四川省成都市高新区2019-2020学年七年级下学期期末数学试题

合集下载

2019-2020学年四川省成都市天府新区七年级(下)期末数学试卷

2019-2020学年四川省成都市天府新区七年级(下)期末数学试卷

2019-2020学年四川省成都市天府新区七年级(下)期末数学试卷一.选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列计算正确的是()A.(a3)4=a12B.a3•a2=a6C.3a•4a=12a D.a6÷a2=a32.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.3.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣64.下列事件中属于必然事件的是()A.任意买一张电影票,座位号是偶数B.某射击运动员射击1次,命中靶心C.掷一次骰子,向上的一面是6点D.367人中至少有2人的生日相同5.下列正确说法的个数是()①同位角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直.A.1B.2C.3D.46.能将一个三角形分成面积相等的两个三角形的一条线段是()A.三角形的高线B.边的中垂线C.三角形的中线D.三角形的角平分线7.已知(x﹣2)•(x+3)=x2+mx﹣6,则m的值是()A.﹣1B.1C.5D.﹣58.一个等腰三角形的顶角是50°,则它的底角是()A.65°B.70°C.75°D.100°9.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)10.如图,△ABC≌△ADE,点D落在BC上,且∠B=55°,则∠EDC的度数等于()A.50°B.60°C.70°D.80°二、填空题(本大题共4个小题,每小题4分,共16分)11.已知∠A=30°,则∠A的补角的度数为度.12.关于x的二次多项式x2+6x+m恰好是另一个多项式的平方,则常数项m=.13.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=6,AB=17,则△ABD的面积是.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(1)计算:﹣32﹣(2020﹣π)0﹣|﹣4|+(﹣)﹣2;(2)计算:8m4•(﹣12m3n5)÷(﹣2mn)5.16.先化简,再求值[(x+2y)2﹣(x+y)(x﹣y)﹣5y2]÷2x,其中.17.如图,在长度为1个单位长度的小正方形组成的正力形网格中,点A,B,C在小正方形的顶点上.(1)在图中画出△ABC关于直线l成轴对称的△A′B′C′;(2)求△ABC的面积;(3)在直线l上找一点P,使PB+PC的长最短,标出点P(保留作图痕迹).18.公路上,A,B两站相距25千米,C、D为两所学校,DA⊥AB于点A,CB⊥AB于点B,如图,已知DA=15千米,现在要在公路AB上建一报亭H,使得C、D两所学校到H的距离相等,且∠DHC=90°,问:H应建在距离A站多远处?学校C到公路的距离是多少千米?19.在弹性限度内,某弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如表:所挂物体的质量/千克012345678弹簧的长度/cm1212.51313.51414.51515.516(1)在这个变化过程中,自变量和因变量各是什么?(2)如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,写出y与x的关系式.(3)如果该弹簧最大挂重量为25千克,当挂重为14千克时,该弹簧的长度是多少?20.已知AB∥CD,点E为直线AB、CD所确定的平面内一点.(1)如图1,若AE⊥AB,求证:∠C+∠E=90°;(2)如图2,点F在BA的延长线上,连接BE、EF,若CE⊥CD,EF平分∠AEC,∠B=∠AEB,则∠BEF的度数为.(3)在(2)的条件下,如图3,过点F作∠BFG=∠BFE交EC的延长线于点G,连接DF,作∠DFG 的平分线交CD于点H,当FD∥BE时,求∠CHF的度数.四.填空题(本大题共5个小题,每小题4分共20分)21.若x m=3,x n=5,则x2m+n的值为.22.一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.现再将n个白球放入布袋,搅匀后,使摸出1个红球的概率为,则n的值为.23.如图,边长为5的正方形ABCD与直角三角板如图放置,延长CB与三角板的直角边相交于点E,则四边形AECF的面积为.24.如图,正方形ABCD中,AE=2cm,CG=5cm.长方形EFGD的面积是11,四边形NGDH和MEDQ 都是正方形,PQDH是长方形,则图中阴影部分的面积是cm2.25.如图,△ABC中,CD⊥AB,垂足为D,CD=BD=5,AD=4,点M从点B出发沿线段BA方向运动到点A停止,过点M作MN⊥AB,交折线BC﹣CA于点N,连接DN,AN,若△ADN与△CND的面积相等,则线段BM的长为.五、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演算步骤)26.若a,b,c为△ABC的三边.(1)化简:|a﹣b+c|+|c﹣a﹣b|﹣|a+b|;(2)若a,b,c都是正整数,且a2+b2﹣2a﹣8b+17=0,求△ABC的周长.27.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,步行到景点C;乙先乘景区观光车到景点B,在B处停留一段时间后,再步行到景点C,甲、乙两人同时到达最点C.甲、乙两人距景点A的路程y(米)与甲出发的时间x(分)之间的图象如图所示:(1)甲步行的速度为米/分,乙步行时的速度为米/分;(2)分别写出甲游客从景点A出发步行到景点C和乙游客乘景区观光车时y与x之间的关系式;(3)问乙出发多长时间与甲在途中相遇?28.如图1,在△ABC中,∠BAC=90°,点D为AC边上一点,连接BD,点E为BD点连接CE,∠CED =∠ABD,过点A作AG⊥CE,垂足为G,AG交ED于点F.(1)判断AF与AD的数量关系,并说明理由;(2)如图2,若AC=CE,点D为AC的中点,AB与AC相等吗?为什么?(3)在(2)的条件下,如图3,若DF=5,求△DEC的面积.。

(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)

(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)

2019-2020学年成都市成华区七年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.如图,在线段PA、PB、PC、PD中,长度最小的是()A.线段PA B.线段PB C.线段PC D.线段PD2.中国的方块字中有些具有对称性.下列美术字是轴对称图形的是()A.B.C.D.3.某种新型冠状病毒的直径为0.000000053米,将0.000000053用科学记数法表示为()A.53x10﹣8B.5.3x10﹣7C.5.3x10﹣8D.5.3x10﹣94.“对顶角相等”,这一事件是()A.必然事件B.不确定事件C.随机事件D.不可能事件5.下列长度的三条线段,能组成三角形的是()A.4,5,9B.6,7,14C.4,6,10D.8,8,156.下列运算正确的是()A.(a3)2=a6B.a2•a3=a6C.(a+b)2=a2+b2D.a2+a3=a57.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD8.如图,直线AD∥BC,若∠1=74°,∠BAC=56°,则∠2的度数为()A.70°B.60°C.50°D.40°9.如图,在△ABC中,AB=AC,∠C=70°,△AB'C'与△ABC关于直线AD对称,∠CAD=10°,连接BB',则∠ABB'的度数是()A.45°B.40°C.35°D.30°10.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A.B.C.D.二.填空题(本大题4个小题,每小题4分,共16分)11.已知∠A=30°,则∠A的补角的度数为度.12.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是.13.若a2+b2=6,a+b=3,则ab的值为.14.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3,△ABD的周长为13,则△ABC的周长为.三.解答题(本大题共6个小题,满分54分)15.(12分)计算:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4.16.(12分)(1)先化简,再求值:(x+1)(x﹣1)+(2x﹣1)2﹣2x(2x﹣1),其中x=﹣2.(2)先化简,再求值:[(2x﹣y)2+(2x﹣y)(2x+y)]÷4x,其中x=2,y=﹣1.17.(7分)为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:分数段(分)频数(人)频率51≤x<61a0.161≤x<71180.1871≤x<81b n81≤x<91350.3591≤x<101120.12合计1001(1)填空:a=,b=,n=;(2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.18.(6分)如图,在△ABC中,AB=AC,点D,E分别是AB,AC的中点,BE,CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.19.(7分)某种型号汽车油箱容量为63升,每行驶100千米耗油8升.设一辆加满油的该型号汽车行驶路程为x千米.(1)写出汽车耗油量y(升)与x之间的关系式;(2)写出油箱内剩余油量Q(升)与x之间的关系式;(3)为了有效延长汽车使用寿命,厂家建议汽车油箱内剩余油量为油箱容量的时必须加油.按此建议,问该辆汽车最多行驶多少千米必须加油?20.(10分)已知:如图,点B在线段AD上,△ABC和△BDE都是等边三角形,且在AD同侧,连接AE交BC于点G,连接CD交BE于点H,连接GH.(1)求证:AE=CD;(2)求证:AG=CH;(3)求证:GH∥AD.B 卷(50分)一、填空题(每小题4分,共20分)21.若2x =5,2y =3,则22x+y =.22.如图,已知11∥l 2,∠C=90°,∠1=40°,则∠2的度数是.23.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.24.如图,图1是“杨辉三角”数阵;图2是(a+b)n 的展开式(按b 的升幂排列).若(1+x)45的展开式按x 的升幂排列得:(1+x)45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=.25.如图,AD,BE 在AB 的同侧,AD=2,BE=2,AB=4,点C 为AB 的中点,若∠DCE=120°,则DE 的最大值是.二、解答题(本大题共3个小题,共30分)26.(8分)图1和图2的大正方形都是由一些长方形和小正方形组成的.观察图形,完成下列各题:(1)如图1,求S 大正方形的方法有两种:S 大正方形=(x+y)2,同时,S 大正方形=S ①+S ②+S ③+S ④=.所以图1可以用来解释等式:;同理图2可以用来解释等式:.(2)已知a+b+c=6,ab+bc+ca=ll,利用上面得到的等式,求a 2+b 2+c 2的值.27.(10分)王老师和小颖住同一小区,小区距离学校2400米.王老师步行去学校,出发10分钟后小颖才骑共享单车出发.小颖途经学校继续骑行若干米到达还车点后,立即跑步返回学校.小颖跑步比王老师步行每分钟快70米.设王老师步行的时间为x(分钟),图1中线段OA和折线B﹣C﹣D分别表示王老师和小颖离开小区的路程y(米)与x(分钟)的关系:图2表示王老师和小颖两人之间的距离S(米)与x(分钟)的关系(不完整).(1)求王老师步行的速度和小颍出发时王老师离开小区的路程;(2)求小颖骑共享单车的速度和小颖到达还车点时王老师、小颖两人之间的距离;(3)在图2中,画出当25≤x≤30时S关于x的大致图象(要求标注关键数据).28.(12分)(1)如图1,在△ABC中,AB=4,AC=6,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,把AB,AC,2AD集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE⊥DF,求证:BE+CF>EF;(3)如图3,在四边形ABCD中,∠A为钝角,∠C为锐角,∠B+∠ADC=180°,DA=DC,点E,F分别在BC,AB上,且∠EDF=∠ADC,连接EF,试探索线段AF,EF,CE之间的数量关系,并加以证明.参考答案与试题解析一、选择题1.【解答】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选:B.2.【解答】解:A、爱,不是轴对称图形;B、我,不是轴对称图形;C、中,是轴对称图形;D、华,不是轴对称图形;故选:C.3.【解答】解:0.000000053=5.3×10﹣8.故选:C.4.【解答】解:“对顶角相等”一定正确,所以这一事件是必然事件,故选:A.5.【解答】解:根据三角形任意两边的和大于第三边,得A中,4+5=9,不能组成三角形;B中,6+7=13<14,不能组成三角形;C中,4+6=10,不能够组成三角形;D中,8+8=16>15,能组成三角形.故选:D.6.【解答】解:A、(a3)2=a6,原计算正确,故此选项符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意;D、a2与a3不是同类项,不能合并,原计算错误,故此选项不符合题意.故选:A.7.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.8.【解答】解:∵∠1=74°,∠BAC=56°,∴∠ABC=50°,又∵AD∥BC,∴∠2=∠ABC=50°,故选:C.9.【解答】解:∵AB=AC,∴∠ABC=∠C=70°,∴∠BAC=180°﹣70°﹣70°=40°,∵△AB'C'与△ABC关于直线AD对称,∴∠BAC=∠B′AC′=40°,∠CAD=∠C′AD=10°,∴∠BAB′=40°+10°+10°+40°=100°,∵AB=AB′,∴∠ABB′=(180°﹣100°)=40°,故选:B.10.【解答】解:由于乌龟比兔子早出发,而早到终点;故B选项正确;故选:B.二.填空题11.【解答】解:根据定义,∠A补角的度数是180°﹣30°=150°.12.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故答案为:.13.【解答】解:由a+b=3两边平方,得a2+2ab+b2=9①,a2+b2=6②,①﹣②,得2ab=3,两边都除以2,得ab=.故答案为:.14.【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=6,∵AB+AD+BD=13,∴AB+BD+DC=13,∴△ABC的周长=AB+BD+BC+AC=13+6=19,故答案为:19.三.解答题15.【解答】解:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|=1﹣1+9﹣2=7;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4=(8x6﹣6x6+12x5)÷2x4=(2x6+12x5)÷2x4=x2+6x.16.【解答】解:(1)原式=x2﹣1+4x2﹣4x+1﹣4x2+2x=x2﹣2x,当x=﹣2时,原式=4+4=8;(2)原式=(4x2﹣4xy+y2+4x2﹣y2)÷4x=(8x2﹣4xy)÷4x=2x﹣y,当x=2,y=﹣1时,原式=4﹣(﹣1)=4+1=5.17.【解答】解:(1)a=100×0.1=10,b=100﹣10﹣18﹣35﹣12=25,n==0.25;故答案为:10,25,0.25;(2)补全频数分布直方图如图所示;(3)2500××=90(人),答:全校获得二等奖的学生人数90人.18.【解答】证明:(1)∵AB=AC,∴∠ECB=∠DBC,∵点D,E分别是AB,AC的中点,∴BD=AB,CE=AC,∴BD=CE,在△DBC与△ECB中,,∴△DBC≌△ECB(SAS);(2)由(1)知:△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.19.【解答】解:(1)汽车耗油量y(升)与x之间的关系式为:y=,即y=0.08x;(2)油箱内剩余油量Q(升)与x之间的关系式为:Q=63﹣0.08x;(3)当Q=时,63﹣0.08x=9,解得x=675,答:该辆汽车最多行驶675千米必须加油.20.【解答】证明:(1)∵△ABC、△BDE均为等边三角形,∴AB=AC=BC,BD=BE,∠ABC=∠EBD=60°,∴180°﹣∠EBD=180°﹣∠ABC,即∠ABE=∠CBD,在△ABE与△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAG=∠BCH,∵∠ABC=∠EBD=60°,∴∠CBH=180°﹣60°×2=60°,∴∠ABC=∠CBH=60°,在△ABG与△CBH中,,∴△ABG≌△CBH(ASA),∴AG=CH;(3)由(2)知:△ABG≌△CBH,∴BG=BH,∵∠CBH=60°,∴△GHB是等边三角形,∴∠BGH=60°=∠ABC,∴GH∥AD.B 卷一、填空题21.【解答】解:∵2x =5,2y =3,∴22x+y =(2x )2×2y =52×3=75.故答案为:75.22.【解答】解:如图,过点C 作直线l,使l∥11∥l 2,则∠1=∠3,∠2=∠4.∵∠3+∠4=90,∠1=40°,∴∠2=90°﹣40°=50°.故答案是:50°.23.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.24.【解答】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n 的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x)45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)=990;故答案为:990.25.【解答】解:如图,作点A 关于直线CD 的对称点M,作点B 关于直线CE 的对称点N,连接SM,CM,MN,NE.由题意AD=EB=2,AC=CB=2,DM=CM=CN=EN=2,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=2,∴△CMN 是等边三角形,∴MN=2,∵DE≤DM+MN+EN,∴DE≤6,∴当D,M,N,E 共线时,DE 的值最大,最大值为6,故答案为6.二、解答题26.【解答】解:(1)∵S ③=S ④=xy,S ①=x 2,S ②=y 2,∴S 大正方形=S ①+S ②+S ③+S ④=x 2+2xy+y 2.∴(x+y)2=x 2+2xy+y 2.∵图2大正方形的面积=(a+b+c)2,同时图2大正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:x2+2xy+y2,(x+y)2=x2+2xy+y2,(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∴a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc=(a+b+c)2﹣2(ab+ac+bc)=62﹣2×11=14.27.【解答】解:(1)由图可得,王老师步行的速度为:2400÷30=80(米/分),小颖出发时甲离开小区的路程是10×80=800(米),答:王老师步行的速度是80米/分,小颍出发时王老师离开小区的路程是800米;(2)设直线OA的解析式为y=kx,30k=2400,得k=80,∴直线OA的解析式为y=80x,当x=18时,y=80×18=1440,则小颍骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵小颍骑自行车的时间为:25﹣10=15(分钟),∴小颍骑自行车的路程为:180×15=2700(米),当x=25时,王老师走过的路程为:80×25=2000(米),∴小颍到达还车点时,王老师、小颖两人之间的距离为:2700﹣2000=700(米);答:小颍骑自行车的速度是180米/分,小颍到达还车点时王老师、小颖两人之间的距离是700米;(3)小颍步行的速度为:80+70=150(米/分),小颍到达学校用的时间为:25+(2700﹣2400)÷150=27(分),当25≤x≤30时s关于x的函数的大致图象如右图所示.28.【解答】(1)解:如图1中,∵CD=BD,AD=DE,∠CDE=∠ADB,∴△CDE≌△BDA(SAS),∴EC=AB=4,∵6﹣4<AE<6+4,∴2<2AD<10,∴1<AD<5,故答案为1<AD<5.(2)证明:如图2中,延长ED到H,使得DH=DE,连接DH,FH.∵BD=DC,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∵FD⊥EH.DE=DH,∴EF=FH,在△CFH中,CH+CF>FH,∵CH=BE,FH=EF,∴BE+CF>EF.(3)解:结论:AF+EC=EF.理由:延长BC到H,使得CH=AF.∵∠B+∠ADC=180°,∴∠A+∠BCD=180°,∵∠DCH+∠BCD=180°,∴A=∠DCH,∵AF=CH,AD=CD,∴△AFD≌△CHD(SAS),∴DF=DH,∠ADF=∠CDH,∴∠ADC=∠FDH,∵∠EDF=∠ADC,∴∠EDF=∠FDH,∴∠EDF=∠EDH,∵DE=DE,∴△EDF≌△EDH(SAS),∴EF=EH,∵EH=EC+CH=EC+AF,∴EF=AF+EC.。

