6,过点D作DE∠BA,交BA的延长线于点E,则线段DE的长为()A.B.C.4D.【分析】由在菱形ABCD中,AB=5,AC=6,利用菱形的性质以及勾股定理,求得OB的长,继而可求得BD的长,然后由菱形的面积公式可求得线段DE的长.【解答】解:如图.∠四边形ABCD是菱形,AC=6,∠AC∠BD,OA=AC=3,BD=2OB,∠AB=5,∠OB==4,∠BD=2OB=8,∠S菱形ABCD=AB•DE=AC•BD,∠DE===.故选:D.10.(4分)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt∠ACB 中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°====2﹣.类比这种方法,计算tan22.5°的值为()A.+1B.﹣1C.D.【分析】在Rt∠ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°,设AC=BC=1,则AB=BD=,根据tan22.5°=计算即可.【解答】解:在Rt∠ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°,设AC=BC=1,则AB=BD=,∠tan22.5°===﹣1,故选:B.11.(4分)如图,∠ABO的顶点A在函数y=(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若四边形MNQP的面积为3,则k的值为()A.9B.12C.15D.18【分析】易证∠ANQ∠∠AMP∠∠AOB,由相似三角形的性质:面积比等于相似比的平方可求出∠ANQ的面积,进而可求出∠AOB的面积,则k的值也可求出.【解答】解:∠NQ∠MP∠OB,∠∠ANQ∠∠AMP∠∠AOB,∠M、N是OA的三等分点,∠=,=,∠=,∠四边形MNQP的面积为3,∠=,∠S∠ANQ=1,∠=()2=,∠S∠AOB=9,∠k=2S∠AOB=18,故选:D.12.(4分)抛物线y=ax2+bx+c的对称轴是直线x=﹣2.抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,下列结论中正确的个数有()∠4a﹣b=0;∠c≤3a;∠关于x的方程ax2+bx+c=2有两个不相等实数根;∠b2+2b>4ac.A.1个B.2个C.3个D.4个【分析】根据抛物线的对称轴可判断∠;由抛物线与x轴的交点及抛物线的对称性以及由x=﹣1时y>0可判断∠,由抛物线与x轴有两个交点,且顶点为(﹣2,3),即可判断∠;利用抛物线的顶点的纵坐标为3得到=3,即可判断∠.【解答】解:∠抛物线的对称轴为直线x=﹣=﹣2,∠4a﹣b=0,所以∠正确;∠与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∠由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∠x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,∠c>3a,所以∠错误;∠抛物线与x轴有两个交点,且顶点为(﹣2,3),∠抛物线与直线y=2有两个交点,∠关于x的方程ax2+bx+c=2有两个不相等实数根,所以∠正确;∠抛物线的顶点坐标为(﹣2,3),∠=3,∠b2+12a=4ac,∠4a﹣b=0,∠b=4a,∠b2+3b=4ac,∠a<0,∠b=4a<0,∠b2+2b>4ac,所以∠正确;故选:C.二、填空题(本小题共4小题,每小题4分,共16分,答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上)13.(4分)计算:﹣的结果是.【分析】首先化简,然后根据实数的运算法则计算.【解答】解:=2﹣=.故答案为:.14.(4分)如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b <2的解集为x<4.【分析】结合函数图象,写出直线y=kx+2在直线y=2下方所对应的自变量的范围即可.【解答】解:∠直线y=kx+b与直线y=2交于点A(4,2),∠x<4时,y<2,∠关于x的不等式kx+b<2的解集为x<4.故答案为x<4.15.(4分)如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD上一点,将∠ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是.【分析】在Rt∠A'BM中,解直角三角形求出∠BA′M=30°,再证明∠ABE=30°即可解决问题.【解答】解:∠将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,∠AB=2BM,∠A′MB=90°,MN∠BC.∠将∠ABE沿BE折叠,使点A的对应点A′落在MN上.∠A′B=AB=2BM.在Rt∠A′MB中,∠∠A′MB=90°,∠sin∠MA′B=,∠∠MA′B=30°,∠MN∠BC,∠∠CBA′=∠MA′B=30°,∠∠ABC=90°,∠∠ABA′=60°,∠∠ABE=∠EBA′=30°,∠BE=.故答案为:.16.(4分)如图,∠O是∠ABC的外接圆,∠BAC=45°,AD∠BC于点D,延长AD交∠O于点E,若BD=4,CD=1,则DE的长是.【分析】连结OB,OC,OA,过O点作OF∠BC于F,作OG∠AE于G,根据圆周角定理可得∠BOC=90°,根据等腰直角三角形的性质和勾股定理可得DG,AG,可求AD,再根据相交弦定理可求DE.【解答】解:连结OB,OC,OA,过O点作OF∠BC于F,作OG∠AE于G,∠∠O是∠ABC的外接圆,∠BAC=45°,∠∠BOC=90°,∠BD=4,CD=1,∠BC=4+1=5,∠OB=OC=,∠OA=,OF=BF=,∠DF=BD﹣BF=,∠OG=,GD=,在Rt∠AGO中,AG==,∠AD=AG+GD=,∠AD×DE=BD×CD,DE==.故答案为:.三、解答题(本题共有8小题,共86分.答题请用黑色量水笔或黑色签字笔书写在答题卡的相应位置上解答时应写出必要的文字说明、证明过程成演算步骤)17.(8分)计算:(1)sin30°﹣(π﹣3.14)0+(﹣)﹣2;(2)解方程;=.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1+4=3;(2)去分母得:2x﹣3=3x﹣6,解得:x=3,经检验x=3是分式方程的解.18.(8分)化简式子÷(x﹣),从0、1、2中取一个合适的数作为x的值代入求值.【分析】直接利用分式的性质进行通分运算,进而结合分式的混合运算法则分别化简得出答案.【解答】解:原式=÷=•=,∠x≠0,2,∠当x=1时,原式=﹣1.19.(10分)某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门截面示意图,已知测温门AD的顶部A处距地面高为2.2m,为了解自己的有效测温区间.身高1.6m的小聪做了如下实验:当他在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为18°;在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60°.求小聪在地面的有效测温区间MN的长度.(额头到地面的距离以身高计,计算精确到0.1m,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【分析】延长BC交AD于点E,构造直角∠ABE和矩形EDNB,通过解直角三角形分别求得BE、CE的长度,易得BC的值;然后根据矩形的性质知MN=BC.【解答】解:延长BC交AD于点E,则AE=AD﹣DE=0.6m.BE=≈1.875m,CE=≈0.374m.所以BC=BE﹣CE=1.528m.所以MN=BC≈1.5m.答:小聪在地面的有效测温区间MN的长度约为1.5m.20.(10分)如图,AB是∠O的直径,点C是∠O上一点,∠CAB的平分线AD交于点D,过点D作DE∠BC 交AC的延长线于点E.(1)求证:DE是∠O的切线;(2)过点D作DF∠AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∠AE,由DE∠BC 得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明∠DBF∠∠ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解答】解:(1)连接OD,如图:∠OA=OD,∠∠OAD=∠ADO,∠AD平分∠CAB,∠∠DAE=∠OAD,∠∠ADO=∠DAE,∠OD∠AE,∠DE∠BC,∠∠E=90°,∠∠ODE=180°﹣∠E=90°,∠DE是∠O的切线;(2)∠AB是∠O的直径,∠∠ADB=90°,∠OF=1,BF=2,∠OB=3,∠AF=4,BA=6.∠DF∠AB,∠∠DFB=90°,∠∠ADB=∠DFB,又∠∠DBF=∠ABD,∠∠DBF∠∠ABD,∠=,∠BD2=BF•BA=2×6=12.∠BD=2.21.(12分)遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:h)的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.课外劳动时间频数分布表:劳动时间分组频数频率0≤t<2020.120≤t<404m40≤t<6060.360≤t<80a0.2580≤t<10030.15解答下列问题:(1)频数分布表中a=5,m=0.2;将频数分布直方图补充完整;(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)已知课外劳动时间在60h≤t<80h的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.【分析】(1)根据频数分布表所给数据即可求出a,m;进而可以补充完整频数分布直方图;(2)根据样本估计总体的方法即可估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)根据题意画出用树状图即可求所选学生为1男1女的概率.【解答】解:(1)a=(2÷0.1)×0.25=5,m=4÷20=0.2,补全的直方图如图所示:故答案为:5,0.2;(2)400×(0.25+0.15)=160(人);(3)根据题意画出树状图,由树状图可知:共有20种等可能的情况,1男1女有12种,故所选学生为1男1女的概率为:P==.22.(12分)为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元/个,乙种型号水杯进价为45元/个,下表是前两月两种型号水杯的销售情况:时间销售数量(个)销售收入(元)(销售收入=售价×销售数甲种型号乙种型号量)第一月2281100第二月38242460(1)求甲、乙两种型号水杯的售价;(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种型号水杯a个,利润为w元,写出w与a的函数关系式,并求出第三月的最大利润.【分析】(1)根据表格中的数据可以列出相应的二元一次方程组,从而可以求得甲、乙两种型号水杯的销售单价;(2)根据题意,可以得到w与a的函数关系式.【解答】解:(1)设甲、乙两种型号水杯的销售单价分别为x元、y元,,解得,,答:甲、乙两种型号水杯的销售单价分别为30元、55元;(2)由题意可得,,解得:50≤a≤55,w=(30﹣25)a+(55﹣45)(80﹣a)=﹣5a+800,故当a=50时,W有最大值,最大为550,答:第三月的最大利润为550元.23.(12分)如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A、C不重合),连接DE,作EF∠DE交射线BA于点F,过点E作MN∠BC分别交CD、AB于点M、N,作射线DF交射线CA于点G.(1)求证:EF=DE;(2)当AF=2时,求GE的长.【分析】(1)要证明EF=DE,只要证明∠DME∠∠ENF即可,然后根据题目中的条件和正方形的性质,可以得到∠DME∠∠ENF的条件,从而可以证明结论成立;(2)根据勾股定理和三角形相似,可以得到AG和CG、CE的长,然后即可得到GE的长.【解答】(1)证明:∠四边形ABCD是正方形,AC是对角线,∠∠ECM=45°,∠MN∠BC,∠BCM=90°,∠∠NMC+∠BCM=180°,∠MNB+∠B=180°,∠∠NMC=90°,∠MNB=90°,∠∠MEC=∠MCE=45°,∠DME=∠ENF=90°,∠MC=ME,∠CD=MN,∠DM=EN,∠DE∠EF,∠EDM+∠DEM=90°,∠∠DEF=90°,∠∠DEM+∠FEN=90°,∠∠EDM=∠FEN,在∠DME和∠ENF中,∠∠DME∠∠ENF(ASA),∠EF=DE;(2)如图1所示,由(1)知,∠DME∠∠ENF,∠ME=NF,∠四边形MNBC是矩形,∠MC=BN,又∠ME=MC,AB=4,AF=2,∠BN=MC=NF=1,∠∠EMC=90°,∠CE=,∠AF∠CD,∠∠DGC∠∠FGA,∠,∠,∠AB=BC=4,∠B=90°,∠AC=4,∠AC=AG+GC,∠AG=,CG=,∠GE=GC﹣CE==;如图2所示,同理可得,FN=BN,∠AF=2,AB=4,∠AN=1,∠AB=BC=4,∠B=90°,∠AC=4,∠AF∠CD,∠∠GAF∠∠GCD,∠,即,解得,AG=4,∠AN=NE=1,∠ENA=90°,∠AE=,∠GE=GA+AE=5.24.(14分)如图,抛物线y=ax2+x+c经过点A(﹣1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∠y轴,交抛物线于点P.(1)求该抛物线的解析式;(2)在抛物线上是否存在一点Q,使得∠QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)以M为圆心,MP为半径作∠M,当∠M与坐标轴相切时,求出∠M的半径.【分析】(1)把点A(﹣1,0)和点C(0,3)代入y=ax2+x+c求出a与c的值即可得出抛物线的解析式;(2)∠当点Q在y轴右边时,假设∠QCO为等边三角形,过点Q作QH∠OC于H,OC=3,则OH=,tan60°=,求出Q(,),把x=代入y=﹣x2+x+3,得y=﹣≠,则假设不成立;∠当点Q在y轴的左边时,假设∠QCO为等边三角形,过点Q作QT∠OC于T,OC=3,则OT=,tan60°=,求出Q(﹣,),把x=﹣代入y=﹣x2+x+3,得y=﹣﹣≠,则假设不成立;(3)求出B(4,0),待定系数法得出BC直线的解析式y=﹣x+3,当M在线段BC上,∠M与x轴相切时,延长PM交AB于点D,则点D为∠M与x轴的切点,即PM=MD,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=﹣x2+x+3,MD=﹣x+3,由PD﹣MD=MD,求出x=1,即可得出结果;当M在线段BC上,∠M与y轴相切时,延长PM交AB于点D,过点M作ME∠y轴于E,则点E为∠M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=﹣x2+x+3,MD=﹣x+3,代入即可得出结果;当M在BC延长线,∠M与x轴相切时,点P与A重合,M的纵坐标的值即为所求;当M在CB延长线,∠M与y轴相切时,延长PD交x轴于D,过点M作ME∠y轴于E,则点E为∠M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=x2﹣x﹣3,MD=x﹣3,代入即可得出结果.【解答】解:(1)把点A(﹣1,0)和点C(0,3)代入y=ax2+x+c得:,解得:,∠抛物线的解析式为:y=﹣x2+x+3;(2)不存在,理由如下:∠当点Q在y轴右边时,如图1所示:假设∠QCO为等边三角形,过点Q作QH∠OC于H,∠点C(0,3),∠OC=3,则OH=OC=,tan60°=,∠QH=OH•tan60°=×=,∠Q(,),把x=代入y=﹣x2+x+3,得:y=﹣≠,∠假设不成立,∠当点Q在y轴右边时,不存在∠QCO为等边三角形;∠当点Q在y轴的左边时,如图2所示:假设∠QCO为等边三角形,过点Q作QT∠OC于T,∠点C(0,3),∠OC=3,则OT=OC=,tan60°=,∠QT=OT•tan60°=×=,∠Q(﹣,),把x=﹣代入y=﹣x2+x+3,得:y=﹣﹣≠,∠假设不成立,∠当点Q在y轴左边时,不存在∠QCO为等边三角形;综上所述,在抛物线上不存在一点Q,使得∠QCO是等边三角形;(3)令﹣x2+x+3=0,解得:x1=﹣1,x2=4,∠B(4,0),设BC直线的解析式为:y=kx+b,把B、C的坐标代入则,解得:,∠BC直线的解析式为:y=﹣x+3,当M在线段BC上,∠M与x轴相切时,如图3所示:延长PM交AB于点D,则点D为∠M与x轴的切点,即PM=MD,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=﹣x2+x+3,MD=﹣x+3,∠(﹣x2+x+3)﹣(﹣x+3)=﹣x+3,解得:x1=1,x2=4(不合题意舍去),∠∠M的半径为:MD=﹣+3=;当M在线段BC上,∠M与y轴相切时,如图4所示:延长PM交AB于点D,过点M作ME∠y轴于E,则点E为∠M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=﹣x2+x+3,MD=﹣x+3,∠(﹣x2+x+3)﹣(﹣x+3)=x,解得:x1=,x2=0(不合题意舍去),∠∠M的半径为:EM=;当M在BC延长线,∠M与x轴相切时,如图5所示:点P与A重合,∠M的横坐标为﹣1,∠∠M的半径为:M的纵坐标的值,即:﹣×(﹣1)+3=;当M在CB延长线,∠M与y轴相切时,如图6所示:延长PD交x轴于D,过点M作ME∠y轴于E,则点E为∠M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=x2﹣x﹣3,MD=x﹣3,∠(x2﹣x﹣3)﹣(x﹣3)=x,解得:x1=,x2=0(不合题意舍去),∠∠M的半径为:EM=;综上所述,∠M的半径为或或或.多送一套2019年北京卷,不喜欢可以删除2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为 (A )60.43910(B )64.3910(C )54.3910(D )3439102.下列倡导节约的图案中,是轴对称图形的是(A ) (B ) (C ) (D )3.正十边形的外角和为(A )180 (B )360 (C )720 (D )14404.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为(A )3 (B )2 (C )1 (D )15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是 (A )∠COM=∠COD (B )若OM=MN ,则∠AOB=20°(C )MN∠CD(D )MN=3CD6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3-(B )1-(C )1 (D )37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0 (B )1 (C )2 (D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类别5下面有四个推断:∠这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ∠这200名学生参加公益劳动时间的中位数在20-30之间∠这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ∠这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A )∠∠(B )∠∠(C )∠∠∠ (D )∠∠∠∠二、填空题(本题共16分,每小题2分)9.若分式1x x -的值为0,则x 的值为______.10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.第10题图CBA第11题图③圆锥②圆柱①长方体第12题图15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______2s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中, ∠存在无数个四边形MNPQ 是平行四边形; ∠存在无数个四边形MNPQ 是矩形; ∠存在无数个四边形MNPQ 是菱形; ∠至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π----++().18.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.20.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD上,BE=DF ,连接EF .图3图2图1(1)求证:AC∠EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tanG=12,求AO的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:/万元d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.∠相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;∠相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a(a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD .(1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数.23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ∠将诗词分成4组,第i 组有i x 首,i =1,2,3,4;CBA∠对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;∠每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整:AB(1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定的长度是自变量,的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD 时,AD 的长度约为______cm .25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W . ∠当2k=时,结合函数图象,求区域W 内的整点个数;∠若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy 中,抛物线21y axbxa 与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a ,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知30AOB ∠=︒,H 为射线OA 上一定点,1OH+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在∠ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在∠ABC 的内部或边上,则称为∠ABC 的中内弧.例如,下图中是∠ABC 的一条中内弧.(1)如图,在Rt∠ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出∠ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在∠ABC 中,D E ,分别是AB AC ,的中点.∠若12t =,求∠ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围;备用图图1BAOB ABCDE AED CB∠若在∠ABC中存在一条中内弧,使得所在圆的圆心P在∠ABC的内部或边上,直接写出t 的取值范围.2019年北京市中考数学答案参考答案与试题解析一. 选择题.二. 填空题.9. 1 10. 测量可知11. ∠∠ 12. 45°13. 0 14. 12 15. =16. ∠∠∠三. 解答题.17.【答案】18.【答案】2 x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∠四边形ABCD为菱形∠AB=AD,AC平分∠BAD∠BE=DF∠AB BE AD DF-=-∠AE=AF∠∠AEF是等腰三角形∠AC平分∠BAD∠AC∠EF(2)AO =1.21. 【答案】 (1)17 (2)(3)2.7 (4)∠∠ 22. 【答案】 (1)∠BD 平分∠ABC ∠∠=∠ABD CBD∠AD=CD(2)直线DE 与图形G 的公共点个数为1. 23. 【答案】 (1)如下图 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第1组 第2组第3组 3x3x3x第4组(2)4,5,6 (3)23 24. 【答案】(1)AD , PC ,PD ; (2)(3)2.29或者3.98 25. 【答案】 (1)()0,1(2)∠6个 ∠10k -≤<或2k =-26. 【答案】(1)1(2,)B a ;(2)直线1x;(3)1a ≤2. 27. 【答案】。

