计算机组成原理-运算方法与运算器-浮点运算方法和浮点运算器

合集下载

精品文档-计算机组成与系统结构(裘雪红)-第3章

精品文档-计算机组成与系统结构(裘雪红)-第3章

(4) 运算结果为补码表示。
第3章 运算方法与运算器
10
2. 溢出判断 1) 溢出的概念 例3.4 有两个定点整数63和85,利用补码加法求63+85=? 解 根据题意,用8位二进制补码表示63和85:
第3章 运算方法与运算器
11
例3.5 设正整数X=+1000001,Y= +1000011,若用8位补 码表示,则[X]补=01000001,[Y]补=01000011,求[X+Y]补。
第3章 运算方法与运算器
15
(2) 进位判决法。若Cn-1为最高数值位向最高位(符号位)的 进位,Cn表示符号位的进位(即进位标志CF),则判别溢 出的逻辑表达式为
(3-4)
OF=Cn-1⊕Cn
溢出判定如表3.1所示。在例3.6的运算过程中,Cn-1为0而 Cn为1 ,故Cn-1⊕Cn=1,表示运算结果有溢出。
第3章 运算方法与运算器
28
图 3.3 四位先行进位链电路
第3章 运算方法与运算器
29
5. BCD数加法器 1) 8421 BCD码
第2章中已详细地介绍了BCD码。在所描述的几种BCD码中, 计算机中应用最广泛的是8421 BCD码。8421 BCD码只利用了四 位二进制编码的0000~1001这十种来表示十进制数的0~9,剩余的
(3-6)
第3章 运算方法与运算器
19
3. 一位全加器的实现
设一位全加器的输入分别为Xi和Yi,低一位对该位的进位 为Ci, 全加器的结果和向高一位的进位分别用Zi和Ci+1表示, 则 一位全加器所实现的逻辑表达式如下:
(3-7)
(3-8)
第3章 运算方法与运算器
20
实现上述逻辑功能的一位全加器的逻辑电路及其框图分别

计算机组成原理:浮点数表示及运算

计算机组成原理:浮点数表示及运算
正数 0.1xxxxxx 负数 1.1xxxxxx 补码尾数的规格化的表现形式:尾数的最高位与符号位相反。 正数 0.1xxxxxx 负数 1.0xxxxxx
6
计算机组成原理
例:对数据12310作规格化浮点数的编码,假定1位符号位,基 数为2,阶码5位,采用移码,尾数10位,采用补码。
解:12310=11110112= 0.11110110002×27 [7]移=10000+00111 = 10111 [0.1111011000]补=0.1111011000 [123]浮= 1011 1 0 11 1101 1000 = BBD8H
对阶: [△E]补= [ Ex]补-[Ey]补=00 10+ 11 11= 00 01
y向x对齐,将y的尾数右移一位,阶码加1。 [y]补=00 10,00.0101 求和: 00.1101 + 00.0101 01.0010 [x+y]补=00 10,01.0010 右归:运算结果两符号位不同,其绝对值大于1,右归。 [x+y]补= 00 11,00.1001
0.0000001 --- 0.1111111 1/128 --- 127/128 可表示2-11*0.0001 --- 211*0.1111

设阶码2位,尾数4位

0.0000001 --- 111.1
可表示2-111*0.001 --- 2111*0.111

设阶码3位,尾数3位

0.0000000001 --- 1110000
19
(4) 结果规格化 求和之后得到的数可能不是规格化了的数 , 为了增加有效数 字的位数, 提高运算精度,必须将求和的结果规格化。 ①规格化的定义:

计算机组成原理知识点汇总

计算机组成原理知识点汇总

计算机组成原理知识点汇总一、冯.诺依曼思想体系——计算机由运算器、控制器、存储器、输入输出设备五部分组成,存储程序,按地址访问、顺序执行。

二、计算机系统的层次结构——微程序级→机器级→操作级→汇编→高级语言。

第二章一、一个定点数由符号位和数值域两部分组成。

按小数点位置不同,定点数有纯小数和纯整数两种表示方法。

二、一个浮点数标准化表示由符号位S、阶码E、尾数M三个域组成。

其中阶码E的值等于指数的真值e加上一个固定偏移值。

三、为了计算机能直接处理十进制形式的数据,采用两种表示形式:⑴字符串形式,主要用在非数值计算的应用领域;⑵压缩的十进制数串形式,用于直接完成十进制数的算术运算。

四、数的真值变成机器码时有四种表示方法:原码表示法,反码表示法,补码表示法,移码表示码。

其中移码主要用于表示浮点数的阶码E,以利于比较两个指数的大小和对阶操作。

五、字符信息属于符号数据,是处理非数值领域的问题。

国际上采用的字符系统是七单位的ASCII码。

六、直接采用西文标准键盘输入汉字,进行处理,并显示打印汉字,是一项重大成就。

为此要解决汉字的输入编码、汉字内码、字膜码等三种不同用途的编码。

七、为运算器构造的简单性,运算方法中算术运算通常采用补码加、减法,原码乘除法或补码乘除法。

为了运算器的高速性和控制的简单性,采用了先行进位、阵列乘除法、流水线等并行技术措施。

八、定点运算器和浮点运算器的结构复杂程度有所不同。

早期微型机中浮点运算器放在CPU芯片外,随着高密度集成电路技术的发展,现已移至CPU内部。

第三章一、存储器分类——主存、辅存、cache二、按介质分类——半导体、磁表面、激光三、按存取方式分类——随机、顺序、半顺序四、多级存储器结构——cache—主存—辅存五、主存技术指标——存储容量、存取时间、存储周期、存储器带宽六、DRAM刷新方式——集中式、分散式七、多模块交叉方式——顺序方式、交驻方式八、相联存储器组成——存储体、检索寄存器、屏蔽寄存器、符合寄存器、比较线路、代码寄存器、控制线路。