《试卷3份集锦》成都市2019-2020年七年级下学期期末质量跟踪监视数学试题

《试卷3份集锦》成都市2019-2020年七年级下学期期末质量跟踪监视数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若关于x 的不等式组2131x a x +>⎧⎨->⎩的解集是13x <<,则实数a 的值是( ) A .4B .3C .2D .1【答案】A【解析】求出不等式组的解集,根据已知得出a−1=3,从而求出a 的值. 【详解】解:2131x a x +>⎧⎨->⎩①②, 解不等式①得:x >1,解不等式②得:x <a−1,∵不等式组的解集是13x <<,∴a−1=3,∴a =4故选:A .【点睛】本题考查了解一元一次不等式组,根据题意得出a−1=3是关键.2.如图所示,直线AB∥CD,∠1=64°,FG 平分∠EFD,则∠2的度数是A .32°B .30°C .31°D .35°【答案】A 【解析】根据两直线平行,同位角相等可得∠EFD=∠1,再根据角平分线的定义求出∠DFG ,然后根据两直线平行,内错角相等可得∠2=∠DFG .【详解】解:∵AB ∥CD ,∴∠EFD=∠1=64°,∵FG 平分∠EFD ,∴∠DFG=∠EFD=×64°=32°,∵AB ∥CD ,∴∠2=∠DFG=32°.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.3.下列说法中,正确的是( )A .腰对应相等的两个等腰三角形全等;B .等腰三角形角平分线与中线重合;C .底边和顶角分别对应相等的两个等腰三角形全等;D .形状相同的两个三角形全等.【答案】C【解析】根据全等三角形和等腰三角形的性质对各项进行判断即可.【详解】A. 腰对应相等的两个等腰三角形不一定全等,错误;B. 等腰三角形顶角的角平分线与底边中线重合,底角的角平分线与腰上的中线不一定重合,错误;C. 底边和顶角分别对应相等的两个等腰三角形全等,正确;D. 形状相同的两个三角形不一定全等,错误;故答案为:C .【点睛】本题考查了全等三角形和等腰三角形的问题,掌握全等三角形和等腰三角形的性质是解题的关键. 4.已知a b c 、、是ABC ∆的三边长,化简a b c b a c +----的值是( )A .2c -B .22b c -C .22a c -D .22a b -【答案】B【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,得到a+b-c >0,b -a -c <0,再根据绝对值的性质进行化简计算.【详解】根据三角形的三边关系,得a+b-c>0,b -a -c <0.∴原式= a+b-c −(a +c−b)= 22b c -.故选择B 项.【点睛】本题考查三角形三边关系和绝对值,解题的关键是熟练掌握三角形三边关系.5.分式与的最简公分母是( ) A . B . C . D .【答案】B【解析】根据最简公分母的定义即可求解.【详解】分式与的最简公分母是.故选B.【点睛】此题主要考查最简公分母,解题的关键是熟知公分母的定义.6.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图所示是我国四大银行的行标图案,其中是轴对称图形而不是中心对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形与中心对称图形的概念求解.中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【详解】解:A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、是轴对称图形,也是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项错误;D、是轴对称图形,不是中心对称图形.故此选项正确.故选D.【点睛】本题考查轴对称图形与中心对称图形的概念,解题关键是熟练掌握定义、性质.7.几何体的平面展开图如图所示,则从左到右其对应几何体的名称分别为()A.圆锥,四棱柱,三棱锥,圆柱B.圆锥,四棱柱,四棱锥,圆柱C.四棱柱,圆锥,四棱锥,圆柱D.四棱柱,圆锥,圆柱,三棱柱【答案】D【解析】根据四棱柱、圆锥、圆柱、三棱柱的平面展开图的特点进一步分析,然后再加以判断即可.【详解】第一个图是四棱柱,第二个图是圆锥,第三个图是圆柱,第四个图是三棱柱,故选:D.【点睛】本题主要考查了简单几何体的展开图的认识,熟练掌握相关概念是解题关键.8.如图,点A,B为定点,直线l∥AB,P是直线l上一动点.对于下列各值:①线段AB的长②△PAB的周长③△PAB的面积④∠APB的度数其中不会随点P的移动而变化的是()A.①③B.①④C.②③D.②④【答案】A【解析】求出AB长为定值,P到AB的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB不断发生变化、∠APB的大小不断发生变化.【详解】解:∵A、B为定点,∴AB长为定值,∴①正确;当P点移动时,PA+PB的长发生变化,∴△PAB的周长发生变化,∴②错误;∵点A,B为定点,直线l∥AB,∴P到AB的距离为定值,故△APB的面积不变,∴③正确;当P点移动时,∠APB发生变化,∴④错误;故选:A.【点睛】本题考查了平行线的性质,等底等高的三角形的面积相等,平行线间的距离的运用,熟记定理是解题的关键.9.将0.0000025用科学记数法表示为A.2.5×10-5B.2.5×10-6C.0.25×10-5D.0.25×10-6【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000025=2.5×10-1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.在迎宾晚宴上,若每桌坐12人,则空出3张桌子;若每桌坐10人,则还有12人不能就坐. 设有嘉宾x名,共准备了y张桌子. 根据题意,下列方程组正确的是( )A.12(3)1210x yx y=-⎧⎨-=⎩B.12(3)1210x yx y=+⎧⎨-=⎩C.12(3)1210x yx y=+⎧⎨+=⎩D.12(3)1210x yx y=-⎧⎨+=⎩【答案】A【解析】设有嘉宾x名,共准备了y张桌子,根据“每桌坐12人,则空出3张桌子;每桌坐10人,则还有12人不能就坐”列出方程组即可.【详解】设有嘉宾x名,共准备了y张桌子.根据题意可得,()1231210x yx y⎧=-⎨-=⎩.故选A.【点睛】本题考查了二元一次方程组的应用,正确找出题目中的等量关系是解决问题的关键.二、填空题题11.命题“两直线平行,同位角相等”的逆命题是.【答案】同位角相等,两直线平行【解析】逆命题是原命题的反命题,故本题中“两直线平行,同位角相等”的逆命题是同位角相等,两直线平行【点睛】本题属于对逆命题的基本知识的考查以及逆命题的反命题的考查和运用12.某班40名学生在一次2019年阶段检测中,数学成绩在90~100分这个分数段的频率为0.2,则该班数学成绩在90~100分的学生为________人.【答案】8【解析】根据频数=总数×频率,列式计算即可求解.【详解】解:由题意得:40×0.2=8人故答案为:8【点睛】此题考查频数与频率,熟练掌握频数与频率间的关系是解题关键.13.平面直角坐标系中的点P(-4,6)在第_________象限.【答案】二【解析】根据点的坐标特征是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),可得答案.【详解】在平面直角坐标系中,点P(-4,6)在第二象限,故答案为二.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 14.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例.这个三角形给出了(a+b )n (n=1,2,3,4,5,6)的展开式的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b )2=a 2+2ab+b 2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b )3=a 3+3a 2b+3ab 2+b 3展开式中各项的系数,等等.有如下四个结论:①(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;②当a=-2,b=1时,代数式a 3+3a 2b+3ab 2+b 3的值是-1;③当代数式a 4+4a 3b+6a 2b 2+4ab 3+b 4的值是0时,一定是a=-1,b=1;④(a+b )n 的展开式中的各项系数之和为2n .上述结论中,正确的有______(写出序号即可).【答案】①②【解析】根据题中举例说明,明确杨辉三角的与()n a b +的展开式的系数间的对应关系,据此逐项分析.【详解】解:∵在杨辉三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等∴在杨辉三角形中第n 行的n 个数,对应1()n a b -+展开式中各项的系数, ①∵5()a b +展开式中各项的系数,为杨辉三角形中第6行的6个数,∴554322345()510105a b a a b a b a b ab b +=+++++;②∵322333a a b ab b +++各项系数对应杨辉三角中的第4行的4个数,∴3223333()a a b ab b a b +++=+,当21a b =-=,时,代数式=3(21)1-+=-;③∵++++432234a 4a b 6a b 4ab b 各项系数对应杨辉三角中的第5行的5个数,∴4322344464()a a b a b ab b a b ++++=+,当代数式时,0a b +=,不一定是11a b =-=,;④∵当11a b ==,时,展开式各项之和便是系数之和,∴()n a b +的展开式中的各项系数之和为(11)=2n n +,故答案为:①②.【点睛】本题考查了合情推理,由具体举例推广到一般情况下杨辉三角与展开式的系数之间的对应规律,是解题的关键.15.图中的两直线l 1,l 2的交点坐标,可以看做方程组___________的解【答案】121y x y x =+⎧⎨=-⎩ 【解析】因为函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应该先用待定系数法求出两条直线的解析式,联立两直线解析式所组成的方程组即为所求的方程组.【详解】解:由图知:l 2图象经过点(-1,0),(0,1),得到函数解析式为y=x+1l 1图象经过点(0,-1),(2,3),得到函数解析式为y=2x-1因而直线l 1,l 2的交点坐标可以看作方程组即121y x y x =+⎧⎨=-⎩的解. 【点睛】本题考查一次函数与方程之间的关系,解题关键在于求出直线的解析式.16.分解因式:9x 2―4y 2=_______________.【答案】 (3x+2y)(3x-2y)【解析】分析:原式利用平方差公式分解即可.详解:原式=(3x+2y )(3x-2y ).故答案为(3x+2y )(3x-2y ).点睛:本题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解答本题的关键.17.如图,如果将△ABC 绕点A 逆时针旋转40︒ 得到△AB'C' ,那么∠ACC'=_____度.【答案】70【解析】由旋转可知AB C ABC ''≌,所以AC AC '=,再由旋转角CAC '∠=40︒,即可求得ACC '∠的度数【详解】由旋转知:△AB’C’≌△ABC ,CAC '∠=40︒,∴AC AC '=, ∴01(140)7208ACC '∠︒-==︒︒, 故填70.【点睛】此题考查旋转的性质,旋转前后的三角形全等,可知AC AC '=,由旋转角CAC '∠=40︒即可求得ACC '∠的度数.三、解答题18.已知:直线MN ,PQ 被射线BA 截于A ,B 两点,且MN ∥PQ ,点D 是直线MN 上一定点,C 是射线BA 上一动点,连结CD ,过点C 作CE ⊥CD 交直线PQ 于点E .(1)若点C 在线段AB 上.①依题意,补全图形;②请写出∠ADC 和∠CEB 的数量关系,并证明.(2)若点C 在线段BA 的延长线上,直接写出∠ADC 和∠CEB 的数量关系,不必证明.【答案】(1)①见解析;②∠ADC 和∠CEB 的数量关系:∠ADC+∠CEB=90°;证明见解析;(2)∠ADC+∠CEB=90°或∠CEB-∠ADC=90或∠ADC-∠CEB=90°【解析】(1)①连接CD,作CE⊥CD,交PQ于E即可;②根据两直线平行,内错角相等可知∠DCH=∠ADC,∠ECH=∠CEB,由∠DCH+∠ECH=90°,可知∠ADC+∠CEB=90°;(2)利用平行线的性质,三角形外角的性质,平角的定义列式即可求得.【详解】(1)①补全图形,如图.②∠ADC和∠CEB的数量关系:∠ADC+∠CEB=90°.证明:如图1,过点C作CH∥MN.∴∠DCH=∠ADC,∠ECH=∠CEB.∵CD⊥CE,∴∠DCE=90°,即∠DCH+∠ECH=90°.∴∠ADC+∠CEB=90°.(2)如图2①,∵CE⊥CD,∴∠1+∠ADC=90°,∵MN∥PQ,∴∠1=∠CEB,∴∠ADC+∠CEB=90°;如图2②,∵CE⊥CD,∴∠1+∠ADC=90°,∵MN∥PQ,∴∠1=∠2,∵∠2+∠CEB=180°,∴90°-∠ADC+∠CEB=180°,∴∠CEB-∠ADC=90°;如图2③,∵CE⊥CD,∴∠ECD=90°,∵MN∥PQ,∴∠1=∠CEB,∵∠ADC=∠ECD+∠1,∴∠ADC=90°+∠CEB∴∠ADC-∠CEB=90°;综上,∠ADC和∠CEB的数量关系为:∠ADC+∠CEB=90°或∠CEB-∠ADC=90°或∠ADC-∠CEB=90°.【点睛】本题考查了平行线的性质,平角的定义,三角形外角的定义,是基础题.19.在“国庆”黄金周期间,小明、小亮等同学随家人一同到某旅游区游玩.下图是购买门票时,小明与他爸爸的对话:问题:(1)小明他们一共去了几个成人?几个学生?(2)用哪种方式买票更省钱?并说明理由;(3)一位阿姨见小明这么聪明,也想考考他.她说:“我这里有大人,也有学生,学生人数比大人人数多,我们买票共花了105元,你能说出我们一共去了几个成人?几个学生?”聪明的你,请再帮小明算一算.【答案】(1)一共去了8个成人,4个学生;(2)购买团体票更省钱;(3)一共去了1个成人,4个学生【解析】(1)共12人,设一共去了x 个成年人,则学生有12-x 人,根据大人门票每张35元,学生门票对折优惠,共需350元,即可列方程求解.(2)计算出购买团体票时的费用,与350元比较即可.(3)设有m 个成人,n 个学生,且m n <,根据题意列等式即可求解.【详解】解:(1)设一共去了x 个成人,()12x -个学生.由题意得:()35351250%350x x +-⨯=解得:8x =当8x =时,124x -=(个)答:一共去了8个成人,4个学生.(2)35160.6336⨯⨯=(元)∵336元<350元∴购买团体票更省钱.(3)设有m 个成人,n 个学生,且m n <.则35350.5105m n +⨯=化简得:26m n +=当1m =时,4n =;当2m =时,2n =因为m n <,所以一共去了1个成人,4个学生.【点睛】本题考查一元一次方程的实际应用,解题的关键是读懂题意,熟练掌握一元一次方程的实际应用.20.填空完成推理过程:如图,∠1=∠2,∠A=∠D,求证:∠B=∠C.证明:∵∠1=∠2(已知),∠1=∠3(),∴∠2=∠3(等量代换).∴AF∥________().∴∠D=∠4(两直线平行,同位角相等).∵∠A=∠D(已知),∴∠A=∠4(等量代换).∴AB∥CD(内错角相等,两直线平行).∴∠B=∠C().【答案】对顶角相等;DE;同位角相等,两直线平行;两直线平行,内错角相等.【解析】先根据已知条件,判定AF∥DE,进而得出∠A=∠4,再判定AB∥CD,最后根据平行线的性质,即可得出∠B=∠C.【详解】证明:∵∠1=∠2(已知),∠1=∠3 (对顶角相等)∴∠2=∠3(等量代换)∴AF∥DE(同位角相等,两直线平行)∴∠D=∠4(两直线平行,同位角相等)∵∠A=∠D(已知),∴∠A=∠4(等量代换)∴AB∥CD(内错角相等,两直线平行)∴∠B=∠C(两直线平行,内错角相等)【点睛】本题主要考查了平行线的性质与判定的综合应用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.如图1,在平面直角坐标系中,已知点A(0,a),B(0,b)在y轴上,点C(m,b)是第四象限内一点,且满足()2860a b -++=,△ABC 的面积是56;AC 交x 轴于点D ,E 是y 轴负半轴上的一个动点.(1)求C 点坐标;(2)如图2,连接DE ,若DE ⊥AC 于D 点,EF 为∠AED 的平分线,交x 轴于H 点,且∠DFE =90°,求证:FD 平分∠ADO ;(3)如图3,E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分 ∠AEC ,且PM ⊥EM 于M 点,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,MPQ ECA∠∠的大小是否发生变化,若不变,求出其值;若变化,请说明理由.【答案】(1)a=8,b=-6, AB=1, BC=8, C (8,-6);(2)见解析;(3)MPQ 1ECA 2∠∠= 【解析】(1)根据非负数的性质求出a 、b ,得到点A 、点B 的坐标,根据△ABC 的面积是56的面积公式求出CB ,得到点C 的坐标;(2)根据三角形内角和定理、“8字形”题、角平分线的定义计算即可;(2)因为EF 为∠AED 的平分线,∠DFE =90°,DE ⊥AC ,所以∠AEF =∠DEF =90°-∠FDE =∠ADF ,又因为∠AEF =90°-∠OHE =90°-∠DHF =∠ODF所以∠ADF =∠ODF ,可得FD 平分∠ADO ;(3)设∠AEM =∠CEM =α,设∠APQ =∠NPQ =β,因为PN ∥AE ,由“M 形”易得:(∠MPQ+∠NPQ )+∠AEM =∠M =90°, 即∠MPQ =90°-(α+β),∠CPN+∠CEA =∠ECP =180-∠ECA , 即∠ECA =180-2(α+β)从而求解.【详解】解:(1)∵()2860a b -++=∴a-8=0,b+6=0,解得a=8,b=-6,∴A (3,0)、B (0,-4).∴OA=8,OB=6,AB=1.∵S △ABC=12×BC×AB= 12×BC×1=56, 解得: BC=8,∵C 在第四象限,BC ⊥y 轴,∴C (8,-6);(2)∵EF 为∠AED 的平分线,∠DFE =90°,DE ⊥AC∴∠AEF=∠DEF=90°-∠FDE=∠ADF∠AEF=90°-∠OHE=90°-∠DHF=∠ODF∴∠ADF=∠ODF,即FD平分∠ADO;(3)设∠AEM=∠CEM=α,设∠APQ=∠NPQ=β,∵PN∥AE 由“M形”易得:(∠MPQ+∠NPQ)+∠AEM=∠M=90°,即∠MPQ=90°-(α+β),∠CPN+∠CEA=∠ECP=180-∠ECA ,即∠ECA=180-2(α+β)∴MPQ1 ECA2∠∠=【点睛】本题考查的是平行线的性质、角平分线的性质以及非负数的性质,“M”型角的关系规律,掌握三角形内角和定理、角平分线的定义是解题关键.22.计算:(1)(2)-( -)【答案】(1)--(2)-6【解析】(1)先开方,求绝对值,再加减;(2)根据二次根式性质进行计算.【详解】解:(1)(2)-( -)=-7+1=-6【点睛】考核知识点:二次根式的运算.掌握二次根式运算法则是关键.23.为了更好地保护环境,某区污水处理厂决定购买A,B两种型号污水处理设备10台,其中每台的价格、月处理污水量如下表.已知购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a ,b 的值;(2)某区污水处理厂决定购买污水处理设备的资金既不少于108万元也不超过110万元,问有几种购买方案?每月最多能处理污水多少吨?【答案】(1)12;1;(2)2000吨.【解析】(1)由“购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买3台B 型设备少6万元”结合A 型设备的售价为a 万元/台,B 型设备为b 万元/台列出方程组,解方程组即可求得a 、b 的值;(2)根据(1)中所得结果可知,购买这批设备共需资金1210(10)x x +-(万元),结合购买这批设备的资金既不少于18万元也不超过11万元列出不等式组,解不等式组求得其整数解,即可得到所求答案.【详解】(1)根据题意,得:2326a b b a -=⎧⎨-=⎩, 解得:1210a b =⎧⎨=⎩, 答:的值是12,的值是1.(2)设购买A 型设备x 台,则B 型设备购买了(10x -)台,根据题意得:()()121010108121010110x x x x ⎧+-≥⎪⎨+-≤⎪⎩, 解得:45x ≤≤,∵x 为正整数,∴有两种购买方案,方案1:购买A 型设备4台,则B 型设备6台;方案2:购买A 型设备5台,则B 型设备5台;若按方案1购买设备,每月能处理污水:220×4+180×6=1960(吨);若按方案2购买设备,每月能处理污水:220×5+180×5=2000(吨);∵2000>1960,∴每月最多能处理污水2000吨.【点睛】“读懂题意,找到包含未知量和已知量的等量关系与不等关系,并由此列出对应的方程组和不等式组”是解答本题的关键.24.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【答案】(1)老师有16名,学生有284名;(2)8;(3)共有3种租车方案,最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【解析】(1)设老师有x名,学生有y名,根据等量关系:若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,列出二元一次方程组,解出即可;(2)由(1)中得出的教师人数可以确定出最多需要几辆汽车,再根据总人数以及汽车最多的是42座的可以确定出汽车总数不能小于30042=507(取整为8)辆,由此即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x 取值范围,分析得出即可.【详解】(1)设老师有x名,学生有y名,依题意,列方程组为1712 184x yx y=-⎧⎨=+⎩,解得:16284 xy=⎧⎨=⎩,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于30042=507(取整为8)辆,综合起来可知汽车总数为8辆,故答案为8;(3)设租用x 辆乙种客车,则甲种客车数为:(8﹣x )辆,∵车总费用不超过3100元,∴400x+300(8﹣x )≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x )≥300,解得:x≥5,∴5≤x≤7(x 为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为30034005⨯+⨯=2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为30024006⨯+⨯=3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为30014007⨯+⨯=3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组是解题的关键.25.化简:()()()223+10x y x y x y y +---.【答案】6xy【解析】原式第一项利用完全平方公式化简,第二项利用平方差公式计算,去括号合并即可得到结果.【详解】原式()222226910x xy y x yy =++---222226910x xy y x y y =++-+-6xy =【点睛】题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.甲、乙两人做同样的零件,如果甲先做1天,乙再开始做,5天后两人做的一样多;如果甲先做30个,乙再开始做,4天后乙反而比甲多做10个,设甲每天做x个,乙每天做y个,则可列出的方程组是( )A.156304410x yx y+=⎧⎨+=-⎩B.65304410x yx y=⎧⎨+=-⎩C.65304410x yx y=⎧⎨+=+⎩D.156304410x yx y+=⎧⎨+=+⎩【答案】B【解析】设甲每天做x个,乙每天做y个,根据题意即可列出方程组.【详解】设甲每天做x个,乙每天做y个,根据如果甲先做1天,乙再开始做,5天后两人做的一样多;如果甲先做30个,乙再开始做,4天后乙反而比甲多做10个,可得方程组65304410 x yx y=⎧⎨+=-⎩故选B.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意找到等量关系进行列出方程. 2.奥运会的年份与届数如下表,表中n的值为()A.28 B.29 C.30 D.31【答案】D【解析】第1届相应的举办年份=1896+4×(1-1)=1892+4×1=1896年;第2届相应的举办年份=1896+4×(2-1)=1892+4×2=1900年;第3届相应的举办年份=1896+4×(3-1)=1892+4×3=1904年;…第n届相应的举办年份=1896+4×(n-1)=1892+4n年,根据规律代入相应的年数即可算出届数.【详解】观察表格可知每届举办年份比上一届举办年份多4,则第n届相应的举办年份=1896+4×(n−1)=1892+4n年,1892+4n=2016,解得:n=31,故选D.【点睛】本题考查数字变化的规律,解题的关键是由题意得出第n 届相应的举办年份=1896+4×(n−1)=1892+4n 年. 3.在平面直角坐标系中,将点(-2,3)向上平移1个单位长度,所得到的点的坐标是( )A .(-1,3)B .(-2,2)C .(-2,4)D .(-3,3) 【答案】C【解析】试题分析:点(-2,3) 向上平移1个单位长度,所以横坐标不变,纵坐标加1,因此所得点的坐标是(-2,4).故选C .点睛:本题考查了点的平移的坐标特征,需熟记沿横轴平移,横坐标变化,沿纵轴平移纵坐标变化,沿正方向平移加,沿负方向平移减.4.晓东根据某市公交车阶梯票价,得出乘坐路程m (单位:公里)和票价n (单位:元)之间的关系如下表: 乘坐路程m 0 010x <≤ 1015x <≤ 1520x <≤ 以此类推,每增加5 公里增加1元票价n 0 2 3 4 我们定义公交车的平均单价为w m=,当7,10,13m =时,平均单价依次为1w ,2w ,3w ,则1w ,2w ,3w 的大小关系是( )A .123w w w >>B .312w w w >>C .231w w w >>D .132w w w >> 【答案】D【解析】根据题意,按计费规则计算即可.【详解】解:由题意1232237100.28570.20.208133w w w =≈===≈,,, 所以132w w w >>,故选D .【点睛】本题为实际应用问题,考查了函数图象的意义以阅读图表能力,解答关键需要理解计费规则. 5.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( )A .x 2{x 1>≤- B .x 2{x 1<>- C .x 2{x 1<≥- D .x 2{x 1<≤- 【答案】C【解析】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。

四川省成都市2019-2020学年初一下期末监测数学试题含解析

四川省成都市2019-2020学年初一下期末监测数学试题含解析

四川省成都市2019-2020学年初一下期末监测数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题只有一个答案正确)1.若x <y ,则下列式子不成立的是 ( )A .x-1<y-1B .22x y <C .x+3<y+3D .-2x <-2y 【答案】D 【解析】【分析】 根据不等式的性质逐项分析即可.【详解】A. ∵ x <y ,∴ x-1<y-1,故成立;B. ∵ x <y ,∴ 22x y <,故成立; C. ∵ x <y ,∴ x+3<y+3,故成立;D. ∵ x <y ,∴ -2x>-2y ,故不成立;故选D.故选:D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.2.如果不等式组无解,则b 的取值范围是A .B .C .D .【答案】D【解析】【分析】根据不等式组无解,可得出b ≤-1.【详解】解:∵不等式组 无解,∴由“大大小小,解不了(无解)”的原则,可得出:b ≤-1.故选择:D.【点睛】本题考查了根据不等式组的解集求参数.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2B .m≥2C .m≥2且m≠3D .m >2且m≠3 【答案】C【解析】试题解析:分式方程去分母得:m-1=x-1,解得:x=m-2,由方程的解为非负数,得到m-2≥0,且m-2≠1,解得:m≥2且m≠1.故选C.考点:分式方程的解.4.多项式12abc ﹣6bc 2各项的公因式为( )A .2abcB .3bc 2C .4bD .6bc 【答案】D【解析】多项式2126abc bc -各项的公因式为6bc ,故选D.5327163π、0、 0.101001中,无理数有( )个A .1B .2C .3D .4 【答案】B【解析】分析:根据无理数的定义:无限不循环小数叫无理数,逐个数分析即可.详解:3 273=164=3是无理数、﹣π是无理数、0、 0.101001是有理数. ∴有2个无理数,故选B.点睛: 本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽3 35等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个).6.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22<D .2x 2y -<- 【答案】D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立;若x <y ,则3x <3y ,选项B 成立;若x <y ,则x 2<y 2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立,故选D .【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.7.如图中字母A 所代表的正方形的面积为( )A .4B .8C .16D .64【答案】D【解析】 试题分析:根据勾股定理的几何意义解答.解:根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A=289﹣225=1.故选D .8.如图,x 的值是( )A .80B .90C .100D .110【答案】C【解析】【分析】根据四边形的内角和=360°列方程即可得到结论.【详解】解:根据四边形的内角和得,x+x+10+60+90=360,解得:x=100,故选:C.【点睛】本题考查多边形的内角和定理,掌握(n-2)•180°(n≥3)且n为整数)是解题的关键.9.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为A.1 B.2 C.3 D.4【答案】C【解析】分析:从4条线段里任取3条线段组合,可有4种情况,根据两边之和大于第三边,两边之差小于第三边,看哪种情况不符合三角形三边关系,舍去即可:四条木棒的所有组合:3cm,6cm,8cm和3cm,6cm,9cm和3cm,8cm,9cm和6cm,8cm,9cm;只有3cm,6cm,9cm不能组成三角形.故选C.10.如图,为估计池塘岸边A,B的距离,小明在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离可能是()A.30米B.25米C.20米D.5米【答案】C【解析】设A,B间的距离为x.根据三角形的三边关系定理,得:15-10<x<15+10,解得:5<x<25,所以,A,B之间的距离可能是20m.故选C.二、填空题11.小明和小芳用编有数字1~10的10张纸片(除数字外大小颜色都相同)做游戏,小明从中任意抽取一张(不放回),小芳从剩余的纸片中任意抽取一张,谁抽到的数字大,谁就获胜(数字从小到大顺序为1,2,3,4,5,6,7,8,9,10)然后两人把抽到的纸片都放回,重新开始游戏,如果小明已经抽到的纸片上的数字为3,然后小芳抽纸片,则小芳获胜的概率是_____. 【答案】79 【解析】【分析】根据概率公式即可计算求解.【详解】由题意可知小芳获胜只需抽到比3大的数,故概率为79【点睛】此题主要考查概率的计算,解题的关键是根据题意找到关系.12.如图,AB CD ∕∕,AE 平分CAB ∠交CD 于点E . 若50C ∠=︒,则EAB ∠=_____︒.【答案】1【解析】【分析】先根据角平分线的性质得出1=2EAB EAC CAB ∠=∠∠,再由AB CD ∕∕得出AB 180C C ∠+∠=︒,从而求出EAB ∠的度数.【详解】解:∵AE 平分CAB ∠交CD 于点E ,∴1=2EAB EAC CAB ∠=∠∠, ∵AB CD ∕∕,∴AB 180C C ∠+∠=︒,∴AB 180=18050=130C C ∠=︒-∠︒-︒︒,∴11==130=6522EAB CAB ∠∠⨯, 故答案为:1.【点睛】本题主要考查了角平分线、平行线的性质,根据已知得出1=2EAB EAC CAB ∠=∠∠,AB 180C C ∠+∠=︒是解决问题的关键.13.已知m ,n 为互质(即m ,n 除了1没有别的公因数)的正整数,由m n ⨯个小正方形组成的矩形,如左下图示意,它的对角线穿过的小正方形的个数记为f 。

2019-2020学年四川省成都市天府新区七年级(下)期末数学试卷 (含答案解析)

2019-2020学年四川省成都市天府新区七年级(下)期末数学试卷 (含答案解析)