2020年贵州省黔南州中考数学试卷及其答案

2020年贵州省黔南州中考数学试卷及其答案

2020年贵州省黔南州中考数学试卷一、选择题(本题10小题,每题4分,共40分)1.(3分)3的相反数是()A.﹣3B.﹣C.3D.2.(3分)观察下列图形,是中心对称图形的是()A.B.C.D.3.(3分)某市2020年参加中考的考生人数约为93400人,将93400用科学记数法表示为()A.934×102B.93.4×103C.9.34×104D.0.934×1054.(3分)下列四个几何体中,左视图为圆的是()A.B.C.D.5.(3分)下列运算正确的是()A.a3•a4=a12B.a2+a2=a4C.(a3)4=a12D.(ab)2=ab26.(3分)如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E 与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A.30°B.45°C.74°D.75°7.(3分)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A.tan55°=B.tan55°=C.sin55°=D.cos55°=8.(3分)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元9.(3分)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9B.17或22C.17D.2210.(3分)已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<5二、填空题(本题10小题,每题3分,共30分)11.(3分)分解因式:a3﹣2a2b+ab2=.12.(3分)若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=.13.(3分)若一组数据2,3,x,1,5,7的众数为7,则这组数据的中位数为.14.(3分)函数y=x﹣1的图象一定不经过第象限.15.(3分)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为.16.(3分)如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是.17.(3分)已知菱形的周长为4,两条对角线长的和为6,则菱形的面积为.18.(3分)如图,正方形ABCD的边长为10,点A的坐标为(﹣8,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的解析式为.19.(3分)《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.20.(3分)对于实数a,b,定义运算“a*b=”例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣8x+16=0的两个根,则x1*x2=.三、解答题(本题7小题,共80分)21.(12分)(1)计算(﹣)﹣1﹣3tan60°+|﹣|+(2cos60°﹣2020)0;(2)解不等式组:.22.(12分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”,请研究如下美丽的圆,如图,Rt△ABC中,∠BCA=90°,AC=3,BC=4,点O在线段BC上,且OC=,以O为圆心.OC 为半径的⊙O交线段AO于点D,交线段AO的延长线于点E.(1)求证:AB是⊙O的切线;(2)在研究过程中,小明同学发现=,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.23.(14分)勤劳是中华民族的传统美德,学校要求学生在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中m=,类别D所对应的扇形圆心角α的度数是度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年级有多少名学生寒假在家做家务的总时间不低于20小时?24.(14分)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?25.(12分)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为,第五个图中y的值为.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为,当x=48时,对应的y=.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?26.(16分)已知抛物线y=(x﹣3)2﹣4的图象交x轴于点A,B,交y轴于点C,顶点为点D.(1)图1中,点A,B,C,D的坐标分别为:A(,),B(,),C(,),D(,);(2)如图2,连接CD,过点O作CD的垂线,交抛物线的对称轴于点E,DE交x轴于点H,连接AE,AD.求证:AE⊥AD;(3)如图3,以(2)中的E点为圆心,为半径画圆,点P在抛物线上,过点P作⊙E的切线,切点为点Q,当PQ最短时,求点P的坐标.2020年贵州省黔南州中考数学试卷参考答案与试题解析一、选择题(本题10小题,每题4分,共40分)1.(3分)3的相反数是()A.﹣3B.﹣C.3D.【解答】解:根据概念,3的相反数在3的前面加﹣,则3的相反数是﹣3.故选:A.2.(3分)观察下列图形,是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项错误.B、不是中心对称图形,故本选项错误.C、不是中心对称图形,故本选项错误.D、是中心对称图形,故本选项正确.故选:D.3.(3分)某市2020年参加中考的考生人数约为93400人,将93400用科学记数法表示为()A.934×102B.93.4×103C.9.34×104D.0.934×105【解答】解:93400=9.34×104.故选:C.4.(3分)下列四个几何体中,左视图为圆的是()A.B.C.D.【解答】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选:D.5.(3分)下列运算正确的是()A.a3•a4=a12B.a2+a2=a4C.(a3)4=a12D.(ab)2=ab2【解答】解:A、a3•a4=a7,故A不符合题意;B、a2+a2=2a2,故B不符合题意;C、(a3)4=a12,故C符合题意;D、(ab)2=a2b2,故D不符合题意;故选:C.6.(3分)如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E 与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A.30°B.45°C.74°D.75°【解答】解:∵矩形纸条ABCD中,AD∥BC,∴∠AEG=∠BGD'=30°,∴∠DEG=180°﹣30°=150°,由折叠可得,∠α=∠DEG=×150°=75°,故选:D.7.(3分)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A.tan55°=B.tan55°=C.sin55°=D.cos55°=【解答】解:∵在Rt△ADE中,DE=6,AE=AB﹣BE=AB﹣CD=x﹣1,∠ADE=55°,∴sin55°=,cos55°=,tan55°=,故选:B.8.(3分)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元【解答】解:设该商品每件的进价为x元,依题意,得:12×0.8﹣x=2,解得:x=7.6.故选:C.9.(3分)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9B.17或22C.17D.22【解答】解:分两种情况:当腰为4时,4+4<9,所以不能构成三角形;当腰为9时,9+9>4,9﹣9<4,所以能构成三角形,周长是:9+9+4=22.故选:D.10.(3分)已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<5【解答】解:∵4<<5,∴3<﹣1<4,∴﹣1在3和4之间,即3<a<4.故选:C.二、填空题(本题10小题,每题3分,共30分)11.(3分)分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【解答】解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.12.(3分)若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=9.【解答】解:∵a m﹣2b n+7与﹣3a4b4的和仍是一个单项式,∴m﹣2=4,n+7=4,解得:m=6,n=﹣3,故m﹣n=6﹣(﹣3)=9.故答案为:9.13.(3分)若一组数据2,3,x,1,5,7的众数为7,则这组数据的中位数为4.【解答】解:∵2,3,x,1,5,7的众数为7,∴x=7,把这组数据从小到大排列为:1、2、3、5、7、7,则中位数为=4;故答案为:4.14.(3分)函数y=x﹣1的图象一定不经过第二象限.【解答】解:由已知,得:k>0,b<0.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.15.(3分)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为(﹣,2).【解答】解:∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OE=BE=2,∵OC=3,∴CE==,∴点C的坐标为(﹣,2).故答案为:(﹣,2).16.(3分)如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是10.【解答】解:在Rt△ABC中,∵AB=2,sin∠ACB==,∴AC=2÷=6.在Rt△ADC中,AD===10.故答案为:10.17.(3分)已知菱形的周长为4,两条对角线长的和为6,则菱形的面积为4.【解答】解:如图所示:∵两条对角线的和为6,∴AC+BD=6,∵菱形的周长为4,∴AB=,AC⊥BD,AO=AC,BO=BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=AC•BD=2AO•BO=4;故答案为:4.18.(3分)如图,正方形ABCD的边长为10,点A的坐标为(﹣8,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的解析式为y=.【解答】解:如图,过点C作CE⊥y轴于E,∵四边形ABCD是正方形,∴AB=BC=10,∠ABC=90°,∴OB===6,∵∠ABC=∠AOB=90°,∴∠ABO+∠CBE=90°,∠ABO+∠BAO=90°,∴∠BAO=∠CBE,又∵∠AOB=∠BEC=90°,∴△ABO≌△BCE(AAS),∴CE=OB=6,BE=AO=8,∴OE=2,∴点C(6,2),∵反比例函数y=(k≠0)的图象过点C,∴k=6×2=12,∴反比例函数的解析式为y=,故答案为:y=.19.(3分)《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【解答】解:根据题意得:.故答案为:.20.(3分)对于实数a,b,定义运算“a*b=”例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣8x+16=0的两个根,则x1*x2=0.【解答】解:x2﹣8x+16=0,解得:x=4,即x1=x2=4,则x1*x2=x1•x2﹣x22=16﹣16=0,故答案为0.三、解答题(本题7小题,共80分)21.(12分)(1)计算(﹣)﹣1﹣3tan60°+|﹣|+(2cos60°﹣2020)0;(2)解不等式组:.【解答】解:(1)原式=﹣2﹣3×++1=﹣2﹣3++1=﹣2﹣2+1=﹣1﹣2;(2)解不等式≤1,得:x≥1,解不等式3x+2≥4,得:x≥,则不等式组的解集为x≥1.22.(12分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”,请研究如下美丽的圆,如图,Rt△ABC中,∠BCA=90°,AC=3,BC=4,点O在线段BC上,且OC=,以O为圆心.OC 为半径的⊙O交线段AO于点D,交线段AO的延长线于点E.(1)求证:AB是⊙O的切线;(2)在研究过程中,小明同学发现=,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.【解答】解:(1)如图1,过点O 作OH ⊥AB 于H ,∵∠BCA =90°,AC =3,BC =4,∴AB ===5,∵S △ABC =S △AOC +S △ABO ,∴×3×4=×3×+×5×OH ,∴OH =,∴OC =OH ,且OH ⊥BA ,∴AB 是⊙O 的切线;(2)结论成立,理由如下:连接CD ,EC ,∵DE 是直径,∴∠ECD =90°=∠ACO ,∴∠ECO =∠ACD ,∵OC=OE,∴∠CEO=∠OCE,∴∠ACD=∠CEO,又∵∠DAC=∠EAC,∴△DAC∽△CAE,∴,∵OC=,∴DE=2OC=3=AC,∴=,故小明同学发现的结论是正确的.23.(14分)勤劳是中华民族的传统美德,学校要求学生在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了50名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中m=32,类别D所对应的扇形圆心角α的度数是57.6度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年级有多少名学生寒假在家做家务的总时间不低于20小时?【解答】解:(1)本次共调查了10÷20%=50名学生,故答案为:50;(2)B类学生有:50×24%=12(人),D类学生有:50﹣10﹣12﹣16﹣4=8(人),补全的条形统计图如右图所示;(3)m%=16÷50×100%=32%,即m=32,类别D所对应的扇形圆心角α的度数是:360°×=57.6°,故答案为:32,57.6;(4)400×=224(人),即该校七年级有224名学生寒假在家做家务的总时间不低于20小时.24.(14分)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?【解答】解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x﹣50)元,由题意得:=,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x﹣50=40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40﹣y)瓶,由题意得:30y+40(40﹣y)=1400,解得:y=20,∴40﹣y=40﹣20=20,答:购买了20瓶乙品牌消毒剂.25.(12分)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为10,第五个图中y的值为15.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为y=,当x=48时,对应的y=1128.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?【解答】解:(1)观察图形,可知:第四个图中y的值为10,第五个图中y的值为15.故答案为:10;15.(2)∵1=,3=,6=,10=,15=,∴y=,当x=48时,y==1128.故答案为:y=;1128.(3)依题意,得:=190,化简,得:x2﹣x﹣380=0,解得:x1=20,x2=﹣19(不合题意,舍去).答:该班共有20名女生.26.(16分)已知抛物线y=(x﹣3)2﹣4的图象交x轴于点A,B,交y轴于点C,顶点为点D.(1)图1中,点A,B,C,D的坐标分别为:A(1,0),B(5,0),C(0,5),D(3,﹣4);(2)如图2,连接CD,过点O作CD的垂线,交抛物线的对称轴于点E,DE交x轴于点H,连接AE,AD.求证:AE⊥AD;(3)如图3,以(2)中的E点为圆心,为半径画圆,点P在抛物线上,过点P作⊙E的切线,切点为点Q,当PQ最短时,求点P的坐标.【解答】解:(1)∵抛物线的解析式为y=(x﹣3)2﹣4,当y=0时,(x﹣3)2﹣4=0,解得x1=1,x2=5,∴A(1,0),B(5,0),当x=0时,y=5,∴C(0,5),∵D为抛物线的顶点,∴D(3,﹣4),故答案为:1,0,5,0,0,5,3,﹣4;(2)设CD与x轴的交点为G,设直线CD的解析式为y=kx+b(k≠0),∵C(0,5),D(3,﹣4),∴,解得,∴直线CD的解析式为y=﹣3x+5,令y=0,即﹣3x+5=0,解得x=,∴G(,0),∴OG=,∵OE⊥CD,∴∠COE+∠OCG=∠COE+∠EOH=90°,∴∠COG=∠HOE,∵∠COG=∠OHE=90°,∴△OCG∽△HOE,∴=,即,∴HE=1,∴tan∠AEH==2,∵tan∠DAH==,∴∠AEH=∠DAH,∵∠AEH+∠EAH=90°,∴∠DAH+∠EAH=90°,即∠EAD=90°,∴AE⊥AD;(3)连接PE,∵PQ是⊙E的切线,∴PQ⊥EQ,由勾股定理得PQ=,∵EQ=,∴当PE最短时,PQ最短,设P(m,(m﹣3)2﹣4),∵E(3,1),∴PE2=(m﹣3)2+[(m﹣3)2﹣4﹣1]2,令(m﹣3)2=t,则PE2=t+(t﹣5)2=t2﹣9t+25=(t﹣)2+,∴当t=时,PE2取最小值,令(m﹣3)2=,解得m=或,∴当PQ取最小值时,P点的坐标为(,)或(,).。

2020年贵州省六盘水市中考数学试卷含答案解析(word版)

2020年贵州省六盘水市中考数学试卷含答案解析(word版)