计算机组成原理—运算方法和运算器-6

计算机组成原理—运算方法和运算器-6

规则:尾数右移1位,高位补符号位,阶码加1
例如:10.011101×2-110 右规后11.001110(1)×2-111 ②补码结果是00.0...01.....或11.1...10...时,需向左规格化(左规) 规则:尾数左移1位,低位补0,阶码减1,直到规格化 规格化:原码尾数值最高位为1,补码尾数值最高位与符号相反
2014-4-14
计算机组成原理
12
21:06
2.6.2 浮点乘法、除法运算
补码采用双符号位,为了对溢出进行判断:
00 01 为正 上溢 11 10 为负 下溢
[例]:x=+011,y=+110,求[x+y]补和[x-y]补,并判断是否溢出 [x]补=00011, [y]补=00110, [-y]补=11010 [x+y]补=[x]补+[y]补=01001, 结果上溢。 [x-y]补=[x]补+[-y]补=11101, 结果正确,为-3。
2014-4-14 计算机组成原理 17
21:06
2.6.1 浮点加法、减法运算
⑸舍入处理(对阶和向左规格化时):采用就近舍入处理得
00.11100011
⑹溢出判断和处理 阶码符号位为00,无溢出,不需处理; 尾数无溢出,不需处理。 最终真值结果为:x+y = (0.11100011)×24
设有两个浮点数x和y:x=2Ex· Mx 则:x×y=2(Ex+Ey)· (Mx×My); 乘/除运算分为六步: y=2Ey· My x÷y=2(Ex-Ey)· (Mx÷My);
①.0操作数检查; ②.阶码加减操作; ③.尾数乘除操作;
④.结果规格化;
⑤舍入处理; ⑥确定符号
Mx=111101101;

计算机组成原理第四版第二章

计算机组成原理第四版第二章
[x]补=0.1001, [y]补=0.0101 [x]补 0. 1 0 0 1
+ [y]补 0. 0 1 0 1 [x+y]补 0. 1 1 1 0
所以x+y=+0.1110
Back
第二章 运算方法和运算器
B 补码减法
➢ 公式:
[x-y]补=[x]补-[y]补=[x]补+[-y]补
➢ 举例
已知 x=+0.1101 , y=+0.0110,求x-y。 解: [x]补=0.1101 [y]补=0.0110 ,[-y]补=1.1010 [x]补 0. 1 1 0 1 + [-y]补 1. 1 0 1 0 [x-y]补 1 0. 0 1 1 1
最大正数,称为“上溢” 或“正溢出”
两个负数相加,结果 小于机器所能表示的最
小负数,称为“下溢” 或“负溢出”
判断方法
举例说明
Back
第二章 运算方法和运算器
溢出检测方法常用以下两种方法:
1.采用双符号位(变形补码)判断方法:
变形补码: “00”表示正数、“11”表负数,两符号位同时参加运算, 运算结果符号出现01或10表明溢出。
发生溢出;而在浮点运算时,运算结果超出尾数的表示范围 却并不一定溢出,只有当阶码也超出所能表示的范围时,才 发生溢出。
Back
3.十进制数串的表示方法
➢ 目前,大多数通用性较强的计算机都能直接 处理十进制形式表示的数据。十进制数串 在计算机内主要有两种表示形式:
➢ 1.字符串形式 ➢ 2.压缩的十进制数串形式
➢ 计算机采用定点数表示时,对于既有整数又有小数的原始数据,需要设 定一个比例因子,数据按其缩小成定点小数或扩大成定点整数再参加运 算,运算结果,根据比例因子,还原成实际数值。若比例因子选择不当, 往往会使运算结果产生溢出或降低数据的有效精度。

计算机组成原理课后习题参考答案

计算机组成原理课后习题参考答案

计算机组成原理答案第一章计算机系统概论1.比较数字计算机和模拟计算机的特点。

解:模拟计算机的特点:数值由连续量来表示,运算过程是连续的;数字计算机的特点:数值由数字量(离散量)来表示,运算按位进行。

两者主要区别见P1 表1.1。

2.数字计算机如何分类?分类的依据是什么?解:分类:数字计算机分为专用计算机和通用计算机。

通用计算机又分为巨型机、大型机、中型机、小型机、微型机和单片机六类。

分类依据:专用和通用是根据计算机的效率、速度、价格、运行的经济性和适应性来划分的。

通用机的分类依据主要是体积、简易性、功率损耗、性能指标、数据存储容量、指令系统规模和机器价格等因素。

4.冯. 诺依曼型计算机的主要设计思想是什么?它包括哪些主要组成部分?解:冯. 诺依曼型计算机的主要设计思想是:存储程序和程序控制。

存储程序:将解题的程序(指令序列)存放到存储器中;程序控制:控制器顺序执行存储的程序,按指令功能控制全机协调地完成运算任务。

主要组成部分有:(控制器、运算器)(CPU的两部分组成)、存储器、输入设备、输出设备(I/O设备)。

5.什么是存储容量?什么是单元地址?什么是数据字?什么是指令字?解:存储容量:指存储器可以容纳的二进制信息的数量,通常用单位KB、MB、GB来度量,存储容量越大,表示计算机所能存储的信息量越多,反映了计算机存储空间的大小。