2019-2020学年四川省成都市天府新区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列计算正确的是()A. 2a⋅3b=5abB. a3⋅a4=a12C. (−3a2b)2=6a4b2D. a5÷a3+a2=2a22.下列手机软件图标中,是轴对称图形的是()A. B. C. D.3.人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10−5B. 0.51×105C. 5.1×10−6D. 0.51×1064.下列事件中,属于必然事件的是()A. 打开电视,它正在播广告B. 掷两枚质地均匀的骰子,点数之和一定大于6C. 某射击运动员射击一次,命中靶心D. 早晨的太阳从东方升起5.如图,已知△ABC,若AC⊥BC,CD⊥AB,∠1=∠2,下列结论:①∠3=∠EDB;②∠A=∠3;③AC//DE;④∠2与∠3互补;⑤∠1=∠EDB,其中正确的有()A. 2个B. 3个C. 4个D. 5个6.能把三角形分成两个面积相等的小三角形的线段是()A. 角平分线B. 中线C. 高D. 以上都不对7.如果(x−2)(x+1)=x2+mx+n,那么m+n的值为()A. −1B. 1C. −3D. 38.等腰三角形的顶角的度数为70°,那么一个底角的度数为()A. 35°B. 55°C. 65°D. 110°9.如图,边长为(m+3)的正方形纸片剪去一个边长为m的正方形之后,余下部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则此长方形的周长是()A. 2m+6B. 4m+6C. 4m+12D. 2m+1210.如图所示,△ABC≌△DEC,∠ACB=60°,∠BCD=100°,点A恰好落在线段ED上,则∠B的度数为()A. 50°B. 60°C. 55°D. 65°二、填空题(本大题共9小题,共36.0分)11.已知∠a=26°,那么∠a补角的度数=__________度.12.x2−2(m+3)x+9是一个多项式的平方,则m=______.13.如图,直线a//b,将三角尺的直角顶点放在直线b上,若∠1=40∘,则∠2的度数是________°.14.如图,在△ABC中,∠B=90°,以点A为圆心,适当长为半径作弧,与边AB、AC各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,则∠C=________°.15.若a3x+y=−24,a x=−2,则a y=______.16.在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3,则n=______.只,白球n只,若从袋中任取一个球,摸出白球的概率为3417.如图,正方形CEGF的顶点E、F在正方形ABCD的边BC、CD上,且AB=5,CE=3,连接BG、DG,则图中阴影部分的面积是________.18.如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角,且E,A,B三点共线,AB=4,则阴影部分的面积是________.19.如图,在△ABC中,已知点D、E分别为BC、AD的中点,EF=2FC,且△ABC的面积为12,则△BEF的面积为______.三、计算题(本大题共2小题,共18.0分)20.计算:(1)−30−2−3+(12)−1(2)(−a 3)2⋅a 3−(−3a 3)321. 先化简,再求值:(x +y +2)(x +y −2)−(x +2y)2+3y 2,其中x =−12,y =13四、解答题(本大题共7小题,共66.0分) 22. 如图,在长方形网格中,我们把水平线和垂直线的交点称为“格点”,例如图中的点A 、点B .(1)作出线段AB 关于y 轴对称的线段CD.并写出点A 的对应点C 的坐标______.(2)在y 轴上找一点P 使△ABP 的周长最小,请在图中画出点P(保留作图痕迹).(3)M 为x 轴上一点,请在x 轴上找一点Q 使∠BQO =∠AQM ,请在图中画出点Q(保留作图痕迹).23.如图,为了测量一池塘的宽AB,在岸边找到一点C,连接AC,在AC的延长线上找一点D,使得DC=AC,连接BC,在BC的延长线上找一点E,使得EC=BC,测出DE=60m,试问池塘的宽AB为多少?请说明理由.24.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表为测得的弹簧长度y与所挂物体的质量x的六组对应值.所挂物体的质量x(kg)012345弹簧长度y(cm)182022242628(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体的质量为3kg时,弹簧多长?不挂重物时呢?(3)若所挂重物为7kg时(在允许范围内),你能说出此时的弹簧长度吗?25.如图,∠ACB=90°,BD平分∠ABE,CD//AB交BD于D,∠1=20°,求∠2的度数.26.已知a、b、c、为△ABC的三边长,a2+b2−10a−8b+41=0,且△ABC为等腰三角形,求△ABC的周长.27.A,B两地相距1100米,甲从A地出发,乙从B地出发,相向而行,甲比乙先出发2分钟,乙出发7分钟后与甲相遇.设甲、乙两人相距y米,甲行进的时间为t分钟,y与t之间的函数关系如图所示.请你结合图象探究:(1)甲的行进速度为每分钟______米,m=______分钟;(2)求直线PQ对应的函数表达式;(3)求乙的行进速度.28.如图1,在△ABC中,AB=AC,AC平分∠BCD,连接BD,∠ABD=2∠CBD,∠BDC=∠ABD+∠ACD.(1)求∠A的度数;(2)如图2,连接AD,AE⊥AD交BC于E,连接DE,求证:∠DEC=BAE;(3)如图3,在(2)的条件下,点G为CE的中点,连接AG交BD于点F,若S△ABC=32,求线段AF的长.-------- 答案与解析 --------1.答案:D解析:【分析】根据单项式的乘法,可判断A;根据同底数幂的乘法,可判断B;根据积的乘方,可判断C;根据同底数幂的除法,可判断D.本题考查了单项式的乘法、同底数幂的乘除法、积的乘方,熟记法则并根据法则计算是解题关键.【解答】解:A、2a⋅3b=6ab,故A错误;B、a3⋅a4=a7,故B错误;C、(−3a2b)2=9a4b2,故C错误;D、a5÷a3+a2=a2+a2=2a2,故D正确;故选:D.2.答案:C解析:【分析】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故错误;B.不是轴对称图形,故错误;C.是轴对称图形,故正确;D.不是轴对称图形,故错误.故选C.3.答案:C解析:解:0.0000051=5.1×10−6,故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.答案:D解析:解:A、打开电视,它正在播广告,是随机事件,故本选项错误;B、掷两枚质地均匀的骰子,点数之和一定大于6是不确定事件,故本选项错误;C、某射击运动员射击一次,命中靶心是随机事件,故本选项错误;D、早晨的太阳从东方升起是必然事件,故本选项正确;故选:D.根据事件的分类判断,必然事件就是一定发生的事件,根据定义即可解决.本题考查的是随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.5.答案:B解析:【分析】本题考查的是平行线的判定与性质,对顶角和邻补角,垂线的定义的有关知识,熟知垂直的定义及平行线的判定定理是解答此题的关键.根据∠1=∠2得出AC//DE,再由AC⊥BC可得出DE⊥BC,故∠3+∠2=90°,∠2+∠EDB=90°,故①正确;由AC//DE可知∠A=∠EDB,∠EDB=∠3,故可得出②正确;∠1=∠2可知AD//DE,故③正确;由DE⊥AC可知∠2与∠3互余,故④错误;根据AC//DE,可得∠EDB=∠A,而∠1≠∠A,故⑤错误.【解答】解:∵∠1=∠2,∴AC//DE.∵AC⊥BC,∴DE⊥BC,∴∠3+∠2=90°,∠2+∠EDB=90°,∴∠3=∠EDB,故①正确;∵AC//DE,∴∠A=∠EDB,∵∠EDB=∠3,∴∠A=∠3,故②正确;∵∠1=∠2,∴AC//DE,故③正确;∵DE⊥AC,∴∠2与∠3互余,故④错误;∵AC//DE,∴∠EDB=∠A,而∠1≠∠A,∴∠1≠∠EDB,故⑤错误.故选B.6.答案:B解析:解:∵三角形的中线把三角形分成两个底边相等,高相同的两个三角形,∴这两个三角形的面积相等,∴把三角形分成两个面积相等的小三角形的线段是三角形的中线.故选B.分成的2个三角形的高相同,面积相等,那么底也应相同,连接三角形的一个顶点和对边中点的线段即符合要求.此题考查了三角形的中线的性质.注意三角形的中线把三角形的面积分成相等的两部分.7.答案:C解析:解:(x−2)(x+1)=x2+x−2x−2=x2−x−2,则m=−1,n=−2,∴m+n=−3,故选:C.根据多项式乘多项式法则把等式的左边展开,根据题意求出m、n的值,计算即可.本题考查的多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.8.答案:B解析:【分析】本题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.由已知顶角为70°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【解答】解:∵等腰三角形的顶角为70°,∴它的一个底角为(180°−70°)÷2=55°.故选B.9.答案:C解析:解:由面积的和差,得长方形的面积为(m+3)2−m2=(m+3+m)(m+3−m)=3(2m+3).由长方形的宽为3,可得长方形的长是(2m+3).长方形的周长是2[(2m+3)+3]=4m+12.故选:C.根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.本题考查了平方差公式的几何背景,利用了面积的和差.10.答案:A解析:【分析】根据全等三角形对应角相等可得∠DCE=∠ACB,AC=CD,∠D=∠BAC,求出∠D=∠DAC,然后求出∠ACD,根据三角形内角和定理求出∠D,求出∠BAC,根据三角形内角和定理求出即可.本题考查了全等三角形对应角相等,对应边相等的性质,也考查了三角形内角和定理等于180°,熟记性质并准确识图,理清图中各角度之间的关系是解题的关键.【解答】解:∵△ABC≌△DEC,∴∠DCE=∠ACB=60°,AC=CD,∠D=∠BAC,∴∠D=∠DAC,∵∠ACE=100°,∴∠ACD=∠ACE−∠ACB=100°−60°=40°,×(180°−40°)=70°,∴∠BAC=∠D=12∴∠B=180°−∠ACB−∠BAC=180°−70°−60°=50°,故选A.11.答案:154解析:【分析】本题主要考查补角的定义,先根据补角的定义求出∠a补角的度数.【解答】解:由题意,得:180°−26°=154°,故∠a补角的度数为154°,故答案为154.12.答案:−6或0解析:【分析】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【解答】解:∵x2−2(m+3)x+9=x2−2(m+3)x+32,∴−2(m+3)=±6x,∴m+3=3,或m+3=−3,解得m=−6,或m=0.故答案为−6或0.13.答案:50解析:【分析】本题考查了平行线的性质,熟记性质并准确识图是解题的关键,根据平角的定义求出∠3,再根据“两直线平行,同位角相等”可得∠2=∠3.【解答】解:如图,∵∠1=40°,∴∠3=180°−40°−90°=50°,∵a//b,∴∠2=∠3=50°.故答案为50.14.答案:30解析:【分析】本题考查了作图−基本作图以及角平分线的性质定理,熟练掌握角平分线的性质定理和基本作图是解答本题关键,由作图法得AD平分∠BAC,在Rt△ABD中,∠ADB=60°,得∠BAD=30°,∠BAC=60°即可解答本题.【解答】解:由作法得AD平分∠BAC,∵∠ADB=60°,∠B=90°,∴∠BAD=30°,∴∠BAC=2∠BAD=60°,∴在Rt△ABC中,∠C=90°−60°=30°.故答案为30.15.答案:3解析:【分析】此题主要考查了同底数幂的乘法及幂的乘方运算,正确将原式变形是解题关键.直接利用同底数幂的乘法及幂的乘方运算法则将原式变形,进而得出答案.【解答】解:∵a3x+y=−24,a x=−2,∴a3x+y=a3x×a y=(a x)3×a y=(−2)3×a y=−24,则a y=3.故答案为:3.16.答案:9解析:解:根据题意得:n n+3=34,解得:n=9,经检验:x=9是原分式方程的解.故答案为:9.根据题意,由概率公式可得方程:nn+3=34,解此方程即可求得答案.此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.17.答案:8解析:解:阴影部分的面积=三角形ABG的面积+三角形DFG的面积=5×(5−3)÷2+3×(5−3)÷2=5+3=8.故答案为:8.图中阴影部分的面积=三角形ABG的面积+三角形DFG的面积,根据正方形的性质和线段的和差关系分别得到两个阴影三角形的底和高,再根据三角形面积公式求解即可.考查了正方形的性质,三角形的面积计算,关键是求出两个阴影三角形的底和高.18.答案:8解析:【分析】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.根据正方形的性质得到AC=AF,∠CAF=90°,证明△CAE≌△AFB,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠FAB=90°,∵∠ABF=90°,∴∠AFB+∠FAB=90°,∴∠EAC=∠AFB,在△CAE和△AFB中,{∠CAE=∠AFB ∠AEC=∠FBA AC=AF,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=12×AB×CE=8,故答案为8.19.答案:4解析:解:∵点D是BC的中点,∴△ABD的面积=△ACD的面积=12△ABC=6,∵E是AD的中点,∴△ABE的面积=△DBE的面积=14△ABC的面积=3,△ACE的面积=△DCE的面积=14△ABC的面积=3,∴△BCE的面积=12△ABC的面积=6,∵EF=2FC,∴△BEF的面积=23×6=4,故答案为:4.由点D 是BC 的中点,可得△ABD 的面积=△ACD 的面积=12△ABC ,由E 是AD 的中点,得出△ABE 的面积=△DBE 的面积=14△ABC 的面积,进而得出△BCE 的面积=12△ABC 的面积,再利用EF =2FC ,求出△BEF 的面积.本题主要考查了三角形的面积,解题的关键是根据中点找出三角形的面积与原三角形面积的关系. 20.答案:解:(1)原式=−1−18+2,=78; (2)原式=a 6·a 3+27a 9=a 9+27a 9=28a 9.解析:本题考查了实数的运算,整式的混合运算.(1)先算零指数幂、负整数指数幂,再算加减即可;(2)先算幂的乘方与积的乘方,再算同底数幂的乘法,最后算合并同类项即可.21.答案:解:原式=(x +y)2−4−(x 2+4xy +4y 2)+3y 2=x 2+2xy +y 2−4−x 2−4xy −4y 2+3y 2=−2xy −4,当x =−12,y =13时,原式=−2×(−12)×13−4=13−4 =−113.解析:原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.22.答案:(−4,3)解析:解:(1)如图所示,线段CD 即为所求,点C 的坐标为(−4,3).故答案为:(−4,3);(2)如图所示,点P 即为所求;(3)如图所示,点Q即为所求.(1)依据轴对称的性质,即可得到线段AB关于y轴对称的线段CD,进而得出点A的对应点C的坐标;(2)连接AD与y轴的交点P即为所求,依据两点之间线段最短,即可得到△ABP的周长最小;(3)作点B关于x轴的对称点B′,连接AB′交x轴于Q,则根据轴对称的性质以及对顶角相等,即可得出∠BQO=∠B′QO=∠AQM.本题主要考查作图−轴对称变换,解题的关键是根据轴对称变换的定义作出变换后的对应点及轴对称的性质.23.答案:解:AB=60米.理由如下:∵在△ABC和△DEC中,{AC=DC∠ACB=∠DCE BC=EC,∴△ABC≌△DEC(SAS),∴AB=DE=60(米),则池塘的宽AB为60米.解析:利用“边角边”证明△DEC和△ABC全等,再根据全等三角形对应边相等可得DE=AB.本题考查了全等三角形的应用,比较简单,主要利用了全等三角形的判定与全等三角形对应边相等的性质.24.答案:解:(1)上表反映了弹簧长度与所挂物体的质量之间的关系;其中所挂物体的质量是自变量,弹簧长度是因变量.(2)由表格可知:当x=3时,y=24;当x=0时,y=18.所以,当所挂重物为3kg时,弹簧有24cm长;不挂重物时,弹簧有18cm长.(3)设弹簧长度y(cm)与所挂物体质量x(kg)的关系式为y=kx+b,将x=0,y=18;x=1,y=20代入得:k=2,b=18,∴y=2x+18.∴所挂重物为7kg时的弹簧长度为:18+2×7=32(cm).答:所挂重物为7kg时(在允许范围内),弹簧长度为32cm.解析:本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式.(1)上述表格反映了弹簧的长度ycm 与所挂物体的质量xkg 这两个变量之间的关系.其中所挂物体的质量xkg 是自变量,弹簧的长度ycm 是因变量.(2)从图表中直接得出当所挂重物为3kg 时,弹簧的长度和不挂重物时弹簧的长度.(3)设y =kx +b ,然后将表中的数据代入求解即可得到一次函数关系式,把x =7代入求得的函数关系式,求出y 的值即可.25.答案:解:∵BD 平分∠ABE ,∠1=20°,∴∠ABC =2∠1=40°,∵CD//AB ,∴∠DCE =∠ABC =40°,∵∠ACB =90°,∴∠2=90°−40°=50°.解析:先根据BD 平分∠ABE ,∠1=20°,可得∠ABC =2∠1=40°,再根据CD//AB ,即可得到∠DCE =∠ABC =40°,进而依据∠ACB =90°,得出∠2=90°−40°=50°.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.26.答案:解:∵a 2+b 2−10a −8b +41=0,∴a 2−10a +25+b 2−8b +16=0,∴(a −5)2+(b −4)2=0,∴a −5=0,b −4=0,∴a =5,b =4,∵等腰△ABC ,∴第三边长c =5或4,∴△ABC 的周长为5+5+4=14,或5+4+4=13.即△ABC 的周长为14或13.解析:已知等式左边化为两个完全平方公式的和,利用非负数的性质求出a 与b 的值,再利用等腰三角形的性质,即可确定出三角形周长.考查了完全平方公式、非负数的性质及三角形的三边关系,解题的关键是对等式的左边化成两个完全平方公式的和,属于中档题.27.答案:(1)60 ,9 ;(2)设直线PQ 的解析式为y =kt +b ,由题意,得{1100=b 980=2k +b, 解得:{k =−60b =1100, y =−60t +1100.∴直线PQ 对应的函数表达式为y =−60t +1100;(3)设乙的行进速度为a 米/分,由题意,得.980÷(a +60)=7,解得:a =80.经检验a =80是原方程的根,答:乙的行进速度为80米/分.解析:【分析】本题考查了行程问题的数量关系路程÷时间=速度的运用,待定系数法求一次函数的解析式的运用,解答时认真分析函数图象的数据是关键.(1)由函数图象可以求出两分钟行驶的路程就可以求出甲的速度,由相遇时间为7分钟就可以求出m 的值;(2)设直线PQ的解析式为y=kt+b,由待定系数法就可以求出结论;(3)设乙的行进速度为a米/分,由相遇问题的数量关系建立方程求出其解即可.【解答】解:(1)由题意,得甲的行进速度为(1100−980)÷2=60米/分,m=7+2=9分钟.故答案为:60,9;(2)见答案;(3)见答案.28.答案:(1)解:如图1中,设∠DBC=x.∵AB=AC,∠ABD=2∠DBC,∴∠ABD=2x,∠ABD=∠ACB=3x,∵AC平分∠BCD,∴∠ACD=∠ACB=3x,∵∠D=ABD+∠ACD=5x,∠D+∠DBC+∠DCB=180°,∴5x+x+6x=180°∴x=15°,∴∠ABC=∠ACB=45°,∠ABD=30°,∴∠A=180°−45°−45°=90°.(2)证明:如图2中,取DE的中点O,连接OA,OC.∵EA⊥DA,∴∠EAD=90°,∵∠BCD=6x=90°,∴OA=OE=OD=OC,∴A,E,C,D四点共圆,∴∠DEC=∠CAD,∵∠BAC=∠EAD=90°,∴∠BAE=∠CAD,∠DEC=∠BAE.(3)解:如图3中,⋅AB2=32,∵S△ABC=12∴AB=8或−8(舍弃),由(1)可知∠ABF=30°,AB=4.∴AF=12解析:(1)如图1中,设∠DBC=x.推出∠ABC=2x,∠ABC=∠ACB=∠ACD=3x,∠D=5x,利用三角形内角和定理构建方程求出x即可.(2)如图2中,取DE的中点O,连接OA,OC.利用直角三角形斜边中线的性质证明OA=OE=OD= OC,TC推出A,E,C,D四点共圆即可解决问题.(3)求出AB,利用直角三角形30度角的性质解决问题即可.本题属于三角形综合题,考查了等腰直角三角形的判定和性质,三角形内角和定理,四点共圆等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

2019-2020学年四川省成都市高新区七年级下学期期末数学试卷 (解析版)

2019-2020学年四川省成都市高新区七年级下学期期末数学试卷 (解析版)