2020年贵州省六盘水市中考数学试卷一、选择题.(本大题共10小题,每小题3分,共30分)1.如果盈利20元记作+20,那么亏本50元记作()A.+50元B.﹣50元C.+20元D.﹣20元2.如图是由5个相同的小立方块组成的立体图形,则它的俯视图是()A.B.C.D.3.下列运算结果正确的是()A.a3+a2=a5B.(x+y)2=x2+y2C.x8÷x2=x4D.(ab)2=a2b24.图中∠1、∠2、∠3均是平行线a、b被直线c所截得到的角,其中相等的两个角有几对()A.1 B.2 C.3 D.45.小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如表:尺码/cm 21.5 22.0 22.5 23.0 23.5人数 2 4 3 8 3学校附近的商店经理根据表中决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用了哪个统计知识()A.众数 B.中位数C.平均数D.方差6.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=197.不等式3x+2<2x+3的解集在数轴上表示正确的是()A.B.C.D.8.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系()A.B.C.D.9.2020年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2020年投入将达9800万元,若每年增长率都为x,根据题意列方程()A.7200(1+x)=9800 B.7200(1+x)2=9800C.7200(1+x)+7200(1+x)2=9800 D.7200x2=980010.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n 的度数为()A.B.C.D.二、填空题.(本大题共8小题,每小题4分,共32分)11.3的算术平方根是.12.由38位科学家通过云计算得出:现在地球上约有3040000000000棵存活的树,将3040000000000用科学记数法表示为.13.在一个不透明的袋中装有一红一白2个球,这些球除颜色外都相同,小刚从袋中随机摸出一个球,记下颜色后放回袋中,再从袋中随机摸出一个球,两次都摸到红球的概率是.14.如图,EF为△ABC的中位线,△AEF的周长为6cm,则△ABC的周长为cm.15.若a与b互为相反数,c与d互为倒数,则a+b+3cd=.16.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为.17.如图,已知反比例函数y=的图象与正比例函数y=x的图象交于A、B两点,B点坐标为(﹣3,﹣2),则A点的坐标为()18.我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是时,它们一定不全等.三、解答题.(本大题共8小题,共88分)19.计算: +|1﹣|﹣2sin60°+(π﹣2020)0﹣.20.为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?21.甲队修路500米与乙队修路800米所用天数相同,乙队比甲队每天多修30米,问甲队每天修路多少米?解:设甲队每天修路x米,用含x的代表式完成表格:甲队每天修路长度(单位:米)乙队每天修路长度(单位:米)甲队修500米所用天数(单位:天)乙队修800米所用天数(单位:天)x关系式:甲队修500米所用天数=乙队修800米所用天数根据关系式列方程为:解得:检验:答:.22.在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图1,则有a2+b2=c2;若△ABC为锐角三角形时,小明猜想:a2+b2>c2,理由如下:如图2,过点A作AD⊥CB于点D,设CD=x.在Rt△ADC中,AD2=b2﹣x2,在Rt△ADB中,AD2=c2﹣(a﹣x)2∴a2+b2=c2+2ax∵a>0,x>0∴2ax>0∴a2+b2>c2∴当△ABC为锐角三角形时,a2+b2>c2所以小明的猜想是正确的.(1)请你猜想,当△ABC为钝角三角形时,a2+b2与c2的大小关系.(2)温馨提示:在图3中,作BC边上的高.(3)证明你猜想的结论是否正确.23.据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.24.为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).25.如图,在⊙O中,AB为直径,D、E为圆上两点,C为圆外一点,且∠E+∠C=90°.(1)求证:BC为⊙O的切线.(2)若sinA=,BC=6,求⊙O的半径.26.如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.2020年贵州省六盘水市中考数学试卷参考答案与试题解析一、选择题.(本大题共10小题,每小题3分,共30分)1.如果盈利20元记作+20,那么亏本50元记作()A.+50元B.﹣50元C.+20元D.﹣20元【考点】正数和负数.【分析】利用相反意义量的定义计算即可得到结果.【解答】解:亏本50元记作﹣50元,故选B.2.如图是由5个相同的小立方块组成的立体图形,则它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从物体的上面看,所得到的图形解答即可.【解答】解:几何体的俯视图是C中图形,故选:C.3.下列运算结果正确的是()A.a3+a2=a5B.(x+y)2=x2+y2C.x8÷x2=x4D.(ab)2=a2b2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】由合并同类项、完全平方公式、同底数幂的除法法则得出A、B、C不正确,由积的乘方法则得出D正确即可.【解答】解:A、a3+a2=a5不正确;B、∵(x+y)2=x2+2xy+y2,∴选项B不正确;C、x8÷x2=x4不正确;D、(ab)2=a2b2正确;故选:D.4.图中∠1、∠2、∠3均是平行线a、b被直线c所截得到的角,其中相等的两个角有几对()A.1 B.2 C.3 D.4【考点】平行线的性质;对顶角、邻补角.【分析】根据平行线的性质即可得到结论.【解答】解:∵a∥b,∴∠1=∠3,2=∠3,∵∠1=∠2,∴相等的两个角有3对,故选C.5.小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如表:尺码/cm 21.5 22.0 22.5 23.0 23.5人数 2 4 3 8 3学校附近的商店经理根据表中决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用了哪个统计知识()A.众数 B.中位数C.平均数D.方差【考点】统计量的选择.【分析】由表可知,运动鞋尺码为23.0cm的人数最多,故经理做决定应该是根据穿哪种尺码的运动鞋人数最多,即众数.【解答】解:由表可知,运动鞋尺码为23.0cm的人数最多,所以经理决定本月多进尺码为23.0cm的女式运动鞋主要根据众数.故选A.6.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=19【考点】解一元二次方程-配方法.【分析】把方程两边加上7,然后把方程左边写成完全平方式即可.【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选B.7.不等式3x+2<2x+3的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据解不等式的方法可以求得不等式3x+2<2x+3的解集,从而可知哪个选项是正确的.【解答】解:3x+2<2x+3移项及合并同类项,得x<1,故选D.8.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系()A.B.C.D.【考点】函数的图象.【分析】设旗杆高h,国旗上升的速度为v,根据国旗离旗杆顶端的距离S=旗杆的高度﹣国旗上升的距离,得出S=h﹣vt,再利用一次函数的性质即可求解.【解答】解:设旗杆高h,国旗上升的速度为v,国旗离旗杆顶端的距离为S,根据题意,得S=h﹣vt,∵h、v是常数,∴S是t的一次函数,∵S=﹣vt+h,﹣v<0,∴S随v的增大而减小.故选A.9.2020年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2020年投入将达9800万元,若每年增长率都为x,根据题意列方程()A.7200(1+x)=9800 B.7200(1+x)2=9800C.7200(1+x)+7200(1+x)2=9800 D.7200x2=9800【考点】由实际问题抽象出一元二次方程.【分析】根据题意,可以列出相应的方程,本题得以解决.【解答】解:设每年增长率都为x,根据题意得,7200(1+x)2=9800,故选B10.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n 的度数为()A .B .C .D .【考点】等腰三角形的性质.【分析】根据三角形外角的性质及等腰三角形的性质分别求出∠B 1A 2A 1,∠B 2A 3A 2及∠B 3A 4A 3的度数,找出规律即可得出∠A n ﹣1A n B n ﹣1的度数.【解答】解:∵在△ABA 1中,∠A=70°,AB=A 1B ,∴∠BA 1A=70°,∵A 1A 2=A 1B 1,∠BA 1A 是△A 1A 2B 1的外角,∴∠B 1A 2A 1==35°;同理可得,∠B 2A 3A 2=17.5°,∠B 3A 4A 3=×17.5°=, ∴∠A n ﹣1A n B n ﹣1=. 故选:C .二、填空题.(本大题共8小题,每小题4分,共32分)11.3的算术平方根是 . 【考点】算术平方根. 【分析】根据开平方的意义,可得算术平方根. 【解答】解:3的算术平方根是,故答案为:.12.由38位科学家通过云计算得出:现在地球上约有3040000000000棵存活的树,将3040000000000用科学记数法表示为 3.04×1012 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将3040000000000用科学记数法表示为3.04×1012.故答案为:3.04×1012.13.在一个不透明的袋中装有一红一白2个球,这些球除颜色外都相同,小刚从袋中随机摸出一个球,记下颜色后放回袋中,再从袋中随机摸出一个球,两次都摸到红球的概率是.【考点】列表法与树状图法.【分析】先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到红球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,两次都摸到红球的1种情况,∴两次都摸到红球的概率是,故答案为.14.如图,EF为△ABC的中位线,△AEF的周长为6cm,则△ABC的周长为12cm.【考点】三角形中位线定理.【分析】根据三角形中位线定理可直接得出结论.【解答】解:∵EF为△ABC的中位线,△AEF的周长为6cm,∴BC=2EF,AB=2AE,AC=2AF,∴BC+AB+AC=2(EF+AE+AF)=12(cm).故答案为:12.15.若a与b互为相反数,c与d互为倒数,则a+b+3cd=3.【考点】代数式求值.【分析】根据互为相反数的两个数之和为0与互为倒数的两个数之积是1解答即可.【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∴a+b+3cd=0+3×1=3.故答案为:3.16.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为30.【考点】菱形的性质.【分析】由在菱形ABCD中,对角线AC=6,BD=10,根据菱形的面积等于对角线积的一半,即可求得答案.【解答】解:∵在菱形ABCD中,对角线AC=6,BD=10,∴菱形ABCD的面积为:AC•BD=30.故答案为:30.17.如图,已知反比例函数y=的图象与正比例函数y=x的图象交于A、B两点,B点坐标为(﹣3,﹣2),则A点的坐标为(3,2)【考点】反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:根据题意,知点A与B关于原点对称,∵点B的坐标是(﹣3,﹣2),∴A点的坐标为(3,2).故答案是:3,2.18.我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是钝角三角形或直角三角形时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是钝角三角形时,它们一定不全等.【考点】全等三角形的判定.【分析】过B作BD⊥AC于D,过B1作B1D1⊥B1C1于D1,得出∠BDA=∠B1D1A1=∠BDC=∠B1D1C1=90°,根据SAS证△BDC≌△B1D1C1,推出BD=B1D1,根据HL证Rt△BDA≌Rt△B1D1A1,推出∠A=∠A1,根据AAS推出△ABC≌△A1B1C1即可.【解答】解:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.求证:△ABC≌△A1B1C1.证明:过B作BD⊥AC于D,过B1作B1D1⊥B1C1于D1,则∠BDA=∠B1D1A1=∠BDC=∠B1D1C1=90°,在△BDC和△B1D1C1中,,∴△BDC≌△B1D1C1,∴BD=B1D1,在Rt△BDA和Rt△B1D1A1中,∴Rt△BDA≌Rt△B1D1A1(HL),∴∠A=∠A1,在△ABC和△A1B1C1中,∴△ABC≌△A1B1C1(AAS).同理可得:当这两个三角形都是钝角三角形或直角三角形时,它们也会全等,如图:△ACD与△ACB中,CD=CB,AC=AC,∠A=∠A,但:△ACD与△ACB不全等.,故当这两个三角形其中一个三角形是锐角三角形,另一个是钝角三角形时,它们一定不全等.故答案为:钝角三角形或直角三角形,钝角三角形.三、解答题.(本大题共8小题,共88分)19.计算: +|1﹣|﹣2sin60°+(π﹣2020)0﹣.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、立方根5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解: +|1﹣|﹣2sin60°+(π﹣2020)0﹣=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1.20.为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?【考点】三元一次方程组的应用.【分析】(1)根据题意可得方程组,再解方程组即可.(2)根据题意可得方程组,再解方程组即可.【解答】解:(1)由题意得:,解得:A=1,B=6,C=8,答:接收方收到的密码是1、6、8;(2)由题意得:,解得:a=3,b=4,c=7,答:发送方发出的密码是3、4、7.21.甲队修路500米与乙队修路800米所用天数相同,乙队比甲队每天多修30米,问甲队每天修路多少米?解:设甲队每天修路x米,用含x的代表式完成表格:甲队每天修路长度(单位:米)乙队每天修路长度(单位:米)甲队修500米所用天数(单位:天)乙队修800米所用天数(单位:天)x x+30关系式:甲队修500米所用天数=乙队修800米所用天数根据关系式列方程为:=解得:x=50检验:当x=50时x+30≠0,x=50是原分式方程的解答:甲队每天修路50m.【考点】分式方程的应用.【分析】设甲队每天修路xm,则乙队每天修(x+30)m,根据甲队修路500m与乙队修路800m所用天数相同,列出方程即可.【解答】解:设甲队每天修路xm,则乙队每天修(x+30)m,由题意得,=,解得:x=50.检验:当x=50时x+30≠0,x=50是原分式方程的解,答:甲队每天修路50m,故答案为:x+30,,=,x=50当x=50时x+30≠0,x=50是原分式方程的解,甲队每天修路50m.22.在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图1,则有a2+b2=c2;若△ABC为锐角三角形时,小明猜想:a2+b2>c2,理由如下:如图2,过点A作AD⊥CB于点D,设CD=x.在Rt△ADC中,AD2=b2﹣x2,在Rt△ADB中,AD2=c2﹣(a﹣x)2∴a2+b2=c2+2ax∵a>0,x>0∴2ax>0∴a2+b2>c2∴当△ABC为锐角三角形时,a2+b2>c2所以小明的猜想是正确的.(1)请你猜想,当△ABC为钝角三角形时,a2+b2与c2的大小关系.(2)温馨提示:在图3中,作BC边上的高.(3)证明你猜想的结论是否正确.【考点】三角形综合题.【分析】(1)根据题意可猜测:当△ABC为钝角三角形时,a2+b2与c2的大小关系为:a2+b2<c2;(2)根据题意可作辅助线:过点A作AD⊥BC于点D;(3)然后设CD=x,分别在Rt△ADC与Rt△ADB中,表示出AD2,即可证得结论.【解答】解:(1)当△ABC为钝角三角形时,a2+b2与c2的大小关系为:a2+b2<c2;(2)如图3,过点A作AD⊥BC于点D,(3)证明:如图3,设CD=x.在Rt△ADC中,AD2=b2﹣x2,在Rt△ADB中,AD2=c2﹣(a+x)2∴a2+b2=c2﹣2ax∵a>0,x>0∴2ax>0∴a2+b2<c2∴当△ABC为钝角三角形时,a2+b2<c2.23.据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.【考点】解直角三角形的应用.【分析】(1)在直角三角形ABD与直角三角形ACD中,利用锐角三角函数定义求出BD与CD的长,由BD﹣CD求出BC的长即可;(2)根据路程除以时间求出该轿车的速度,即可作出判断.【解答】解:(1)在Rt△ABD中,AD=24m,∠B=31°,∴tan31°=,即BD==40m,在Rt△ACD中,AD=24m,∠ACD=50°,∴tan50°=,即CD==20m,∴BC=BD﹣CD=40﹣20=20m,则B,C的距离为20m;(2)根据题意得:20÷2=10m/s<15m/s,则此轿车没有超速.24.为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据统计图可知优秀的18人占30%,从而可以得到本次抽查的学生数;(2)根据抽查的学生数可以得到抽查中及格的人数,从而可以将条形统计图补充完整;(3)用良好的人数占抽查人数的比值乘以360°即可解答本题;(4)根据统计图中的数据可以求得该学校七年级学生中测试结果为“不及格”等级的学生人数;(5)说出的建议只要对学生具有鼓励性即可.【解答】解:(1)本次抽样调查学生有:18÷30%=60(人),即本次抽样调查共抽取60名学生;(2)及格的学生有:60﹣18﹣24﹣3=15(人),补全的条形统计图如右图所示,(3)测试结果为“良好”等级所对应圆心角的度数是:×360°=144°,测试结果为“良好”等级所对应圆心角的度数是144°;(4)该学校七年级学生中测试结果为“不及格”等级的学生有:600×=30(人),即该学校七年级学生中测试结果为“不及格”等级的学生有30人;(5)对“不及格”等级的同学提一个友善的建议是:同学们,这次考试并不代表以后,相信你们下次一定可以考一个理想的成绩,加油,相信自己.25.如图,在⊙O中,AB为直径,D、E为圆上两点,C为圆外一点,且∠E+∠C=90°.(1)求证:BC为⊙O的切线.(2)若sinA=,BC=6,求⊙O的半径.【考点】切线的判定;解直角三角形.【分析】(1)根据在同圆或等圆中,同弧所对的圆周角相等可得∠A=∠E,再根据三角形的内角和等于180°求出∠ABC=90°,然后根据切线的定义证明即可;(2)根据∠A的正弦求出AC,利用勾股定理列式计算求出AB,然后求解即可.【解答】(1)证明:∵∠A与∠E所对的弧都是,∴∠A=∠E,又∵∠E+∠C=90°,∴∠A+∠C=90°,在△ABC中,∠ABC=180°﹣90°=90°,∵AB为直径,∴BC为⊙O的切线;(2)解:∵sinA=,BC=6,∴=,即=,解得AC=10,由勾股定理得,AB===8,∵AB为直径,∴⊙O的半径是×8=4.26.如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y 轴交于点C(0,﹣3),可以求得抛物线的解析式;(2)根据(1)中的解析式化为顶点式,即可得到此抛物线顶点D的坐标和对称轴;(3)首先写出存在,然后运用分类讨论的数学思想分别求出各种情况下点P的坐标即可.【解答】解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),∴,解得,,即此抛物线的解析式是y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴此抛物线顶点D的坐标是(1,﹣4),对称轴是直线x=1;(3)存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形,设点P的坐标为(1,y),当PA=PD时,=,解得,y=﹣,即点P的坐标为(1,﹣);当DA=DP时,=,解得,y=﹣4±,即点P的坐标为(1,﹣4﹣2)或(1,﹣4+);当AD=AP时,=,解得,y=±4,即点P的坐标是(1,4)或(1,﹣4),当点P为(1,﹣4)时与点D重合,故不符合题意,由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,﹣)或(1,﹣4﹣2)或(1,﹣4+)或(1,4).2020年8月13日。

2020年贵州省黔东南州中考数学试卷(含答案解析)

2020年贵州省黔东南州中考数学试卷(含答案解析)

2020年贵州省黔东南州中考数学试卷一.选择题(共10小题)1.﹣2020的倒数是()A.﹣2020B.﹣C.2020D.【分析】根据倒数的概念解答.【解答】解:﹣2020的倒数是﹣,故选:B.2.下列运算正确的是()A.(x+y)2=x2+y2B.x3+x4=x7C.x3•x2=x6D.(﹣3x)2=9x2【分析】直接利用完全平方公式以及合并同类项、同底数幂的乘法运算和积的乘方运算法则分别计算得出答案.【解答】解:A、(x+y)2=x2+2xy+y2,故此选项错误;B、x3+x4,不是同类项,无法合并,故此选项错误;C、x3•x2=x5,故此选项错误;D、(﹣3x)2=9x2,正确.故选:D.3.实数2介于()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【解答】解:∵2=,且6<<7,∵6<2<7.故选:C.4.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A.﹣7B.7C.3D.﹣3【解答】解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故选:A.5.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∵l=25°,则∵2等于()A.25°B.30°C.50°D.60°【分析】由折叠的性质可得出∵ACB′的度数,由矩形的性质可得出AD∵BC,再利用“两直线平行,内错角相等”可求出∵2的度数.【解答】解:由折叠的性质可知:∵ACB′=∵1=25°.∵四边形ABCD为矩形,∵AD∵BC,∵∵2=∵1+∵ACB′=25°+25°=50°.故选:C.6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个B.8个C.14个D.13个【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【解答】解:底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.故选:D.7.如图,∵O的直径CD=20,AB是∵O的弦,AB∵CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2【解答】解:连接OA,∵∵O的直径CD=20,OM:OD=3:5,∵OD=10,OM=6,∵AB∵CD,∵AM===8,∵AB=2AM=16.故选:C.8.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A.16B.24C.16或24D.48【解答】解:如图所示:∵四边形ABCD是菱形,∵AB=BC=CD=AD,∵x2﹣10x+24=0,因式分解得:(x﹣4)(x﹣6)=0,解得:x=4或x=6,分两种情况:∵当AB=AD=4时,4+4=8,不能构成三角形;∵当AB=AD=6时,6+6>8,∵菱形ABCD的周长=4AB=24.故选:B.9.如图,点A是反比例函数y═(x>0)上的一点,过点A作AC∵y轴,垂足为点C,AC交反比例函数y=的图象于点B,点P是x轴上的动点,则∵P AB的面积为()A.2B.4C.6D.8【解答】解:如图,连接OA、OB、PC.∵AC∵y轴,∵S∵APC=S∵AOC=×|6|=3,S∵BPC=S∵BOC=×|2|=1,∵S∵P AB=S∵APC﹣S∵BPC=2.故选:A.10.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1B.π﹣2C.π﹣3D.4﹣π【解答】解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,故选:B.二.填空题(共10小题)11.cos60°=.【解答】解:cos60°=.故答案为:.12.2020年以来,新冠肺炎橫行,全球经济遭受巨大损失,人民生命安全受到巨大威胁.截止6月份,全球确诊人数约3200000人,其中3200000用科学记数法表示为 3.2×106.【解答】解:3200000=3.2×106.故答案为:3.2×106.13.在实数范围内分解因式:xy2﹣4x=x(y+2)(y﹣2).【解答】解:xy2﹣4x=x(y2﹣4)=x(y+2)(y﹣2).故答案为:x(y+2)(y﹣2).14.不等式组的解集为2<x≤6.【解答】解:解不等式5x﹣1>3(x+1),得:x>2,解不等式x﹣1≤4﹣x,得:x≤6,则不等式组的解集为2<x≤6,故答案为:2<x≤6.15.直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后解析式为y=2x+3.【解答】解:把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1=2x+1,再向上平移2个单位长度,得到y=2x+3.故答案为:y=2x+3.16.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y<0时,x的取值范围是﹣3<x<1.【解答】解:∵物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,∵抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.17.以∵ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为(2,﹣1).【解答】解:∵∵ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∵点C的坐标为(2,﹣1),故答案为:(2,﹣1).18.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是.【解答】解:画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∵出场顺序恰好是甲、乙、丙的概率为,故答案为:.19.如图,AB是半圆O的直径,AC=AD,OC=2,∵CAB=30°,则点O到CD的距离OE为.【解答】解:∵AC=AD,∵A=30°,∵∵ACD=∵ADC=75°,∵AO=OC,∵∵OCA=∵A=30°,∵∵OCD=45°,即∵OCE是等腰直角三角形,在等腰Rt∵OCE中,OC=2;因此OE=.故答案为:.20.如图,矩形ABCD中,AB=2,BC=,E为CD的中点,连接AE、BD交于点P,过点P作PQ∵BC 于点Q,则PQ=.【解答】解:∵四边形ABCD是矩形,∵AB∵CD,AB=CD,AD=BC,∵BAD=90°,∵E为CD的中点,∵DE=CD=AB,∵∵ABP∵∵EDP,∵=,∵=,∵=,∵PQ∵BC,∵PQ∵CD,∵∵BPQ∵∵DBC,∵==,∵CD=2,∵PQ=,故答案为:.三.解答题(共6小题)21.(1)计算:()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0;(2)先化简,再求值:(﹣a+1)÷,其中a从﹣1,2,3中取一个你认为合适的数代入求值.【解答】解:(1)()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0=4+﹣3+2×1﹣1=4+﹣3+2﹣1=2+;(2)(﹣a+1)÷=×==﹣a﹣1,要使原式有意义,只能a=3,则当a=3时,原式=﹣3﹣1=﹣4.22.某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90≤x≤100,B等级:80≤x <90,C等级:60≤x<80,D等级:0≤x<60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.等级频数(人数)频率A a20%B1640%C b mD410%请你根据统计图表提供的信息解答下列问题:(1)上表中的a8,b=12,m=30%.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.【解答】解:(1)a=16÷40%×20%=8,b=16÷40%×(1﹣20%﹣40%﹣10%)=12,m=1﹣20%﹣40%﹣10%=30%;故答案为:8,12,30%;(2)本次调查共抽取了4÷10%=40名学生;补全条形图如图所示;(3)将男生分别标记为A,B,女生标记为a,b,A B a bA(A,B)(A,a)(A,b)B(B,A)(B,a)(B,b)a(a,A)(a,B)(a,b)b(b,A)(b,B)(b,a)∵共有12种等可能的结果,恰为一男一女的有8种,∵抽得恰好为“一男一女”的概率为=.23.如图,AB是∵O的直径,点C是∵O上一点(与点A,B不重合),过点C作直线PQ,使得∵ACQ=∵ABC.(1)求证:直线PQ是∵O的切线.(2)过点A作AD∵PQ于点D,交∵O于点E,若∵O的半径为2,sin∵DAC=,求阴影部分的面积.【解答】解:(1)证明:如图,连接OC,∵AB是∵O的直径,∵∵ACB=90°,∵OA=OC,∵∵CAB=∵ACO.∵∵ACQ=∵ABC,∵∵CAB+∵ABC=∵ACO+∵ACQ=∵OCQ=90°,即OC∵PQ,∵直线PQ是∵O的切线.(2)连接OE,∵sin∵DAC=,AD∵PQ,∵∵DAC=30°,∵ACD=60°.又∵OA=OE,∵∵AEO为等边三角形,∵∵AOE=60°.∵S阴影=S扇形﹣S∵AEO=S扇形﹣OA•OE•sin60°=×22﹣×2×2×=﹣.∵图中阴影部分的面积为﹣.24.黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y (单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)1119日销售量y(件)182请写出当11≤x≤19时,y与x之间的函数关系式.(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?【解答】解:(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得:,解得:.∵甲、乙两种商品的进货单价分别是10、15元/件.(2)设y与x之间的函数关系式为y=k1x+b1,将(11,18),(19,2)代入得:,解得:.∵y与x之间的函数关系式为y=﹣2x+40(11≤x≤19).(3)由题意得:w=(﹣2x+40)(x﹣10)=﹣2x2+60x﹣400=﹣2(x﹣15)2+50(11≤x≤19).∵当x=15时,w取得最大值50.∵当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.25.如图1,∵ABC和∵DCE都是等边三角形.探究发现(1)∵BCD与∵ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∵ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且∵ABC和∵DCE的边长分别为1和2,求∵ACD的面积及AD的长.【解答】解:(1)全等,理由是:∵∵ABC和∵DCE都是等边三角形,∵AC=BC,DC=EC,∵ACB=∵DCE=60°,∵∵ACB+∵ACD=∵DCE+∵ACD,即∵BCD=∵ACE,在∵BCD和∵ACE中,,∵∵ACE∵∵BCD(SAS);(2)如图3,由(1)得:∵BCD∵∵ACE,∵BD=AE,∵∵DCE都是等边三角形,∵∵CDE=60°,CD=DE=2,∵∵ADC=30°,∵∵ADE=∵ADC+∵CDE=30°+60°=90°,在Rt∵ADE中,AD=3,DE=2,∵AE===,∵BD=;(3)如图2,过A作AF∵CD于F,∵B、C、E三点在一条直线上,∵∵BCA+∵ACD+∵DCE=180°,∵∵ABC和∵DCE都是等边三角形,∵∵BCA=∵DCE=60°,∵∵ACD=60°,在Rt∵ACF中,sin∵ACF=,∵AF=AC×sin∵ACF=1×=,∵S∵ACD===,∵CF=AC×cos∵ACF=1×=,FD=CD﹣CF=2﹣,在Rt∵AFD中,AD2=AF2+FD2==3,∵AD=.26.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得∵EAC为等腰三角形,请直接写出点E的坐标.(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线的顶点为(1,﹣4),∵设抛物线的解析式为y=a(x﹣1)2﹣4,将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,∵a=1,∵抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∵x=﹣1或x=3,∵B(3,0),A(﹣1,0),令x=0,则y=﹣3,∵C(0,﹣3),∵AC=,设点E(0,m),则AE=,CE=|m+3|,∵∵ACE是等腰三角形,∵∵当AC=AE时,=,∵m=3或m=﹣3(点C的纵坐标,舍去),∵E(3,0),∵当AC=CE时,=|m+3|,∵m=﹣3±,∵E(0,﹣3+)或(0,﹣3﹣),∵当AE=CE时,=|m+3|,∵m=﹣,∵E(0,﹣),即满足条件的点E的坐标为(0,3)、(0,﹣3+)、(0,﹣3﹣)、(0,﹣);(3)如图,存在,∵D(1,﹣4),∵将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,∵点Q的纵坐标为4,设Q(t,4),将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,∵t=1+2或t=1﹣2,∵Q(1+2,4)或(1﹣2,4),分别过点D,Q作x轴的垂线,垂足分别为F,G,∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),∵FB=PG=3﹣1=2,∵点P的横坐标为(1+2)﹣2=﹣1+2或(1﹣2)﹣2=﹣1﹣2,即P(﹣1+2,0)、Q(1+2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).。