单元地址:简称地址,在存储器中每个存储单元都有唯一的地址编号,称为单元地址。

数据字:若某计算机字是运算操作的对象即代表要处理的数据,则称数据字。

指令字:若某计算机字代表一条指令或指令的一部分,则称指令字。

6.什么是指令?什么是程序?解:指令:计算机所执行的每一个基本的操作。

程序:解算某一问题的一串指令序列称为该问题的计算程序,简称程序。

7.指令和数据均存放在内存中,计算机如何区分它们是指令还是数据?解:一般来讲,在取指周期中从存储器读出的信息即指令信息;而在执行周期中从存储器中读出的信息即为数据信息。

计算机组成原理第12-浮点数的运算2

计算机组成原理第12-浮点数的运算2
Tk=k+(n-1) 其中k个时钟周期用于处理第一个任务。k个周期后,流水线被装满,剩余的n-1个 任务只需n-1个周期就完成了。 用非流水线的硬件来处理这n个任务,时间上只能串行进行,则所需时钟周期数为 TL=n·k 将TL和Tk的比值定义为k级线性流水线的加速比:
CK=TL/TK=(n·k)/(k+(n-1)) 当 n>>k 时, Ck->k 。这就是说,理论上k级线性流水线处理几乎 可以提高k倍速度。但实际上由于存储器冲突、数据相关,这个理想的加速比不一定能 达到。
[解:] (1)加法器的流水线时钟周期至少为 τ=90ns+10ns=100ns
如果采用同样的逻辑电路,但不是流水线方式,则浮点加法所需的时间为 τ1+τ2+τ3+τ4 =300ns
因此,4级流水线加法器的加速比为 Ck=300/100=3
(2) 当每个过程段的时间都是75ns时,加速比为 Ck=300/75=4
[例30] 已知计算一维向量x,y的求和表达式如下:



56
65
20.5
14.6
0
336
121 35.1 336
114.3 + 7.2 = 121.5
69.6
72.8
142.4
3.14
1.41
4.55
试用4段的浮点加法流水线来实现一维向量的求和运算,这4段流水线是阶码比较、 对阶操作、尾数相加、规格化。只要求画出向量加法计算流水时空图。
2.CPU之内的浮点运算器
奔腾CPU将浮点运算器包含在芯片内。浮点运算部件采用流水线设计。
指令执行过程分为8段流水线。前4 段为指令预取(DF)、指令译码(D1)、地址生 成(D2)、取操作数(EX),在U、V流水线中完成;后4段为执行1(X1)、执行2(X2) 、结果写回寄存器堆(WF)、错误报告(ER),在浮点运算器中完成。一般情况下 ,由U流水线完成一条浮点数操作指令。

经典:计算机组成原理-第2章-运算方法和运算器

经典:计算机组成原理-第2章-运算方法和运算器
1加法器的流水线时钟周期至少为90ns10ns100ns如果采用同样的逻辑电路但不是流水线方式则浮点加法所需的时间为300ns因此4级流水线加法器的加速比为30010032当每个过程段的时间都是75ns时加速比为300754例30已知计算一维向量xy的求和表达式如下
第二章:运算方法和运算器
2.1 数据与文字的表示方法 2.2 定点加法、减法运算 2.3 定点乘法运算 2.4 定点除法运算 2.5 定点运算器的组成 2.6 浮点运算方法和浮点运算器
其中尾数域所表示的值是1.M。因为规格化的浮点数的尾数域最
左位(最高有效位)总是1。故这一位经常不予存储,而认为隐藏
在小数点的左边。
64位的浮点数中符号位1位,阶码域11位,尾数域52位,指数偏
移值是1023。因此规格化的64位浮点数x的真值为:
x=(-1)s ×(1.M) × 2E-1023 e=E-1023
[X]反=1.x1x2...xn 对于0,有[+0]反=[-0]反之分:
[+0]反=0.00...0
[-0]反=1.11...1
我们比较反码与补码的公式
[X]反=2-2-n+X
[X]补=2+X
可得到 [X]补=[X]反+2-n
8
若要一个负数变补码,其方法是符号位置1,其余各位0变1,1变 0,然后在最末位(2-n)上加1。
10100.10011=1.010010011*24 e=4 于是得到:S=0,E=4+127=131=10000011, M=010010011 最后得到32位浮点数的二进制存储格式为: 0100 0001 1010 0100 1100 0000 0000 0000=(41A4C000)164

计算机组成原理第3章 运算器和运算方法

计算机组成原理第3章 运算器和运算方法

第三章运算方法和运算器3.1补码的移位运算1、左移运算:各位依次左移,末位补0对于算术左移,若没有改变符号位,左移相当于乘以2。

2、右移运算:算术右移:符号位不变,各位(包括符号位)依次右移。

(相当于除以2)逻辑右移:最高位补0,其余各位依次右移例1:已知X=0.1011 ,Y=-0.0101 求 [0.5X]补;[0.25X]补;[-X]补;2[-X]补;[0.5Y]补;[0.25Y]补; [-Y]补;2[-Y]补[X]补=0.1011 [Y]补=1.1011[0.5X]补=0.01011 [0.5Y]补=1.11011[0.25X]补=0.001011 [0.25Y]补=1.111011[-X]补=1.0101 [-Y]补=0.01012[-X]补=0.1010 (溢出) 2[-Y]补=0.10103.2定点加减法运算及其实现3.2.1 补码加减法运算方法由于计算机中的进行定点数的加减运算大都是采用补码。