2019-2020学年四川省成都市高新区七年级第二学期期末数学试卷一、选择题1.下列计算正确的是()A.a3•a2=a6B.b4•b4=2b4C.x5+x5=x10D.y7•y=y82.新冠疫情发生以来,各地根据教育部“停课不停教,停课不停学”的相关通知精神,积极开展线上教学.下列在线学习平台的图标中,是轴对称图形的是()A.B.C.D.3.空气的密度是0.001293g/cm3,0.001293用科学记数法表示为()A.1.293×103B.1.293×10﹣3C.1.293×10﹣4D.12.93×10﹣4 4.下列长度的三根小木棒,能摆成三角形的是()A.3cm,4cm,5cm B.8cm,7cm,15cmC.15cm,13cm,1cm D.5cm,5cm,11cm5.下列能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠A=∠C D.∠A+∠ABC=180°6.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上7.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF8.下列整式运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+2)(a﹣2)=a2﹣2C.(a+2)(a﹣2)=a2﹣4D.(a+2b2)=a2+2ab+4b29.如图,在△ABC中,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD的度数为()A.30°B.40°C.60°D.90°10.小明站在离家不远的公共汽车站等车.能最好地刻画等车这段时间离家距离与时间的关系图象是()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.计算:(﹣x3y)2=.12.等腰三角形的一个底角为50°,则它的顶角的度数为.13.已知:a+b=3,则代数式a2+2ab+b2的值为.14.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=度.三、解答题(本大题共6个小题,共54分,答案写在答题卡上)15.计算:(1)(﹣)﹣2﹣(π﹣3)0+|﹣|×33;(2)(a﹣b﹣3)(a﹣b+3).16.化简求值:[(xy+2)(xy﹣2)﹣2x2y2+4]÷(xy),其中x=10,.17.已知:如图,A、B、C、D在同一直线上,且AE∥DF,AE=DF,AB=CD.求证:∠E=∠F.18.如图,在长度为1个单位长度的小正方形组成的正方形网格中,△ABC的三个顶点A、B、C都在格点上.(1)在图中画出与△ABC关于直线y成轴对称的△A1B1C1;(2)求△ABC的面积;(3)在x轴上找出一点P,使得PB+PC的值最小.(不需计算,在图上直接标记出点P的位置)19.我市一水果批发市场某商家批发苹果采取分段计价的方式,其价格如下表:购买苹果数x(千克)不超过50千克的部分超过50千克的部分每千克价格(元)108(1)小刚购买苹果40千克,应付多少元?(2)若小刚购买苹果x千克,用去了y元.分别写出当0≤x≤50和x>50时,y与x 的关系式;(3)计算出小刚若一次性购买80千克所付的费用比分两次共购买80千克(每次都购买40千克)所付的费用少多少元?20.如图,△ABC和△DEF是两个等腰直角三角形,∠BAC=∠DFE=90°,AB=AC,FD=FE,△DEF的顶点E在边BC上移动,在移动过程中,线段DE与线段AB相交于点P,线段EF与线段CA相交于点Q.(1)如图1,当E为BC中点,且BP=CQ时,求证:△BPE≌△CQE;(2)如图2,当ED经过点A,且BE=CQ时,求∠EAQ的度数;(3)如图3,当E为BC中点,连接AE、PQ,若AP=3,AQ=4,PQ=5,求AC的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)B卷(共50分)21.已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为.22.在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是.23.三角形中,如果有一个内角是另外一个内角的3倍,我们把这个三角形叫做“三倍角三角形”.在一个“三倍角三角形”中有一个内角为60°,则另外两个角分别为.24.如图,在△ABC中,AB=AC,D为线段BC上一动点(不与点B、C重合),连接AD,作∠DAE=∠BAC,且AD=AE,连接CE.(1)如图1,当CE∥AB时,若∠BAD=35°,则∠DEC度;(2)如图2,设∠BAC=α(90°<α<180°),在点D运动过程中,当DE⊥BC时,∠DEC=.(用含α的式子表示)25.如图,点C为线段AB的中点,以BC为边作正方形BCDE,点F、点G分别在边DE、DC上,且满足DF=DG,连接BF,连接AG并延长交BF于点H,连接DH.以下结论:①△ACG≌△BEF;②HD=HG;③AH⊥BF;④∠DHG=45°.其中正确的有(填序号).二、解答题(本大题共3个小题,共30分,答案写在答题卡上)26.(1)已知:a(a+1)﹣(a2+b)=3,a(a+b)+b(b﹣a)=13,求代数式ab的值.(2)已知等腰△ABC的两边分别为a、b,且a、b满足a2+b2﹣6a﹣14b+58=0,求△ABC的周长.27.小张和小王是同一单位在A、B两市的同事,已知A、B两市相距400km,周六上午小王从B市出发,开车匀速前往A市的公司开会,1小时后小张从A市的公司出发,沿同一路线开车匀速前往B市,小张行驶了一段路程后,得知小王要到A市的公司开会,便立即加速返回公司(折返的时间忽略不计).已知小张返回时的速度比去时的速度每小时快20km.两人距B市的距离y(km)与小张行驶时间x(h)间的关系如图所示,请结合图象解答下列问题:(1)小王的速度为km/h,a的值为;(2)求小张加速前的速度和b的值;(3)在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km?28.已知:△ABC为等边三角形.(1)如图1,点D、E分别为边BC、AC上的点,且BD=CE.i)求证:△ABD≌△BCE;ii)求∠AFE的度数;(2)如图2,点D为△ABC外一点,BA、CD的延长线交于点E,连接AD,已知∠BDC =60°,且AD=2,CD=5,求BD的长;(3)如图3,线段DB的长为3,线段DC的长为2,连接BC,以BC为边作等边△ABC,连接AD,直接写出当线段AD取最大值与最小值时∠BDC的度数.参考答案一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列计算正确的是()A.a3•a2=a6B.b4•b4=2b4C.x5+x5=x10D.y7•y=y8【分析】根据合并同类项的法则,只把系数相加减,字母与字母的指数不变;同底数幂相乘,底数不变指数相加解答.解:A、应为a3•a2=a5,故本选项错误;B、应为b4•b4=b8,故本选项错误;C、应为x5+x5=2x5,故本选项错误;D、y7•y=y8,正确.故选:D.2.新冠疫情发生以来,各地根据教育部“停课不停教,停课不停学”的相关通知精神,积极开展线上教学.下列在线学习平台的图标中,是轴对称图形的是()A.B.C.D.【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”判断即可得.解:四个图形中是轴对称图形的只有A选项,故选:A.3.空气的密度是0.001293g/cm3,0.001293用科学记数法表示为()A.1.293×103B.1.293×10﹣3C.1.293×10﹣4D.12.93×10﹣4【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.001293=1.293×10﹣3,故选:B.4.下列长度的三根小木棒,能摆成三角形的是()A.3cm,4cm,5cm B.8cm,7cm,15cmC.15cm,13cm,1cm D.5cm,5cm,11cm【分析】根据三角形的三边关系对各选项进行逐一分析即可.解:A、3+4=7>5,能构成三角形,故本选项符合题意;B、8+7=15,不能构成三角形,故本选项不符合题意;C、1+13=14<15,不能构成三角形,故本选项不符合题意;D、5+5=10<11,不能构成三角形,故本选项不符合题意.故选:A.5.下列能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠A=∠C D.∠A+∠ABC=180°【分析】根据两条直线被第三条所截,如果内错角相等,那么这两条直线平行可得答案.解:A、∵∠1=∠4,∴AB∥CD,故A选项符合题意;B、∵∠2=∠3,∴AD∥CB,故B选项不符合题意;C、∵∠A=∠C,无法判断AB∥CD,故C选项不符合题意;D、∵∠A+∠ABC=180°,∴AD∥CB,故D选项不符合题意;故选:A.6.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上【分析】根据事件发生的可能性大小判断.解:A、打开电视,正在播放新闻,是随机事件;B、买一张电影票,座位号是奇数号,是随机事件;C、任意画一个三角形,其内角和是180°,是必然事件;D、掷一枚质地均匀的硬币,正面朝上,是随机事件;故选:C.7.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.8.下列整式运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+2)(a﹣2)=a2﹣2C.(a+2)(a﹣2)=a2﹣4D.(a+2b2)=a2+2ab+4b2【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.解:∵(a﹣b)2=a2﹣2ab+b2,故选项A错误;∵(a+2)(a﹣2)=a2﹣4,故选项B错误;∵(a+2)(a﹣2)=a2﹣4,故选项C正确;∵(a+2b2)=a2+4ab+4b2,故选项D错误;故选:C.9.如图,在△ABC中,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD的度数为()A.30°B.40°C.60°D.90°【分析】根据AB∥CD,可得∠BCD=∠B=30°,然后根据CB平分∠ACD,可得∠ACD=2∠BCD=60°.解:如图,∵AB∥CD,∠B=30°,∴∠BCD=∠B=30°,∵CB平分∠ACD,∴∠ACD=2∠BCD=60°.故选:C.10.小明站在离家不远的公共汽车站等车.能最好地刻画等车这段时间离家距离与时间的关系图象是()A.B.C.D.【分析】在车站等车,离家的距离不变,从而得出答案.解:∵小明站在离家不远的公共汽车站等车,∴这段时间离家距离不随时间的变化而变化,故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.计算:(﹣x3y)2=x6y2.【分析】根据积的乘方法则求出即可.解:(﹣x3y)2=x6y2,故答案为:x6y2.12.等腰三角形的一个底角为50°,则它的顶角的度数为80°.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.13.已知:a+b=3,则代数式a2+2ab+b2的值为9.【分析】根据完全平分公式:(a+b)2=a2+2ab+b2,即可解答.解:因为a+b=3,所以a2+2ab+b2=(a+b)2=32=9.故答案为:9.14.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=120度.【分析】利用角平分线的定义可以推知∠CAD=30°,根据三角形外角的性质即可得到结论.解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,又∵AD是∠BAC的平分线,∴∠CAD=∠BAD=∠CAB=30°,∴∠ADB=90°+30°=120°,故答案为:120;三、解答题(本大题共6个小题,共54分,答案写在答题卡上)15.计算:(1)(﹣)﹣2﹣(π﹣3)0+|﹣|×33;(2)(a﹣b﹣3)(a﹣b+3).【分析】(1)根据负指数幂、零指数幂、绝对值、有理数的乘方的运算法则计算即可;(2)先应用平方差公式计算,再运用完全平方公式计算即可.解:(1)(﹣)﹣2﹣(π﹣3)0+|﹣|×33=4﹣1+×27=3+3=6;(2)(a﹣b﹣3)(a﹣b+3)=[(a﹣b)﹣3][(a﹣b)+3]=(a﹣b)2﹣32=a2﹣2ab+b2﹣9.16.化简求值:[(xy+2)(xy﹣2)﹣2x2y2+4]÷(xy),其中x=10,.【分析】原式被除数括号中第一项利用平方差公式化简,合并后利用多项式除以单项式法则计算,得到最简结果,将x与y的值代入计算即可求出值.解:原式=(x2y2﹣4﹣2x2y2+4)÷(xy)=(﹣x2y2)÷(xy)=﹣xy,当x=10,y=﹣时,原式=﹣10×(﹣)=.17.已知:如图,A、B、C、D在同一直线上,且AE∥DF,AE=DF,AB=CD.求证:∠E=∠F.【分析】根据AE∥DF,可以得到∠A=∠D,再根据AB=CD,可以得到AC=DB,然后即可证明△EAC和△FDB全等,从而可以得到∠E=∠F.【解答】证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=CD+BC,∴AC=DB,在△EAC和△FDB中,,∴△EAC≌△FDB(SAS),∴∠E=∠F.18.如图,在长度为1个单位长度的小正方形组成的正方形网格中,△ABC的三个顶点A、B、C都在格点上.(1)在图中画出与△ABC关于直线y成轴对称的△A1B1C1;(2)求△ABC的面积;(3)在x轴上找出一点P,使得PB+PC的值最小.(不需计算,在图上直接标记出点P的位置)【分析】(1)依据轴对称的性质,即可得到与△ABC关于直线y成轴对称的△A1B1C1;(2)依据割补法进行计算,即可得出△ABC的面积;(3)作点B关于x轴的对称点B',连接B'C交x轴于P,则PB+PC的值最小.解:(1)如图所示,△A1B1C1即为所求;(2)△ABC的面积=3×3﹣×2×3﹣×1×2﹣×1×3=;(3)如图所示,点P即为所求.19.我市一水果批发市场某商家批发苹果采取分段计价的方式,其价格如下表:购买苹果数x(千克)不超过50千克的部分超过50千克的部分每千克价格(元)108(1)小刚购买苹果40千克,应付多少元?(2)若小刚购买苹果x千克,用去了y元.分别写出当0≤x≤50和x>50时,y与x 的关系式;(3)计算出小刚若一次性购买80千克所付的费用比分两次共购买80千克(每次都购买40千克)所付的费用少多少元?【分析】(1)根据题意和表格中的数据,可以计算出小刚购买苹果40千克,应付多少元;(2)根据表格中的数据,可以分别写出当0≤x≤50和x>50时,y与x的关系式;(3)根据(2)中的函数关系式,可以求得两种情况下的花费,然后作差即可解答本题.解:(1)由表格可得,40×10=400(元),答:小刚购买苹果40千克,应付400元;(2)由题意可得,当0≤x≤50时,y与x的关系式是y=10x,当x>50时,y与x的关系式是y=10×50+8(x﹣50)=8x+100,即当x>50时,y与x的关系式是y=8x+100;(3)小刚若一次性购买80千克所付的费用为:8×80+100=740(元),分两次共购买80千克(每次都购买40千克)所付的费用为:40×10×2=800(元),800﹣740=60(元),答:小刚若一次性购买80千克所付的费用比分两次共购买80千克(每次都购买40千克)所付的费用少60元.20.如图,△ABC和△DEF是两个等腰直角三角形,∠BAC=∠DFE=90°,AB=AC,FD=FE,△DEF的顶点E在边BC上移动,在移动过程中,线段DE与线段AB相交于点P,线段EF与线段CA相交于点Q.(1)如图1,当E为BC中点,且BP=CQ时,求证:△BPE≌△CQE;(2)如图2,当ED经过点A,且BE=CQ时,求∠EAQ的度数;(3)如图3,当E为BC中点,连接AE、PQ,若AP=3,AQ=4,PQ=5,求AC的长.【分析】(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP =AQ,E是BC的中点,利用SAS,可证得:△BPE≌△CQE;(2)证明△ABE≌△ECQ(AAS),由全等三角形的性质得出AE=EQ,由三角形内角和定理可求出答案;(3)在CQ上截取CH,使得CH=AP,连接EH,证明△CHE≌△APE(SAS),由全等三角形的性质得出HE=PE,∠CEH=∠AEP,证明△HEQ≌△PEQ(SAS),得出HQ=PQ,则可求出答案.【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:∵∠AEQ=45°,∠B=45°,∴∠AEB+∠QEC=135°,∠AEB+∠BAE=135°,∴∠QEC=∠BAE,又∵∠B=∠C,BE=CQ,∴△ABE≌△ECQ(AAS),∴AE=EQ,∴∠EAQ=∠EQA=.(3)在CQ上截取CH,使得CH=AP,连接EH,由(1)知AE=CE,∠C=∠EAP=45°,∵在△CHE与△APE中:,∴△CHE≌△APE(SAS),∴HE=PE,∠CEH=∠AEP,∴∠HEQ=∠AEC﹣∠CEH﹣∠AEQ=∠AEC﹣∠AEP﹣∠AEQ=∠AEC﹣∠PEF=90°﹣45°=45°,∴∠HEQ=∠PEQ=45°,∵在△HEQ与△PEQ中:,∴△HEQ≌△PEQ(SAS),∴HQ=PQ,∴AC=AQ+QH+CH=AQ+PQ+AP=4+5+3=12.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)B卷(共50分)21.已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为6.【分析】将x=1代入2ax2+bx=3得2a+b=3,然后将x=2代入ax2+bx得4a+2b=2(2a+b),之后整体代入即可.解:将x=1代入2ax2+bx=3得2a+b=3,将x=2代入ax2+bx得4a+2b=2(2a+b),∵2a+b=3,∴原式=2×3=6.故答案为:6.22.在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是600.【分析】用所有学生数乘以课外阅读时间不少于7小时的人数所占的百分比即可.解:该校1500名学生一周的课外阅读时间不少于7小时的人数是1500×=600人,故答案为:600.23.三角形中,如果有一个内角是另外一个内角的3倍,我们把这个三角形叫做“三倍角三角形”.在一个“三倍角三角形”中有一个内角为60°,则另外两个角分别为100°,20°或90°,30°.【分析】分三种情形讨论求解即可解决问题.解:在△ABC中,不妨设∠A=60°.①若∠A=3∠C,则∠C=20°,∠B=100°.②若∠C=3∠A,则∠A=180°(不合题意).③若∠B=3∠C,则∠B=90°,∠C=30°,综上所述,另外两个角的度数为100°,20°或90°,30°.故答案为:100°,20°或90°,30°.24.如图,在△ABC中,AB=AC,D为线段BC上一动点(不与点B、C重合),连接AD,作∠DAE=∠BAC,且AD=AE,连接CE.(1)如图1,当CE∥AB时,若∠BAD=35°,则∠DEC25度;(2)如图2,设∠BAC=α(90°<α<180°),在点D运动过程中,当DE⊥BC时,∠DEC=α﹣90°.(用含α的式子表示)【分析】(1)根据已知条件得到∠BAD=∠CAE,根据全等三角形的性质得到∠B=∠ACE,根据平行线的想知道的∠BAC=∠ACE,推出△ABC是等边三角形,得到∠BAC =∠DAE=∠ACB=∠ACE=60°,求得△DAE是等边三角形,于是得到结论;(2)根据等腰三角形的性质得到∠B=∠ACB=(180°﹣α)=90°﹣,根据全等三角形的性质得到∠B=∠ACE=90°﹣,求得∠DCE=2(90°﹣)=180°﹣α,根据三角形的内角和即可得到结论.解:(1)∵∠DAE=∠BAC,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠B=∠ACE,∵CE∥AB,∴∠BAC=∠ACE,∴∠BAC=∠B,∴AC=BC,∴△ABC是等边三角形,∴∠BAC=∠DAE=∠ACB=∠ACE=60°,∴△DAE是等边三角形,∴∠AED=60°,∴∠DEC=180°﹣35°﹣60°﹣60°=25°,故答案为:25;(2)连接CE,∵∠BAC=α,AB=AC,∴∠B=∠ACB=(180°﹣α)=90°﹣,∵∠DAE=∠BAC,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=90°﹣,∴∠DCE=2(90°﹣)=180°﹣α,∵DE⊥BC,∴∠CDE=90°,∴∠DEC=90°﹣∠DCE=α﹣90°.故答案为:α﹣90°.25.如图,点C为线段AB的中点,以BC为边作正方形BCDE,点F、点G分别在边DE、DC上,且满足DF=DG,连接BF,连接AG并延长交BF于点H,连接DH.以下结论:①△ACG≌△BEF;②HD=HG;③AH⊥BF;④∠DHG=45°.其中正确的有①③④(填序号).【分析】由“SAS”可证△ACG≌△BEF,可得判定①;由全等三角形的性质可得∠A =∠EBF,∠AGC=∠BFE,由余角的性质可得∠AHB=90°,可判断③;过点D作DN⊥BF于N,DM⊥AH于H,由“AAS”可证△DHN≌△DHM,可得∠DHM=∠DHN =45°,可判断④,若若DH=DG,可求∠A=22.5°,由点F、点G分别在边DE、DC上,则∠A不是定值,可判断②,即可求解.解:∵点C为线段AB的中点,∴AC=BC,∵四边形BCDE是正方形,∴DE=DC=BC=BE=AC,∠E=∠DCB=90°,又∵DF=DG,∴CG=EF,又∵∠E=∠ACG=90°,∴△ACG≌△BEF(SAS),故①正确,∴∠A=∠EBF,∠AGC=∠BFE,∵∠EBF+∠FBC=90°,∴∠A+∠FBC=90°,∴∠AHB=90°,∴AH⊥BF;故③正确,过点D作DN⊥BF于N,DM⊥AH于H,∵∠AGC=∠BFE,∴∠DGM=∠NFD,又∵∠DNF=∠DMG=90°,DF=DG,∴△DHN≌△DHM(AAS),∴∠DHM=∠DHN,又∵∠AHF=90°,∴∠DHG=45°,故④正确;若DH=DG,∠DHG=45°,∴∠HDG=∠HGD=67.5°,∴∠A=22.5°,∵点F、点G分别在边DE、DC上,∴∠A不是定值,∴DH与HG不一定相等,故②错误.故答案为:①③④.二、解答题(本大题共3个小题,共30分,答案写在答题卡上)26.(1)已知:a(a+1)﹣(a2+b)=3,a(a+b)+b(b﹣a)=13,求代数式ab的值.(2)已知等腰△ABC的两边分别为a、b,且a、b满足a2+b2﹣6a﹣14b+58=0,求△ABC的周长.【分析】(1)首先将已知条件化简,进而得出a2﹣2ab+b2=9①,a2+b2=13②,把②代入①可得结论;(2)首先利用勾股定理得出AC的长,进而得出AC和AB的长,即可得出BB′的长.解:(1)a(a+1)﹣(a2+b)=3,a2+a﹣a2﹣b=3,a﹣b=3,两边同时平方得:a2﹣2ab+b2=9①,a(a+b)+b(b﹣a)=13,a2+ab+b2﹣ab=13,a2+b2=13②,把②代入①得:13﹣2ab=9,13﹣9=2ab,∴ab=2;(2)a2+b2﹣6a﹣14b+58=0,a2﹣6a+9+b2﹣14b+49=0,(a﹣3)2+(b﹣7)2=0,∴a﹣3=0,b﹣7=0,∴a=3,b=7,当3为腰时,三边为3,3,7,因为3+3<7,不能构成三角形,此种情况不成立,当7为腰时,三边为7,7,3,能构成三角形,此时△ABC的周长=7+7+3=17.27.小张和小王是同一单位在A、B两市的同事,已知A、B两市相距400km,周六上午小王从B市出发,开车匀速前往A市的公司开会,1小时后小张从A市的公司出发,沿同一路线开车匀速前往B市,小张行驶了一段路程后,得知小王要到A市的公司开会,便立即加速返回公司(折返的时间忽略不计).已知小张返回时的速度比去时的速度每小时快20km.两人距B市的距离y(km)与小张行驶时间x(h)间的关系如图所示,请结合图象解答下列问题:(1)小王的速度为80km/h,a的值为4;(2)求小张加速前的速度和b的值;(3)在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km?【分析】(1)根据函数图象中的数据,可以计算出小王的速度和a的值;(2)根据题意和(1)中的结果,可以计算出小张加速前的速度和b的值;(3)根据函数图象中的数据和题意,利用分类讨论的方法可以求得x的值.解:(1)由图象可得,小王的速度为:80÷1=80(km/h),a=400÷80﹣1=4,故答案为:80,4;(2)设小张加速前的速度为xkm/h,2.4x=(x+20)×(4.4﹣2.4),解得,x=100,b=400﹣2.4×100=160,即小张加速前的速度为100km/h,b的值是160;(3)由题意可得,相遇前:100x+80(x+1)=400﹣20解得,x=,相遇后到小张返回前:100x+80(x+1)=400+20解得,x=,小张返回后到小王到达A市前:80×(x+1)=(400﹣100×2.4)+(100+20)×(x﹣2.4)+20,解得,x=4.7(舍去),小王到达A市到小张返回到A市前,(400﹣100×2.4)+(100+20)×(x﹣2.4)+20=400,解得,x=,由上可得,在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km.28.已知:△ABC为等边三角形.(1)如图1,点D、E分别为边BC、AC上的点,且BD=CE.i)求证:△ABD≌△BCE;ii)求∠AFE的度数;(2)如图2,点D为△ABC外一点,BA、CD的延长线交于点E,连接AD,已知∠BDC =60°,且AD=2,CD=5,求BD的长;(3)如图3,线段DB的长为3,线段DC的长为2,连接BC,以BC为边作等边△ABC,连接AD,直接写出当线段AD取最大值与最小值时∠BDC的度数.【分析】(1)i)根据SAS证明三角形全等即可.ii)利用全等三角形的性质以及三角形的外角的性质即可解决问题.(2)如图2中,在DB上取一点J,使得CJ=CD,利用全等三角形的性质证明BD=AD+DC即可.(3)如图3中,以CD为边向外作等边△CDT,连接BT.构造全等三角形,证明BT =AD,求出BT的取值范围即可解决问题.【解答】(1)i)证明:如图1中,∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=60°,∵BD=CE,∴△ABD≌△BCE(SAS).ii)解:如图1中,∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠AFE=∠FBA+∠BAD=∠FBA+∠CBE=∠CBA=60°.(2)解:如图2中,在DB上取一点J,使得CJ=CD,∵∠CDJ=60°,CJ=CD,∴△CDJ是等边三角形,∴∠JCD=∠ACB=60°,DJ=DC=CJ,∴∠BCJ=∠ACD,∵CB=CA,∴△BCJ≌△ACD(SAS),∴BJ=AD,∴BD=BJ+DJ=AD+DC=2+5=7.(3)解:如图3中,以CD为边向外作等边△CDT,连接BT.∵CT=CD,CB=CA,∠TCD=∠BCA=60°,∴∠TCB=∠DCA,∴△TCB≌△DCA(SAS),∴BT=AD,∵CT=CD=2,BD=3,∴3﹣2≤BT≤3+2,∴1≤BT≤5,∴1≤AD≤5.∴AD的最小值为1,最大值为5.当AD取最小值时,点T落在线段BD上,∠BDC=60°,当AD取最大值时,点T落在BD的延长线上,∠BDC=120°.。