2020年贵州省贵阳市中考数学试卷附详细答案解析

2020年贵州省贵阳市中考数学试卷附详细答案解析

2020年贵州省贵阳市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣22.(3分)如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°3.(3分)生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102B.7×103C.0.7×104D.7×1044.(3分)如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.5.(3分)某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A .B .C .D .6.(3分)若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2 B.4 C.6 D.87.(3分)贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表:节水量0.3 0.4 0.5 0.6 0.7(m3)2 2 4 1 1家庭数(个)那么这10个家庭的节水量(m3)的平均数和中位数分别是()A.0.47和0.5 B.0.5和0.5 C.0.47和4 D.0.5和48.(3分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.249.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④10.(3分)如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48二、填空题(每小题4分,共20分)11.(4分)关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集为.12.(4分)方程(x﹣3)(x﹣9)=0的根是.13.(4分)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为.14.(4分)袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有个.15.(4分)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.三、解答题(本大题共10小题,共100分)16.(8分)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第步开始出现错误;(2)对此整式进行化简.17.(10分)2020年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a= ,b= ;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.18.(10分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.19.(10分)2020年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的 5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.20.(8分)贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的 B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).21.(10分)“2020年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的 1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.22.(10分)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).23.(10分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n <6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?24.(12分)(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E 是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.25.(12分)我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线:(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线y=﹣2x上时,求b的值;(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,A n在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,B n,以线段A n B n为边向左作正方形A n B n C n D n,如果这组抛物线中的某一条经过点D n,求此时满足条件的正方形A n B n C n D n的边长.2020年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2020•贵阳)在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣2【分析】根据相反数的概念解答即可.【解答】解:1与﹣1互为相反数,故选A.【点评】本题考查了相反数的概念:只有符号不同的两个数叫做互为相反数.2.(3分)(2020•贵阳)如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°【分析】先根据平行线的性质得出∠3的度数,再根据对顶角相等求解.【解答】解:∵a∥b,∠1=70°,∴∠3=∠1=70°,∴∠2=∠1=70°,故选:C.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等.3.(3分)(2020•贵阳)生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102B.7×103C.0.7×104D.7×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7000有4位,所以可以确定n=4﹣1=3.【解答】解:7000=7×103.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2020•贵阳)如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.【分析】根据俯视图是从物体的上面看得到的视图解答即可.【解答】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个矩形,故选:D.【点评】本题考查的是几何体的三视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.5.(3分)(2020•贵阳)某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A.B.C.D.【分析】先找出正确的纸条,再根据概率公式即可得出答案.【解答】解:∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是=;故选C.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.6.(3分)(2020•贵阳)若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2 B.4 C.6 D.8【分析】把(2,8)代入y=﹣x+a和y=x+b,即可求出a、b,即可求出答案.【解答】解:∵直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),∴8=﹣2+a,8=2+b,解得:a=10,b=6,∴a﹣b=4,故选B.【点评】本题考查了两直线的交点问题,能求出a、b的值是解此题的关键.7.(3分)(2020•贵阳)贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表:节水量0.3 0.4 0.5 0.6 0.7(m3)2 2 4 1 1家庭数(个)那么这10个家庭的节水量(m3)的平均数和中位数分别是()A.0.47和0.5 B.0.5和0.5 C.0.47和4 D.0.5和4【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:这10个数据的平均数为=0.47,中位数为=0.5,故选:A【点评】本题考查了中位数的定义:把一组数据按从小到大(或从大到小)排列,最中间那个数(或最中间两个数的平均数)叫这组数据的中位数.8.(3分)(2020•贵阳)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.24【分析】由平行四边形的性质得出DC=AB,AD=BC,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12;故选:B.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.9.(3分)(2020•贵阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣>0,结论④错误.综上即可得出结论.【解答】解:①∵抛物线开口向上,∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.故选C.【点评】本题考查了二次函数图象与系数的关系以及抛物线与x轴的交点,观察函数图象逐一分析四条结论的正误是解题的关键.10.(3分)(2020•贵阳)如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,故选D.【点评】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.二、填空题(每小题4分,共20分)11.(4分)(2020•贵阳)关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集为x≤2 .【分析】观察数轴得到不等式的解集都在2的左侧包括2,根据数轴表示数的方法得到不等式的解集为x≤2.【解答】解:观察数轴可得该不等式的解集为x≤2.故答案为:x≤2.【点评】本题考查了在数轴表示不等式的解集,运用数形结合的思想是解答此题的关键.12.(4分)(2020•贵阳)方程(x﹣3)(x﹣9)=0的根是x1=3,x2=9 .【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.13.(4分)(2020•贵阳)如图,正六边形ABCDEF内接于⊙O,⊙O 的半径为6,则这个正六边形的边心距OM的长为3.【分析】根据正六边形的性质求出∠BOM,利用余弦的定义计算即可.【解答】解:连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM==30°,∴OM=OB•cos∠BOM=6×=3;故答案为:3.【点评】本题考查的是正多边形和圆的有关计算,掌握正多边形的中心角的计算公式、熟记余弦的概念是解题的关键.14.(4分)(2020•贵阳)袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有 3 个.【分析】首先求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.【解答】解:∵摸了100次后,发现有30次摸到红球,∴摸到红球的频率==0.3,∵袋子中有红球、白球共10个,∴这个袋中红球约有10×0.3=3个,故答案为:3.【点评】此题考查利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2020•贵阳)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是﹣1 .【分析】连接CE,根据折叠的性质可知A′E=1,在Rt△BCE中利用勾股定理可求出CE的长度,再利用三角形的三边关系可得出点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1,此题得解.【解答】解:连接CE,如图所示.根据折叠可知:A′E=AE=AB=1.在Rt△BCE中,BE=AB=1,BC=3,∠B=90°,∴CE==.∵CE=,A′E=1,∴点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1.故答案为:﹣1.【点评】本题考查了翻折变换、矩形的性质、勾股定理以及三角形的三边关系,利用三角形的三边关系可得出点A′在CE上时,A′C 取最小值是解题的关键.三、解答题(本大题共10小题,共100分)16.(8分)(2020•贵阳)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第一步开始出现错误;(2)对此整式进行化简.【分析】(1)注意去括号的法则;(2)根据单项式乘以多项式、完全平方公式以及去括号的法则进行计算即可.【解答】解:(1)括号前面是负号,去掉括号应变号,故第一步出错,故答案为一;(2)解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1.【点评】本题考查了单项式乘以多项式以及完全平方公式,掌握运算法则是解题的关键.17.(10分)(2020•贵阳)2020年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a= 14 ,b= 125 ;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.【分析】(1)根据题意列式计算即可;(2)根据2016年全年总天数为:125+225+14+1+1=366(天),即可得到结论;(3)首先求得2016年贵阳市空气质量优良的优良率为×100%≈95.6%,与今年前5 个月贵阳市空气质量优良率比较即可.【解答】解:(1)a=×3.83%=14,b=﹣14﹣225﹣1﹣1=125;故答案为:14,125;(2)因为2016年全年总天数为:125+225+14+1+1=366(天),则360°×=123°,所以空气质量等级为“优”在扇形统计图中所占的圆心角的度数为123°;(3)2016年贵阳市空气质量优良的优良率为×100%≈95.6%,∵94%<95.6%,∴与2016年全年的优良相比,今年前5 个月贵阳市空气质量优良率降低了,建议:低碳出行,少开空调等.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.18.(10分)(2020•贵阳)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC 是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.19.(10分)(2020•贵阳)2020年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的 5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.【分析】(1)根据有6个展厅,编号为1~6号,第一天,抽到1号展厅的概率是,从而得出1号展厅没有被选中的概率;(2)根据题意先列出表格,得出所有可能的数和两天中4号展厅被选中的结果数,然后根据概率公式即可得出答案.【解答】解:(1)根据题意得:第一天,1号展厅没有被选中的概率是:1﹣=;故答案为:;(2)根据题意列表如下:1 2 3 4 5 61 (1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)由表格可知,总共有30种可能的结果,每种结果出现的可能性相同,其中,两天中4号展厅被选中的结果有10种,所以,P(4号展厅被选=.中)=【点评】此题考查的是用列表法或树状图法求概率的知识.列表法或树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.(8分)(2020•贵阳)贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的 B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).【分析】延长AD交BC所在直线于点E.解Rt△ACE,得出CE=AE•tan60°=15米,解Rt△ABE,由tan∠BAE==,得出∠BAE≈71°.【解答】解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=,∴CE=AE•tan60°=15米.在Rt△ABE中,tan∠BAE==,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.【点评】本题考查了解直角三角形的应用,首先构造直角三角形,再运用三角函数的定义解题,构造出直角三角形是解题的关键.21.(10分)(2020•贵阳)“2020年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的 1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【分析】(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)根据时间=路程÷速度求出小张跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的 5分钟即可求出小张赶回奥体中心所需时间,将其与23进行比较后即可得出结论.【解答】解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.【点评】本题考查了分式方程的应用,解题的关键是:(1)根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,列出关于x的分式方程;(2)根据数量关系,列式计算.22.(10分)(2020•贵阳)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).【分析】(1)连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAB=30°,于是得到结论;(2)由(1)知,∠AOD=60°,推出△AOD是等边三角形,OA=2,得到DE=,根据扇形和三角形的面积公式即可得到结论.【解答】解:(1)连接OD,OC,∵C、D是半圆O上的三等分点,∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S阴影=S扇形AOD﹣S△AOD=﹣×2=π﹣.【点评】本题考查了扇形的面积,等边三角形的判定和性质,正确的作出辅助线是解题的关键.23.(10分)(2020•贵阳)如图,直线y=2x+6与反比例函数y=(k >0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3时,△BMN的面积最大.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考常考题型.24.(12分)(2020•贵阳)(1)阅读理解:如图①,在四边形ABCD 中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,。

2020年贵州省铜仁市中考数学试卷(解析版)

2020年贵州省铜仁市中考数学试卷(解析版)