(1)公式:[X+Y]补=[X]补+[Y]补[X-Y]补=[X]补+[-Y]补(证明过程见教材P38)例1 X=0.001010 Y=-0.100011 求[X-Y]补,[X+Y]补解:[X]补=0.001010 [-Y]补=0.100011则 [X-Y]补=[X]补+[-Y]补=0.001010 + 0.100011=0.101101 [X]补=0.001010 [Y]补=1.011101则 [X+Y]补=[X]补+[Y]补=0.001010 + 1.011101=1.100111例2:已知X=+0.25,Y=-0.625,求X+Y; X-Y写出计算的过程.例3:已知X=25,Y=-9,求X+Y; X-Y写出计算的过程.例4:已知X=-25,Y=-9,求X+Y; X-Y写出计算的过程.解: (8位二进制表示)例2: X=0.0100000 Y=-0.1010000[X]补=0.0100000 [Y]补=1.0110000则 [X+Y]补=[X]补+[Y]补=0.0100000 + 1.0110000=1.1010000[X+Y]原=-0.0110000=(-0.375)D[X]补=0.0100000 ,[-Y]补=0.1010000则 [X-Y]补 = [X]补+[-Y]补 = 0.0100000+0.1010000=0.1110000[X+Y]原 = 0.1110000 =(0.875)D例3: X=+0011001 Y=-0001001[X]补=00011001,[Y]补=11110111则 [X+Y]补 = [X]补+[Y]补= 00011001 + 11110111= 00010000[X+Y]原 =+0010000=(+16)D[X]补= 00011001 ,[-Y]补= 00001001则 [X-Y]补 = [X]补+[-Y]补= 00011001 + 00001001= 00100010[X+Y]原 = +0100010 =(34)D例4: X=-0011001 Y=-0001001[X]补=11100111,[Y]补=11110111则 [X+Y]补 = [X]补+[Y]补= 11100111 + 11110111[X+Y]原 =-00100010=(-34)D[X]补= 11100111 ,[-Y]补= 00001001则 [X-Y]补 = [X]补+[-Y]补= 11100111 + 00001001= 11110000[X+Y]原 = -0010000 =(-16)D3.2.2 定点加减法运算中的溢出问题溢出:运算结果大于机器所能表示的最大正数或者小于机器所能表示的最小负数.溢出只是针对带符号数的运算.比如:[X]补=0.1010,[Y]补=0.1001,那么[X]补+[Y]补=1.0011(溢出)溢出是一种错误,计算机中运算时必须能够发现这个现象,并加以处理判断溢出的方法:1、采用变形补码法[X+Y] 变补=[X] 变补+[Y] 变补[X-Y] 变补=[X] 变补+[-Y] 变补例1 X=0.1011 Y=0.0011 求[X+Y]补解: [X]变补 = 00.1011, [Y]变补 = 00.0011[X+Y]变补 = 00.1011 + 00.0011 = 00.1110所以 [X+Y]补 = 0.1110例2 X=0.1011 Y=0.1001 求[X+Y]补解: [X]变补 = 00.1011 [Y]变补 = 00.1001[X+Y]变补 = 00.1011 + 00.1001 = 01.0100运算结果的两符号位是01,不相同,发生溢出,因第一符号位是0,代表正数,所以称这种溢出为“正溢出”。

《计算机组成原理》课后题答案_清华大学出版_秦磊华_吴非··

《计算机组成原理》课后题答案_清华大学出版_秦磊华_吴非··

1.l 解释下列名词摩尔定律:对集成电路上可容纳的晶体管数目、性能和价格等发展趋势的预测,其主要内容是:成集电路上可容纳的晶体管数量每18个月翻一番,性能将提高一倍,而其价格将降低一半。

主存:计算机中存放正在运行的程序和数据的存储器,为计算机的主要工作存储器,可随机存取。

控制器:计算机的指挥中心,它使计算机各部件自动协调地工作。

时钟周期:时钟周期是时钟频率的倒数,也称为节拍周期或T周期,是处理操作最基本的时间单位。

多核处理器:多核处理器是指在一枚处理器中集成两个或多个完整的计算引擎(内核)。

字长:运算器一次运算处理的二进制位数。

存储容量: 存储器中可存二进制信息的总量。

CPI:指执行每条指令所需要的平均时钟周期数。

MIPS:用每秒钟执行完成的指令数量作为衡量计算机性能的一个指标,该指标以每秒钟完成的百万指令数作为单位。

CPU时间:计算某个任务时CPU实际消耗的时间,也即CPU真正花费在某程序上的时间。

计算机系统的层次结构:计算机系统的层次结构由多级构成,一般分成5级,由低到高分别是:微程序设计级,机器语言级,操作系统级,汇编语言级,高级语言级。

基准测试程序:把应用程序中使用频度最高的那那些核心程序作为评价计算机性能的标准程序。

软/硬件功能的等价性:从逻辑功能的角度来看,硬件和软件在完成某项功能上是相同的,称为软/硬件功能是等价的,如浮点运算既可以由软件实现,也可以由专门的硬件实现。

固件:是一种软件的固化,其目的是为了加快软件的执行速度。

可靠性:可靠性是指系统或产品在规定的条件和规定的时间内,完成规定功能的能力。

产品可靠性定义的要素是三个“规定”:“规定条件”、“规定时间”和“规定功能”。

MTTF:平均无故障时间,指系统自使用以来到第一次出故障的时间间隔的期望值。

MTTR:系统的平均修复时间。

MTBF:平均故障间隔时间,指相邻两次故障之间的平均工作时间。

可用性:指系统在任意时刻可使用的概率,可根据MTTF、MTTR和MTBF等指标计算处系统的可用性。

计算机组成原理-第2周下-定点加减法运算

计算机组成原理-第2周下-定点加减法运算
丢掉
[y]补= 1 1 0 1 1 10 0110
所以
x+y=+0110
6
例: x=-11001 ,y=-00011,求 x+y=?