2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷 解析版

2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷 解析版

2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷一、选择题:(每小题3分,共30分)1.(3分)下面的四个汉字可以看作是轴对称图形的是()A.B.C.D.2.(3分)3﹣1的值等于()A.﹣3B.3C.﹣D.3.(3分)新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣7 4.(3分)在等式x2•□=x9中,“□”所表示的代数式为()A.x6B.﹣x6C.(﹣x)7D.x75.(3分)下列等式成立的是()A.(a+1)2=(a﹣1)2B.(﹣a﹣1)2=(a+1)2C.(﹣a+1)2=(a+1)2D.(﹣a﹣1)2=(a﹣1)26.(3分)如图用尺规作“与已知角相等的角”的过程中,作出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS7.(3分)下列说法正确的是()A.若x>y,则x2>y2B.对顶角相等C.两直线平行,同旁内角相等D.两边及一角相等的两三角形全等8.(3分)如图,将木条a,b与c钉在一起,且木条a与木条c交于点O,∠1=70°,∠2=40°,要使木条a与b平行,木条a绕点O顺时针旋转的度数至少是()A.10°B.20°C.30°D.50°9.(3分)如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论中错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1与∠B都是∠A的余角D.∠A=∠210.(3分)如图,点P是边长为2cm的正方形ABCD的边上一动点,O是对角线的交点,当点P由A→D→C运动时,设P点运动的路程为xcm,则△POD的面积y(cm2)随x (cm)变化的关系图象为()A.B.C.D.二、填空题:(每题4分,共16分)11.(4分)已知a m=4,a n=5,则a m+n的值是.12.(4分)一个长方形的面积为(27ab2﹣12a2b),若长为3ab,则它的宽为.13.(4分)如图,在Rt△ABC中,∠C═90°,AD平分∠CAB交BC于点D,BE⊥AD交AD的延长线于点E.若∠DBE=25°,则∠CAB=.14.(4分)如图,将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处,若∠AEH=30°,则∠EFC等于°.三、计算题:(15题(1)、(2)小题各6分,16题8分,共20分)15.(12分)(1)()﹣3+(2020+π)0﹣|﹣3|;(2)(﹣3a2)3﹣4a2•a4+5a9÷a3.16.(8分)先化简,再求值:[(2a+b)(2a﹣b)﹣3(a+b)2+4b2]÷(a),其中a=2,b =﹣1.四、解答题(17题、18题、19题各8分,20题10分,共34分)17.(8分)如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点的连线为边的多边形称为“格点多边形”.如图中四边形ABCD就是一个“格点四边形”.(1)求图中四边形ABCD的面积;(2)在图中的方格纸中画一个格点四边形,使该四边形与原四边形ABCD关于直线l成轴对称.18.(8分)如图,∠ABC=∠ADC,BE,DF分别是∠ABC,∠ADC的角平分线,BE∥DF,求证:BC∥AD.19.(8分)某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)图中的自变量是,因变量是;(2)无人机在75米高的上空停留的时间是分钟;(3)在上升或下降过程中,无人机的速度为米/分;(4)图中a表示的数是;b表示的数是;(5)图中点A表示.20.(10分)如图1,在△ABC中,BO⊥AC于点O,AO=BO=3,OC=1,过点A作AH ⊥BC于点H,交BO于点P.(1)求线段OP的长度;(2)连接OH,求证:∠OHP=45°;(3)如图2,若点D为AB的中点,点M为线段BO延长线上一动点,连结MD,过点D作DN⊥DM交线段OA延长线于N点,则S△BDM﹣S△ADN的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.一.填空题:(每题4分,共20分)21.(4分)已知x2+x=3,则代数式(x+4)(x﹣3)的值为.22.(4分)如果a2+b2+2+2a﹣2b=0,那么3a+b﹣1的值为.23.(4分)在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和20个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在0.4左右,则a的值约为.24.(4分)如图,在四边形ABCD中,∠A=∠C=90°,∠B=34°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=.25.(4分)如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四边形ABDE=S△ABP;⑤S△APH=S△ADE,其中正确的结论是.(填正确结论的番号)二、解答题(26题8分、27题10分,28题12分,共30分)26.(8分)以下关于x的各个多项式中,a,b,c,m,n均为常数.(1)根据计算结果填写表格:二次项系数一次项系数常数项(x+1)(x+2)132(2x﹣1)(3x+2)6﹣2(ax+b)(mx+n)am bn(2)若关于x的代数式(x+2)•(x2+mx+n)化简后,既不含二次项,也不含一次项,求m+n的值.27.(10分)如图,△ABC中,AB=AC,∠EAF═∠BAC,BF⊥AE于E交AF于点F,连结CF.(1)如图1所示,当∠EAF在∠BAC内部时,求证:EF=BE+CF.(2)如图2所示,当∠EAF的边AE、AF分别在∠BAC外部、内部时,求证:CF=BF+2BE.28.(12分)如图1,AB∥CD,G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2,若∠AEP=AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G 作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)下面的四个汉字可以看作是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:四个汉字中,可以看作轴对称图形的是,故选:A.2.(3分)3﹣1的值等于()A.﹣3B.3C.﹣D.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:3﹣1=,故选:D.3.(3分)新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵0.00000008=8×10﹣8;故选:A.4.(3分)在等式x2•□=x9中,“□”所表示的代数式为()A.x6B.﹣x6C.(﹣x)7D.x7【分析】根据同底数幂的乘法计算法则进行计算即可.【解答】解:∵x2•x7=x9,∴“□”所表示的代数式为x7,故选:D.5.(3分)下列等式成立的是()A.(a+1)2=(a﹣1)2B.(﹣a﹣1)2=(a+1)2C.(﹣a+1)2=(a+1)2D.(﹣a﹣1)2=(a﹣1)2【分析】利用完全平方公式进行判断即可.【解答】解:A、(a+1)2≠(a﹣1)2,原等式不成立,故此选项不符合题意;B、(﹣a﹣1)2=(a+1)2,原等式成立,故此选项符合题意;C、(﹣a+1)2≠(a+1)2,原等式不成立,故此选项不符合题意;D、(﹣a﹣1)2≠(a﹣1)2,原等式不成立,故此选项不符合题意;故选:B.6.(3分)如图用尺规作“与已知角相等的角”的过程中,作出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【分析】由作图可知,OD=OC=O′D′=O′C′,CD=C′D′,根据SSS证明三角形全等即可解决问题,【解答】解:由作图可知,OD=OC=O′D′=O′C′,CD=C′D′,∴△DOC≌△D′O′C′(SSS),∴∠BOA=∠B′O′A′.故选:D.7.(3分)下列说法正确的是()A.若x>y,则x2>y2B.对顶角相等C.两直线平行,同旁内角相等D.两边及一角相等的两三角形全等【分析】根据不等式的性质判断A;根据对顶角的性质判断B;根据平行线的性质判断C;根据全等三角形的判定定理判断D.【解答】解:A、当x=0,y=﹣3时,满足x>y,但是不满足x2>y2,故本选项说法错误,不符合题意;B、对顶角相等,故本选项说法正确,符合题意;C、两直线平行,同旁内角互补,故本选项说法错误,不符合题意;D、两边及夹角对应相等的两三角形全等,故本选项说法错误,不符合题意.故选:B.8.(3分)如图,将木条a,b与c钉在一起,且木条a与木条c交于点O,∠1=70°,∠2=40°,要使木条a与b平行,木条a绕点O顺时针旋转的度数至少是()A.10°B.20°C.30°D.50°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a绕点O顺时针旋转的度数.【解答】解:如图.∵∠AOC=∠2=40°时,OA∥b,∴要使木条a与b平行,木条a绕点O顺时针旋转的度数至少是70°﹣40°=30°.故选:C.9.(3分)如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论中错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1与∠B都是∠A的余角D.∠A=∠2【分析】根据直角三角形的定义、直角三角形两锐角互余和同角的余角相等解答.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠A+∠1=∠1+∠2=90°,∴∠A=∠2;∵∠1+∠A=∠A+∠B=90°,∴∠1和∠B都是∠A的余角;∵直角有∠ACB、∠ADC、∠BDC共3个,∴图中有三个直角三角形;∠1与∠2只有△ABC是等腰直角三角形时相等,综上所述,错误的结论是∠1=∠2.故选:B.10.(3分)如图,点P是边长为2cm的正方形ABCD的边上一动点,O是对角线的交点,当点P由A→D→C运动时,设P点运动的路程为xcm,则△POD的面积y(cm2)随x (cm)变化的关系图象为()A.B.C.D.【分析】由题意可知,△POD的面积可分两种情况讨论:P由点A移动到D时,面积逐渐减小;P由点D移动到C时,面积逐渐增大,据此判定即可.【解答】解:∵正方形ABCD的边长为2cm,O是对角线的交点,∴点O到AD或CD的距离为1cm,当P由点A移动到D时,y=PD•h=(2﹣x)×1=1﹣x(0≤x≤2);当P由点D移动到C时,y=PD•h=(x﹣2)×1=x﹣1(2<x≤4);故符合条件的图象只有选项C.故选:C.二、填空题:(每题4分,共16分)11.(4分)已知a m=4,a n=5,则a m+n的值是20.【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:a m+n=a m•a n=4×5=20,故答案为:20.12.(4分)一个长方形的面积为(27ab2﹣12a2b),若长为3ab,则它的宽为9b﹣4a.【分析】根据长方形的面积公式先列出算式,再进行计算即可得出答案.【解答】解:它的宽为:(27ab2﹣12a2b)÷3ab=9b﹣4a;故答案为:9b﹣4a.13.(4分)如图,在Rt△ABC中,∠C═90°,AD平分∠CAB交BC于点D,BE⊥AD交AD的延长线于点E.若∠DBE=25°,则∠CAB=50°.【分析】利用“8字型”求出∠CAD=∠DEB=25°,再根据角平分线的定义求出∠CAB 即可.【解答】解:∵BE⊥AE,∴∠E=∠C=90°,∵∠ADC=∠BDE,∴∠CAD=∠DBE=25°,∵AE平分∠CAB,∴∠CAB=2∠CAD=50°,故答案为50°.14.(4分)如图,将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处,若∠AEH=30°,则∠EFC等于105°.【分析】根据折叠得出∠DEF=∠HEF,求出∠DEF的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可.【解答】解:∵将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处,∴∠DEF=∠HEF,∵∠AEH=30°,∴∠DEF=∠HEF=(180°﹣∠AEH)=75°,∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°﹣75°=105°,故答案为:105.三、计算题:(15题(1)、(2)小题各6分,16题8分,共20分)15.(12分)(1)()﹣3+(2020+π)0﹣|﹣3|;(2)(﹣3a2)3﹣4a2•a4+5a9÷a3.【分析】(1)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及同底数幂的乘除运算法则计算得出答案.【解答】解:(1)原式=8+1﹣3=6;(2)原式=﹣27a6﹣4a6+5a6=﹣26a6.16.(8分)先化简,再求值:[(2a+b)(2a﹣b)﹣3(a+b)2+4b2]÷(a),其中a=2,b =﹣1.【分析】直接利用乘法公式以及整式的混合运算法则化简得出答案.【解答】解:原式=(4a2﹣b2﹣3a2﹣3b2﹣6ab+4b2)÷a=(a2﹣6ab)÷a=3a﹣18b,当a=2,b=﹣1时,原式=6+18=24.四、解答题(17题、18题、19题各8分,20题10分,共34分)17.(8分)如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点的连线为边的多边形称为“格点多边形”.如图中四边形ABCD就是一个“格点四边形”.(1)求图中四边形ABCD的面积;(2)在图中的方格纸中画一个格点四边形,使该四边形与原四边形ABCD关于直线l成轴对称.【分析】(1)对角线垂直的四边形的面积=对角线乘积的一半.(2)分别画出A,B,C,D的对应点A′,B′,C′,D′即可.【解答】解:(1)S四边形ABCD=×3×4=6.(2)如图,四边形A′B′C′D′即为所求.18.(8分)如图,∠ABC=∠ADC,BE,DF分别是∠ABC,∠ADC的角平分线,BE∥DF,求证:BC∥AD.【分析】根据角平分线的定义得出∠EBC=ABC,∠FDA=ADC,求出∠EBC =∠FDA,根据平行线的性质得出∠EBC=∠CFD,求出∠CFD=∠FDA,根据平行线的判定得出即可.【解答】证明:∵BE,DF分别是∠ABC,∠ADC的角平分线,∴∠EBC=ABC,∠FDA=ADC,∵∠ABC=∠ADC,∴∠EBC=∠FDA,∵BE∥DF,∴∠EBC=∠CFD,∴∠CFD=∠FDA,∴BC∥AD.19.(8分)某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)图中的自变量是时间(或t),因变量是高度(或h);(2)无人机在75米高的上空停留的时间是5分钟;(3)在上升或下降过程中,无人机的速度为25米/分;(4)图中a表示的数是2;b表示的数是15;(5)图中点A表示在第6分钟时,无人机的飞行高度为50米.【分析】(1)根据图象信息得出自变量和因变量即可;(2)根据图象信息得出无人机在75米高的上空停留的时间12﹣7=5分钟即可;(3)根据速度=路程除以时间计算即可;(4)根据速度的汽车时间即可;(5)根据点的实际意义解答即可.【解答】解:(1)横轴是时间,纵轴是高度,所以自变量是时间(或t),因变量是高度(或h);(2)无人机在75米高的上空停留的时间是12﹣7=5分钟;(3)在上升或下降过程中,无人机的速度=25米/分;(4)图中a表示的数是分钟;b表示的数是分钟;(5)图中点A表示在第6分钟时,无人机的飞行高度为50米;故答案为:时间(或t);高度(或h);5;25;2;15;在第6分钟时,无人机的飞行高度为50米.20.(10分)如图1,在△ABC中,BO⊥AC于点O,AO=BO=3,OC=1,过点A作AH ⊥BC于点H,交BO于点P.(1)求线段OP的长度;(2)连接OH,求证:∠OHP=45°;(3)如图2,若点D为AB的中点,点M为线段BO延长线上一动点,连结MD,过点D作DN⊥DM交线段OA延长线于N点,则S△BDM﹣S△ADN的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.【分析】(1)证△OAP≌△OBC(ASA),即可得出OP=OC=1;(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,证△COM≌△PON(AAS),得出OM=ON.得出HO平分∠CHA,即可得出结论;(3)连接OD,由等腰直角三角形的性质得出OD⊥AB,∠BOD=∠AOD=45°,OD =DA=BD,则∠OAD=45°,证出∠DAN=∠MOD.证△ODM≌△ADN(ASA),得S=S△ADN,进而得出答案.△ODM【解答】(1)解:∵BO⊥AC,AH⊥BC,∴∠AOP=∠BOC=∠AHC=90°,∴∠OAP+∠C=∠OBC+∠C=90°,∴∠OAP=∠OBC,在△OAP和△OBC中,,∴△OAP≌△OBC(ASA),∴OP=OC=1;(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,如图1所示:在四边形OMHN中,∠MON=360°﹣3×90°=90°,∴∠COM=∠PON=90°﹣∠MOP.在△COM与△PON中,,∴△COM≌△PON(AAS),∴OM=ON.∵OM⊥CB,ON⊥HA,∴HO平分∠CHA,∴∠OHP=∠AHC=45°;(3)S△BDM﹣S△ADN的值不发生改变,等于.理由如下:连接OD,如图2所示:∵∠AOB=90°,OA=OB,D为AB的中点,∴OD⊥AB,∠BOD=∠AOD=45°,OD=DA=BD∴∠OAD=45°,∠MOD=90°+45°=135°,∴∠DAN=135°=∠DOM.∵MD⊥ND,即∠MDN=90°,∴∠MDO=∠NDA=90°﹣∠MDA.在△ODM和△ADN中,,∴△ODM≌△ADN(ASA),∴S△ODM=S△ADN,∴S△BDM﹣S△ADN=S△BDM﹣S△ODM=S△BOD=S△AOB=×AO•BO=××3×3=.一.填空题:(每题4分,共20分)21.(4分)已知x2+x=3,则代数式(x+4)(x﹣3)的值为﹣9.【分析】先根据多项式乘以多项式法则进行计算,再合并同类项,最后代入求出即可.【解答】解:∵x2+x=3,∴(x+4)(x﹣3)=x2﹣3x+4x﹣12=x2+x﹣12=3﹣12=﹣9,故答案为:﹣9.22.(4分)如果a2+b2+2+2a﹣2b=0,那么3a+b﹣1的值为﹣3.【分析】将已知等式左边配方得出(a+1)2+(b﹣1)2=0,利用非负数的性质求出a、b,代入3a+b﹣1,计算即可.【解答】解:∵a2+b2+2+2a﹣2b=0,∴(a+1)2+(b﹣1)2=0,∴a+1=0,b﹣1=0,∴a=﹣1,b=1,∴3a+b﹣1=3×(﹣1)+1﹣1=﹣3.故答案为:﹣3.23.(4分)在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和20个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在0.4左右,则a的值约为30.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到红球的频率稳定在0.4左右得到比例关系,列出方程求解即可.【解答】解:根据题意得:=0.4,解得:a=30,则a的值约为30.故答案为:30.24.(4分)如图,在四边形ABCD中,∠A=∠C=90°,∠B=34°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=112°.【分析】如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB 于E′,交BC于F′,则点E′,F′即为所求,结合四边形的内角和即可得出答案.【解答】解:如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E′,交BC于F′,则点E′,F′即为所求.∵四边形ABCD中,∠A=∠C=90°,∠B=α,∴∠ADC=180°﹣α,由轴对称知,∠ADE′=∠P,∠CDF′=∠Q,在△PDQ中,∠P+∠Q=180°﹣∠ADC=180°﹣(180°﹣34)=34°∴∠ADE′+∠CDF′=∠P+∠Q=34,∴∠E′DF′=∠ADC﹣(∠ADE′+∠CDF′)=180°﹣68°=112°故答案为:112°.25.(4分)如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四边形ABDE=S△ABP;⑤S△APH=S△ADE,其中正确的结论是①②⑤.(填正确结论的番号)【分析】①正确.利用三角形内角和定理以及角平分线的定义即可解决问题.②正确.证明△ABP≌△FBP,推出P A=PF,再证明△APH≌△FPD,推出PH=PD即可解决问题.③错误.利用反证法,假设成立,推出矛盾即可.④错误,可以证明S四边形ABDE=2S△ABP.⑤正确.由DH∥PE,利用等高模型解决问题即可.【解答】解:在△ABC中,AD、BE分别平分∠BAC、∠ABC,∵∠ACB=90°,∴∠A+∠B=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠A+∠B)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,P A=PF,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴PH=PD,∴AD=AP+PD=PF+PH.故②正确.∵△ABP≌△FBP,△APH≌△FPD,∴S△APB=S△FPB,S△APH=S△FPD,PH=PD,∵∠HPD=90°,∴∠HDP=∠DHP=45°=∠BPD,∴HD∥EP,∴S△EPH=S△EPD,∴S△APH=S△AED,故⑤正确,∵S四边形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正确.若DH平分∠CDE,则∠CDH=∠EDH,∵DH∥BE,∴∠CDH=∠CBE=∠ABE,∴∠CDE=∠ABC,∴DE∥AB,这个显然与条件矛盾,故③错误,故答案为①②⑤.二、解答题(26题8分、27题10分,28题12分,共30分)26.(8分)以下关于x的各个多项式中,a,b,c,m,n均为常数.(1)根据计算结果填写表格:二次项系数一次项系数常数项(x+1)(x+2)132(2x﹣1)(3x+2)61﹣2(ax+b)(mx+n)am an+bm bn(2)若关于x的代数式(x+2)•(x2+mx+n)化简后,既不含二次项,也不含一次项,求m+n的值.【分析】(1)根据多项式乘多项式的计算法则即可求解;(2)先根据多项式乘多项式的计算法则展开,合并同类项后使二次项系数和一次项系数为0即可求解.【解答】解:(1)(2x﹣1)(3x+2)=6x2+4x﹣3x﹣2=6x2+x﹣2,(ax+b)(mx+n)=amx2+anx+bm)x+bn=amx2+(an+bm)x+bn,二次项系数一次项系数常数项(x+1)(x+2)132(2x﹣1)(3x+2)6 1 ﹣2(ax+b)(mx+n)am an+bm bn故答案为:1、an+bm;(2)(x+2)(x2+mx+n)=x3+mx2+nx+2x2+2mx+2n=x3+(m+2)x2+(2m+n)x+2n,∵既不含二次项,也不含一次项,∴,解得:,∴m+n=﹣2+4=2.故m+n的值为2.27.(10分)如图,△ABC中,AB=AC,∠EAF═∠BAC,BF⊥AE于E交AF于点F,连结CF.(1)如图1所示,当∠EAF在∠BAC内部时,求证:EF=BE+CF.(2)如图2所示,当∠EAF的边AE、AF分别在∠BAC外部、内部时,求证:CF=BF+2BE.【分析】(1)在EF上截取EH=BE,由“SAS”可证△ACF≌△AHF,可得CF=HF,可得结论;(2)在BE的延长线上截取EN=BE,连接AN,由“SAS”可证△ACF≌△ANF,可得CF=NF,可得结论.【解答】证明:(1)如图,在EF上截取EH=BE,连接AH,∵EB=EH,AE⊥BF,∴AB=AH,∵AB=AH,AE⊥BH,∴∠BAE=∠EAH,∵AB=AD,∴AC=AH,∵∠EAF═∠BAC∴∠BAE+∠CAF=∠EAF,∴∠BAE+∠CAF=∠EAH+∠F AH,∴∠CAF=∠HAF,在△ACF和△AHF中,,∴△ACF≌△AHF(SAS),∴CF=HF,∴EF=EH+HF=BE+CF;(2)如图,在BE的延长线上截取EN=BE,连接AN,∵AE⊥BF,BE=EN,AB=AC,∴AN=AB=AC,∵AN=AB,AE⊥BN,∴∠BAE=∠NAE,∵∠EAF═∠BAC∴∠EAF+∠NAE=(∠BAC+2∠NAE)∴∠F AN=∠CAN,∴∠F AN=∠CAF,在△ACF和△ANF中,,∴△ACF≌△ANF(SAS),∴CF=NF,∴CF=BF+2BE.28.(12分)如图1,AB∥CD,G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2,若∠AEP=AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G 作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.【分析】(1)根据平行线的性质可得∠AEF+∠CFE=180°,再利用角平分线的定义可求解∠FEG+∠GFE=90°,进而证明结论;(2)分别过M,N作MG∥AB,NH∥AB,根据平行线的性质可得∠EMF+∠ENF=∠AEM+∠MFC+∠AEN+∠NFC,再根据角平分线的定义结合∠AEP=∠AEF,∠CFP=∠EFC,可求解;(3)根据垂线的定义可求得∠FGQ=90°﹣∠GFQ,再根据角平分线的定义可求解∠FGQ=∠EHF.【解答】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵GE平分∠AEF,GF平分∠EFC,∴∠AEG=∠FEG=∠AEF,∠CFG=∠GFE=∠CFE,∴∠FEG+∠GFE=90°,即EG⊥FG;(2)∵分别过M,N作MG∥AB,NH∥AB,∵AB∥CD,∴AB∥MG∥NH∥CD,∴∠AEM=∠EMG,∠GMF=∠MFC,∠AEN=∠ENH,∠HNF=∠NFC,∴∠EMF=∠AEM+∠MFC,∠ENF=∠AEN+∠NFC,同理:∠EPF=∠AEP+∠PFC,∴∠EMF+∠ENF=∠AEM+∠MFC+∠AEN+∠NFC,∵EM平分∠AEN,FN平分∠MFC,∴∠AEM=∠AEN,∠NFC=∠MFC,∴∠EMF+∠ENF=∠AEN+∠MFC+∠MFC+∠AEN=(∠MFC+∠AEN),∵∠AEP=∠AEF,∠CFP=∠EFC,∴∠MFC+∠AEN=(∠AEF+∠EFC)=×180°=72°,∴∠EMF+∠ENF=(∠MFC+∠AEN)=×72°=108°;(3)∠FGQ=∠EHF.证明:∵AB∥CD,∴∠EHF+∠CFH=180°,∵GQ⊥MF,∴∠FGQ=90°﹣∠GFQ,∵FG平分∠EFH,MF平分∠EFC,∴∠GFE=∠EFH,∠QFE=∠CFE,∴∠GFQ=∠CFH=(180°﹣∠EHF)=90°﹣∠EHF,∴∠FGQ=90°﹣(90°﹣∠EHF)=∠EHF.。

2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷(有答案解析)

2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷(有答案解析)

2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. a3-a2=aB. (a2)3=a5C. a4•a=a5D. 3x+5y=8xy2.下列大学的校徽图案是轴对称图形的是()A. B. C. D.3.如图,下列条件中,可以判断AB∥CD的是()A. ∠1=∠2B. ∠2=∠3C. ∠1=∠4D. ∠3=∠44.在一个不透明的口袋中装有若干个颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的频率为,那么口袋中球的总个数为()A. 13B. 14C. 15D. 165.若等腰三角形的一个内角为80°,则这个等腰三角形的顶角为()A. 80°B. 50°C. 80°或50°D. 80°或20°6.如图,直线AB与CD相交于点O,射线OE平分∠BOC,且∠BOC=70°,则∠AOE的度数为()A. 145°B. 155°C. 110°D. 135°7.如图,∠ACB=90°,AC=BC,AE⊥CE于点E,BD⊥CE于点D,AE=5cm,BD=2cm,则DE的长是()A. 8cmB. 5cmC. 3cmD. 2cm8.已知汽车油箱内有油50L,每行驶100km耗油10L,那么汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程S(km)之间的关系式是()A. Q=50-B. Q=50+C. Q=50-D. Q=50+9.如图,直线是一条河,A、B是两个新农村定居点.欲在l上的某点处修建一个水泵站,由水泵站直接向A、B两地供水.现有如下四种管道铺设方案,图中实线表示铺设的供水管道,则铺设管道最短的方案是()A. B.C. D.10.如图1,点P从矩形ABCD的顶点A出发沿A→B→C以2cm/s的速度匀速运动到点C,图2是点P运动时,△APD的面积y(cm2)随运动时间x(s)变化而变化的函数关系图象,则矩形ABCD 的面积为()A. 36B. 48C. 32D. 24二、填空题(本大题共9小题,共36.0分)11.计算:(-2a2b)2÷(a2b2)=______.12.若(x+2)(x-4)=x2+nx-8,则n=______.13.如图所示,已知AF=DC,BC∥EF,若要用“SAS”去证△ABC≌△DEF,则需添加的条件是______.14.如图所示,△ABC中,AB=6,AC=8,沿过B点的直线折叠这个三角形,使点A落在BC边上的点E处,折痕为BD.若△CDE的周长为11,则BC长为______.15.若5m=3,5n=2,则5m+2n=______.16.如果x2+2(m﹣1)x+4是一个完全平方式,则m=____.17.定义一种新运算=ad-bc,例如=3×6-4×5=-2.按照这种运算规定,已知=m,当x从-2,-1,0,1,2这五个数中取值,使得m+3=0成立的概率为______.18.如图所示,直线AB∥CD,NE平分∠FND,MB平分∠FME,且2∠E+∠F=222°,则∠FME的度数是______.19.如图所示,在△ABC中,∠ABC=45°.点D在AB上,点E在BC上,且AE⊥CD,若AE=CD,BE:CE=5:6,S△BDE=75,则S△ABC=______.三、计算题(本大题共1小题,共9.0分)20.(1)已知a2+b2=10,a+b=4,求a-b的值;(2)关于x的代数式(ax-3)(2x+1)-4x2+m化简后不含有x2项和常数项,且an+mn=1,求2n3-9n2+8n+2019的值.四、解答题(本大题共8小题,共75.0分)21.(1)计算:()-3+(2019-π)0-|-5|(2)先化简,再求值:[(x-2y)2-(3y+x)(x-3y)+3y2]÷4y,其中x=2019,y=.22.如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE=CE.(1)求证:DE∥BC;(2)若∠A=90°,S△BCD=26,BC=13,求AD.23.下面的方格图是由边长为1的42个小正方形拼成的,△ABC的顶点A、B、C均在小正方形的顶点上.(1)作出△ABC关于直线m对称的△A′B′C′;(2)求△ABC的面积.24.如图所示,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE的延长线于点F.(1)证明:△ADE≌△CFE;(2)若AB=AC,DB=2,CE=5,求CF.25.2019年6月14H是第16个世界献血者日,成都市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B C D人数______ 105______(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?26.如图所示,点D是等腰Rt△ABC的斜边BC上一动点,连接AD,作等腰Rt△ADE,使AD=AE,且∠DAE=90°连接BE、CE.(1)判断BD与CE的数量关系与位置关系,并进行证明;(2)当四边形ADCE的周长最小值是6时,求BC的值.27.成都市电力公司为了鼓励居民节约用电,采用分段计费的方法计算电费;第一档:每月用电不超过180度时,按每度0.5元计费;第二档:每月用电超过180度但不足280度时,其中超过部分按每度0.6元计费;第三档:280度以上时,超出部分按每度0.8元计费.(1)若李明家1月份用电160度应交电费______元,2月份用电200度应交电费______元.(2)若设用电量为x度,应交电费为y元,请求出这三档中y与x的关系式.并利用关系式求交电费108元时的用电量.28.如图,在等腰△ABC中,BA=BC,∠ABC=100°,AB平分∠WAC.在线段AC上有一动点D,连接BD并作∠DBE,使∠DBE=50°,BE边交直线AW于点E,连接DE.(1)如图1,当点E在射线AW上时,直接判断:AE+DE______CD;(填“>”、“=”或“<”)(2)如图2,当点E在射线AW的反向延长线上时,①判断线段CD,DE,AE之间的数量关系,并证明;②若S四边形ABDE-S△BCD=6,且2DE=5AE,AD=AE,求S△ABC的值.-------- 答案与解析 --------1.答案:C解析:解:A、不是同类项,不能合并,选项错误;B、(a2)3=a6,选项错误;C、正确;D、不是同类项,不能合并,选项错误.故选C.根据幂的乘方、同底数的幂的乘法以及合并同类项的法则即可判断.本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.2.答案:D解析:【分析】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形折叠后两部分可重合.根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确.故选D.3.答案:C解析:解:∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),故选:C.根据平行线的判定定理:内错角相等,两直线平行可得∠1=∠4时AB∥CD.此题主要考查了平行线的判定,关键是掌握平行线的判定定理.4.答案:C解析:解:∵口袋中装有3个红球且摸到红球的频率为,∴口袋中装有3个红球且摸到红球的概率为,∴球的总个数为3÷=15,即口袋中球的总数为15个.故选:C.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率此题考查概率的求法及利用频率估计概率的知识:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.答案:D解析:解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°-80°×2=20°.故选:D.先分情况讨论:80°是等腰三角形的底角或80°是等腰三角形的顶角,再根据三角形的内角和定理进行计算.本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.6.答案:A解析:解:∵∠BOC=70°,OE平分∠BOC,∴∠COE=35°,∠AOC=180°-70°=110°,∴∠AOE=∠AOC+∠COE=110°+35°=145°.故选:A.依据∠BOC=70°,OE平分∠BOC,即可得到∠COE=35°,∠AOC=180°-70°=110°,进而得出∠AOE的度数.本题主要考查了对顶角与邻补角,解题时注意:对顶角相等,邻补角互补,即和为180°.7.答案:C解析:解:∵AE⊥CE于点E,BD⊥CE于点D,∴∠AEC=∠D=∠ACB=90°,∴∠A+∠ACE=90°,∠ACE+∠BCD=90°,∴∠A=∠BCD,∵AC=BC,∴△ACE≌△CBD(AAS),∴AE=CD=5cm,CE=BD=2cm,∴DE=CD-CE=5-2=3cm.故选:C.根据AAS证明△ACE≌△CBD,可得AE=CD=5cm,CE=BD=2cm,由此即可解决问题;本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.8.答案:C解析:解:单位耗油量10÷100=0.1L,∴行驶S千米的耗油量0.1SL,∴Q=50-0.1S=50-,故选:C.根据每行驶100km耗油10L,可得单位耗油量,根据单位耗油量乘以路程,可得行驶s千米的耗油量,根据总油量减去耗油量,可得剩余油量.本题考查了函数关系式,先求出单位耗油量,再求出耗油量,最后求出剩余油量.9.答案:D解析:解:作点A关于直线l的对称点A′,连接BA′交直线l于M.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选:D.利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.本题考查了最短问题、解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.10.答案:C解析:解:由图可得,AB=2×2=4,BC=(6-2)×2=8,∴矩形ABCD的面积是:4×8=32,故选:C.根据题意和函数图象中的数据可以求得AB和BC的长,从而可以求得矩形ABCD的面积.本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.11.答案:8a2解析:解:原式=4a4b2÷a2b2=8a2.故答案为:8a2.直接利用积的乘方运算法则化简,进而利用整式的除法运算法则计算得出答案.此题主要考查了整式的除法运算以及积的乘方运算,正确掌握相关运算法则是解题关键.12.答案:-2解析:解:已知等式整理得:x2-2x-8=x2+nx-8,则n=-2,故答案为:-2已知等式左边利用多项式乘多项式法则计算,再利用多项式相等的条件求出n的值即可.此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.13.答案:BC=EF解析:解:需要添加条件为BC=EF,理由是:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠BCA=∠EFD,∵在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:BC=EF.求出AC=DF,根据平行线的性质得出∠BCA=∠EFD,根据全等三角形的判定得出即可.本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有:SAS,AAS,ASA,SSS,直角三角形全等还有HL定理.14.答案:9解析:解:解:由折叠可得,BE=AB=6,AD=ED,∵AC=8,∴AD+CD=8,∴DE+CD=8,又∵△CDE的周长为11,∴CE=11-8=3,∴BC=BE+CE=6+3=9,故答案为:9.依据折叠可得BE=AB=6,AD=ED,进而得出DE+CD=8,再根据△CDE的周长为11,可得CE=3,即可得到BC=BE+CE=9.本题考查了翻折变换的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.15.答案:12解析:解:∵5m=3,5n=2,∴5m+2n=5m•52n=3×22=12,故答案为:12.直接利用同底数幂的乘法运算法则的逆运算以及幂的乘方运算法则将原式变形进而得出答案.此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确将原式变形是解题关键.16.答案:3或-1解析:【分析】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2+2(m-1)x+4是完全平方式,∴m-1=±2,m=3或-1故答案为3或-117.答案:解析:解:由题意可知:(2x-3)(x+1)-x(x-2)=m,∴x2+x-3=m,∵m+3=0,∴x2+x=0,解得:x=0或x=-1,∴x从-2,-1,0,1,2这五个数中取值,使得m+3=0成立的概率为故答案为:.首先根据题意确定x的值,然后利用概率公式求解即可.本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)=.18.答案:148°解析:解:过点E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,设∠BME=α,∠END=β,∴∠MEH=∠BME=α,∠NEH=∠END=β,∴∠MEN=α+β,∵NE平分∠FND,MB平分∠FME,∴∠BMF=α,∠FND=2β,∵AB∥CD,∴∠FGB=2β,∵∠BMF=∠FGB+∠F,∴α=2β+∠F,∴3α=2α+2β+∠F,∴3α=2(α+β)+∠F,∴3α=2∠MEN+∠F=222°,∴α=74°,∴∠FME=2α=148°,故答案为:148°过点E作EH∥AB,根据平行的性质以及三角形的外角性质即可求出答案.本题考查平行线的性质,解题的关键是熟练运用平行线的性质以及三角形外角的性质,本题属于中等题型.19.答案:440解析:解:作DM⊥BC于M,AN⊥BC于N,如图所示:则∠CMD=∠BMD=∠ANE=90°,∵∠ABC=45°,∴△BDM、△BAN是等腰直角三角形,∴BM=DM,BN=AN,∵AE⊥CD,∴∠AEN+∠EAN=∠AEN+∠DCM=90°,∴∠EAN=∠DCM,在△AEN和△CDM中,,∴△AEN≌△CDM(AAS),∴AN=CM,EN=DM,∴BN=CM,∴BM=CN,∴BM=DM=CN=EN,∵BE:CE=5:6,∴设BE=5a,则CE=6a,BC=BE+CE=11a,BM=DM=CN=EN=CE=3a,CM=BC-BM=8a,∴CD2=DM2+CM2=(3a)2+(8a)2=73a2,∵S△BDE=BE×DM=×5a×3a=75,∴a2=10,∵AE⊥CD,AE=CD,∴S四边形ADEC=CD×AE=CD2=×73a2=×73×10=365,∴S△ABC=S△BDE+S四边形ADEC=75+365=440;故答案为:440.作DM⊥BC于M,AN⊥BC于N,则△BDM、△BAN是等腰直角三角形,得出BM=DM,BN=AN,证明△AEN≌△CDM(AAS),得出AN=CM,EN=DM,得出BN=CM,因此BM=DM=CN=EN,设BE=5a,则CE=6a,BC=BE+CE=11a,BM=DM=CN=EN=CE=3a,CM=BC-BM=8a,由勾股定理得出CD2=DM2+CM2=73a2,由三角形面积求出a2=10,求出S四边形ADEC=CD×AE=CD2=365,即可得出答案.本题考查了三角形面积、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.20.答案:解:(1)把a+b=4,两边平方得:(a+b)2=16,∴a2+b2+2ab=16,将a2+b2=10代入得:10+2ab=16,即2ab=6,∴(a-b)2=a2+b2-2ab=10-6=4,则a-b=2或-2;(2)原式=(2a-4)x2+(a-6)x+m-3,由化简后不含有x2项和常数项,得到2a-4=0,m-3=0,解得:a=2,m=3,代入an+mn=1得:2n+3n=1,即n=,则原式=-++2019=2019=2020.解析:(1)利用完全平方公式化简,计算即可求出值;(2)已知代数式整理后,根据题意求出a与m的值,进而求出n的值,代入原式计算即可求出值.此题考查了多项式乘多项式,以及完全平方公式,熟练掌握运算法则是解本题的关键.21.答案:解:(1)原式=8+1-5=4;(2)[(x-2y)2-(3y+x)(x-3y)+3y2]÷4y=[x2-4xy+4y2-x2+9y2+3y2]÷4y=[-4xy+16y2]÷4y=-x+4y,当x=2019,y=时,原式=-2019+4×=-2018.解析:(1)先根据负整数指数幂,零指数幂和绝对值进行计算,再求出即可;(2)先算括号内的乘法,再合并同类项,算除法,再代入求出即可.本题考查了负整数指数幂,零指数幂,绝对值和整式的混合运算和求值等知识点,能正确运用运算法则进行化简和计算是解此题的关键.22.答案:解:(1)∵CD平分∠ACB,∴∠ECD=∠BCD,又∵DE=CE,∴∠ECD=∠EDC,∴∠BCD=∠CDE,∴DE∥BC;(2)如图,过D作DF⊥BC于F,∵∠A=90°,CD平分∠ACB,∴AD=FD,∵S△BCD=26,BC=13,∴×13×DF=26,∴DF=4,∴AD=4.解析:(1)依据角平分线的定义以及等边对等角,即可得到∠BCD=∠ECD=∠CDE,即可判定DE∥BC;(2)过D作DF⊥BC于F,依据角平分线的性质,即可得到AD=FD,再根据S△BCD=26,即可得出DF得到长,进而得到AD的长.本题主要考查了角平分线的性质以及平行线的判定,角的平分线上的点到角的两边的距离相等.23.答案:解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=3×3-×1×3-×2×1-×2×3=3.5.解析:(1)利用网格特点和轴对称的性质画出点A、B、C的对应点A′、B′、C′,从而得到△A′B′C′;(2)利用一个矩形的面积减去三个三角形的面积去计算△ABC的面积.本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.24.答案:解:(1)证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,∠A=∠ACF,∠ADF=∠F,AE=CE,∴△ADE≌△CFE(AAS).(2)∵CE=5,E是边AC的中点,∴AE=CE=5,∴AC=10,∴AB=AC=10,∴AD=AB-BD=10-2=8,∵△ADE≌△CFE,∴CF=AD=8.解析:(1)根据AAS或ASA证明△ADE≌△CFE即可;(2)由AB=AC,DB=2,CE=5可得AD的长,利用全等三角形的性质求出CF=AD,即可解决问题.本题考查全等三角形的判定和性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.答案:12 23 50 20解析:解:(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20;故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50-10-5-23=12(人),如图,故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率==,3000×=720,估计这3000人中大约有720人是A型血.(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了统计图.26.答案:解:(1)BD=CE,BD⊥CE;理由:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE=45°,∵∠ACB=45°,∴∠BCE=90°,∴BD⊥CE;(2)当AD⊥BC时,AD最小,则四边形ADCE的周长最小,即当四边形ADCE为正方形时,四边形ADCE的周长最小是6,∴AD=,∵△ABC是等腰直角三角形,∴BC=2AD=3.解析:(1)根据全等三角形的性质得到BD=CE,∠ABD=∠ACE=45°,求得∠BCE=90°,根据垂直的定义得到BD⊥CE;(2)当AD⊥BC时,AD最小,则四边形ADCE的周长最小,即当四边形ADCE为正方形时,四边形ADCE的周长最小是6,求得AD=,根据等腰直角三角形的性质得到结论.此题主要考查了轴对称-最短路径问题,等腰直角三角形的性质,全等三角形的判定和性质,四边形的周长,判断出△ABD≌△ACE是解本题的关键.27.答案:80 102解析:解:(1)∵160<180,∴0.5×160=80(元),∵180<200<280,∴180×0.5+(200-180)×0.6=90+12=102(元),即李明家1月份用电160度应交电费80元,2月份用电200度应交电费102元,故答案为:80,102.(2)根据题意得:当0≤x≤180时,电费为:0.5x(元),当180<x≤280时,电费为:0.5×180+0.6×(x-180)=90+0.6x-108=0.6x-18(元),当x>280时,电费为:0.5×180+0.6×(280-180)+0.8×(x-280)=0.8x-74(元),则y关于x的函数关系式y=.由y=108代入y=0.6x-18,可得x=210(度).则交电费108元时的用电量为210度.(1)根据“第一档:每月用电不超过180度时,按每度0.5元计费;第二档:每月用电超过180度但不足280度时,其中超过部分按每度0.6元计费”,列式计算即可,(2)根据“阶梯电价”方法计算电价,可得分段函数;由交电费108元可知在第二档,代入解析式可得用电量.本题考查利用数学知识解决实际问题,考查分段函数,确定函数解析式是关键.28.答案:=解析:解:(1)如图1中,在AC上取一点T,使得∠TBD=∠ABC,连接BT.∵∠TBD=∠ABC,∠DBE=50°=∠ABC,∴∠CBT+∠ABD=∠ABD+∠ABE=∠ABC,∴∠ABE=∠CBT,∵BA=BC,∴∠BAC=∠C,∵∠BAE=∠BAC,∴∠EAB=∠C,∴△BAE≌△BCT(ASA),∴TC=AE,BE=BT,∵BD=BD,∠DBE=∠DBT,∴△DBE≌△DBT(SAS),∴DE=DT,∴AE+DE=CT+DT=CD.故答案为=.(2)①结论:DE=CD+AE.理由:如图2中,在AC的延长线上取一点T,使得∠TBD=∠ABC,连接BT.∵∠TBD=∠ABC,∠DBE=50°=∠ABC,∴∠CBT+∠CBD=∠CBD+∠ABE=∠ABC,∴∠ABE=∠CBT,∵BA=BC,∴∠BAC=∠ACB,∵∠BAE=∠BAC,∴∠WAB=∠ACB,∴∠BAE=∠BCT,∴△BAE≌△BCT(ASA),∴TC=AE,BE=BT,∵BD=BD,∠DBE=∠DBT,∴△DBE≌△DBT(SAS),∴DE=DT,∴DE=DC+CT=AE+CD.②由①可知:S△ABE=S△BCT,S△BDE=S△BDT,∵S四边形ABDE-S△BCD=6,∴S△BDC+2S△BCT-S△BDC=6,∴S△BCT=3,∵2DE=5AE,AD=AE,设DE=5k,AE=2k,则AD=k,CD=DT-CT=DE-AE=3k,∴AC=AD+CD=k+3k=k,∴AC:CT=67:18,∴S△ABC=×S△CBT=.(1)如图1中,在AC上取一点T,使得∠TBD=∠ABC,连接BT.证明△BAE≌△BCT(ASA),△DBE≌△DBT(SAS)即可解决问题.(2)①结论:DE=CD+AE.如图2中,在AC的延长线上取一点T,使得∠TBD=∠ABC,连接BT.证明方法类似(1).②由①可知:S△ABE=S△BCT,S△BDE=S△BDT,由S四边形ABDE-S△BCD=6,推出S△BDC+2S△BCT-S△BDC=6,推出S△BCT=3,由2DE=5AE,AD=AE,设DE=5k,AE=2k,则AD=k,CD=DT-CT=DE-AE=3k,推出AC=AD+CD=k+3k=k,推出AC:CT=67:18,由此即可解决问题.本题属于四边形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。