2020年贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4分)﹣3的绝对值是()A.﹣3B.3C.D.﹣【分析】直接利用绝对值的定义分析得出答案.【解答】解:﹣3的绝对值是:3.故选:B.2.(4分)我国高铁通车总里程居世界第一,预计到2020年底,高铁总里程大约39000千米,39000用科学记数法表示为()A.39×103B.3.9×104C.3.9×10﹣4D.39×10﹣3【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于39000有5位,所以可以确定n=5﹣1=4.【解答】解:39000=3.9×104.故选:B.3.(4分)如图,直线AB∥CD,∥3=70°,则∥1=()A.70°B.100°C.110°D.120°【分析】直接利用平行线的性质得出∥1=∥2,进而得出答案.【解答】解:∥直线AB∥CD,∥∥1=∥2,∥∥3=70°,∥∥1=∥2=180°﹣70°=110°.故选:C.4.(4分)一组数据4,10,12,14,则这组数据的平均数是()A.9B.10C.11D.12【分析】对于n个数x1,x2,…,x n,则=(x1+x2+…+x n)就叫做这n个数的算术平均数,据此列式计算可得.【解答】解:这组数据的平均数为×(4+10+12+14)=10,故选:B.5.(4分)已知∥FHB∥∥EAD,它们的周长分别为30和15,且FH=6,则EA的长为()A.3B.2C.4D.5【分析】根据相似三角形的周长比等于相似比解答.【解答】解:∥∥FHB和∥EAD的周长分别为30和15,∥∥FHB和∥EAD的周长比为2:1,∥∥FHB∥∥EAD,∥=2,即=2,解得,EA=3,故选:A.6.(4分)实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是()A.a>b B.﹣a<b C.a>﹣b D.﹣a>b【分析】根据数轴即可判断a和b的符号以及绝对值的大小,根据有理数的大小比较方法进行比较即可求解.【解答】解:根据数轴可得:a<0,b>0,且|a|>|b|,则a<b,﹣a>b,a<﹣b,﹣a>b.故选:D.7.(4分)已知等边三角形一边上的高为2,则它的边长为()A.2B.3C.4D.4【分析】根据等边三角形的性质:三线合一,利用勾股定理可求解即可.【解答】解:根据等边三角形:三线合一,设它的边长为x,可得:,解得:x=4,x=﹣4(舍去),故选:C.8.(4分)如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P 运动的路程为x,∥ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.【分析】分别求出0≤x≤4、4<x<7时函数表达式,即可求解.【解答】解:由题意当0≤x≤4时,y=×AD×AB=×3×4=6,当4<x<7时,y=×PD×AD=×(7﹣x)×4=14﹣2x.故选:D.9.(4分)已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程x2﹣6x+k+2=0的两个根,则k的值等于()A.7B.7或6C.6或﹣7D.6【分析】当m=4或n=4时,即x=4,代入方程即可得到结论,当m=n时,即∥=(﹣6)2﹣4×(k+2)=0,解方程即可得到结论.【解答】解:当m=4或n=4时,即x=4,∥方程为42﹣6×4+k+2=0,解得:k=6,当m=n时,即∥=(﹣6)2﹣4×(k+2)=0,解得:k=7,综上所述,k的值等于6或7,故选:B.10.(4分)如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∥DAM=45°,点F在射线AM上,且AF=,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:∥∥ECF的面积为;∥∥AEG的周长为8;∥EG2=DG2+BE2;其中正确的是()A.∥∥∥B.∥∥C.∥∥D.∥∥【分析】先判断出∥H=90°,进而求出AH=HF=1=BE.进而判断出∥EHF∥∥CBE(SAS),得出EF=EC,∥HEF=∥BCE,判断出∥CEF是等腰直角三角形,再用勾股定理求出EC2=17,即可得出∥正确;先判断出四边形APFH是矩形,进而判断出矩形AHFP是正方形,得出AP=PH=AH=1,同理:四边形ABQP是矩形,得出PQ=4,BQ=1,FQ=5,CQ=3,再判断出∥FPG∥∥FQC,得出,求出PG =,再根据勾股定理求得EG=,即∥AEG的周长为8,判断出∥正确;先求出DG=,进而求出DG2+BE2=,在求出EG2≠,判断出∥错误,即可得出结论.【解答】解:如图,在正方形ABCD中,AD∥BC,AB=BC=AD=4,∥B=∥BAD=90°,∥∥HAD=90°,∥HF∥AD,∥∥H=90°,∥∥HAF=90°﹣∥DAM=45°,∥∥AFH=∥HAF.∥AF=,∥AH=HF=1=BE.∥EH=AE+AH=AB﹣BE+AH=4=BC,∥∥EHF∥∥CBE(SAS),∥EF=EC,∥HEF=∥BCE,∥∥BCE+∥BEC=90°,∥HEF+∥BEC=90°,∥∥FEC=90°,∥∥CEF是等腰直角三角形,在Rt∥CBE中,BE=1,BC=4,∥EC2=BE2+BC2=17,∥S∥ECF=EF•EC=EC2=,故∥正确;过点F作FQ∥BC于Q,交AD于P,∥∥APF=90°=∥H=∥HAD,∥四边形APFH是矩形,∥AH=HF,∥矩形AHFP是正方形,∥AP=PH=AH=1,同理:四边形ABQP是矩形,∥PQ=AB=4,BQ=AP1,FQ=FP+PQ=5,CQ=BC﹣BQ=3,∥AD∥BC,∥∥FPG∥∥FQC,∥,∥,∥PG=,∥AG=AP+PG=,在Rt∥EAG中,根据勾股定理得,EG==,∥∥AEG的周长为AG+EG+AE=++3=8,故∥正确;∥AD=4,∥DG=AD﹣AG=,∥DG2+BE2=+1=,∥EG2=()2=≠,∥EG2≠DG2+BE2,故∥错误,∥正确的有∥∥,故选:C.二、填空题:(本题共8个小题,每小题4分,共32分)11.(4分)因式分解:a2+ab﹣a=a(a+b﹣1).【分析】原式提取公因式即可.【解答】解:原式=a(a+b﹣1).故答案为:a(a+b﹣1).12.(4分)方程2x+10=0的解是x=﹣5.【分析】方程移项,把x系数化为1,即可求出解.【解答】解:方程2x+10=0,移项得:2x=﹣10,解得:x=﹣5.故答案为:x=﹣5.13.(4分)已知点(2,﹣2)在反比例函数y=的图象上,则这个反比例函数的表达式是y=﹣.【分析】把点(2,﹣2)代入反比例函数y=(k≠0)中求出k的值,从而得到反比例函数解析式.【解答】解:∥反比例函数y=(k≠0)的图象上一点的坐标为(2,﹣2),∥k=﹣2×2=﹣4,∥反比例函数解析式为y=﹣,故答案为:y=﹣.14.(4分)函数y=中,自变量x的取值范围是x≥2.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以2x﹣4≥0,可求x的范围.【解答】解:2x﹣4≥0解得x≥2.15.(4分)从﹣2,﹣1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于.【分析】画树状图得出所有等可能结果,从中找到该点在第三象限的结果数,再利用概率公式求解可得.【解答】解:画树状图如下共有6种等可能情况,该点在第三象限的情况数有(﹣2,﹣1)和(﹣1,﹣2)这2种结果,∥该点在第三象限的概率等于=,故答案为:.16.(4分)设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD 的距离是5cm,则AB与EF的距离等于7或17cm.【分析】分两种情况讨论,EF在AB,CD之间或EF在AB,CD同侧,进而得出结论.【解答】解:分两种情况:∥当EF在AB,CD之间时,如图:∥AB与CD的距离是12cm,EF与CD的距离是5cm,∥EF与AB的距离为12﹣5=7(cm).∥当EF在AB,CD同侧时,如图:∥AB与CD的距离是12cm,EF与CD的距离是5cm,∥EF与AB的距离为12+5=17(cm).综上所述,EF与AB的距离为7cm或17cm.故答案为:7或17.17.(4分)如图,在矩形ABCD中,AD=4,将∥A向内翻折,点A落在BC上,记为A1,折痕为DE.若将∥B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=.【分析】依据∥A1DB1∥∥A1DC(AAS),即可得出A1C=A1B1,再根据折叠的性质,即可得到A1C=BC=2,最后依据勾股定理进行计算,即可得到CD的长,即AB的长.【解答】解:由折叠可得,A1D=AD=4,∥A=∥EA1D=90°,∥BA1E=∥B1A1E,BA1=B1A1,∥B=∥A1B1E =90°,∥∥EA1B1+∥DA1B1=90°=∥BA1E+∥CA1D,∥∥DA1B1=∥CA1D,又∥∥C=∥A1B1D,A1D=A1D,∥∥A1DB1∥∥A1DC(AAS),∥A1C=A1B1,∥BA1=A1C=BC=2,∥Rt∥A1CD中,CD==,∥AB=,故答案为:.18.(4分)观察下列等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;2+22+23+24+25=26﹣2;…已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=m(2m﹣1)(结果用含m的代数式表示).【分析】由题意可得220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=220(220×2﹣1),再将220=m代入即可求解.【解答】解:∥220=m,∥220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=m(2m﹣1).故答案为:m(2m﹣1).三、解答题:(本题共4个小题,第19题每小题10分,第20,21,22题每小题10分,共40分,要有解题的主要过程)19.(10分)(1)计算:2÷﹣(﹣1)2020﹣﹣(﹣)0.(2)先化简,再求值:(a+)÷(),自选一个a值代入求值.【分析】(1)原式利用除法法则,乘方的意义,算术平方根定义,以及零指数幂法则计算即可求出值;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=2×2﹣1﹣2﹣1=4﹣1﹣2﹣1=0;(2)原式=•=•=﹣,当a=0时,原式=﹣3.20.(10分)如图,∥B=∥E,BF=EC,AC∥DF.求证:∥ABC∥∥DEF.【分析】首先利用平行线的性质得出∥ACB=∥DFE,进而利用全等三角形的判定定理ASA,进而得出答案.【解答】证明:∥AC∥DF,∥∥ACB=∥DFE,∥BF=CE,∥BC=EF,在∥ABC和∥DEF中,,∥∥ABC∥∥DEF(ASA).21.(10分)某校计划组织学生参加学校书法、摄影、篮球、乒乓球四个课外兴趣小组,要求每人必须参加并且只能选择其中的一个小组,为了了解学生对四个课外小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的两幅不完整的统计图,请你根据给出的信息解答下列问题:(1)求该校参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=36,n=16;(3)若该校共有2000名学生,试估计该校选择“乒乓球”课外兴趣小组的学生有多少人?【分析】(1)根据选择书法的学生人数和所占的百分比,可以求得该校参加这次问卷调查的学生人数,然后根据扇形统计图中选择篮球的占28%,即可求得选择篮球的学生人数,从而可以将条形统计图补充完整;(2)根据条形统计图中的数据和(1)中的结果,可以得到m、n的值;(3)根据统计图中的数据,可以计算出该校选择“乒乓球”课外兴趣小组的学生有多少人.【解答】解:(1)该校参加这次问卷调查的学生有:20÷20%=100(人),选择篮球的学生有:100×28%=28(人),补全的条形统计图如右图所示;(2)m%=×100%=36%,n%=×100%=16%,故答案为:36,16;(3)2000×16%=320(人),答:该校选择“乒乓球”课外兴趣小组的学生有320人.22.(10分)如图,一艘船由西向东航行,在A处测得北偏东60°方向上有一座灯塔C,再向东继续航行60km 到达B处,这时测得灯塔C在北偏东30°方向上,已知在灯塔C的周围47km内有暗礁,问这艘船继续向东航行是否安全?【分析】过C作CD∥AB于点D,根据方向角的定义及余角的性质求出∥BCA=30°,∥ACD=60°,证∥ACB =30°=∥BCA,根据等角对等边得出BC=AB=12,然后解Rt∥BCD,求出CD即可.【解答】解:过点C作CD∥AB,垂足为D.如图所示:根据题意可知∥BAC=90°﹣30°=30°,∥DBC=90°﹣30°=60°,∥∥DBC=∥ACB+∥BAC,∥∥BAC=30°=∥ACB,∥BC=AB=60km,在Rt∥BCD中,∥CDB=90°,∥BDC=60°,sin∥BCD=,∥sin60°=,∥CD=60×sin60°=60×=30(km)>47km,∥这艘船继续向东航行安全.四、(本大题满分12分)23.(12分)某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?【分析】(1)设每一个篮球的进价是x元,则每一个排球的进价是90%x元,根据用3600元购买排球的个数要比用3600元购买篮球的个数多10个列出方程,解之即可得出结论;(2)设文体商店计划购进篮球m个,总利润y元,根据题意用m表示y,结合m的取值范围和m为整数,即可得出获得最大利润的方案.【解答】解:(1)设每一个篮球的进价是x元,则每一个排球的进价是90%x元,依题意有+10=,解得x=40,经检验,x=40是原方程的解,90%x=90%×40=36.故每一个篮球的进价是40元,每一个排球的进价是36元;(2)设文体商店计划购进篮球m个,总利润y元,则y=(100﹣40)m+(90﹣36)(100﹣m)=6m+5400,依题意有,解得0<m≤25且m为整数,∥m为整数,∥y随m的增大而增大,∥m=25时,y最大,这时y=6×25+5400=5550,100﹣25=75(个).故该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5550元.五、(本大题满分12分)24.(12分)如图,AB是∥O的直径,C为∥O上一点,连接AC,CE∥AB于点E,D是直径AB延长线上一点,且∥BCE=∥BCD.(1)求证:CD是∥O的切线;(2)若AD=8,=,求CD的长.(1)连接OC,根据圆周角定理得到∥ACB=90°,根据余角的性质得到∥A=∥ECB,求得∥A=∥BCD,【分析】根据等腰三角形的性质得到∥A=∥ACO,等量代换得到∥ACO=∥BCD,求得∥DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OC,∥AB是∥O的直径,∥∥ACB=90°,∥CE∥AB,∥∥CEB=90°,∥∥ECB+∥ABC=∥ABC+∥CAB=90°,∥∥A=∥ECB,∥∥BCE=∥BCD,∥∥A=∥BCD,∥OC=OA,∥∥A=∥ACO,∥∥ACO=∥BCD,∥∥ACO+∥BCO=∥BCO+∥BCD=90°,∥∥DCO=90°,∥CD是∥O的切线;(2)解:∥∥A=∥BCE,∥tan A==tan∥BCE==,设BC=k,AC=2k,∥∥D=∥D,∥A=∥BCD,∥∥ACD∥∥CBD,∥==,∥AD=8,∥CD=4.六、(本大题满分14分)25.(14分)如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设∥PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∥CMN=90°,且∥CMN与∥OBC 相似,如果存在,请求出点M和点N的坐标.【分析】(1)根据点A、B的坐标利用待定系数法即可求出抛物线的解析式;(2)过点P作PF∥y轴,交BC于点F,利用二次函数图象上点的坐标特征可得出点C的坐标,根据点B、C的坐标利用待定系数法即可求出直线BC的解析式,设点P的坐标为(m,﹣2m2+4m+6),则点F的坐标为(m,﹣2m+6),进而可得出PF的长度,利用三角形的面积公式可得出S∥PBC=﹣3m2+9m,配方后利用二次函数的性质即可求出∥PBC面积的最大值;(3)分两种不同情况,当点M位于点C上方或下方时,画出图形,由相似三角形的性质得出方程,求出点M,点N的坐标即可.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=ax2+bx+6,得:,解得:,∥抛物线的解析式为y=﹣2x2+4x+6.(2)过点P作PF∥y轴,交BC于点F,如图1所示.当x=0时,y=﹣2x2+4x+6=6,∥点C的坐标为(0,6).设直线BC的解析式为y=kx+c,将B(3,0)、C(0,6)代入y=kx+c,得:,解得:,∥直线BC的解析式为y=﹣2x+6.设点P的坐标为(m,﹣2m2+4m+6),则点F的坐标为(m,﹣2m+6),∥PF=﹣2m2+4m+6﹣(﹣2m+6)=﹣2m2+6m,∥S∥PBC=PF•OB=﹣3m2+9m=﹣3(m﹣)2+,∥当m=时,∥PBC面积取最大值,最大值为.∥点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∥0<m<3.(3)存在点M、点N使得∥CMN=90°,且∥CMN与∥OBC相似.如图2,∥CMN=90°,当点M位于点C上方,过点M作MD∥y轴于点D,∥∥CDM=∥CMN=90°,∥DCM=∥NCM,∥∥MCD∥∥NCM,若∥CMN与∥OBC相似,则∥MCD与∥NCM相似,设M(a,﹣2a2+4a+6),C(0,6),∥DC=﹣2a2+4a,DM=a,当时,∥COB∥∥CDM∥∥CMN,∥,解得,a=1,∥M(1,8),此时ND=DM=,∥N(0,),当时,∥COB∥∥MDC∥∥NMC,∥,解得a=,∥M(,),此时N(0,).如图3,当点M位于点C的下方,过点M作ME∥y轴于点E,设M(a,﹣2a2+4a+6),C(0,6),∥EC=2a2﹣4a,EM=a,同理可得:或=2,∥CMN与∥OBC相似,解得a=或a=3,∥M(,)或M(3,0),此时N点坐标为(0,)或(0,﹣).综合以上得,M(1,8),N(0,)或M(,),N(0,)或M(,),N(0,)或M (3,0),N(0,﹣),使得∥CMN=90°,且∥CMN与∥OBC相似.。

2020年贵州省黔东南州中考数学试卷附详细答案解析

2020年贵州省黔东南州中考数学试卷附详细答案解析

2020年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)|﹣2|的值是()A.﹣2 B.2 C.﹣D.2.(4分)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120° B.90°C.100° D.30°3.(4分)下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b4.(4分)如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥 C.正四棱锥 D.正三棱柱5.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C. D.46.(4分)已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣27.(4分)分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣38.(4分)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°9.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个10.(4分)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2020 B.2016 C.191 D.190二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为.12.(4分)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.13.(4分)在实数范围内因式分解:x5﹣4x= .14.(4分)黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.15.(4分)如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为.16.(4分)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2垂直且交y轴于点B3;…按此规律继续下去,则点B2020的坐标为.三、解答题(本大题共8小题,共86分)17.(8分)计算:﹣1﹣2+|﹣﹣|+(π﹣3.14)0﹣tan60°+.18.(8分)先化简,再求值:(x﹣1﹣)÷,其中x=+1.19.(8分)解不等式组,并把解集在数轴上表示出来.20.(12分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<155 30.06155≤x<158 70.14158≤x< m161 0.28 161≤x<16413 n164≤x<167 90.18167≤x<170 30.06170≤x<173 10.02根据以上统计图表完成下列问题:(1)统计表中m=,n= ,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高≥167cm的 4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.21.(12分)如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.22.(12分)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)23.(12分)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.24.(14分)如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x 轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.2020年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2020•黔东南州)|﹣2|的值是()A.﹣2 B.2 C.﹣D.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.【点评】本题考查绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2020•黔东南州)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120° B.90°C.100° D.30°【分析】根据三角形的外角的性质计算即可.【解答】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.3.(4分)(2020•黔东南州)下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣3b,符合题意;D、原式=a2+ab,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(4分)(2020•黔东南州)如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥 C.正四棱锥 D.正三棱柱【分析】由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.【解答】解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为正三棱柱.故选:D.【点评】考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.5.(4分)(2020•黔东南州)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C. D.4【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2CE=2,故选A.【点评】本题是圆的计算题,考查了垂径定理和勾股定理的运用,是常考题型;熟练掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧;在圆中的计算问题中,因为常有直角三角形存在,常利用勾股定理求线段的长.6.(4分)(2020•黔东南州)已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣2【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.7.(4分)(2020•黔东南州)分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(4分)(2020•黔东南州)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°【分析】如图,连接DF、BF.如图,连接DF、BF.首先证明∠FDB=∠FAB=30°,再证明△FAD≌△FBC,推出∠ADF=∠FCB=15°,由此即可解决问题.【解答】解:如图,连接DF、BF.∵FE⊥AB,AE=EB,∴FA=FB,∵AF=2AE,∴AF=AB=FB,∴△AFB是等边三角形,∵AF=AD=AB,∴点A是△DBF的外接圆的圆心,∴∠FDB=∠FAB=30°,∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,∴∠FAD=∠FBC,∴△FAD≌△FBC,∴∠ADF=∠FCB=15°,∴∠DOC=∠OBC+∠OCB=60°.故选A.解法二:连接BF.易知∠FCB=15°,∠DOC=∠OBC+∠FCB=45°+15°=60°【点评】本题考查正方形的性质、全等三角形的判定和性质、圆等知识,解题的关键是灵活运用所学知识解决问题,学会添加辅助圆解决问题,属于中考选择题中的压轴题.9.(4分)(2020•黔东南州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y轴交点位置得到c>0,则可作判断;③利用x=﹣1时a﹣b+c<0,然后把b=2a代入可判断;④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选C.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),要熟练掌握以下几点:①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;③常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);④抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10.(4分)(2020•黔东南州)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2020 B.2016 C.191 D.190【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数;【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+19=190,故选 D.【点评】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2020•黔东南州)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为(1,﹣1).【分析】根据坐标平移规律即可求出答案.【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)【点评】本题考查坐标平移规律,解题的关键是根据题意进行坐标变换即可,本题属于基础题型.12.(4分)(2020•黔东南州)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件∠A=∠D 使得△ABC≌△DEF.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.【点评】本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.13.(4分)(2020•黔东南州)在实数范围内因式分解:x5﹣4x= x (x2+2)(x+)(x﹣).【分析】先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.【解答】解:原式=x(x4﹣22),=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案是:x(x2+2)(x+)(x﹣).【点评】本题考查了在实数范围内分解因式,注意把2写成的形式继续分解因式,分解因式一定要彻底.14.(4分)(2020•黔东南州)黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是560 kg.【分析】根据题意可以估计该果农今年的“优质蓝莓”产量.【解答】解:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560kg,故答案为:560.【点评】本题考查利用频率估计概率,解答本题的关键是明确题意,利用频率估计出所求问题的答案.15.(4分)(2020•黔东南州)如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为﹣8 .【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.【解答】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故答案是:﹣8.【点评】本题考查了反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.16.(4分)(2020•黔东南州)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2垂直且交y轴于点B3;…按此规律继续下去,则点B2020的坐标为(0,﹣31009).【分析】根据题意和图象可以发现题目中的变化规律,从而可以求得点B2020的坐标.【解答】解:由题意可得,OB=OA•tan60°=1×=,OB 1=OB•tan60°==()2=3,OB2=OB1•tan60°=()3,…∵2020÷4=506…1,∴点B 2020的坐标为(0,﹣)即(0,﹣31009),故答案为:(0,﹣31009).【点评】本题考查规律型:点的坐标,解答本题的关键是明确题意,找出题目中坐标的变化规律,求出相应的点的坐标.三、解答题(本大题共8小题,共86分)17.(8分)(2020•黔东南州)计算:﹣1﹣2+|﹣﹣|+(π﹣3.14)0﹣tan60°+.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1+()+1﹣=3【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.(8分)(2020•黔东南州)先化简,再求值:(x﹣1﹣)÷,其中x=+1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=x﹣1,当x=+1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(8分)(2020•黔东南州)解不等式组,并把解集在数轴上表示出来.【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:【点评】本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.20.(12分)(2020•黔东南州)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<155 30.06155≤x<158 70.14158≤x<161 m0.28161≤x<16413 n164≤x<167 90.18167≤x<170 30.06170≤x<173 10.02根据以上统计图表完成下列问题:(1)统计表中m= 14 ,n= 0.26 ,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164 范围内;(3)在身高≥167cm的 4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【分析】(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;【解答】解:(1)设总人数为x人,则有=0.06,解得x=50,∴m=50×0.28=14,n==0.26.故答案为14,0.26.频数分布直方图:(2)观察表格可知中位数在 161≤x<164内,故答案为 161≤x<164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:所以P(两学生来自同一所班级)==.【点评】本题考查列表法和树状图法、频率分布表、频率分布直方图等知识,解题的关键是理解题意,学会画树状图解决问题,属于中考常考题型.21.(12分)(2020•黔东南州)如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.【分析】(1)连接OT,只要证明△PTA∽△PBT,可得=,由此即可解决问题;(2)首先证明△AOT是等边三角形,根据S阴=S扇形OAT﹣S△AOT计算即可;【解答】(1)证明:连接OT.∵PT是⊙O的切线,∴PT⊥OT,∴∠PTO=90°,∴∠PTA+∠OTA=90°,∵AB是直径,∴∠ATB=90°,∴∠TAB+∠B=90°,∵OT=OA,∴∠OAT=∠OTA,∴∠PTA=∠B,∵∠P=∠P,∴△PTA∽△PBT,∴=,∴PT2=PA•PB.(2)∵TP=TB=,∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT,∠TAO=60°,∴△AOT是等边三角形,∴S阴=S扇形OAT﹣S△AOT=﹣•12=﹣.【点评】本题考查相似三角形的判定和性质、切线的性质、扇形的面积等计算等知识,解题的关键是正确寻找相似三角形解决问题,第二个问题的关键是证明△AOT的等边三角形.22.(12分)(2020•黔东南州)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)【分析】假设点D移到D′的位置时,恰好∠α=39°,过点D作DE ⊥AC于点E,作D′E′⊥AC于点E′,根据锐角三角函数的定义求出DE、CE、CE′的长,进而可得出结论.【解答】解:假设点D移到D′的位置时,恰好∠α=39°,过点D 作DE⊥AC于点E,作D′E′⊥AC于点E′,∵CD=12米,∠DCE=60°,∴DE=CD•sin60°=12×=6米,CE=CD•cos60°=12×=6米.∵DE⊥AC,D′E′⊥AC,DD′∥CE′,∴四边形DEE′D′是矩形,∴DE=D′E′=6米.∵∠D′CE′=39°,∴CE′=≈≈12.8,∴EE′=CE′﹣CE=12.8﹣6=6.8≈7(米).答:学校至少要把坡顶D向后水平移动7米才能保证教学楼的安全.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(12分)(2020•黔东南州)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.【分析】(1)设甲队单独完成需要x天,乙队单独完成需要y天.列出分式方程组即可解决问题;(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.由此可得m的范围,再构建一次函数,利用一次函数的性质即可解决问题;【解答】解:(1)设甲队单独完成需要x天,乙队单独完成需要y天.由题意,解得,经检验是分式方程组的解,∴甲、乙两队工作效率分别是和.(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.∴甲工作6天,∵甲12天完成任务,∴6≤m≤12.∵完成该工程甲队工作m天,乙队工作n天,∴+=1,∴n=24﹣2m,∴w=3000m+1400(24﹣2m)=200m+33600,∵200>0,∴m=6时,此时费用最小,∴w的最小值为200×6+33600=34800元.【点评】本题考查一次函数的应用、分式方程组的应用等知识,解题的关键是学会设未知数,构建方程解决问题,属于中考常考题型.24.(14分)(2020•黔东南州)如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【分析】(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入可求得a的值,从而得到抛物线的解析式;(2)连接AM,过点M作MG⊥AD,垂足为G.先求得点A和点B的坐标,可求得,可得到AG、ME、OA、OB的长,然后利用锐角三角函数的定义可证明∠MAG=∠ABD,故此可证明AM⊥AB;(3))先证明∠FPE=∠FBD.则PF:PE:EF=:2:1.则△PEF的面积=PF2,设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).然后可得到PF与x的函数关系式,最后利用二次函数的性质求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M 的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用待定系数法求二次函数的解析式、二次函数的性质、锐角三角函数的定义,列出PF与x的函数关系式是解题的关键.。