解:[x]补=1 0 0 1 1 1, [y]补=1 1 1 1 0 1
[x]补=1 0 0 1 1 1 +
丢掉
[y]补=1 1 1 1 0 1 11 0 01 0 0 由以上三例看到,补码加法的特点: (1) 符号位要作为数的一部分一 起参加运算。 (2) 要在模2n+1的意义下相加, 即超过2n+1的进位要丢掉!
13
[例16] x=-1101, y=-1011,求x+y。 [解:] [x]补=10011 [y]补=10101 [x]补 + [y]补 [x+y]补 10011 10101 01000
两个负数相加的结果成为正数,这同样是错误的。 之所以发生错误,是因为运算结果产生了溢出。两个正数相 加,结果大于机器所能表示的最大正数,称为正溢出。而两个负数 相加,结果小于机器所能表示的最小负数,称为负溢出。

21
常见的门电路

1.与门 真值表表示的两输入端与门如表2-1所示,逻辑符号如图 2-1所示。从与门的逻辑关系上可以看出,如果输入端A 作为控制端,则A的值将会决定输入端B的值是否能被输 出到端口Y。
Y AB
A
B
Y=AB
0 0 0 0 1 0 1 0 0 1 1 1 表2-1 两输入端与门的真值表
27
5.或非门

真值表表示的两输入端或非门如表2-5所示,逻辑符号如 图2-5所示。可以利用或非门的输入端A来控制输入端B。 当A=0时,(输入信号被反相输出);当A=1时,则不管 B的值是什么,Y都为0。

计算机组成原理(第四版)复习重点及例子

计算机组成原理(第四版)复习重点及例子

计算机组成原理复习重点及要求第二章运算方法和运算器1.定点数的表示方法:掌握定点数的概念;掌握定点数的机器码表示(主要是原码、补码和移码)。

2.定点数的运算方法:掌握补码加减运算方法、溢出概念及检测方法。

3.定点运算器:掌握全加器的功能;掌握行波进位加减法器的结构及工作原理;理解多功能ALU的结构原理;掌握定点运算器的基本结构及其特点(包括单总线结构、双总线结构和三总线结构)。

4.浮点数的表示方法:掌握浮点数的概念;掌握浮点数表示的一般格式;掌握浮点数规格化表示的方法及其意义。

5.浮点数的运算方法:掌握浮点数的加减运算方法及步骤。

第三章存储系统1.理解多级存储器体系结构的意义及各级存储器的主要作用。

2.SRAM存储器:理解存储器芯片的逻辑结构(包括存储阵列、双译码方式、读写控制等);掌握SRAM存储器芯片的外部引脚特征(包括地址、数据、控制引脚);掌握SRAM存储器容量扩充方法(包括位扩展、字扩展、字位同时扩展,以及与CPU 的连接等)。

3.DRAM存储器:掌握DRAM存储器的存储原理;理解DRAM存储器的刷新问题及刷新方法;掌握DRAM存储器芯片的外部引脚特征。

4.ROM存储器:掌握ROM存储器的种类;掌握EPROM的擦、写特点。

5.Cache存储器:掌握cache存储器的作用及工作原理,理解程序局部性原理的意义;掌握cache-主存系统性能指标的计算方法(包括命中率、平均访问时间及效率);掌握各种主存与cache的地址映射方式及其特点,理解各种映射方式下的主存与cache的地址格式及其各字段的含义;理解替换策略对cache存储器的意义。

6.虚拟存储器:掌握虚拟存储器的作用及相关概念;掌握各式虚拟存储器的工作原理及特点(包括页式、段式和段页式虚拟存储器);掌握各式虚拟存储器的地址变换过程,掌握各自的虚地址格式及其各字段的含义。