2019-2020学年四川省成都市天府新区七年级下学期期末数学试卷 (解析版)

2019-2020学年四川省成都市天府新区七年级下学期期末数学试卷 (解析版)

2019-2020学年四川省成都市天府新区七年级第二学期期末数学试卷一、选择题(共10小题).1.下列计算正确的是()A.(a3)4=a12B.a3•a2=a6C.3a•4a=12a D.a6÷a2=a32.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.3.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣6 4.下列事件中属于必然事件的是()A.任意买一张电影票,座位号是偶数B.某射击运动员射击1次,命中靶心C.掷一次骰子,向上的一面是6点D.367人中至少有2人的生日相同5.下列正确说法的个数是()①同位角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直.A.1B.2C.3D.46.能将一个三角形分成面积相等的两个三角形的一条线段是()A.三角形的高线B.边的中垂线C.三角形的中线D.三角形的角平分线7.已知(x﹣2)•(x+3)=x2+mx﹣6,则m的值是()A.﹣1B.1C.5D.﹣58.一个等腰三角形的顶角是50°,则它的底角是()A.65°B.70°C.75°D.100°9.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)10.如图,△ABC≌△ADE,点D落在BC上,且∠B=55°,则∠EDC的度数等于()A.50°B.60°C.70°D.80°二、填空题(本大题共4个小题,每小题4分,共16分)11.已知∠A=30°,则∠A的补角的度数为度.12.关于x的二次多项式x2+6x+m恰好是另一个多项式的平方,则常数项m=.13.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=6,AB=17,则△ABD的面积是.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(1)计算:﹣32﹣(2020﹣π)0﹣|﹣4|+(﹣)﹣2;(2)计算:8m4•(﹣12m3n5)÷(﹣2mn)5.16.先化简,再求值[(x+2y)2﹣(x+y)(x﹣y)﹣5y2]÷2x,其中.17.如图,在长度为1个单位长度的小正方形组成的正力形网格中,点A,B,C在小正方形的顶点上.(1)在图中画出△ABC关于直线l成轴对称的△A′B′C′;(2)求△ABC的面积;(3)在直线l上找一点P,使PB+PC的长最短,标出点P(保留作图痕迹).18.公路上,A,B两站相距25千米,C、D为两所学校,DA⊥AB于点A,CB⊥AB于点B,如图,已知DA=15千米,现在要在公路AB上建一报亭H,使得C、D两所学校到H的距离相等,且∠DHC=90°,问:H应建在距离A站多远处?学校C到公路的距离是多少千米?19.在弹性限度内,某弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如表:所挂物体的质量/千克012345678弹簧的长度/cm1212.51313.51414.51515.516(1)在这个变化过程中,自变量和因变量各是什么?(2)如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,写出y与x的关系式.(3)如果该弹簧最大挂重量为25千克,当挂重为14千克时,该弹簧的长度是多少?20.已知AB∥CD,点E为直线AB、CD所确定的平面内一点.(1)如图1,若AE⊥AB,求证:∠C+∠E=90°;(2)如图2,点F在BA的延长线上,连接BE、EF,若CE⊥CD,EF平分∠AEC,∠B=∠AEB,则∠BEF的度数为.(3)在(2)的条件下,如图3,过点F作∠BFG=∠BFE交EC的延长线于点G,连接DF,作∠DFG的平分线交CD于点H,当FD∥BE时,求∠CHF的度数.四.填空题(本大题共5个小题,每小题4分共20分)21.若x m=3,x n=5,则x2m+n的值为.22.一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.现再将n个白球放入布袋,搅匀后,使摸出1个红球的概率为,则n的值为.23.如图,边长为5的正方形ABCD与直角三角板如图放置,延长CB与三角板的直角边相交于点E,则四边形AECF的面积为.24.如图,正方形ABCD中,AE=2cm,CG=5cm.长方形EFGD的面积是11,四边形NGDH和MEDQ都是正方形,PQDH是长方形,则图中阴影部分的面积是cm2.25.如图,△ABC中,CD⊥AB,垂足为D,CD=BD=5,AD=4,点M从点B出发沿线段BA方向运动到点A停止,过点M作MN⊥AB,交折线BC﹣CA于点N,连接DN,AN,若△ADN与△CND的面积相等,则线段BM的长为.五、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演算步骤)26.若a,b,c为△ABC的三边.(1)化简:|a﹣b+c|+|c﹣a﹣b|﹣|a+b|;(2)若a,b,c都是正整数,且a2+b2﹣2a﹣8b+17=0,求△ABC的周长.27.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,步行到景点C;乙先乘景区观光车到景点B,在B处停留一段时间后,再步行到景点C,甲、乙两人同时到达最点C.甲、乙两人距景点A的路程y(米)与甲出发的时间x(分)之间的图象如图所示:(1)甲步行的速度为米/分,乙步行时的速度为米/分;(2)分别写出甲游客从景点A出发步行到景点C和乙游客乘景区观光车时y与x之间的关系式;(3)问乙出发多长时间与甲在途中相遇?28.如图1,在△ABC中,∠BAC=90°,点D为AC边上一点,连接BD,点E为BD点连接CE,∠CED=∠ABD,过点A作AG⊥CE,垂足为G,AG交ED于点F.(1)判断AF与AD的数量关系,并说明理由;(2)如图2,若AC=CE,点D为AC的中点,AB与AC相等吗?为什么?(3)在(2)的条件下,如图3,若DF=5,求△DEC的面积.参考答案一.选择题(共10小题).1.下列计算正确的是()A.(a3)4=a12B.a3•a2=a6C.3a•4a=12a D.a6÷a2=a3【分析】根据幂的乘方、同底数幂的乘除法、单项式乘以单项式的计算法则进行计算即可.解:(a3)4=a3×4=a12,因此选项A正确;a3•a2=a3+2=a5,因此选项B不正确;3a•4a=12a2,因此选项C不正确;a6÷a2=a6﹣2=a4,因此选项D不正确;故选:A.2.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.3.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000000203米,该数据用科学记数法表示为2.03×10﹣7.故选:B.4.下列事件中属于必然事件的是()A.任意买一张电影票,座位号是偶数B.某射击运动员射击1次,命中靶心C.掷一次骰子,向上的一面是6点D.367人中至少有2人的生日相同【分析】根据必然事件的意义,结合各个选项中的具体事件发表进行判断即可.解:任意买一张电影票,座位号可能是奇数,也可能是偶数,因此选项A不符合题意;某射击运动员射击1次,不一定命中靶心,因此不是必然事件,选项B不符合题意;掷一次骰子,向上的一面可能是1、2、3、4、5、6点,因此选项C不符合题意;1年即使有366天,根据抽屉原理可知,367人中至少有2人的生日相同是必然事件,因此选项D符合题意;故选:D.5.下列正确说法的个数是()①同位角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直.A.1B.2C.3D.4【分析】根据垂线的性质、平行线的定义与判定、等角的补角对各小题分析判断后即可得解.解:①两直线平行,同位角相等,错误;②等角的补角相等,正确;③两直线平行,同旁内角互补,错误;④在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;故选:B.6.能将一个三角形分成面积相等的两个三角形的一条线段是()A.三角形的高线B.边的中垂线C.三角形的中线D.三角形的角平分线【分析】根据三角形的中线将三角形分成面积相等的两部分可直接得到答案.解:三角形的中线平分三角形的面积,故选:C.7.已知(x﹣2)•(x+3)=x2+mx﹣6,则m的值是()A.﹣1B.1C.5D.﹣5【分析】先根据多项式乘以多项式法则展开,合并后即可得出答案.解:(x﹣2)•(x+3)=x2+3x﹣2x﹣6=x2+x﹣6,∵(x﹣2)•(x+3)=x2+mx﹣6,∴m=1,故选:B.8.一个等腰三角形的顶角是50°,则它的底角是()A.65°B.70°C.75°D.100°【分析】等腰三角形中,给出了顶角为50°,可以结合等腰三角形的性质及三角形的内角和定理直接求出底角,答案可得.解:∵三角形为等腰三角形,且顶角为50°,∴底角=(180°﹣50°)÷2=65°.故选:A.9.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)【分析】这个图形变换可以用来证明平方差公式:已知在左图中,大正方形减小正方形剩下的部分面积为a2﹣b2;因为拼成的长方形的长为(a+b),宽为(a﹣b),根据“长方形的面积=长×宽”代入为:(a+b)×(a﹣b),因为面积相等,进而得出结论.解:由图可知,大正方形减小正方形剩下的部分面积为:a2﹣b2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.10.如图,△ABC≌△ADE,点D落在BC上,且∠B=55°,则∠EDC的度数等于()A.50°B.60°C.70°D.80°【分析】根据全等三角形的性质:对应角和对应边相等解答即可.解:∵△ABC≌△ADE,∴∠B=∠ADE=55°,AB=AD,∴∠ADB=∠B=55°,∴∠EDC=70°.故选:C.二、填空题(共4个小题)11.已知∠A=30°,则∠A的补角的度数为150度.【分析】本题考查互补的概念,和为180度的两个角互为补角.解:根据定义,∠A补角的度数是180°﹣30°=150°.12.关于x的二次多项式x2+6x+m恰好是另一个多项式的平方,则常数项m=9.【分析】利用完全平方公式的结构特征判断即可确定出m的值.解:∵二次多项式x2+6x+m恰好是另一个多项式的平方,∴m=9.故答案为:913.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为92°.【分析】根据两条直线平行,同位角相等可得∠1=∠3,再根据平角定义即可求出∠2的度数.解:如图,∵l1∥l2,∴∠1=∠3=58°,∵∠4=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣58°﹣30°=92°.故答案为:92°.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=6,AB=17,则△ABD的面积是51.【分析】根据作图过程可得,AD是∠CAB的平分线,过点D作DE⊥AB于点E,根据∠C=90°,可得DC⊥AC,可得DE=CD=6,进而可得△ABD的面积.解:根据作图过程可知:AD是∠CAB的平分线,如图,过点D作DE⊥AB于点E,∵∠C=90°,∴DC⊥AC,∴DE=CD=6,∴S△ABD=AB•DE=17×6=51.故答案为:51.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(1)计算:﹣32﹣(2020﹣π)0﹣|﹣4|+(﹣)﹣2;(2)计算:8m4•(﹣12m3n5)÷(﹣2mn)5.【分析】(1)先算平方、零指数幂,绝对值,负整数指数幂,再算加减法即可求解;(2)先算积的乘方,再算乘除法即可求解.解:(1)﹣32﹣(2020﹣π)0﹣|﹣4|+(﹣)﹣2=﹣9﹣1﹣4+9=﹣5;(2)8m4•(﹣12m3n5)÷(﹣2mn)5=8m4•(﹣12m3n5)÷(﹣32m5n5)=3m2.16.先化简,再求值[(x+2y)2﹣(x+y)(x﹣y)﹣5y2]÷2x,其中.【分析】根据完全平方公式、平方差公式及整式的混合运算,将原式化简为2y,代入y 值即可求出结论.解:原式=[x2+4xy+4y2﹣x2+y2﹣5y2]÷2x,=4xy÷2x,=2y,当x=﹣2、y=时,原式=2y=1.17.如图,在长度为1个单位长度的小正方形组成的正力形网格中,点A,B,C在小正方形的顶点上.(1)在图中画出△ABC关于直线l成轴对称的△A′B′C′;(2)求△ABC的面积;(3)在直线l上找一点P,使PB+PC的长最短,标出点P(保留作图痕迹).【分析】(1)分别作出点A、B、C关于直线l的对称点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积计算△ABC的面积;(3)连接BC′交直线l于P点,利用两点之间线段最短可判断P点满足条件.解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=2×4﹣×2×2﹣×2×1﹣×4×1=3;(3)如图,点P为所作.18.公路上,A,B两站相距25千米,C、D为两所学校,DA⊥AB于点A,CB⊥AB于点B,如图,已知DA=15千米,现在要在公路AB上建一报亭H,使得C、D两所学校到H的距离相等,且∠DHC=90°,问:H应建在距离A站多远处?学校C到公路的距离是多少千米?【分析】根据同角的余角相等求出∠D=∠CHB,再利用“角角边”证明△ADH和△BHC 全等,根据全等三角形对应边相等可得AD=BH,AH=BC,再根据AH=AB﹣BH计算即可得解.解:∵∠DHC=90°,∴∠AHD+∠CHB=90°,∵DA⊥AB,∴∠D+∠AHD=90°,∴∠D=∠CHB,在△ADH和△BHC中,,∴△ADH≌△BHC(AAS),∴AD=BH=15千米,AH=BC,∵A,B两站相距25千米,∴AB=25千米,∴AH=AB﹣BH=25﹣15=10千米,∴学校C到公路的距离是10千米.答:H应建在距离A站10千米处,学校C到公路的距离是10千米.19.在弹性限度内,某弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如表:所挂物体的质量/千克012345678弹簧的长度/cm1212.51313.51414.51515.516(1)在这个变化过程中,自变量和因变量各是什么?(2)如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,写出y与x的关系式.(3)如果该弹簧最大挂重量为25千克,当挂重为14千克时,该弹簧的长度是多少?【分析】(1)因为弹簧的长度随所挂物体的质量变化而变化,由此可得结论;(2)由表格中的数据可知,弹簧的长度随所挂物体的重量的增加而增加;(3)由表中的数据可知,x=0时,y=12,并且每增加1千克的重量,长度增加0.5cm,所以y=0.5x+12,代入计算即可.解:(1)上表反映了:弹簧的长度(cm)与所挂物体的质量(kg)之间的关系,物体的质量是自变量,弹簧的长度是因变量;(2)如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,那么y与x的关系式为:y=0.5x+12;(3)当x=14时,y=0.5×14+12=19.答:当挂重为14千克时,弹簧的长度19cm.20.已知AB∥CD,点E为直线AB、CD所确定的平面内一点.(1)如图1,若AE⊥AB,求证:∠C+∠E=90°;(2)如图2,点F在BA的延长线上,连接BE、EF,若CE⊥CD,EF平分∠AEC,∠B=∠AEB,则∠BEF的度数为45°.(3)在(2)的条件下,如图3,过点F作∠BFG=∠BFE交EC的延长线于点G,连接DF,作∠DFG的平分线交CD于点H,当FD∥BE时,求∠CHF的度数.【分析】(1)首先延长BA,则易得AB∥CD,然后由两直线平行,同位角相等,即可证得:∠E+∠C=90°;(2)延长BF,交CE与G,则易得∠EGB=90°,然后由三角形内角和定理得出2∠AEF+2∠AEB=90°,即可得出∠BEF=45°;(3)根据平行线的性质得出∠D=∠BFD=∠B,根据三角形外角的性质得出∠CHF=∠DFG+∠D,然后根据已知条件和三角形内角和定理即可求得∠CHF=∠BFE+∠B =(180°﹣∠BEF﹣∠B)+∠B=(180°﹣45°﹣∠B)+∠B=67.5°.解:(1)证明:延长BA,交CE与F,如图1:∵AB∥CD,∴∠EFA=∠C,∴∠EAB=∠EFA+∠E=∠E+∠C,∵AE⊥AB,∴∠E+∠C=90°;(2)解:延长BF,交CE与G,如图2:∵AB∥CD,CE⊥CD,∴∠EGB=90°,∴∠GEB+∠B=90°,∵∠GEF=∠AEF,∠AEB=∠B,∴2∠AEF+2∠AEB=90°,∴∠AEF+∠AEB=45°,即∠BEF=45°,故答案为45°.(3)如图3,∵∠CHF=∠DFH+∠D,∠DFH=∠DFG,∴∠CHF=∠DFG+∠D,∵AB∥CD,FD∥BE,∴∠D=∠BFD=∠B,∴∠DFG=∠BFG﹣∠B,∴∠CHF=∠DFG+∠D=(∠BFG﹣∠B)+∠B=∠BFG+∠B,∵∠BFG=∠BFE,∴∠CHF=∠BFE+∠B=(180°﹣∠BEF﹣∠B)+∠B=(180°﹣45°﹣∠B)+∠B=67.5°.四.填空题(本大题共5个小题,每小题4分共20分)21.若x m=3,x n=5,则x2m+n的值为45.【分析】直接利用同底数幂的乘法运算法则计算得出答案.解:∵x m=3,x n=5,∴x2m+n=(x m)2×x n=9×5=45.故答案为:45.22.一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.现再将n个白球放入布袋,搅匀后,使摸出1个红球的概率为,则n的值为3.【分析】根据概率的意义列方程求解即可.解:由题意得,=,解得,n=3,经检验,n=3是原方程的解,所以原方程的解为n=3,故答案为:3.23.如图,边长为5的正方形ABCD与直角三角板如图放置,延长CB与三角板的直角边相交于点E,则四边形AECF的面积为25.【分析】根据正方形和直角三角形板可得∠EAB=∠FAD,即可证明△ABE≌△ADF,进而可得四边形AECF的面积=正方形ABCD的面积.解:∵正方形ABCD与直角三角板如图,∴∠BAD=∠EAF=90°,即∠EAB+∠BAF=∠DAF+∠BAF,∴∠EAB=∠FAD,∠D=∠ABE=90°,AD=AB,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴四边形AECF的面积=正方形ABCD的面积=52=25.故答案为:25.24.如图,正方形ABCD中,AE=2cm,CG=5cm.长方形EFGD的面积是11,四边形NGDH和MEDQ都是正方形,PQDH是长方形,则图中阴影部分的面积是53cm2.【分析】设正方形ABCD的边长为xcm,可得DE=x﹣2(cm),DG=x﹣5(cm),由矩形的面积公式可得x2﹣7x=1,由图中阴影部分的面积=(2x﹣7)2,整体代入可求解.解:设正方形ABCD的边长为xcm,由题意DE=x﹣2(cm),DG=x﹣5(cm),则(x﹣2)(x﹣5)=11,∴x2﹣7x=1∵四边形NGDH和MEDQ都是正方形,∴DE=ME=x﹣2(cm),DG=DH=x﹣5(cm),∴MF=x﹣2+x﹣5=2x﹣7(cm),∴图中阴影部分的面积=(2x﹣7)2=4x2﹣28x+49=4(x2﹣7x)+49=4+49=53(cm2),故答案为:53.25.如图,△ABC中,CD⊥AB,垂足为D,CD=BD=5,AD=4,点M从点B出发沿线段BA方向运动到点A停止,过点M作MN⊥AB,交折线BC﹣CA于点N,连接DN,AN,若△ADN与△CND的面积相等,则线段BM的长为或7.【分析】分两种情况:①当M在BD上时,设出BM=x,通过证得△DMN∽△ADC,得出,解方程即可求得;②当M在AD上时,通过证得AM=DM,得出9﹣x =2,解方程即可求得.解:①当M在BD上时,如图1,∵△ADN与△CND的面积相等,∴A、C到DN的距离相等,∴AC∥DN,∴∠MDN=∠DAC,∵∠DMN=∠ADC=90°,∴△DMN∽△ADC,∴=,∵△ABC中,CD⊥AB,垂足为D,CD=BD=5,AD=4,∴∠B=45°,∴BM=MN,设BM=MN=x,则MD=5﹣x,∴,解得x=,∴此时,BM=;②当M在AD上时,如图2,∵△ADN与△CND的面积相等,∴AN=CN,∵CD⊥AB,MN⊥AB,∴MN∥CD,∴AM=DM,∵CD=BD=5,AD=4,∴AD=9,AM=2,设BM=x,∴9﹣x=2,解得x=7,∴此时BM=7,综上,BM的长为或7.故答案为或7.五、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演算步骤)26.若a,b,c为△ABC的三边.(1)化简:|a﹣b+c|+|c﹣a﹣b|﹣|a+b|;(2)若a,b,c都是正整数,且a2+b2﹣2a﹣8b+17=0,求△ABC的周长.【分析】(1)根据三角形的三边关系化简即可;(2)根据非负数的性质和三角形的三边关系化简即可得到结论.解:(1)∵a,b,c为△ABC的三边,∴a﹣b+c>0,c﹣a﹣b<0,a+b>0,∴|a﹣b+c|+|c﹣a﹣b|﹣|a+b|=a﹣b+c﹣c+a+b﹣a﹣b=a﹣b;(2)∵a2+b2﹣2a﹣8b+17=(a2﹣2a+1)+(b2﹣8b+16)=(a﹣1)2+(b﹣4)2=0,∴a=1,b=4,∵a,b,c为△ABC的三边,∴4﹣1<c<4+1,∴3<c<5,∵若a,b,c都是正整数,∴c=4,∴△ABC的周长=1+4+4=9.27.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,步行到景点C;乙先乘景区观光车到景点B,在B处停留一段时间后,再步行到景点C,甲、乙两人同时到达最点C.甲、乙两人距景点A的路程y(米)与甲出发的时间x(分)之间的图象如图所示:(1)甲步行的速度为60米/分,乙步行时的速度为80米/分;(2)分别写出甲游客从景点A出发步行到景点C和乙游客乘景区观光车时y与x之间的关系式;(3)问乙出发多长时间与甲在途中相遇?【分析】(1)由图象得相应的路程和时间,利用路程除以时间得速度;(2)利用待定系数法解答即可;(3)根据(2)的结论解答即可.解:(1)甲步行的速度为:5400÷90=60(米/分);乙步行的速度为:(5400﹣3000)÷(90﹣60)=80(米/分).故答案为:60,80;(2)设甲的函数解析式为:y=kx,将(90,5400)代入得k=60,∴y=60x.根据题意,设乙乘景区观光车时y与x之间的函数关系式为y=kx+b(k≠0),将(20,0),(30,3000)代入得:,解得:,∴乙乘景区观光车时y与x之间的函数关系式为y=300x﹣6000(20≤x≤30);(3)由得x=25,即甲出发25分钟与乙第一次相遇,即乙发5分钟与乙第一次相遇;在y=60x中,令y=3000得:x=50,此时甲与乙第二次相遇.∴乙发5分钟和30分钟与乙两次在途中相遇.28.如图1,在△ABC中,∠BAC=90°,点D为AC边上一点,连接BD,点E为BD点连接CE,∠CED=∠ABD,过点A作AG⊥CE,垂足为G,AG交ED于点F.(1)判断AF与AD的数量关系,并说明理由;(2)如图2,若AC=CE,点D为AC的中点,AB与AC相等吗?为什么?(3)在(2)的条件下,如图3,若DF=5,求△DEC的面积.【分析】(1)利用三角形的内角和定理,构建关系式解决问题即可.(2)证明△ABF≌△CED(AAS)即可解决问题.(3)连接AE,过点A作AH⊥AE交BD延长线于点H,连接CH.首先证明△ABE≌△ACH,推出∠AEB=∠AHC=135°,推出∠CHD=90°,过点A作AK⊥ED于H,再证明△AKD≌△CHD(AAS),推出DK=DH,想办法求出DE,CH即可解决问题.解:(1)结论:AF=AD.理由:如图1中,∵∠BAC=90°,∴∠ADB=90°﹣∠ABD,∵AG⊥CE,∴∠FGE=90°,∴∠EFG=∠AFD=90°﹣∠CED,∵∠CED=∠ABD,∴∠AFD=∠ADF,∴AF=AD.(2)结论:AB=AC.理由:如图2中,∵∠AFD=90°﹣∠CED,∠ADB=90°﹣∠ABD,∠CED=∠ABD,∴∠AFD=∠ADF,∴AF=AD,∠BFA=180°﹣∠AFD=180°﹣∠ADF=∠CDE,∵D为AC的中点,∴AD=CD=AF,∴△ABF≌△CED(AAS),∴AB=CE,∵CE=AC,∴AB=AC.(3)连接AE,过点A作AH⊥AE交BD延长线于点H,连接CH.∵∠BAC=90°,∴∠BAE=∠CAH,设∠ABD=∠CED=α,则∠FAD=2α,∠ACG=90°﹣2α,∵CA=CE,∴∠AEC=∠EAC=45°+α,∴∠AED=45°,∴∠AHE=45°,∴AE=AH,∵AB=AC,∴△ABE≌△ACH(SAS),∴∠AEB=∠AHC=135°,∴∠CHD=90°,过点A作AK⊥ED于H,∴∠AKD=∠CHD=90°,∵AD=CD,∠ADK=∠CDH,∴△AKD≌△CHD(AAS)∴DK=DH,∵AK⊥DF,AF=AD,AE=AH,∴FK=DK,EK=HK,∴DH=DK=KF=EF=,∴DE=,EH=10,∵△AEH是等腰直角三角形,AK⊥EH,∴AK=EK=KH=5,∴S△EDC=•DE•CH=××5=.。