2020年贵州省贵阳市中考数学试卷 (解析版)

2020年贵州省贵阳市中考数学试卷 (解析版)

2020年贵州省贵阳市中考数学试卷一、选择题(共10小题).1.计算(﹣3)×2的结果是()A.﹣6B.﹣1C.1D.62.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量4.如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°5.当x=1时,下列分式没有意义的是()A.B.C.D.6.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.7.菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5B.20C.24D.328.已知a<b,下列式子不一定成立的是()A.a﹣1<b﹣1B.﹣2a>﹣2bC.a+1<b+1D.ma>mb9.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1D.210.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或4二、填空题:每小题4分,共20分.11.化简x(x﹣1)+x的结果是.12.如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为.13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.14.如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是度.15.如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为.三、解答题:本大题10小题,共100分.16.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.17.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.52 2.53 3.54人数/人26610m4(1)本次共调查的学生人数为,在表格中,m=;(2)统计的这组数据中,每天听空中黔课时间的中位数是,众数是;(3)请就疫情期间如何学习的问题写出一条你的看法.18.如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.19.如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.20.“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.21.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E 点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).22.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?23.如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O 的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.24.2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)时间x(分钟)01234567899~15人数y(人)0170320450560650720770800810810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?25.如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB 的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.计算(﹣3)×2的结果是()A.﹣6B.﹣1C.1D.6【分析】原式利用乘法法则计算即可求出值.解:原式=﹣3×2=﹣6.故选:A.2.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.【分析】各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量【分析】直接利用调查数据的方法分析得出答案.解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.4.如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°【分析】根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°﹣∠1=180°﹣30°=150°.故选:A.5.当x=1时,下列分式没有意义的是()A.B.C.D.【分析】直接利用分式有意义的条件分析得出答案.解:A、,当x=1时,分式有意义不合题意;B、,当x=1时,x﹣1=0,分式无意义符合题意;C、,当x=1时,分式有意义不合题意;D、,当x=1时,分式有意义不合题意;故选:B.6.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【分析】根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.7.菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5B.20C.24D.32【分析】根据题意画出图形,由菱形的性质求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长.解:如图所示:∵四边形ABCD是菱形,AC=8,BD=6,∴AB=BC=CD=AD,OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长=4×5=20;故选:B.8.已知a<b,下列式子不一定成立的是()A.a﹣1<b﹣1B.﹣2a>﹣2bC.a+1<b+1D.ma>mb【分析】根据不等式的基本性质进行判断.解:A、在不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,原变形正确,故此选项不符合题意;B、在不等式a<b的两边同时乘以﹣2,不等号方向改变,即﹣2a>﹣2b,原变形正确,故此选项不符合题意;C、在不等式a<b的两边同时乘以,不等号的方向不变,即a<b,不等式a<b的两边同时加上1,不等号的方向不变,即a+1<b+1,原变形正确,故此选项不符合题意;D、在不等式a<b的两边同时乘以m,不等式不一定成立,即ma>mb,或ma<mb,或ma=mb,原变形不正确,故此选项符合题意.故选:D.9.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1D.2【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.10.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或4【分析】根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x 的方程ax2+bx+c+n=0 (0<n<m)的两个整数根,从而可以解答本题.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向上,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是﹣4或2,故选:B.二、填空题:每小题4分,共20分.11.化简x(x﹣1)+x的结果是x2.【分析】先根据单项式乘以多项式法则算乘法,再合并同类项即可.解:x(x﹣1)+x=x2﹣x+x=x2,故答案为:x2.12.如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为3.【分析】根据反比例函数y=的图象上点的坐标性得出|xy|=3,进而得出四边形OQMP 的面积.解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.【分析】随着试验次数的增多,变化趋势接近于理论上的概率.解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.14.如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是120度.【分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°,故答案为:120.15.如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为4.【分析】延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC==4,故答案为:4三、解答题:本大题10小题,共100分.16.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.【分析】(1)构造边长3,4,5的直角三角形即可.(2)构造直角边为2,斜边为4的直角三角形即可(答案不唯一).(3)构造三边分别为2,,的直角三角形即可.解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.17.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.52 2.53 3.54人数/人26610m4(1)本次共调查的学生人数为50,在表格中,m=22;(2)统计的这组数据中,每天听空中黔课时间的中位数是 3.5h,众数是 3.5h;(3)请就疫情期间如何学习的问题写出一条你的看法.【分析】(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m 的值;(2)根据中位数、众数的定义分别进行求解即可;(3)如:认真听课,独立思考(答案不唯一).解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5h,∴中位数是3.5h;∵3.5h出现了22次,出现的次数最多,∴众数是3.5h,故答案为:3.5h,3.5h;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).18.如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.【分析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=2,再证明△ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.【解答】(1)证明:∵∠四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+EF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE==2,∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD==10,∴四边形AEFD的面积=AB×AD=2×10=20.19.如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.【分析】(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②即可求解;(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,则△=25+24k<0,解得:k<﹣,即可求解.解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式并解得:k=2×3=6,故反比例函数表达式为:y=①;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②并解得:,故交点坐标为(﹣2,﹣3)或(3,2);(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,∵两个函数没有公共点,故△=25+24k<0,解得:k<﹣,故可以取k=﹣2(答案不唯一),故一次函数表达式为:y=﹣2x+5(答案不唯一).20.“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.【分析】(1)画出树状图,由概率公式即可得出答案;(2)设应添加x张《消防知识手册》卡片,由概率公式得出方程,解方程即可.解:(1)把《消防知识手册》《辞海》《辞海》分别即为A、B、C,画树状图如图:共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,∴恰好抽到2张卡片都是《辞海》的概率为=;(2)设应添加x张《消防知识手册》卡片,由题意得:=,解得:x=4,经检验,x=4是原方程的解;答:应添加4张《消防知识手册》卡片.21.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E 点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).【分析】(1)根据题意得到AG⊥EF,EG=∠AEG=∠ACB=35°,解直角三角形即可得到结论;(2)过E作EH⊥CB于H,设EH=x,解直角三角形即可得到结论.解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,∴AG⊥EF,EG=∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=,∴DH=,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=,∴CH=,∵CH﹣DH=CD=8,∴﹣=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB为14米.22.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?【分析】(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据总共的费用为(1300﹣378)元列方程解答即可;(2)设笔记本的单价为a元,根据总共的费用为(1300﹣378)元列方程解求出方程的解,再根据a的取值范围以及一次函数的性质求出x的值,再把x的值代入方程的解即可求出a的值.解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:6x+10(100﹣x)=1300﹣378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100﹣x)+a=1300﹣378,整理,得:x=,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20﹣78=2;当a=21时,a=4×21﹣78=6,所以笔记本的单价可能是2元或6元.23.如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O 的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.【分析】(1)根据圆周角定理得∠ABD=∠ACD,进而得∠ACD=∠CAD,便可由等腰三角形判定定理得AD=CD;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC便可.解:(1)证明:∵∠CAD=∠ABD,∴∠ACD=∠CAD,∴AD=CD;(2)∵AF是⊙O的切线,∴∠FAB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°,∴∠ABD=∠FAD,∵∠ABD=∠CAD,∴∠FAD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,∵AB=4,BF=5,∴AF=,∴AE=AF=3,∵,∴,∴DE=,∴BE=BF﹣2DE=,∵∠AED=∠BED,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴,∴,∴,∴.24.2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)时间x(分钟)01234567899~15人数y(人)0170320450560650720770800810810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)分两种情况讨论,利用待定系数法可求解析式;(2)设第x分钟时的排队人数为w人,由二次函数的性质和一次函数的性质可求当x =7时,w的最大值=490,当9<x≤15时,210≤w<450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.解:(1)由表格中数据的变化趋势可知,①当0≤x≤9时,y是x的二次函数,∵当x=0时,y=0,∴二次函数的关系式可设为:y=ax2+bx,由题意可得:,解得:,∴二次函数关系式为:y=﹣10x2+180x,②当9<x≤15时,y=180,∴y与x之间的函数关系式为:y=;(2)设第x分钟时的排队人数为w人,由题意可得:w=y﹣40x=,①当0≤x≤9时,w=﹣10x2+140x=﹣10(x﹣7)2+490,∴当x=7时,w的最大值=490,②当9<x≤15时,w=810﹣40x,w随x的增大而减小,∴210≤w<450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810﹣40x=0,解得:x=20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,解得m≥,∵m是整数,∴m≥的最小整数是2,∴一开始就应该至少增加2个检测点.25.如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是PQ=BO,位置关系是PQ⊥BO;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB 的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.【分析】(1)由正方形的性质得出BO⊥AC,BO=CO,由中位线定理得出PQ∥OC,PQ=OC,则可得出结论;(2)连接O'P并延长交BC于点F,由旋转的性质得出△AO'E是等腰直角三角形,O'E ∥BC,O'E=O'A,证得∠O'EP=∠FCP,∠PO'E=∠PFC,△O'PE≌△FPC(AAS),则O'E=FC=O'A,O'P=FP,证得△O'BF为等腰直角三角形.同理△BPO'也为等腰直角三角形,则可得出结论;(3)延长O'E交BC边于点G,连接PG,O'P.证明△O'GP≌△BCP(SAS),得出∠O'PG=∠BPC,O'P=BP,得出∠O'PB=90°,则△O'PB为等腰直角三角形,由直角三角形的性质和勾股定理可求出O'A和O'B,求出BQ,由三角形面积公式即可得出答案.解:(1)∵点O为对角线AC的中点,∴BO⊥AC,BO=CO,∵P为BC的中点,Q为BO的中点,∴PQ∥OC,PQ=OC,∴PQ⊥BO,PQ=BO;故答案为:PQ=BO,PQ⊥BO.(2)△PQB的形状是等腰直角三角形.理由如下:连接O'P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,∴∠O'EP=∠FCP,∠PO'E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O'PE≌△FPC(AAS),∴O'E=FC=O'A,O'P=FP,∴AB﹣O'A=CB﹣FC,∴BO'=BF,∴△O'BF为等腰直角三角形.∴BP⊥O'F,O'P=BP,∴△BPO'也为等腰直角三角形.又∵点Q为O'B的中点,∴PQ⊥O'B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O'E交BC边于点G,连接PG,O'P.。

2020年贵州省黔东南州中考数学试卷(解析版)

2020年贵州省黔东南州中考数学试卷(解析版)