第四章指令系统1.指令系统的基本概念:掌握机器指令、指令系统、系列机、CISC、RISC等概念。

计算机组成原理习题 第二章运算方法和运算器

计算机组成原理习题 第二章运算方法和运算器

第二章习题一、填空题:1.一个定点数由A.______和B.______两部分组成,根据小数点位置不同,定点数有C.______和D.______两种表示方法。

2.数的真值变成机器码可采用A. ______表示法,B. ______表示法,C.______表示法,移码表示法。

3.若[ x1 ]补 = 11001100, [x2 ]原 = 1.0110 ,则数x1和x2的十进制数真值分别是A.______和B.______。

4.移码表示法主要用于表示浮点数的A.______码,以利于比较两个B.______数的大小和进行C.______操作。

5.按IEEE754标准,一个浮点数由A.___, 阶码E, 尾数M三个域组成。

其中阶码E 的值等于指数的B.___, 加上一个固定C.___。

6.若浮点数格式中阶码的基数已定,且尾数采用规格化表示法,则浮点数的表示范围取决于A. 的位数,而精度取决于B. 的位数。

二、选择题:1.(2000)10化成十六进制数是______。

A.(7CD)16 B.(7D0)16 C.(7E0)16 D.(7FO)162.在小型或微型计算机里,普遍采用的字符编码是______。

A. BCD码B. 16进制C. 格雷码D. ASCⅡ码3.下列有关运算器的描述中,______是正确的。

A.只做算术运算,不做逻辑运算B. 只做加法C.能暂时存放运算结果D. 既做算术运算,又做逻辑运算4.某机字长32位。

其中1位符号位,31位表示尾数。

若用定点整数表示,则最大正整数为______。

A. +(231-1)B. +(230-1)C. +(231+1)D. +(230+1)5.至今为止,计算机中的所有信息仍以二进制方式表示的理由是______。

A.节约元件 B. 运算速度快 C. 物理器件性能决定 D. 信息处理方便6.某机字长32位,其中1位符号位,31位表示尾数。

若用定点整数表示,则最小负整数为______。

第7讲 浮点运算方法与浮点运算器

第7讲 浮点运算方法与浮点运算器

17
3、浮点运算器的硬件实现
浮点运算器由阶码运算部件和尾数运算部件组成。阶码运算部件执行加 减两种运算、同时配合对阶或者规格化完成阶码的调整(±1);尾数 运算部件完成加、减、乘、除运算,以及尾数规格化和溢出处理。
① CPU之外的浮点运算器 例如80x87是美国Intel公司为处理浮点数的运算生产的专用算术运算 处理器,它是配合80x86 CPU进行算术运算的,又称为协处理器。它 相当于CPU的一个I/O设备,虽然有自己的指令,但不能单独使用。 ② CPU之内的浮点处理器 例如奔腾CPU将浮点处理器包含在芯片内部,并且采用流水设计。它 有U、V两条流水线,指令执行过程分为8个过程段。 ③ 浮点流水运算部件 根据浮点运算步骤,分别设置专门硬件来完成特定的运算。例如,浮 点数加减操作,设置4套硬件,分别完成求阶差、对阶、尾数求和、 规格化等操作,形成流水作业。成本虽高,但速度特快。
[x2]补=11.0110 (舍)
[x3]补=11.0110 (舍) [x4]补=11.1000 (入)
8
浮点加减运算操作过程(续二)
⑥ 溢出判断 (注意:浮点数的溢出是以阶码溢出表现出来的) 如果阶码正常,加减运算即可正常结束; 如果阶码超过了可能表示的最大正指数值,阶码 上溢,认为数据为±∞,发生溢出中断。 如果阶码超过了可能表示的最小负指数值,阶码 下溢,一般认为数据为0。 两个同号尾数相加,出现的最高位向上的进位, 在浮点数中不算溢出。

④ 未发生溢出。

② 尾数求和 00.1011100 + 11.1010101 00.0110001
11
2、浮点乘除运算
设两个浮点数x和y,分别为: x = 2Ex.Mx y = 2Ey.My 两浮点数进行乘法运算的规则为: x×y = 2(Ex+Ey) .(Mx×My) x÷y = 2(Ex-Ey) .(Mx÷My)

计算机组成原理第3章

计算机组成原理第3章

补码加、减运算举例
【例】已知x =-0.10111,y=-0.10001,求 1/2(x+y) 。 解: ∵[x]变补=11.01001,[y]变补=11.01111, ∴[ 1/2x]变补=11.10101,[ 1/2y]变补=11.10111;[ 1/2x] 变补是对[x]变补右移一位得到的,由于移位时丢掉了最低位1, 所以对[x]变补右移一位得到的结果(11.10100)进行修正, 即在最低位加1,便得到[ 1/2x]变补。 [ 1/2(x+y)]变补= [ 1/2x]变补+[ 1/2y]变补=11.10101+ 11.10111=11.01100 溢出判断:由于结果的双符号位相同,未产生溢出,运算结果正 确
2、补码加、减运算具体实现
补码表示的数的加减运算可以采用同一个电路实现。其核 心部分是全加器(运算电路的延迟时间
则全加器的Si的时间延迟为6T(每级异或门的延迟为3T),Ci+1的 时间延迟为5T。 则:一个n位的行波进位加法器的时间延迟ta为: ta=n×2T+9T
原码一位乘法举例
举例:假定 X=0.1101 Y=0.1011
原码一位乘法实现电路
实现原理框图:
Cj A Af CR 加法器 =1 Cn C Cn 移 位 脉 冲
&
& Bf C f Cn CT Q
启动
时钟脉冲
B
结束
2.2 2、原码两位乘法原理
两位乘数的取值可以有四种可能组合,每种组合对应于以下操作: 00 相当于0×X,部分积Pi右移2位,不进行其它运算; 01 相当于1×X,部分积Pi+ X后右称2位; 10 相当于2×X,部分积 Pi+ 2X后右移2位; 11 相当于3×X,部分积 Pi + 3X后右移2位。 上面出现了 + 1X, + 2X, + 3X 三种情况,+X 容易实现,+2X可把X左移1 位得2X,在机器内通常采用向左斜1位传送来实现。可是+3X一般不能一次完成, 如分成两次进行,又降低了计算速度。解决问题的办法是备: 以 +(4X-X) 来 代替 +3X运算,在本次运算中只执行 -X, 而 +4X 则归并到下一步执行,因为 下一步运算时,前一次的部分积已右移了两位,上一步欠下的 +4X 在本步已 变成 +X。实际线路中要用一个触发器C来记录是否欠下+4X的操作尚未执行, 若是,则1→C。因此实际操作要用Yi-1 Yi C三位的组合值来控制乘法运算操 作,运算规则如表2.12所示。