成都市名校2019-2020学年七年级第二学期期末质量跟踪监视数学试题含解析

成都市名校2019-2020学年七年级第二学期期末质量跟踪监视数学试题含解析

成都市名校2019-2020学年七年级第二学期期末质量跟踪监视数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每题只有一个答案正确)1.下列交通标志图案是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】【详解】A图形中三角形和三角形内部图案的对称轴不一致,所以不是轴对称图形;B为轴对称图形,对称轴为过长方形两宽中点的直线;C外圈的正方形是轴对称图形,但是内部图案不是轴对称图形,所以也不是;D 图形中圆内的两个箭头不是轴对称图象,而是中心对称图形,所以也不是轴对称图形.故选B.2.过点A(﹣2,3)且垂直于y轴的直线交y轴于点B,则点B的坐标为()A.(0,﹣2)B.(3,0)C.(0,3)D.(﹣2,0)【答案】C【解析】【分析】直接利用点的坐标特点进而画出图形得出答案.【详解】解:如图所示:,过点A(﹣2,3)且垂直于y轴的直线交y轴于点B,故点B的坐标为:(0,3).故选C .【点睛】此题主要考查了点的坐标,正确画出图形是解题关键.3.已知关于x 的不等式组2323(2)5x a x x >-⎧⎨≥-+⎩仅有三个整数解,则a 的取值范围是( ) A .1a < B .112a ≤≤ C .1a 12< D .112a <【答案】D【解析】【分析】先求出不等式得解集,再根据解集情况求出a 即可【详解】:由x>2a-3,由2x>3(x-2)+5,解得:2a-3<x≤1,由关于x 的不等式组() 232325x a x x >-≥-+⎧⎨⎩仅有三个整数:解得-2≤2a -3<-1,解得12≤a<1,故选:D.【点睛】此题考查解一元一次不等式组的整数解,掌握运算法则是解题关键4.如图,A 处在B 处的北偏东45°方向,A 处在C 处的北偏西15°方向,则∠BAC 等于()A .30°B .45°C .50°D .60【答案】D【解析】【分析】先求出∠ABC+∠ACB 的度数,然后根据三角形内角和为180︒即可求出∠BAC 的度数.【详解】如图由题意可知45,15DBA ECA ︒︒∠=∠=∵BD//CE ∴∠CBD+∠BCE=180︒(两直线平行,同旁内角互补)∴∠ABC+∠ACB=∠CBD+∠BCE DBA ECA -∠-∠ 90904515120︒︒︒︒︒=+--=∵∠ABC+∠ACB=180︒-∠BAC(三角形内角和180︒)∴∠BAC 60︒=,故选D【点睛】本题考查了方位角及三角形的内角和定理,正确理解方位角的含义是解题的关键.5.在下列命题中,为真命题的是( )A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相垂直【答案】B【解析】【分析】分别利用对顶角的性质以及平行线的性质和推论进而判断得出即可.【详解】解:A 、相等的角不一定是对顶角,故此选项错误;B 、平行于同一条直线的两条直线互相平行,正确;C 、两直线平行,同旁内角互补,故此选项错误;D 、垂直于同一条直线的两条直线互相平行,故此选项错误.故选B .【点睛】此题主要考查了命题与定理,熟练掌握平行线的性质与判定是解题关键.6.如图,已知a∥b ,点B 在直线b 上,且AB⊥BC ,∠1=46°,则∠2的度数是( )A .44B .46C .54D .56由垂线的性质和平角的定义求出∠3的度数,再由平行线的性质即可得出∠2的度数.【详解】∵AB ⊥BC ,∴∠ABC =90°,∴∠3=180°﹣90°﹣∠1=44°.∵a ∥b ,∴∠2=∠3=44°.故选A .【点睛】本题考查了平行线的性质、垂线的性质;熟练掌握平行线的性质,求出∠3的度数是解答本题的关键. 7.以下描述中,能确定具体位置的是( )A .万达电影院2排B .距薛城高铁站2千米C .北偏东30℃D .东经106℃,北纬31℃【答案】D【解析】【分析】平面内表示物体的位置常用的方式:一是用一个有序数对,二是用方向角和距离,根据这两种方式逐项分析即可.【详解】A. 万达电影院2排由多个座位,故不能确定具体位置;B. 在以薛城高铁站为圆心,以2千米为半径的圆上的点,都满足距薛城高铁站2千米,故不能确定具体位置;C. 北偏东30℃的方向有无数个点,故不能确定具体位置;D. 东经106℃,北纬31℃,能确定具体位置;故选D.【点睛】本题考查了确定物体的位置,是数学在生活中应用,熟练掌握平面内物体的表示方法是解答本题的关键,解答本题可以做到在生活中理解数学的意义.823x y +-,则y x 的值为( )A .1B .-1C .2D .-2由绝对值、算术平方根的非负性和已知条件可得2x+y-3=0,x-3y-5=0,构建二元一次方程组230350x yx y+-⎧⎨--⎩==,解二元一次方程组得21xy⎧⎨-⎩==,最后可求出y x=1.【详解】,|x−3y−5|≥0,,0,|x-3y-5|=0,∴2x+y-3=0,x-3y-5=0,∴两个二元一次方程组中所含的未知数及次数相同,∴构建一个关于x、y的二元一次方程组为230350x yx y+-⎧⎨--⎩==,解二元一次方程组的解为21 xy⎧⎨-⎩==,∴y x=(-1)2=1,故选:A.【点睛】本题综合考查了绝对值、算术平方根的非负性,构建二元一次方程组与解二元一次方程组和乘方等相关知识,重点掌握构建二元一次方程组与解二元一次方程组的能力,难点是绝对值、算术平方根的非负性与二元一次方程组的综合能力提升.9.下列实数中,无理数是:()ABC.17D.3.14【答案】B【解析】【分析】根据无理数,有理数的定义对各选项分析判断后利用排除法求解.【详解】A. 2=,是有理数,故本项错误;B. 是无理数,故本项正确;C. 17是有理数,故本项错误;D. 3.14是有理数,故本项错误.故选B.【点睛】本题考查无理数的定义,无理数是无限不循环小数,在初中阶段它的表现形式有三类:①无限不循环小数;②开方开不尽的数;③π或与π有关的式子(注意π乘以0等于0,为有理数).10.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩【答案】A 【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.二、填空题11.把方程2x-3y=x+2y改写成用含x的式子表示y的形式:_________.【答案】y=1 5 x【解析】【分析】把x看作已知数求出y即可.【详解】解:方程2x-3y=x+2y,解得:y=15 x,故答案为:y=1 5 x【点睛】此题考查了解二元一次方程,解题的关键是将x看作已知数求出y.12.不等式13(x-m)>3-m的解集为x>1,则m的值为___.【答案】1【解析】试题分析:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m.∵此不等式的解集为x>1,∴9﹣2m=1,解得m=1.13.不等式2x+9≥3(x+2)的正整数解是__________.【答案】1,2,1【解析】试题分析:先解不等式,求出其解集,再根据解集判断其正整数解.解:2x+9≥1(x+2),去括号得,2x+9≥1x+6,移项得,2x﹣1x≥6﹣9,合并同类项得,﹣x≥﹣1,系数化为1得,x≤1,故其正整数解为1,2,1.故答案为1,2,1.考点:一元一次不等式的整数解.14.本学期实验中学组织开展课外兴趣活动,各活动小班根据实际情况确定了计划组班人数,并发动学生自愿报名,报名人数与计划人数的前5位情况如下:若用同一小班的计划人数与报名人数的比值大小来衡量进入该班的难易程度,学生中对于进入各活动小班的难易有以下预测:①篮球和航模都能进;②舞蹈比写作容易;③写作比奥数容易;④舞蹈比奥数容易.则预测正确的有___________(填序号即可).【答案】②④【解析】【分析】处理此类问题,首先读懂统计表,认清其结构,求得每个班中报名人数已计划人数的比值,比值越小则越难.【详解】由题意得:同一小班的报名人数与计划人数的比值越小进入该班的难度大,∵表中数据为报名人数与计划人数的前5位的统计情况,根据图中数据,可知同一小班的报名人数与计划人数的比值为:奥数215120=1.79;写作201100=2.01;舞蹈15490=1.71;篮球<1;航模<1;故正确的有②④【点睛】此题考查统计表,解题关键在于看懂图中数据15.已知点A(3+2a,3a﹣5),点A到两坐标轴的距离相等,点A的坐标为_____.【答案】(19,19)或(195,-195)【解析】【分析】根据点A到两坐标轴的距离相等,分两种情况讨论:3+2a与3a﹣5相等;3+2a与3a﹣5互为相反数.【详解】根据题意,分两种情况讨论:①3+2a=3a﹣5,解得:a=8,∴3+2a=3a﹣5=19,∴点A的坐标为(19,19);②3+2a+3a﹣5=0,解得:a=25,∴3+2a=195,3a﹣5=﹣195,∴点A的坐标为(195,﹣195).故点A的坐标为(19,19)或(195,-195),故答案为:(19,19)或(195,-195).【点睛】本题考查了点的坐标,解决本题的关键是根据点A到两坐标轴的距离相等,分两种情况讨论.16.请你列不等式:“x的3倍与4的差不小于6”为_____.【答案】3x﹣4≥1【解析】【分析】直接表示出x的3倍为3x,再减去4,其结果大于等于1,得出不等式即可.【详解】由题意可得:3x﹣4≥1.故答案为3x﹣4≥1;【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确列出不等关系是解题关键.17.如图,图中有_____个三角形,以AD为边的三角形有_____.【答案】3 △ABD,△ADC【解析】【分析】根据三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.【详解】图中共有3个三角形;它们是△ABD;△ADC;△ABC;以AD为边的三角形有△ABD,△ADC;故答案为:3;△ABD,△ADC【点睛】此题主要考查了三角形中的重要元素,关键是正确理解三角形的定义.三、解答题18.如图,直线AB//CD,BC平分∠ABD,∠1=54°,求∠2的度数.【答案】72°【解析】【分析】由平行线的性质可求得∠ABC=54°,再根据角平分线的定义可求得∠ABD=108°,再由平行线的性质可求得∠CDB=72°,根据对顶角相等即可求得∠2=72°.【详解】∵ AB//CD,∠1=54°,∴∠ABC=∠1=54°,∵ BC平分∠ABD,∴∠ABD=2∠ABC =2×54°=108°,∵ AB//CD,∴ ∠ABD+∠CDB=180°,∴ ∠CDB=180°-∠ABD=72°,∵ ∠2=∠CDB ,∴ ∠2=72°.【点评】本题考查了平行线的性质,角平分线的定义,对顶角的性质,熟练掌握相关性质是解题的关键.19.看图填空:(请将不完整的解题过程及根据补充完整)已知:如图,//AC ED ,A EDF ∠=∠,请你说明B CDF ∠=∠.理由:∵//AC ED ,根据“两直线平行,同位角相等”,∴A ∠= .又∵A EDF ∠=∠,∴BED EDF ∠=∠.根据 “ ”,∴//AB FD ,根据“ ”,∴B CDF ∠=∠.【答案】BED ∠;内错角相等,两直线平行;两直线平行,同位角相等.【解析】【分析】根据已有的证明过程结合图形填空即可.【详解】证://AC ED ,A ∴∠=BED ∠(两直线平行,同位角相等). 又∵A EDF ∠=∠,BED EDF ∴∠=∠.//AB FD∴(内错角相等,两直线平行),B CDF∴∠=∠(两直线平行,同位角相等).故答案为:BED∠;内错角相等,两直线平行;两直线平行,同位角相等.【点睛】本题考查了平行线的判定与性质,解题过程中要分清判定和性质.20.如图,在方格纸中,每个小正方形的边长均为1个单位长度有一个△ABC,它的三个顶点均与小正方形的顶点重合.(1)将△ABC向右平移3个单位长度,得到△DEF(A与D、B与E、C与F对应),请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和CE,请直接写出△ACE的面积S,并判断B是否在边AE上.【答案】(1)见解析;(2)1【解析】【分析】(1)根据图形平移的性质画出平移后的三角形即可;(2)连接AE和CE,利用矩形的面积减去三个顶点上三角形的面积即可得出S的值,根据图形可得出点B 的位置.【详解】解:(1)如图所示;(2)由图可知,S=5×4﹣12×4×1﹣12×2×4﹣12×2×5=20﹣2﹣4﹣5=1.根据图形可知,点B不在AE边上.【点睛】此题主要考查图形的平移,解题的关键是根据题意画出图形进行求解.21.一个进行数值转换的运行程序如图所示,从“输入有理数x”到“结果是否大于0”称为“一次操作”(1)下面命题是真命题有( )①当输入3x =后,程序操作仅进行一次就停止.②当输入1x =-后,程序操作仅进行一次就停止③当输入x 为负数时,无论x 取何负数,输出的结果总比输入数大.④当输入3x <,程序操作仅进行一次就停止A .4B .3C .2D .1(2)探究:是否存在正整数x ,使程序只能进行两次操作,并且输出结果小于12?若存在,请求出所有符合条件的x 的值;若不存在,请说明理由.【答案】 (1)C ;(2)x=2.【解析】【分析】(1)直接根据运算程序进而判断得出答案;(2)直接根据运算程序得出关于x 的不等式进而求出答案.【详解】(1)①当输入x=3后,程序操作进行一次后得到3×(-3)+6=-3,故不可能就停止,故此说法错误; ②当输入x=-1后,程序操作进行一次后得到(-1)×(-3)+6=9>0,故此说法正确;③当输入x 为负数时,无论x 取何负数,输出的结果总比输入数大,故此说法正确;④当输入2x <,程序操作仅进行一次就停止,故原说法错误.故选C.(2)∵程序只能进行两次操作第一次计算的代数式是(36)x -+第二次输出的代数式是(3)(36)6912x x -⨯-++=-∴3609120x x -+≤⎧⎨->⎩ 解不等式组得2x ≥又因为91212x -<924x <83x <∴823x ≤< ∵x 为整数,所以2x =【点睛】此题主要考查了一元一次不等式的应用,正确得出不等关系是解题关键.22.如图,△ACB 和△DCE 均为等腰三角形,点A 、D 、E 在同一条直线上,BC 和AE 相交于点O ,连接BE ,若∠CAB=∠CBA=∠CDE=∠CED=50°。

成都市高新区中和中学2019-2020学年下期七年级数学期末复习题

成都市高新区中和中学2019-2020学年下期七年级数学期末复习题

成都市高新区中和中学2019-2020学年下期七年级数学期末复习题数 学(时间:120分钟,总分:150分)A 卷(共100分)一 、选择题(每题3分,共30分) 1. 下列计算正确的是A .2752a a a =+B .842a a a =⋅C .623)(x x =D .6222a a a a =++ 2.下列图形中,是轴对称图形的是A B C D3. 画△ABC 中AB 边上的高,下列画法中正确的是A B C D4. 如图,E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是A .∠3=∠4B .∠A+∠ADC=180°C .∠1=∠2D .∠A=∠55. 长度分别是2,5,6,7 的四条线段,从中任取3条线段能组成三角形的概率是A .31 B .21 C .32 D .436. 有一游泳池注满水,现按一定的速度将水排尽,然后进行清扫,再按相同的速度注满清水,使用一段时间后,又按相同的速度将水排尽,则游泳池的水面高度h (米)随时间t (小时)变化的大致图象可以是A B C D7. 下列成语描述的事件是必然事件的是A 水涨船高B 守株待兔C 水中捞月D 画饼充饥8.如图,直线DE 垂直平分AB ,交AC 于点D ,交AB 于点E ,连BD ,若AC=6,BC=4,则△BCD 的周长为A .6B .8C .10D .12 9.下列各组几何图形中,一定全等的是 A 各有一个角是45°的两个等腰三角形 B 两个等边三角形 C 各有一个40°,腰长都是5cm 的两个等腰三角形 D 腰长相等的两个等腰直角三角形10. 乐乐发现等腰三角形一腰上的高与另一腰的夹角为55°,则这个等腰三角形底角的度数为 A .35°或145° B .67.5°或22.5° C .77.5°或12.5° D .72.5°或17.5° 二、填空题(每空4分,共16分)11. 一根头发丝的直径约为0.0000075米,用科学计数法表示为___________.12.已知n a aa =⋅1232)(,则n=____________. 13.若多项式9)1(242+--x m x 是一个完全平方式,则m=_____________.14.某地有两条平行的河流a ,b 相距400米,又有一处草场,其边界c 为直线且与河流垂直。