2020年贵州省黔东南州中考数学试卷参考答案与试题解析一.选择题(共10小题)1.﹣2020的倒数是()A.﹣2020B.﹣C.2020D.【分析】根据倒数的概念解答.【解答】解:﹣2020的倒数是﹣,故选:B.2.下列运算正确的是()A.(x+y)2=x2+y2B.x3+x4=x7C.x3•x2=x6D.(﹣3x)2=9x2【分析】直接利用完全平方公式以及合并同类项、同底数幂的乘法运算和积的乘方运算法则分别计算得出答案.【解答】解:A、(x+y)2=x2+2xy+y2,故此选项错误;B、x3+x4,不是同类项,无法合并,故此选项错误;C、x3•x2=x5,故此选项错误;D、(﹣3x)2=9x2,正确.故选:D.3.实数2介于()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】首先化简2=,再估算,由此即可判定选项.【解答】解:∵2=,且6<<7,∵6<2<7.故选:C.4.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A.﹣7B.7C.3D.﹣3【分析】根据根与系数的关系即可求出答案.【解答】解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故选:A.5.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∵l=25°,则∵2等于()A.25°B.30°C.50°D.60°【分析】由折叠的性质可得出∵ACB′的度数,由矩形的性质可得出AD∵BC,再利用“两直线平行,内错角相等”可求出∵2的度数.【解答】解:由折叠的性质可知:∵ACB′=∵1=25°.∵四边形ABCD为矩形,∵AD∵BC,∵∵2=∵1+∵ACB′=25°+25°=50°.故选:C.6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个B.8个C.14个D.13个【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【解答】解:底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.故选:D.7.如图,∵O的直径CD=20,AB是∵O的弦,AB∵CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2【分析】连接OA,先根据∵O的直径CD=20,OM:OD=3:5求出OD及OM的长,再根据勾股定理可求出AM的长,进而得出结论.【解答】解:连接OA,∵∵O的直径CD=20,OM:OD=3:5,∵OD=10,OM=6,∵AB∵CD,∵AM===8,∵AB=2AM=16.故选:C.8.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A.16B.24C.16或24D.48【分析】解方程得出x=4,或x=6,分两种情况:∵当AB=AD=4时,4+4=8,不能构成三角形;∵当AB=AD=6时,6+6>8,即可得出菱形ABCD的周长.【解答】解:如图所示:∵四边形ABCD是菱形,∵AB=BC=CD=AD,∵x2﹣10x+24=0,因式分解得:(x﹣4)(x﹣6)=0,解得:x=4或x=6,分两种情况:∵当AB=AD=4时,4+4=8,不能构成三角形;∵当AB=AD=6时,6+6>8,∵菱形ABCD的周长=4AB=24.故选:B.9.如图,点A是反比例函数y═(x>0)上的一点,过点A作AC∵y轴,垂足为点C,AC交反比例函数y=的图象于点B,点P是x轴上的动点,则∵P AB的面积为()A.2B.4C.6D.8【分析】连接OA、OB、PC.由于AC∵y轴,根据三角形的面积公式以及反比例函数比例系数k的几何意义得到S∵APC=S∵AOC=3,S∵BPC=S∵BOC=1,然后利用S∵P AB=S∵APC﹣S∵APB进行计算.【解答】解:如图,连接OA、OB、PC.∵AC∵y轴,∵S∵APC=S∵AOC=×|6|=3,S∵BPC=S∵BOC=×|2|=1,∵S∵P AB=S∵APC﹣S∵BPC=2.故选:A.10.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1B.π﹣2C.π﹣3D.4﹣π【分析】根据题意和图形,可知阴影部分的面积是以2为半径的四分之一个圆的面积减去以1为半径的半圆的面积再减去2个以边长为1的正方形的面积减去以1半径的四分之一个圆的面积,本题得以解决.【解答】解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,故选:B.二.填空题(共10小题)11.cos60°=.【分析】根据记忆的内容,cos60°=即可得出答案.【解答】解:cos60°=.故答案为:.12.2020年以来,新冠肺炎橫行,全球经济遭受巨大损失,人民生命安全受到巨大威胁.截止6月份,全球确诊人数约3200000人,其中3200000用科学记数法表示为 3.2×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3200000=3.2×106.故答案为:3.2×106.13.在实数范围内分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】本题可先提公因式x,再运用平方差公式分解因式即可求解.【解答】解:xy2﹣4x=x(y2﹣4)=x(y+2)(y﹣2).故答案为:x(y+2)(y﹣2).14.不等式组的解集为2<x≤6.【分析】先根据解不等式的基本步骤求出每个不等式的解集,再根据“大小小大中间找”可确定不等式组的解集.【解答】解:解不等式5x﹣1>3(x+1),得:x>2,解不等式x﹣1≤4﹣x,得:x≤6,则不等式组的解集为2<x≤6,故答案为:2<x≤6.15.把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为y =2x+3.【分析】直接利用一次函数的平移规律进而得出答案.【解答】解:把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1=2x+1,再向上平移2个单位长度,得到y=2x+3.故答案为:y=2x+3.16.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y<0时,x的取值范围是﹣3<x<1.【分析】根据物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.【解答】解:∵物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,∵抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.17.以∵ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为(2,﹣1).【分析】根据平行四边形是中心对称图形,再根据∵ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.【解答】解:∵∵ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∵点C的坐标为(2,﹣1),故答案为:(2,﹣1).18.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出场顺序恰好是甲、乙、丙的情况,再利用概率公式求解即可求得答案.【解答】解:画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∵出场顺序恰好是甲、乙、丙的概率为,故答案为:.19.如图,AB是半圆O的直径,AC=AD,OC=2,∵CAB=30°,则点O到CD的距离OE为.【分析】在等腰∵ACD中,顶角∵A=30°,易求得∵ACD=75°;根据等边对等角,可得:∵OCA=∵A=30°,由此可得,∵OCD=45°;即∵COE是等腰直角三角形,则OE=.【解答】解:∵AC=AD,∵A=30°,∵∵ACD=∵ADC=75°,∵AO=OC,∵∵OCA=∵A=30°,∵∵OCD=45°,即∵OCE是等腰直角三角形,在等腰Rt∵OCE中,OC=2;因此OE=.故答案为:.20.如图,矩形ABCD中,AB=2,BC=,E为CD的中点,连接AE、BD交于点P,过点P作PQ∵BC 于点Q,则PQ=.【分析】根据矩形的性质得到AB∵CD,AB=CD,AD=BC,∵BAD=90°,根据线段中点的定义得到DE=CD=AB,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∵AB∵CD,AB=CD,AD=BC,∵BAD=90°,∵E为CD的中点,∵DE=CD=AB,∵∵ABP∵∵EDP,∵=,∵=,∵=,∵PQ∵BC,∵PQ∵CD,∵∵BPQ∵∵DBC,∵==,∵CD=2,∵PQ=,故答案为:.三.解答题(共6小题)21.(1)计算:()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0;(2)先化简,再求值:(﹣a+1)÷,其中a从﹣1,2,3中取一个你认为合适的数代入求值.【分析】(1)先算负整数指数幂,绝对值,特殊角的三角函数值,零指数幂,再算加减法即可求解;(2)先通分,把除法转化成乘法,再把分式的分子与分母因式分解,然后约分,最后代入一个合适的数即可.【解答】解:(1)()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0=4+﹣3+2×1﹣1=4+﹣3+2﹣1=2+;(2)(﹣a+1)÷=×==﹣a﹣1,要使原式有意义,只能a=3,则当a=3时,原式=﹣3﹣1=﹣4.22.某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90≤x≤100,B等级:80≤x <90,C等级:60≤x<80,D等级:0≤x<60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.等级频数(人数)频率A a20%B1640%C b mD410%请你根据统计图表提供的信息解答下列问题:(1)上表中的a8,b=12,m=30%.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.【分析】(1)根据题意列式计算即可得到结论;(2)用D等级人数除以它所占的百分比即可得到调查的总人数;(3)列表将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)a=16÷40%×20%=8,b=16÷40%×(1﹣20%﹣40%﹣10%)=12,m=1﹣20%﹣40%﹣10%=30%;故答案为:8,12,30%;(2)本次调查共抽取了4÷10%=40名学生;补全条形图如图所示;(3)将男生分别标记为A,B,女生标记为a,b,A B a bA(A,B)(A,a)(A,b)B(B,A)(B,a)(B,b)a(a,A)(a,B)(a,b)b(b,A)(b,B)(b,a)∵共有12种等可能的结果,恰为一男一女的有8种,∵抽得恰好为“一男一女”的概率为=.23.如图,AB是∵O的直径,点C是∵O上一点(与点A,B不重合),过点C作直线PQ,使得∵ACQ=∵ABC.(1)求证:直线PQ是∵O的切线.(2)过点A作AD∵PQ于点D,交∵O于点E,若∵O的半径为2,sin∵DAC=,求图中阴影部分的面积.【分析】(1)连接OC,由直径所对的圆周角为直角,可得∵ACB=90°;利用等腰三角形的性质及已知条件∵ACQ=∵ABC,可求得∵OCQ=90°,按照切线的判定定理可得结论.(2)由sin∵DAC=,可得∵DAC=30°,从而可得∵ACD的度数,进而判定∵AEO为等边三角形,则∵AOE 的度数可得;利用S阴影=S扇形﹣S∵AEO,可求得答案.【解答】解:(1)证明:如图,连接OC,∵AB是∵O的直径,∵∵ACB=90°,∵OA=OC,∵∵CAB=∵ACO.∵∵ACQ=∵ABC,∵∵CAB+∵ABC=∵ACO+∵ACQ=∵OCQ=90°,即OC∵PQ,∵直线PQ是∵O的切线.(2)连接OE,∵sin∵DAC=,AD∵PQ,∵∵DAC=30°,∵ACD=60°.又∵OA=OE,∵∵AEO为等边三角形,∵∵AOE=60°.∵S阴影=S扇形﹣S∵AEO=S扇形﹣OA•OE•sin60°=×22﹣×2×2×=﹣.∵图中阴影部分的面积为﹣.24.黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y (单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)1119日销售量y(件)182请写出当11≤x≤19时,y与x之间的函数关系式.(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?【分析】(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得关于a、b的二元一次方程组,求解即可.(2)设y与x之间的函数关系式为y=k1x+b1,用待定系数法求解即可.(3)根据利润等于每件的利润乘以销售量列出函数关系式,然后写成顶点式,按照二次函数的性质可得答案.【解答】解:(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得:,解得:.∵甲、乙两种商品的进货单价分别是10、15元/件.(2)设y与x之间的函数关系式为y=k1x+b1,将(11,18),(19,2)代入得:,解得:.∵y与x之间的函数关系式为y=﹣2x+40(11≤x≤19).(3)由题意得:w=(﹣2x+40)(x﹣10)=﹣2x2+60x﹣400=﹣2(x﹣15)2+50(11≤x≤19).∵当x=15时,w取得最大值50.∵当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.25.如图1,∵ABC和∵DCE都是等边三角形.探究发现(1)∵BCD与∵ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∵ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且∵ABC和∵DCE的边长分别为1和2,求∵ACD的面积及AD的长.【分析】(1)依据等式的性质可证明∵BCD=∵ACE,然后依据SAS可证明∵ACE∵∵BCD;(2)由(1)知:BD=AE,利用勾股定理计算AE的长,可得BD的长;(3)如图2,过A作AF∵CD于F,先根据平角的定义得∵ACD=60°,利用特殊角的三角函数可得AF的长,由三角形面积公式可得∵ACD的面积,最后根据勾股定理可得AD的长.【解答】解:(1)全等,理由是:∵∵ABC和∵DCE都是等边三角形,∵AC=BC,DC=EC,∵ACB=∵DCE=60°,∵∵ACB+∵ACD=∵DCE+∵ACD,即∵BCD=∵ACE,在∵BCD和∵ACE中,,∵∵ACE∵∵BCD(SAS);(2)如图3,由(1)得:∵BCD∵∵ACE,∵BD=AE,∵∵DCE都是等边三角形,∵∵CDE=60°,CD=DE=2,∵∵ADC=30°,∵∵ADE=∵ADC+∵CDE=30°+60°=90°,在Rt∵ADE中,AD=3,DE=2,∵AE===,∵BD=;(3)如图2,过A作AF∵CD于F,∵B、C、E三点在一条直线上,∵∵BCA+∵ACD+∵DCE=180°,∵∵ABC和∵DCE都是等边三角形,∵∵BCA=∵DCE=60°,∵∵ACD=60°,在Rt∵ACF中,sin∵ACF=,∵AF=AC×sin∵ACF=1×=,∵S∵ACD===,∵CF=AC×cos∵ACF=1×=,FD=CD﹣CF=2﹣,在Rt∵AFD中,AD2=AF2+FD2==3,∵AD=.26.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得∵EAC为等腰三角形,请直接写出点E的坐标.(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.【分析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.【解答】解:(1)∵抛物线的顶点为(1,﹣4),∵设抛物线的解析式为y=a(x﹣1)2﹣4,将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,∵a=1,∵抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∵x=﹣1或x=3,∵B(3,0),A(﹣1,0),令x=0,则y=﹣3,∵C(0,﹣3),∵AC=,设点E(0,m),则AE=,CE=|m+3|,∵∵ACE是等腰三角形,∵∵当AC=AE时,=,∵m=3或m=﹣3(点C的纵坐标,舍去),∵E(3,0),∵当AC=CE时,=|m+3|,∵m=﹣3±,∵E(0,﹣3+)或(0,﹣3﹣),∵当AE=CE时,=|m+3|,∵m=﹣,∵E(0,﹣),即满足条件的点E的坐标为(0,3)、(0,﹣3+)、(0,﹣3﹣)、(0,﹣);(3)如图,存在,∵D(1,﹣4),∵将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,∵点Q的纵坐标为4,设Q(t,4),将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,∵t=1+2或t=1﹣2,∵Q(1+2,4)或(1﹣2,4),分别过点D,Q作x轴的垂线,垂足分别为F,G,∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),∵FB=PG=3﹣1=2,∵点P的横坐标为(1+2)﹣2=﹣1+2或(1﹣2)﹣2=﹣1﹣2,即P(﹣1+2,0)、Q(1+2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).。

2020年贵州省黔西南州中考数学试卷(原卷版)-【经典教育教学资料】

2020年贵州省黔西南州中考数学试卷(原卷版)-【经典教育教学资料】

2020年贵州省黔西南州中考数学试卷一、选择题(本题10小题,每题4分,共40分)1.(4分)2的倒数是()A.﹣2B.2ﻩC.﹣ﻩD.2.(4分)某市为做好“稳就业、保民生”工作,将新建保障性住房360000套,缓解中低收入人群和新参加工作大学生的住房需求.把360000用科学记数法表示应是()A.0.36×106B.3.6×105C.3.6×106ﻩD.36×1053.(4分)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A.B.ﻩC.D.4.(4分)下列运算正确的是()A.a3+a2=a5ﻩB.a3÷a=a3C.a2•a3=a5ﻩD.(a2)4=a65.(4分)某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A.4,5ﻩB.5,4ﻩC.4,4ﻩD.5,56.(4分)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为()A.37°ﻩB.43°ﻩC.53°ﻩD.54°7.(4分)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.米B.4sinα米ﻩC.米ﻩD.4cosα米8.(4分)已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2ﻩB.m≤2C.m<2且m≠1ﻩD.m≤2且m≠19.(4分)如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y═(k≠0)的图象上,则反比例函数的解析式为()A.y=﹣B.y=﹣ C.y=﹣ﻩD.y=10.(4分)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是( )A.点B坐标为(5,4)ﻩB.AB=ADﻩC.a=﹣ﻩD.OC•OD=16二、填空题(本题10小题,每题3分,共30分)11.(3分)把多项式a3﹣4a分解因式,结果是.12.(3分)若7a xb2与﹣a3by的和为单项式,则yx=.13.(3分)不等式组的解集为.14.(3分)如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=3,则BD的长度为.15.(3分)如图,正比例函数的图象与一次函数y=﹣x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是.16.(3分)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D 落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为.17.(3分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2020次输出的结果为.18.(3分)有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了个人.19.(3分)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为.20.(3分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.三、解答题(本题6小题,共80分)21.(12分)(1)计算(﹣2)2﹣|﹣|﹣2cos45°+(2020﹣π)0;(2)先化简,再求值:(+),其中a=﹣1.22.(12分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形. 其中真命题的个数有个;A.0B.1C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.23.(14分)新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C 级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是名;(2)扇形统计图中表示A级的扇形圆心角α的度数是,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为;(4)某班有4名优秀的同学(分别记为E、F、G、H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.24.(14分)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?25.(12分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O 上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.26.(16分)已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(﹣1,0),交y轴于点C.(1)求抛物线的解析式和顶点坐标;(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴、y轴的平行线,交直线AC于点D,E,当PD+PE取最大值时,求点P的坐标;(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN 时,求点N的坐标.2020年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是( )A.﹣3ﻩB.3ﻩC.﹣ﻩD.2.(3分)分式的值是零,则x的值为()A.2 B.5ﻩC.﹣2 D.﹣53.(3分)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2ﻩB.2a﹣b2C.a2﹣b2D.﹣a2﹣b24.(3分)下列四个图形中,是中心对称图形的是()A.B.C. D.5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.ﻩB.ﻩC.ﻩD.6.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线ﻩD.经过直线外一点,有且只有一条直线与这条直线平行7.(3分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<bﻩD.c<b<a8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF的度数是()A.65°ﻩB.60°C.58°ﻩD.50°9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2xﻩB.3×20x+5=10x×2ﻩC.3×20+x+5=20xﻩD.3×(20+x)+5=10x+210.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,B D相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+ﻩB.2+C.5﹣ﻩD.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可).12.(4分)数据1,2,4,5,3的中位数是.13.(4分)如图为一个长方体,则该几何体主视图的面积为cm2.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是°.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+﹣tan45°+|﹣3|.18.(6分)解不等式:5x﹣5<2(2+x).19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.20.(8分)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.(10分)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.(10分)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.。

2023年贵州省中考数学真题(解析版)

2023年贵州省中考数学真题(解析版)