计算机组成原理前3章课后习题参考答案-

计算机组成原理前3章课后习题参考答案-

白中英第五版计算机组成原理课后习题参考答案第一章计算机系统概述4、冯•诺依曼型计算机的主要设计思想是什么?它包括哪些主要组成部分?答:冯•诺依曼型计算机的主要设计思想是存储程序和程序控制,其中存储程序是指将程序和数据事先存放到存储器中,而程序控制是指控制器依据存储的程序来控制全机协调地完成计算任务。

总体来讲,存储程序并按地址顺序执行,这就是冯•诺依曼型计算机的主要设计思想。

5、什么是存储容量?什么是单元地址?什么是数据字?什么是指令字?答:见教材P8和P10。

7、指令和数据均存放在内存中,计算机如何区分它们是指令还是数据?答:见教材P10。

第二章运算方法和运算器1、写出下列各整数的原码、反码、补码表示(用8位二进制数)。

3、有一个字长为32位的浮点数,符号位1位,阶码8位,用移码表示,尾数23位,用补码表示,基数为2,请写出:(1)最大数的二进制表示阶码用移码表示,题中并未说明具体偏移量,故此处按照移码的定义,即采用偏移量为27=128,则此时阶码E的表示范围为0000 0000~1111 1111,即0~255,则在上述条件下,浮点数为最大数的条件如下:所以最大数的二进制表示为:0 1111 1111 1111 1111 1111 1111 1111 1111 111对应十进制真值为:+(1-2-23)×2127(2)最小数的二进制表示浮点数为最小数的条件如下:所以最小数的二进制表示为:1 1111 1111 0000 0000 0000 0000 0000 000对应十进制真值为:-1×2127(3)规格化数所表示数的范围规格化要求尾数若为补码表示,则符号位和最高有效位符号必须不同。

(A)浮点数为最大正数的条件如下:所以最大正数的二进制表示为:0 1111 1111 1111 1111 1111 1111 1111 1111 111对应十进制真值为:+(1-2-23)×2127(B)浮点数为最小正数的条件如下:所以最小正数的二进制表示为:0 0000 0000 1000 0000 0000 0000 0000 000对应十进制真值为:+2-1×2-128=+2-129(C)浮点数为最大负数的条件如下:所以最大负数的二进制表示为:0 0000 0000 0111 1111 1111 1111 1111 111对应十进制真值为:-(2-1+2-23)×2-128(D)浮点数为最小负数的条件如下:所以最小负数的二进制表示为:0 0000 0000 0000 0000 0000 0000 0000 000对应十进制真值为:-1×2127所以,规格化数所表示数的范围如下:正数+2-129~+(1-2-23)×2127负数-2127 ~-(2-1+2-23)×2-1284、将下列十进制数表示成IEEE754标准的32位浮点规格化数。

白中英计算机组成原理第2章-运算方法与运算器

白中英计算机组成原理第2章-运算方法与运算器
按编码不同又可分为原码、反码、补码、移码……
2024年7月16日星期二
5
2.1 数据与文字的表示方法
2.1.1 数据格式 2.1.2 数的机器码表示 2.1.1 数据格式 2.1.3 字符与字符串的表示方法 2.1.4 汉字的表示方法 2.1.5 校验码
2024年7月16日星期二
6
2.1.1 数据格式——定点数
2024年7月16日星期二
3
2.0 数据的类型(1/2)
按数制分:
十进制:在微机中直接运算困难;
二进制:占存储空间少,硬件上易于实现,易于运算;
十六进制:方便观察和使用;
二-十进制:4位二进制数表示1位十进制数,转换简单。 按数据格式分:
真值:没有经过编码的直观数据表示方式,其值可带正负号, 任何数制均可;
-8 1000 0000 -7 1001 0001 -6 1010 0010 …… …… ……
可以比较直观地判断两个数据的大小; 0 0000 1000
浮点数运算时,容易进行对阶操作;
+1 0001 1001
表示浮点数阶码时,容易判断是否下溢; …… …… ……
当阶码为全0时,浮点数下溢。
+7 0111 1111
优点 与真值对应关系简单;
缺点 参与运算复杂,需要将数值位与符号位分开考虑。
2024年7月16日星期二
11
补码表示法的引入(1/3)
要将指向5点的时钟调整到3点整,应如何处理?
5-2=3
2024年7月16日星期二
5+10=3(12自动 丢失。12就是模)
12
补码表示法的引入(2/3)
继续推导: 5-2=5+10(MOD 12) 5+(-2)=5+10(MOD 12) -2=10(MOD 12)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对阶的方法: 求出两数的阶码m和n之差:
2020年10月15日星期
计算机组成原理
8
第二章 运算方法和运算器
对阶操作规定使尾数右移,尾数右移后阶码作相应 增加,其数值保持不变(若右移引起最低有效位的 丢失,则采用0舍1入的方法),一个增加后的阶码 与另一个阶码相等,所增加的阶码一定是小阶,因 此在对阶时,总是使小阶向大阶看齐。
2020年10月15日星期
计算机组成原理
12
(5)舍入处理
第二章 运算方法和运算器
在IEEE754标准中,舍入处理提供了4种可选方法
就近舍入:就是“四舍五入”,如尾数超出规定23位 的多余位数字是10010,多余位的值超过规定的最低 有效位值的一半,则最低有效位增1;若为01111这样, 则简单截尾;为10000这样的特殊值时视最低有效位 情况,为0截尾;为1向上进1,末位为0。
浮点数加、减运算过程 Z X Y
计算机组成原理
4
浮点数加减法运算的过程 第二章 运算方法和运算器
(1)零操作数检查 (2)对阶 (3)尾数求和 (4)结果规格化 (5星期
计算机组成原理
5
浮点数加法运算的过程
第二章 运算方法和运算器
(1)零操作数检查 如操作数之一为0则可省去后续操作,节省运算时间。
阶码上溢:超过阶码可表示的最大值的正指数值。一 般认为是+ 和-。
阶码下溢:超过了阶码可表示的最小值的负指数值。 一般将其认为是0。
尾数上溢:两个同符号尾数相加产生最高位向上的进 位,要将尾数右移,阶码增1来从新对齐。
尾数下溢:将尾数右移时,尾数的最低有效位从尾数 域右端流出,要进行舍入处理。
2020年10月15日星期
朝0舍入:就是简单的截尾。使取值的绝对值比原值 的绝对值小,易导致误差积累。
朝+舍入:对正数只要多余位不全为0则进1;对负数 截尾。
朝-舍入:处理与向+ 舍入相反。
2020年10月15日星期
计算机组成原理
13
(6)溢出判断
第二章 运算方法和运算器
浮点数的溢出表现为阶码的溢出,通过阶码来判断。
表现及处理:
(5)判溢出,阶码符号位为00,不溢出,故得最终结果为
x+y=2011 ×(-0.11101010)
2020年10月15日星期
计算机组成原理
16
例:
第二章 运算方法和运算器
设浮点数的阶码为4位(含阶符),尾数为6位(含尾符), x、y中的指数项,小数项均为二进制真值.
2.6 浮点运算方法和浮点运算器
第二章 运算方法和运算器
当我们用不同的电脑计算圆周率时,会发现一台电脑的计 算较另一台来讲结果更加精确; 或者我们在进行枪战游戏的时候,当一粒子弹击中墙壁时, 墙上剥落下一块 墙皮,同样的场面在一台电脑上的表现可 能会非常的呆板、做作;而在另外一台电脑上就会非常生 动形象,甚至与我们在现实中看到的所差无几。 这都是浮点运算能力的差异导致的。
2020年10月15日星期
计算机组成原理
2
2.6.1 浮点加法、减法运算 第二章 运算方法和运算器
设有两个浮点数x和y,分别为
x 2m M x y 2n M y
其加减运算过程可用下页流程描述:
2020年10月15日星期
计算机组成原理
3
2.6.1 浮点加法、减法运算
第二章 运算方法和运算器
2020年10月15日星期
若m>n,则将操作数y的尾数右移,y的阶码增加, 直到m=n为止。
若m<n,则将操作数x的尾数右移,x的阶码m增加, 直到m=n为止。
2020年10月15日星期
计算机组成原理
9
浮点数加法运算的过程
第二章 运算方法和运算器
(3)尾数相加
对阶后,就完成了小数点对准的工作,这时可以执行 尾数相加操作。尾数相加与定点数的加、减法相同。
2020年10月15日星期
计算机组成原理
15
第二章 运算方法和运算器
(3)规格化处理
尾数运算结果的符号位与最高数值位为同值,执行左归,结果为
1. 0 0 0 1 0 1 0 1 (10)
阶码为00 011
(4)舍入处理
采用0舍1入法,则尾数为:
1. 0 0 0 1 0 1 0 1
+
1
1. 0 0 0 1 0 1 1 0
计算机组成原理
14
例:
第二章 运算方法和运算器
设x=2010×0.11011011,y=2100 ×(-0.10101100),求x+y=?。 解:假设两数以补码表示,阶码采用双符号位,尾数采用单符号位,则 它们的浮点表示分别为:
[x]浮=00 010, 0.11011011 [y]浮=00 100, 1.01010100 (1)求阶差并对阶
2020年10月15日星期
计算机组成原理
6
浮点数加法运算的过程
第二章 运算方法和运算器
(2)对阶
两浮点数进行加、减时,首先要看两数的阶码是否 相同,若两数的阶码不等,表示小数点位置没有对齐, 则必须使两数的阶码相等,这个过程叫做对阶。
2020年10月15日星期
计算机组成原理
7
第二章 运算方法和运算器
2020年10月15日星期
计算机组成原理
10
浮点数加法运算的过程
第二章 运算方法和运算器
(4)结果规格化
结果规格化就是使运算结果成为规格化数。为了运算 处理方便,可将尾数的符号位扩展为两位。
右规:当尾数符号位为01或10时,需要右规。
方法:将尾数连同符号位右移一位,和的阶码加1,经 右规处理后得到 00.1XX…X 或11.0 X X… X的形式, 即成为规格化的数.
左规:当运算结果的符号位和最高有效位为 00.0 或 11.l时,需要左规。
方法:将尾数连同符号位一起左移一位,和的阶码减1, 直到尾数部分出现00.l 或11.0的形式为止。
2020年10月15日星期
计算机组成原理
11
第二章 运算方法和运算器
(5)舍入处理
简单的舍入方法: 0舍1入法:右移被丢掉数位最高位为0舍掉, 为1尾数末位加1。 恒置1法:只要数位被移掉,就在尾数的末位 恒置1。
E Ex Ey Ex 补 Ey 补 0001011100 11110 2
X的阶码小,Mx右移两位,Ex加2 [x]浮=00 100, 0.00110110(11)
(2)尾数求和 0. 0 0 1 1 0 1 1 0 (11)
1. 0 1 0 1 0 1 0 0
1. 1 0 0 0 1 0 1 0 (11)
相关文档
最新文档