贵州省2023年初中学业水平考试(中考)试题卷数学一、选择题(每小题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1.【答案】B【解析】解:5的绝对值是5,故选B .2.【答案】A【解析】解:从正面看,得到的平面图形是一个等腰梯形,故选:A .3.【答案】B【解析】解:41087 1.08710=⨯,故选:B .4.【答案】B【解析】解: AB CD ,40C ∠=︒,∴40A C ∠=∠=︒,故选B .5.【答案】A 【解析】解:11111a a a a a++--==,故A 正确.故选:A .6.【答案】C【解析】解:由表格可得,22181510>>>,众数是乙,故乙的销量最好,要多进,故选C .7.【答案】B【解析】解:如图,作AD BC ⊥于点D ,ABC 中,120BAC ∠=︒,AB AC =,∴()1180302B C BAC ∠=∠=︒-∠=︒, AD BC ⊥,∴11126m 22AD AB ==⨯=,故选B .8.【答案】C【解析】解:盒中小球总量为:32510++=(个),摸出“北斗”小球的概率为:310,摸出“天眼”小球的概率为:21105=,摸出“高铁”小球的概率为:51102=,因此摸出“高铁”小球的可能性最大.故选C .9.【答案】C【解析】解:x 户人家,每户分一头鹿需x 头鹿,每3户共分一头需13x 头鹿,由此可知11003x x +=,故选C .10.【答案】D【解析】解:由图可知二次函数的图象开口向上,对称轴在y 轴右侧,∴0a >,02b a->,∴0b <,∴(),P a b 在第四象限,故选D .11.【答案】A【解析】解:由作图过程可知DG 平分ADC ∠,∴ADG CDG ∠=∠,AD BC ∥,∴ADG CGD ∠=∠,∴CDG CGD ∠=∠,∴3CG CD ==,∴532BG BC CG =-=-=,故选A .12.【答案】D【解析】解:0x =时,200y =,因此小星家离黄果树景点的路程为50km ,故A 选项错误,不合题意;1x =时,150y =,因此小星从家出发第1小时的平均速度为50km/h ,故B 选项错误,不合题意;2x =时,75y =,因此小星从家出发2小时离景点的路程为75km ,故C 选项错误,不合题意;小明离家1小时后的行驶速度为1507575km/h 21-=-,从家出发2小时离景点的路程为75km ,还需要行驶1小时,因此小星从家到黄果树景点的时间共用了3h ,故D 选项正确,符合题意;故选D .二、填空题(每小题4分,共16分)13.【答案】(+2)(-2)x x 【解析】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-14.【答案】()9,4-【解析】解:如图,以喷水池为原点,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系, 若贵阳北站的坐标是()2,7-,∴方格中一个小格代表一个单位,洞堡机场与喷水池的水平距离又9个单位长度,与喷水池的垂直距离又4个单位长度,且在平面直角坐标系的第三象限,∴龙洞堡机场的坐标是()9,4-,故答案为:()9,4-.15.【答案】94【解析】解:∵关于x 的一元二次方程2310kx x -+=有两个相等的实数根,∴()22Δ43400b ac k k ⎧=-=--=⎪⎨≠⎪⎩,∴94k =,故答案为:94.16.【答案】2312【解析】解:如图,连接AC ,作点E 关于AC 的对称点F ,连接AF ,则ACE ACF S S = .矩形ABCD 中,1AB =,3AD =,∴3BC AD ==∴3tan3AB ACB BC ∠===,tan BC BAC AB ∠==,∴30ACB ∠=︒,60BAC ∠=︒,60BCE ∠=︒,75BAE ∠=︒,∴30ACE BCA ︒∠=∠=,15CAE BAE BAC ∠︒=∠-∠=,∵603090ACD ACB ∠+∠=︒+︒=︒,∴点E 关于AC 的对称点F 在BC 上,15CAF CAE ︒∠=∠=,∴301545AFB CAF ACB ︒+︒=︒∠=∠+∠=,∴45AFB BAF ︒∠=∠=,∴1AB FB ==,∴1FC BC BF =-=,∴四边形ABCE 的面积)1111111122222ABC ACE ABC ACF S S S S AB BC CF AB =+=+=⋅+⋅=⨯+⨯⨯= .故答案为:2312-.三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)17.【答案】(1)4;(2)2a >【解析】解:(1)20(2)1)1-+--411=+-4=;(2)由A B >得:13a a ->-+,移项,得31a a +>+,合并同类项,得24a >,系数化1,得2a >,即a 的取值范围为:2a >.18.【答案】(1)200,122(2)442人(3)见解析【解析】(1)解:36725834200+++=人,∴参与本次调查的学生共有200人,∴选择“自己主动”体育锻炼的学生有20061%122⨯=人,故答案为:200,122;(2)解:342600442200⨯=人,∴估计全校可评为“运动之星”的人数为442人;(3)解:体育锻炼是强身健体的一个非常好的途径,只有有一个良好的身体状况,才能更好的把自己的精力投入到学习中,因此建议学生多多主动加强每周的体育锻炼时间.19.【答案】(1)1.25x (2)125件【解析】(1)解: 更新设备前每天生产x 件产品,更新设备后生产效率比更新前提高了25%,∴更新设备后每天生产产品数量为:()125% 1.25x x +=(件),故答案为:1.25x ;(2)解:由题意知:500060002 1.25x x-=,去分母,得6250 2.56000x -=,解得100x =,经检验,100x =是所列分式方程的解,1.25100125⨯=(件),因此更新设备后每天生产125件产品.20.【答案】(1)见解析(2)【解析】(1)证明:①选择小星的说法,证明如下:如图,连接BE ,AE BD ,DE BA ∥,∴四边形AEDB 是平行四边形,∴AE BD =,BD CB =,∴AE CB =,又 AE BD ,点D 在CB 的延长线上,∴AE CB ∥,∴四边形AEBC 是平行四边形,又 90C ∠=︒,∴四边形AEBC 是矩形,∴BE CD ⊥;②选择小红的说法,证明如下:如图,连接CE ,BE ,由①可知四边形AEBC 是矩形,∴CE AB =,四边形AEDB 是平行四边形,∴DE AB =,∴CE DE =.(2)解:如图,连接AD ,BD CB =,23CB AC =,∴243CD CB AC AC ==,∴43CD AC =,在Rt ACD △中,222AD CD AC =+,∴(22243AC AC ⎛⎫=+ ⎪⎝⎭,解得AC =即AC 的长为21.【答案】(1)反比例函数解析式为4y x=,()22E ,(2)30m -≤≤【解析】(1)解:∵四边形OABC 是矩形,∴BC OA AB OA ∥,⊥,∵()4,1D 是AB 的中点,∴()42B ,,∴点E 的纵坐标为2,∵反比例函数()0k y x x =>的图象分别与,AB BC 交于点()4,1D 和点E ,∴14k =,∴4k =,∴反比例函数解析式为4y x=,在4y x =中,当42y x==时,2x =,∴()22E ,;(2)解:当直线y x m =+经过点()22E ,时,则22m +=,解得0m =;当直线y x m =+经过点()41D ,时,则41m +=,解得3m =-;∵一次函数y x m =+与反比例函数()0k y x x=>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),∴30m -≤≤.22.【答案】(1)600m (2)1049m【解析】(1)解:∵A B 、两处的水平距离AE 为576m ,索道AB 与AF 的夹角为15︒,∴576600m cos150.96AE AB ===︒;(2)解:∵AB 、CD 两段长度相等,CD 与水平线夹角为45︒,∴600m CD =,2 1.41cos 45600600423m 22CG CD =︒=⨯=⨯=,∴576504231049m AF AE BC CG =++=++=;.23.【答案】(1)1∠、2∠、3∠、4∠;BCD △;(2)证明见详解;(3)四边形OAEB 是菱形;【解析】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒-︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB是菱形;24.【答案】(1)29y x =-+(2)点P 的坐标为()0,6(3)4613b ≥【解析】(1)解: 抛物线的对称轴与y 轴重合,∴设抛物线的解析式为2y ax k =+, 9OC =,3OA =,∴()09C ,,()3,0A ,将()09C ,,()3,0A 代入2y ax k =+,得:2930k a k =⎧⎨⋅+=⎩,解得91k a =⎧⎨=-⎩,∴抛物线的解析式为29y x =-+;(2)解: 抛物线的解析式为29y x =-+,点B 到对称轴的距离是1,当1x =时,198y =-+=,∴()1,8B ,作点B 关于y 轴的对称点B ',则()1,8B '-,B P BP '=,∴PA PB PA PB AB ''+=+≥,∴当B ',B ,A 共线时,拉杆,PA PB 长度之和最短,设直线AB '的解析式为y mx n =+,将()1,8B '-,()3,0A 代入,得038m n m n =+⎧⎨=-+⎩,解得26m n =-⎧⎨=⎩,∴直线AB '的解析式为26y x =-+,当0x =时,6y =,∴点P 的坐标为()0,6,位置如下图所示:(3)解: 221(0)y x bx b b =-++->中10a =-<,∴抛物线开口向下,当05b <≤时,在46x ≤≤范围内,当6x =时,y 取最小值,最小值为:262611337b b b -+⨯+-=-则13379b -≥,解得4613b ≥,∴46513b ≤≤;当5b >时,在46x ≤≤范围内,当4x =时,y 取最小值,最小值为:24241917b b b -+⨯+-=-则9179b -≥,解得269b ≥,∴5b >;综上可知,46513b ≤≤或5b >,∴b 的取值范围为4613b ≥.25.【答案】(1)作图见解析;135(2)PA PE =;理由见解析(3)BA BE -=或BE BA =+;理由见解析【解析】(1)解:如图所示:∵,90CA CB C =∠=︒,∴190452ABC BAC ∠=∠=⨯︒=︒,∵BD AB ⊥,∴90ABD Ð=°,∴4590135CBE ABC ABE ∠=∠+∠=︒+︒=︒;故答案为:135.(2)解:PA PE =;理由如下:连接AE ,如图所示:根据旋转可知,90APE ∠=︒,∵90ABE ∠=︒,∴A 、P 、B 、E 四点共圆,∴45AEP ABP ∠=∠=︒,∴904545EAP ∠=︒-︒=︒,∴AEP EAP ∠=∠,∴PA PE =.(3)解:当点P 在线段BC 上时,连接AE ,延长CB ,作EF CB ⊥于点F ,如图所示:根据解析(2)可知,PA PE =,∵90EFP APE ∠=∠=︒,∴90EPF PEF EPF APC ∠+∠=∠+∠=︒,∴PEF APC ∠=∠,∵90EFP ACP ∠=∠=︒,∴PEF APC ≌,∴EF PC =,∵18045EBF CBE ∠=︒-∠=︒,90EFB ∠=︒,∴EBF △为等腰直角三角形,∴2BE EF =,∵ABC 为等腰直角三角形,∴)2222222BA BC BP PC BP PC BP EF BP BE ==+=+=+=+,即2BA BE BP -=;当点P 在线段BC 延长线上时,连接AE ,作EF CB ⊥于点F ,如图所示:根据旋转可知,90APE ∠=︒,∵90ABE ∠=︒,∴A 、B 、P 、E 四点共圆,∴45EAP EBP ∠=∠=︒,∴904545AEP ∠=︒-︒=︒,∴AEP EAP ∠=∠,∴PA PE =,∵90EFP APE ∠=∠=︒,∴90EPF PEF EPF APC ∠+∠=∠+∠=︒,∴PEF APC ∠=∠,∵90EFP ACP ∠=∠=︒,∴PEF APC ≌,∴PF AC =,∵BC AC =,∴PF BC =,∵45EBF ∠=︒,90EFB ∠=︒,∴EBF △为等腰直角三角形,∴))222BE BF PF BP BC BP ==+=+,即2BE BA BP =;综上分析可知,2BA BE -=或2BE BA =+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年贵州省贵阳市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.计算(−3)×2的结果是()A. −6B. −1C. 1D. 62.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A. B. C. D.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A. 直接观察B. 实验C. 调查D. 测量4.如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A. 150°B. 120°C. 60°D. 30°5.当x=1时,下列分式没有意义的是()A. x+1x B. xx−1C. x−1xD. xx+16.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A. B.C. D.7.菱形的两条对角线长分别是6和8,则此菱形的周长是()A. 5B. 20C. 24D. 328.已知a<b,下列式子不一定成立的是()A. a−1<b−1B. −2a>−2bC. 12a+1<12b+1 D. ma>mb9.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于12DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A. 无法确定B. 12C. 1D. 210.已知二次函数y=ax2+bx+c的图象经过(−3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+ n=0(0<n<m)有两个整数根,这两个整数根是()A. −2或0B. −4或2C. −5或3D. −6或4二、填空题(本大题共5小题,共20.0分)11.化简x(x−1)+x的结果是______.12.如图,点A是反比例函数y=3x图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为______.13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是______.14.如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是______度.15.如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为______.三、解答题(本大题共10小题,共100.0分)16.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.17.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/ℎ 1.52 2.53 3.54人数/人26610m4(1)本次共调查的学生人数为______,在表格中,m=______;(2)统计的这组数据中,每天听空中黔课时间的中位数是______,众数是______;(3)请就疫情期间如何学习的问题写出一条你的看法.18.如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.19.如图,一次函数y=x+1的图象与反比例函数y=k的图象相交,其中一个交点的x横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=k图象的交点坐标;x(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=k的图象没有公共x点.20.“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,,那么应添加多少张《消任意抽出一张,使得抽到《消防知识手册》卡片的概率为57防知识手册》卡片?请说明理由.21.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF//CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,√3≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).22.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?23.如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.24.2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?25.如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是______,位置关系是______;(2)问题探究:如图②,△AO′E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO′的中点,连接PQ,PB.判断△PQB 的形状,并证明你的结论;(3)拓展延伸:如图③,△AO′E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO′,点P,Q分别为CE,BO′的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.答案和解析1.【答案】A【解析】解:原式=−3×2=−6.故选:A.原式利用乘法法则计算即可求出值.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2.【答案】D【解析】解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.本题主要考查可能性的大小,解题的关键是掌握随机事件发生的可能性(概率)的计算方法.3.【答案】C【解析】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.直接利用调查数据的方法分析得出答案.此题主要考查了调查收集数据的过程与方法,正确掌握基本调查方法是解题关键.4.【答案】A【解析】解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°−∠1=180°−30°=150°.故选:A.根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.本题考查了对顶角相等的性质,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的关键.5.【答案】B,当x=1时,分式有意义不合题意;【解析】解:A、x+1xB、x,当x=1时,x−1=0,分式无意义符合题意;x−1C、x−1,当x=1时,分式有意义不合题意;xD、x,当x=1时,分式有意义不合题意;x+1故选:B.直接利用分式有意义的条件分析得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键. 6.【答案】C【解析】解:A 、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B 、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B 选项错误;C 、在同一时刻阳光下,树高与影子成正比,所以C 选项正确.D 、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D 选项错误;故选:C .根据平行投影得特点,利用两小树的影子的方向相反可对A 、B 进行判断;利用在同一时刻阳光下,树高与影子成正比可对C 、D 进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影. 7.【答案】B【解析】解:如图所示:∵四边形ABCD 是菱形,AC =8,BD =6,∴AB =BC =CD =AD ,OA =12AC =4,OB =12BD =3,AC ⊥BD ,∴AB =√OA 2+OB 2=√42+32=5, ∴此菱形的周长=4×5=20; 故选:B .根据题意画出图形,由菱形的性质求得OA =4,OB =3,再由勾股定理求得边长,继而求得此菱形的周长.本题考查了菱形的性质以及勾股定理;熟练掌握菱形的性质,由勾股定理求出菱形的边长是解题的关键. 8.【答案】D【解析】解:A 、在不等式a <b 的两边同时减去1,不等号的方向不变,即a −1<b −1,原变形正确,故此选项不符合题意;B 、在不等式a <b 的两边同时乘以−2,不等号方向改变,即−2a >−2b ,原变形正确,故此选项不符合题意;C 、在不等式a <b 的两边同时乘以12,不等号的方向不变,即12a <12b ,不等式12a <12b的两边同时加上1,不等号的方向不变,即12a +1<12b +1,原变形正确,故此选项不符合题意;D 、在不等式a <b 的两边同时乘以m ,不等式不一定成立,即ma >mb ,或ma <mb ,或ma =mb ,原变形不正确,故此选项符合题意. 故选:D .根据不等式的基本性质进行判断.此题主要考查了不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.【答案】C【解析】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.本题考查作图−基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】B【解析】解:∵二次函数y=ax2+bx+c的图象经过(−3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为−3和1,函数y=ax2+bx+c的对称轴是直线x=−1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为−5,函数y=ax2+bx+c的图象开口向上,∵关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,∴这两个整数根是−4或2,故选:B.根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x的方程ax2+bx+c+n=0(0<n<m)的两个整数根,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的关系解答.11.【答案】x2【解析】解:x(x−1)+x=x2−x+x=x2,故答案为:x2.先根据单项式乘以多项式法则算乘法,再合并同类项即可.本题考查了单项式乘以多项式和合并同类项法则,能灵活运用法则进行计算是解此题的关键.12.【答案】3【解析】解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.根据反比例函数y=3x的图象上点的坐标性得出|xy|=3,进而得出四边形OQMP的面积.本题考查了反比例函数y=kx (k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.13.【答案】16【解析】解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是16.故答案为:16.随着试验次数的增多,变化趋势接近于理论上的概率.本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.14.【答案】120【解析】解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°,故答案为:120.连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.本题考查了三角形的外接圆与外心,等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.15.【答案】4√5【解析】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH//AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵BD=8,AC=11,∴DH=BH−BD=AC−BD=3,∴HF=HC=8−3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC=√82+42=4√5,故答案为:4√5延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.16.【答案】解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.【解析】(1)构造边长3,4,5的直角三角形即可.(2)构造直角边为2√2,斜边为4的直角三角形即可(答案不唯一).(3)构造三边分别为2√2,√2,√10的直角三角形即可.本题考查作图−应用与设计,无理数,勾股定理,勾股定理的逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】50 22 3.5ℎ 3.5ℎ【解析】解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5ℎ,∴中位数是3.5ℎ;∵3.5ℎ出现了22次,出现的次数最多,∴众数是3.5ℎ,故答案为:3.5ℎ,3.5ℎ;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m的值;(2)根据中位数、众数的定义分别进行求解即可;(3)如:认真听课,独立思考(答案不唯一).本题考查扇形统计图、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.18.【答案】(1)证明:∵∠四边形ABCD是矩形,∴AD//BC,AD=BC,∵BE=CF,∴BE+EC=EC+EF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE=√42+22=2√5,∵AD//BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD=2√5×2√52=10,∴四边形AEFD的面积=AB×AD=2×10=20.【解析】(1)先根据矩形的性质得到AD//BC,AD=BC,然后证明AD=EF可判断四边形AEFD是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=2√5,再证明△ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的判定和矩形的性质.19.【答案】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式并解得:k=2×3=6,故反比例函数表达式为:y=6x①;(2)一次函数y=x+1的图象向下平移2个单位得到y=x−1②,联立①②并解得:{x=−2y=−3或{x=3y=2,故交点坐标为(−2,−3)或(3,2);(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x−6−0,∵两个函数没有公共点,故△=25+24k<0,解得:k<−2524,故可以取k=−2(答案不唯一),故一次函数表达式为:y=−2x+5(答案不唯一).【解析】(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+1的图象向下平移2个单位得到y=x−1②,联立①②即可求解;(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x−6−0,则△=25+24k<0,解得:k<−2524,即可求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.20.【答案】解:(1)把《消防知识手册》《辞海》《辞海》分别即为A、B、C,画树状图如图:共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,∴恰好抽到2张卡片都是《辞海》的概率为26=13;(2)设应添加x张《消防知识手册》卡片,由题意得:1+x3+x =57,解得:x=4,经检验,x=4是原方程的解;答:应添加4张《消防知识手册》卡片.【解析】(1)画出树状图,由概率公式即可得出答案;(2)设应添加x张《消防知识手册》卡片,由概率公式得出方程,解方程即可.本题考查了列表法或画树状图法以及概率公式;列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.【答案】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF//BC,∴AG⊥EF,EG=12∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=AGEG,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=EHDH,∴DH=xtan60∘,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=EHCH,∴CH=xtan35∘,∵CH−DH=CD=8,∴xtan35∘−xtan60=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB为14米.【解析】(1)根据题意得到AG⊥EF,EG=12∠AEG=∠ACB=35°,解直角三角形即可得到结论;(2)过E作EH⊥CB于H,设EH=x,解直角三角形即可得到结论.本题考查了解直角三角形的应用,轴对称图形,解题的关键是借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.【答案】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100−x)支,根据题意,得:6x+10(100−x)=1300−378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100−x)+a=1300−378,整理,得:x=14a+392,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20−78=2;当a=21时,a=4×21−78=6,所以笔记本的单价可能是2元或6元.【解析】(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100−x)支,根据总共的费用为(1300−378)元列方程解答即可;(2)设笔记本的单价为a元,根据总共的费用为(1300−378)元列方程解求出方程的解,再根据a的取值范围以及一次函数的性质求出x的值,再把x的值代入方程的解即可求出a的值.本题考查了一元一次方程解实际问题的运用,一次函数的运用,理清题意,找出相应的等量关系是解答本题的关键.23.【答案】解:(1)证明:∵∠CAD=∠ABD,又∵∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)∵AF是⊙O的切线,∴∠FAB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°,∴∠ABD=∠FAD,∵∠ABD=∠CAD,∴∠FAD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF =AE ,DF =DE ,∵AB =4,BF =5,∴AF =√BF 2−AB 2=3,∴AE =AF =3,∵S △ABF =12AB ⋅AF =12BF ⋅AD ,∴AD =AB⋅AF BF =4×35=125,∴DE =√AE 2−AD 2=√32−(245)2=95,∴BE =BF −2DE =75,∵∠AED =∠BED ,∠ADE =∠BCE =90°,∴△BEC∽△AED ,∴BE AE =BC AD ,∴BC =BE⋅AD AE =2825,∴sin∠BAC =BC AB =725,∵∠BDC =∠BAC ,∴sin∠BDC =725.【解析】(1)根据圆周角定理得∠ABD =∠ACD ,进而得∠ACD =∠CAD ,便可由等腰三角形判定定理得AD =CD ;(2)证明△ADF≌△ADE ,得AE =AF ,DE =DF ,由勾股定理求得AF ,由三角形面积公式求得AD ,进而求得DE ,BE ,再证明△BEC∽△AED ,得BC ,进而求得sin∠BAC 便可.本题主要考查了圆的切线的性质,圆周角定理,相似三角形的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,解直角三角形的应用,勾股定理,关键是证明三角形全等与相似.24.【答案】解:(1)由表格中数据的变化趋势可知,①当0≤x ≤9时,y 是x 的二次函数,∵当x =0时,y =0,∴二次函数的关系式可设为:y =ax 2+bx ,由题意可得:{170=a +b 450=9a +3b, 解得:{a =−10b =180, ∴二次函数关系式为:y =−10x 2+180x ,②当9<x ≤15时,y =180,∴y 与x 之间的函数关系式为:y ={−10x 2+180x(0≤x ≤9)180(9<x ≤15); (2)设第x 分钟时的排队人数为w 人,由题意可得:w =y −40x ={−10x 2+140x(0≤x ≤9)810−40x(9<x ≤15), ①当0≤x ≤9时,w =−10x 2+140x =−10(x −7)2+490,∴当x=7时,w的最大值=490,②当9<x≤15时,w=810−40x,w随x的增大而减小,∴210≤w<450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810−40x=0,解得:x=20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,,解得m≥118∵m是整数,∴m≥11的最小整数是2,8∴一开始就应该至少增加2个检测点.【解析】(1)分两种情况讨论,利用待定系数法可求解析式;(2)设第x分钟时的排队人数为w人,由二次函数的性质和一次函数的性质可求当x=7时,w的最大值=490,当9<x≤15时,210≤w<450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y与x之间的函数关系式是本题的关键.BO PQ⊥BO25.【答案】PQ=12【解析】解:(1)∵点O为对角线AC的中点,∴BO⊥AC,BO=CO,∵P为BC的中点,Q为BO的中点,OC,∴PQ//OC,PQ=12BO;∴PQ⊥BO,PQ=12BO,PQ⊥BO.故答案为:PQ=12(2)△PQB的形状是等腰直角三角形.理由如下:连接O′P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO′E,∴△AO′E是等腰直角三角形,O′E//BC,O′E=O′A,∴∠O′EP=∠FCP,∠PO′E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O′PE≌△FPC(AAS),∴O′E=FC=O′A,O′P=FP,∴AB−O′A=CB−FC,∴BO′=BF,∴△O′BF为等腰直角三角形.∴BP⊥O′F,O′P=BP,∴△BPO′也为等腰直角三角形.又∵点Q为O′B的中点,∴PQ⊥O′B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O′E交BC边于点G,连接PG,O′P.∵四边形ABCD是正方形,AC是对角线,∴∠ECG=45°,由旋转得,四边形O′ABG是矩形,∴O′G=AB=BC,∠EGC=90°,∴△EGC为等腰直角三角形.∵点P是CE的中点,∴PC=PG=PE,∠CPG=90°,∠EGP=45°,∴△O′GP≌△BCP(SAS),∴∠O′PG=∠BPC,O′P=BP,∴∠O′PG−∠GPB=∠BPC−∠GPB=90°,∴∠O′PB =90°,∴△O′PB 为等腰直角三角形,∵点Q 是O′B 的中点,∴PQ =12O′B =BQ ,PQ ⊥O′B ,∵AB =1,∴O′A =√22, ∴O′B =√O′A 2+AB 2=(√22)=√62, ∴BQ =√64. ∴S △PQB =12BQ ⋅PQ =12×√64×√64=316.(1)由正方形的性质得出BO ⊥AC ,BO =CO ,由中位线定理得出PQ//OC ,PQ =12OC ,则可得出结论;(2)连接O′P 并延长交BC 于点F ,由旋转的性质得出△AO′E 是等腰直角三角形,O′E//BC ,O′E =O′A ,证得∠O′EP =∠FCP ,∠PO′E =∠PFC ,△O′PE≌△FPC(AAS),则O′E =FC =O′A ,O′P =FP ,证得△O′BF 为等腰直角三角形.同理△BPO′也为等腰直角三角形,则可得出结论;(3)延长O′E 交BC 边于点G ,连接PG ,O′P.证明△O′GP≌△BCP(SAS),得出∠O′PG =∠BPC ,O′P =BP ,得出∠O′PB =90°,则△O′PB 为等腰直角三角形,由直角三角形的性质和勾股定理可求出O′A 和O′B ,求出BQ ,由三角形面积公式即可得出答案.本题是四边形综合题,考查了正方形的性质,旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,中位线定理,矩形的判定与性质,勾股定理,三角形的面积等知识,熟练掌握正方形的性质及全等三角形的判定与性质是解题的关键.。

相关文档
最新文档