四川省成都市郫都区2019-2020学年七年级(下)期末考试数学试卷 解析版

四川省成都市郫都区2019-2020学年七年级(下)期末考试数学试卷  解析版

2019-2020学年四川省成都市郫都区七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)下列图形是公共设施标志,其中是轴对称图形的是()A.B.C.D.2.(3分)如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠COM的大小为()A.70°B.60°C.50°D.40°3.(3分)下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.a3•a2=a6D.(﹣ab)3=﹣a3b34.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是()A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣6 5.(3分)如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B'度数为()A.110°B.70°C.90°D.30°6.(3分)一个不透明的盒子中装有9个白球和1个黑球,它们除了颜色外都相同.从中任意摸出一球,则下列叙述正确的是()A.摸到白球是必然事件B.摸到黑球是必然事件C.摸到白球是随机事件D.摸到黑球是不可能事件7.(3分)地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是()A.地表B.岩层的温度C.所处深度D.时间8.(3分)如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是()A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短9.(3分)若要植一块三角形草坪,两边长分别是20米和50米,则这块草坪第三边长不能为()A.60米B.50米C.40米D.30米10.(3分)如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥DF二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若二次三项式x2+2mx+81是完全平方式,则常数m的值为.12.(4分)如图,在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,且AD=5cm,则△ABC的面积为.13.(4分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是.14.(4分)某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.数量x(千克)12345售价y(元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5 则当卖出苹果数量为10千克时,售价y为元.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.(12分)计算:(1)25×(﹣)2﹣4×(﹣)0+()﹣2;(2)2a(5a﹣4)+(5a+3)(4a﹣2).16.(6分)先化简,再求值:[(x﹣3y)2+(x﹣2y)(x+2y)﹣x(2x﹣5y)]+(﹣y),其中x=﹣2,y=﹣3.17.(8分)根据题意及解答,填注推导理由:如图,直线AB∥CD,并且被直线EF所截,交AB和CD于点M、N,MP平分∠AME,NQ平分∠CNE.试说明MP∥NQ.解:∵AB∥CD,∴∠AME=∠CNE.()∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.()∵∠AME=∠CNE,∴∠1=∠2.()∵∠1=∠2,∴MP∥NQ.()18.(8分)为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:罚球次数20406080100120命中次数153248658096命中频率0.750.80.80.810.80.8(1)根据上表:估计该运动员罚球命中的概率是;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.19.(10分)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.20.(10分)如图,AD为△ABC的中线,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF ⊥DF.(1)求证;DE⊥DF;(2)求证:△BDE≌△DCF;(3)求证:EF∥BC.一、填空题(本大题共5小题,每小题4分,共20分,答案写在答题卡上)21.(4分)计算:()2019×()﹣2020=.22.(4分)如图,把一条两边边沿互相平行的纸带折叠,在∠α与∠β的数量关系中,若用∠α的代数式表示∠β,则∠β=.23.(4分)有五张正面分别标有数﹣2,0,1,3,4的纸片做成无差别的纸团,洗匀后从中任取一个纸团,若展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率为.24.(4分)如图所示,在△ABC中,AB=6,AC=4,AD是△ABC的中线,若AD的长为偶数,则AD=.25.(4分)如图所示,∠AOB=60°,点P是∠AOB内一定点,并且OP=2,点M、N分别是射线OA,OB上异于点O的动点,当△PMN的周长取最小值时,点O到线段MN 的距离为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)小明周末外出爬山,他从山脚爬到山项的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分),所走的路程为s(米),s与t之间的函数关系如图所示.(1)小明中途休息用了分钟;上述过程中,小明所走的路程为米;(2)若小明休息后爬山的平均速度是25米/分,求a的值.27.(10分)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:;【成果运用】利用上面所得的结论解答:(1)已知x+y=6,xy=,求x﹣y的值;(2)已知|a+b﹣6|+(ab﹣7)2=0,求a3+b3的值.28.(12分)探究等边三角形“手拉手”问题.(1)如图1,已如△ABC,△ADE均为等边三角形,点D在线段BC上,且不与点B、点C重合,连接CE,试判断CE与BA的位置关系,并说明理由;(2)如图2,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,试说明点B,点D,点E在同一直线上;(3)如图3,已知点E在ABC外,并且与点B位于线段AC的异侧,连接BE、CE.若∠BEC=60°,猜测线段BE、AE、CE三者之间的数量关系,并说明理由.2019-2020学年四川省成都市郫都区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)下列图形是公共设施标志,其中是轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.(3分)如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠COM的大小为()A.70°B.60°C.50°D.40°【分析】利用对顶角的定义得出∠AOC=80°,进而利用角平分线的性质得出∠COM的度数.【解答】解:∵∠BOD=∠AOC(对顶角相等),∠BOD=80°,∴∠AOC=80°,∵射线OM是∠AOC的平分线,∴∠COM=×∠AOC=×80°=40°.故选:D.3.(3分)下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.a3•a2=a6D.(﹣ab)3=﹣a3b3【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、(a3)2=a6,故此选项错误;B、a6÷a3=a3,故此选项错误;C、a3•a2=a5,故此选项错误;D、(﹣ab)3=﹣a3b3,正确.故选:D.4.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是()A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示0.0000034是3.4×10﹣6.故选:D.5.(3分)如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B'度数为()A.110°B.70°C.90°D.30°【分析】利用三角形内角和定理求出∠B,再利用轴对称的性质解决问题即可.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠B′=∠B,∵∠B=180°﹣∠A﹣∠C=180°﹣50°﹣20°=110°,∴∠B′=110°,故选:A.6.(3分)一个不透明的盒子中装有9个白球和1个黑球,它们除了颜色外都相同.从中任意摸出一球,则下列叙述正确的是()A.摸到白球是必然事件B.摸到黑球是必然事件C.摸到白球是随机事件D.摸到黑球是不可能事件【分析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【解答】解:∵摸到白球是随机事件,不是必然事件,∴选项A不符合题意,选项C符合题意;∵摸到黑球是随机事件,∴选项B、D不符合题意;故选:C.7.(3分)地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是()A.地表B.岩层的温度C.所处深度D.时间【分析】地表以下岩层的温度随着所处深度的变化而变化,符合“对于一个变化过程中的两个量x和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是深度,因变量是岩层的温度.【解答】解:∵地表以下岩层的温度随着所处深度的变化而变化,∴自变量是深度,因变量是岩层的温度.故选:B.8.(3分)如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是()A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短【分析】根据三角形具有稳定性解答即可.【解答】解:工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是三角形具有稳定性,故选:A.9.(3分)若要植一块三角形草坪,两边长分别是20米和50米,则这块草坪第三边长不能为()A.60米B.50米C.40米D.30米【分析】根据三角形的三边关系定理可得50﹣20<x<50+20,再解即可.【解答】解:由题意得:50﹣20<x<50+20,即30<x<70,观察选项,D选项符合题意.故选:D.10.(3分)如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥DF【分析】由平行可得到∠B=∠DEF,又BE=CF推知BC=EF,结合全等三角形的判定方法可得出答案.【解答】解:∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BC=EF.A、当AB=DE时,可用SAS证明△ABC≌△DEF,故本选项错误;B、当∠A=∠D时,可用AAS证明△ABC≌△DEF,故本选项错误;C、当AC=DF时,根据SSA不能判定△ABC≌△DEF,故本选项正确;D、当AC∥DF时,可知∠ACB=∠F,可用ASA证明△ABC≌△DEF,故本选项错误;故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若二次三项式x2+2mx+81是完全平方式,则常数m的值为9或﹣9.【分析】根据两平方项确定出这两个数,再根据乘积二倍项列式求解即可.【解答】解:∵x2+2mx+81是一个完全平方式,∴2mx=±2•x•9,解得:m=±9.故答案为:9或﹣9.12.(4分)如图,在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,且AD=5cm,则△ABC的面积为15cm2.【分析】根据三角形的面积公式解答即可.【解答】解:∵在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,∴AD⊥BC,∴△ABC的面积=,故答案为:15cm2.13.(4分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是55°.【分析】先根据平角的定义求出∠3,再利用平行线的性质求出∠2=∠3即可.【解答】解:∵∠1+∠3=180°﹣90°=90°,∠1=35°,∴∠3=55°,∵AB∥CD,∴∠2=∠3=55°,故答案为:55°.14.(4分)某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.数量x(千克)12345售价y(元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5 则当卖出苹果数量为10千克时,售价y为31元.【分析】根据图表中数据可得出,y与x的函数关系进而得出答案.【解答】解:由图表可得出:y=3x+0.1x=3.1x.当x=10时,y=3.1×10=31,故答案为:31.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.(12分)计算:(1)25×(﹣)2﹣4×(﹣)0+()﹣2;(2)2a(5a﹣4)+(5a+3)(4a﹣2).【分析】(1)根据零指数次幂,负指数次幂的性质,有理数的乘方进行计算,再乘除,后加减即可求解;(2)根据整式乘法的法则计算,再合并同类项即可求解.【解答】解:(1)原式==1﹣4+9=6;(2)原式=10a2﹣8a+20a2+2a﹣6=30a2﹣6a﹣6.16.(6分)先化简,再求值:[(x﹣3y)2+(x﹣2y)(x+2y)﹣x(2x﹣5y)]+(﹣y),其中x=﹣2,y=﹣3.【分析】原式中括号中利用单项式乘多项式,完全平方公式以及平方差公式化简,去括号合并后得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=(x2﹣6xy+9y2+x2﹣4y2﹣2x2+5xy)﹣y=﹣xy+5y2﹣y,当x=﹣2,y=﹣3时,原式=﹣6+45+3=42.17.(8分)根据题意及解答,填注推导理由:如图,直线AB∥CD,并且被直线EF所截,交AB和CD于点M、N,MP平分∠AME,NQ平分∠CNE.试说明MP∥NQ.解:∵AB∥CD,∴∠AME=∠CNE.(两直线平行,同位角相等)∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.(角平分线的定义)∵∠AME=∠CNE,∴∠1=∠2.(等量代换)∵∠1=∠2,∴MP∥NQ.(同位角相等,两直线平行)【分析】利用平行线的性质定理和判定定理解答即可.【解答】解:∵AB∥CD,∴∠AME=∠CNE.(两直线平行,同位角相等),∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.(角平分线的定义),∵∠AME=∠CNE,∴∠1=∠2.(等量代换),∵∠1=∠2,∴MP∥NQ.(同位角相等,两直线平行).故答案为:两直线平行,同位角相等;角平分线的定义;等量代换;同位角相等,两直线平行.18.(8分)为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:罚球次数20406080100120命中次数153248658096命中频率0.750.80.80.810.80.8(1)根据上表:估计该运动员罚球命中的概率是0.8;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.【分析】(1)直接由表格数据可估计该运动员罚球命中的概率;(2)根据(1)可知运动员罚球命中的概率,由题意可知20次罚球得分多少.【解答】解:(1)根据表格数据可知该运动员罚球命中的概率0.8,故答案为0.8;(2)由题意可知,罚球一次命中概率为0.8,则罚球10次得分为10×2×0.8=16,∴估计他能得16分.19.(10分)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.【分析】(1)根据三角形内角和定理计算,得到答案;(2)根据线段垂直平分线的性质、等腰三角形的性质计算;(3)根据线段垂直平分线的性质、三角形的周长公式计算,得到答案.【解答】解:(1)∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣30°﹣50°=100°;(2)∵DE是线段AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,同理可得,∠F AC=∠ACB=50°,∴∠DAF=∠BAC﹣∠DAB﹣∠F AC=100°﹣30°﹣50°=20°;(3)∵△DAF的周长为20,∴DA+DF+F A=20,由(2)可知,DA=DB,F A=FC,∴BC=DB+DF=FC=DA+DF+F A=20.20.(10分)如图,AD为△ABC的中线,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF ⊥DF.(1)求证;DE⊥DF;(2)求证:△BDE≌△DCF;(3)求证:EF∥BC.【分析】(1)由角平分线的性质和平角的性质可求结论;(2)由“AAS”可证△BDE≌△DCF;(3)通过证明四边形DEFC是平行四边形,可得EF∥BC.【解答】证明:(1)∵DE平分∠ADB,DF平分∠ADC,∴∠PDE=∠ADB,∠FDP=∠ADC,∴∠EDF=∠PDE+∠PDF=∠ADB+∠ADC=(∠ADB+∠ADC)=90°,∴DE⊥DF;(2)∵BE⊥DE,DF⊥CF,∴∠BED=∠DFC=90°,∵∠BDE+∠CDF=90°,∠CDF+∠DCF=90°,∴∠BDE=∠DCF,∴DE∥CF,∵D是BC中点,∴BD=DC,在△BDE和△DCF中,,∴△BDE≌△DCF(AAS),(2)∵△BDE≌△DCF,∴DE=CF,∵DE∥CF,∴四边形DEFC是平行四边形,∴EF∥BC.一、填空题(本大题共5小题,每小题4分,共20分,答案写在答题卡上)21.(4分)计算:()2019×()﹣2020=.【分析】根据负整数指数幂的定义以及同底数幂的乘法法则计算即可.【解答】解:()2019×()﹣2020===.故答案为:.22.(4分)如图,把一条两边边沿互相平行的纸带折叠,在∠α与∠β的数量关系中,若用∠α的代数式表示∠β,则∠β=180°﹣2∠α.【分析】利用平行线的性质可得∠α=∠3,∠1=∠β,再利用平角定义可得答案.【解答】解:∵AB∥CD,∴∠α=∠3,∠1=∠β,由折叠可得∠3=∠2,∵∠2+∠3+∠1=180°,∴∠β+2∠α=180°,∴∠β=180°﹣2∠α,故答案为:180°﹣2∠α.23.(4分)有五张正面分别标有数﹣2,0,1,3,4的纸片做成无差别的纸团,洗匀后从中任取一个纸团,若展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率为.【分析】当a分别取2,0,1,3,4时,解方程ax﹣1﹣3(x+1)=﹣3x得到正整数的个数,然后根据概率公式求解.【解答】解:当a=﹣2时,方程ax﹣1﹣3(x+1)=﹣3x化为﹣2x﹣1﹣3x﹣3=﹣3x,解得x=﹣2;当a=0时,方程ax﹣1﹣3(x+1)=﹣3x化为﹣1﹣3x﹣3=﹣3x,无解;当a=1时,方程ax﹣1﹣3(x+1)=﹣3x化为x﹣1﹣3x﹣3=﹣3x,解得x=4;当a=3时,方程ax﹣1﹣3(x+1)=﹣3x化为3x﹣1﹣3x﹣3=﹣3x,解得x=;当a=4时,方程ax﹣1﹣3(x+1)=﹣3x化为4x﹣1﹣3x﹣3=﹣3x,解得x=1;所以使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的结果数为2,所以展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率=.故答案为.24.(4分)如图所示,在△ABC中,AB=6,AC=4,AD是△ABC的中线,若AD的长为偶数,则AD=2或4.【分析】延长AD至E,使DE=AD,连接CE,由“SAS”可证△ABD≌△ECD,可得CE=AB=6,由三角形的三边关系可得1<AD<5,即可求解.【解答】解:延长AD至E,使DE=AD,连接CE,在△ABD与△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB=6,在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<10,∴1<AD<5,∵AD为偶数,∴AD=2或4,故答案为2或4.25.(4分)如图所示,∠AOB=60°,点P是∠AOB内一定点,并且OP=2,点M、N分别是射线OA,OB上异于点O的动点,当△PMN的周长取最小值时,点O到线段MN 的距离为1.【分析】作点P关于OB的对称点P',点P关于OA的对称点P'',连接P'P''与OA,OB 分别交于点M与N则P'P''的长即为△PMN周长的最小值;连接OP',OP'',过点O作OC⊥P'P'',在Rt△OCP'中求出OC即可.【解答】解:作点P关于OB的对称点P',点P关于OA的对称点P'',连接P'P''与OA,OB分别交于点M与N则P'P''的长即为△PMN周长的最小值,连接OP',OP'',过点O作OC⊥P'P''于点C由对称性可知OP=OP'=OP'',∵OP=2,∠AOB=60°,∴∠P'=∠P''=30°,OP′=OP''=2,∴OC==1;故答案为1.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)小明周末外出爬山,他从山脚爬到山项的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分),所走的路程为s(米),s与t之间的函数关系如图所示.(1)小明中途休息用了20分钟;上述过程中,小明所走的路程为3800米;(2)若小明休息后爬山的平均速度是25米/分,求a的值.【分析】(1)根据函数图象中的数据,可以计算出小明中途休息用了多少分钟,小明所走的路程是多少;(2)根据函数图象中的数据和题意,可以计算出a的值.【解答】解:(1)由图象可得,小明中途休息用了60﹣40=20(分钟),上述过程中,小明所走的路程为3800米,故答案为:20,3800;(2)由题意可得,a﹣60=(3800﹣2800)÷25,解得,a=100,即a的值是100.27.(10分)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:(a+b)2﹣4ab=(a﹣b)2;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:(a+b)3=a3+b3+3a2b+3ab2;【成果运用】利用上面所得的结论解答:(1)已知x+y=6,xy=,求x﹣y的值;(2)已知|a+b﹣6|+(ab﹣7)2=0,求a3+b3的值.【分析】【知识生成】利用面积相等推导公式(a+b)2﹣4ab=(a﹣b)2;【知识迁移】利用体积相等推导(a+b)3=a3+b3+3a2b+3ab2;(1)应用知识生成的公式,进行变形,代入计算即可;(2)先根据非负数的性质得:a+b=6,ab=7,由知识迁移的等式可得结论.【解答】解:【知识生成】如图1,方法一:已知边长直接求面积为(a﹣b)2;方法二:阴影面积是大正方形面积减去四个长方形面积,∴面积为(a+b)2﹣4ab,∴由阴影部分面积相等可得(a+b)2﹣4ab=(a﹣b)2;故答案为:(a+b)2﹣4ab=(a﹣b)2;【知识迁移】方法一:正方体棱长为a+b,∴体积为(a+b)3,方法二:正方体体积是长方体和小正方体的体积和,即a3+b3+3a2b+3ab2,∴(a+b)3=a3+b3+3a2b+3ab2;故答案为:(a+b)3=a3+b3+3a2b+3ab2;(1)由(a+b)2﹣4ab=(a﹣b)2,可得(x﹣y)2=(x+y)2﹣4xy,∵x+y=6,xy=,∴(x﹣y)2=62﹣4×,∴(x﹣y)2=25,∴x﹣y=±5;(2)∵|a+b﹣6|+(ab﹣7)2=0,∴a+b=6,ab=7,∵(a+b)3=a3+b3+3a2b+3ab2;∴a3+b3=(a+b)3﹣3a2b﹣3ab2=63﹣3ab(a+b)=216﹣3×7×6=90.28.(12分)探究等边三角形“手拉手”问题.(1)如图1,已如△ABC,△ADE均为等边三角形,点D在线段BC上,且不与点B、点C重合,连接CE,试判断CE与BA的位置关系,并说明理由;(2)如图2,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,试说明点B,点D,点E在同一直线上;(3)如图3,已知点E在ABC外,并且与点B位于线段AC的异侧,连接BE、CE.若∠BEC=60°,猜测线段BE、AE、CE三者之间的数量关系,并说明理由.【分析】(1)结论:CE∥AB.证明△BAD≌△CAE(SAS)可得结论.(2)利用全等三角形的性质证明∠ADB=∠AEC=120°,证明∠ADB+∠ADE=180°即可解决问题.(3)结论:BE=AE+EC.在线段BE上取一点H,使得BH=CE,设AC交BE于点O.利用全等三角形的性质证明△AEH是等边三角形即可.【解答】(1)解:结论:CE∥AB.理由:如图1中,∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠B=∠ACE=60°,∴∠BAC=∠ACE=60°,∴AB∥CE.(2)证明:如图2中,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC,∵△ADE是等边三角形,∴∠AED=∠ADE=60°,∵∠BEC=60°,∴∠AEC=∠AED+∠BEC=120°,∴∠ADB=∠AEC=120°,∴∠ADB+∠ADE=120°+60°=180°,∴B,D,E共线.(3)解:结论:BE=AE+EC.理由:在线段BE上取一点H,使得BH=CE,设AC交BE于点O.∵△ABC是等边三角形,∴AB=BC,∠BAC=60°,∵∠BEC=60°,∴∠BAO=∠OEC=60°,∵∠AOB=∠EOC,∴∠ABH=∠ACE,∵BA=CA,BH=CE,∴△ABH≌△ACE(SAS),∴∠BAH=∠CAE,AH=AE,∴∠HAE=∠BAC=60°,∴△AEH是等边三角形,∴AE=EH,∴BE=BH+EH=EC+AE,即BE=AE+EC.。

2019-2020学年四川省成都市初一下期末监测数学试题含解析

2019-2020学年四川省成都市初一下期末监测数学试题含解析
【答案】A
【解析】
【详解】
解:解不等式组 可得 ,
在这个范围内的最小整数为0,ቤተ መጻሕፍቲ ባይዱ
所以不等式组 的最小整数解是0,
故选A
4.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为( )
7.某小组在“用频率估计概率”的实验中,统计了某种频率结果出现的频率,绘制了如图所示的折线统计图,那么符合这一结果的实验最有可能的是( )
A.掷一枚质地均匀的硬币,落地时结果是“正面向上”
B.掷一个质地均匀的正六面体骰子,落地时朝上的面点数是6
C.在“石头剪刀、和”的游戏中,小明随机出的是“剪刀”
D.袋子中有1个红球和2个黄球,只有颜色上的区别,从中随机取出一个球是黄球
A.8B.6C.5D.4
【答案】B
【解析】
【分析】
设边数为x,根据题意可列出方程进行求解.
【详解】
设边数为x,根据题意得(x-2)×180°=2×360°
解得x=6
故选B.
【点睛】
此题主要考查多边形的内角和,解题的关键是熟知多边形的外角和为360°.
3.不等式组 的最小整数解是()
A.0B.-1C.1D.2
9.大象是世界上最大的陆栖动物,它的体重可达到好几吨,下面哪个动物的体重相当于它的百万分之一( )
A.啄木鸟B.蚂蚁C.蜜蜂D.公鸡
【答案】C
【解析】
【分析】
首先算出1吨的百万分之一是多少,然后与选择项比较即可.
【详解】
因为1吨=1000千克,

2019-2020年七年级数学下学期期末试卷(含解析)

2019-2020年七年级数学下学期期末试卷(含解析)

2019-2020年七年级数学下学期期末试卷(含解析)一.选择题(共10小题,每小题3分,满分30分.以下每小题给出的A、B、C、D四个选项,其中只有一个选项是正确的,请把正确答案的选项填写到下面的表格中.1.纳米是一种长度单位,1纳米=10﹣9米,已知某种花粉的直径为3500纳米,那么用科学记数法表示该种花粉的直径为()A.3.5×103米B.3.5×10﹣5米C.3.5×10﹣9米D.3.5×10﹣6米2.下列运算正确的是()A.(a﹣b)2=a2﹣b2B.a3﹣a2=aC.(2a+1)(2a﹣1)=4a﹣1 D.(﹣2a3)2=4a63.如图所示,图中不是轴对称图形的是()A. B. C. D.4.如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC5.把一张长方形纸条按图中,那样折叠后,若得到∠AOB′=70°,则∠B′OG的角度是()A.55° B.65° C.45° D.50°6.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时间t 变化的图象大致是()A. B. C. D.7.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B.对小亮有利C.游戏公平 D.无法确定对谁有利8.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS9.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.如果∠1=∠2,且∠3=115°,则∠ACB的度数是()A.100°B.115°C.105°D.120°10.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠AGE相等的角()A.2个B.3个C.4个D.5个二、填空题若4a2+2ka+9是一个完全平方式,则k等于.12.在一个暗盒中放有若干个红色球和3个黑色球(这些球除颜色外,无其它区别),从中随即取出1个球是红球的概率是.若在暗盒中增加1个黑球,则从中随即取出一个球是红球的概率是.13.计算:()﹣2+(﹣2)3﹣20110= .14.一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为三角形.15.如图所示,在△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9 cm,△BCE的周长为15 cm,求BC的长cm.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(本大题共6个小题,共55分)16.计算:(1)(π﹣3.14)0﹣()﹣2+()xx×(﹣3)xx(2)(a2)6÷a8+(﹣2a)2(﹣a2)17.先化简,再求值:x(x+2y)﹣(x+1)2+2x,其中x=,y=﹣3.18.小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.19.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图象如图所示,根据图象解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)20.小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数 1 2出现的次数7 9(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验得出,出现5点朝上的机会最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?21.如图,四边形ABCD中,E是AD中点,CE交BA延长线于点F.此时E也是CF中点(1)判断CD与FB的位置关系并说明理由;(2)若BC=BF,试说明:BE⊥CF.四、解答题(共1小题,满分10分)22.操作实验:如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD ≌△ACD,所以∠B=∠C.归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.探究应用:如图(4),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E为AB的中点,AB=BC,CE⊥BD.(1)求证:BE=AD;(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由.xx学年四川省达州市通川区七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题,每小题3分,满分30分.以下每小题给出的A、B、C、D四个选项,其中只有一个选项是正确的,请把正确答案的选项填写到下面的表格中.1.纳米是一种长度单位,1纳米=10﹣9米,已知某种花粉的直径为3500纳米,那么用科学记数法表示该种花粉的直径为()A.3.5×103米B.3.5×10﹣5米C.3.5×10﹣9米D.3.5×10﹣6米【考点】科学记数法—表示较小的数.【专题】应用题.【分析】先把3 500纳米换算成3 500×10﹣9米,再用科学记数法表示为3.5×10﹣6.绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10﹣n.与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:3 500纳米=3 500×10﹣9米=3.5×10﹣6.故选D.【点评】本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.下列运算正确的是()A.(a﹣b)2=a2﹣b2B.a3﹣a2=aC.(2a+1)(2a﹣1)=4a﹣1 D.(﹣2a3)2=4a6【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;平方差公式.【分析】根据完全平方公式、合并同类项法则、平方差公式、幂运算的性质进行逐一分析判断.【解答】解:A、根据完全平方公式,得(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、两项不是同类项,不能合并,故本选项错误;C、根据平方差公式,得(2a+1)(2a﹣1)=4a2﹣1,故本选项错误;D、(﹣2a3)2=4a6,故本选项正确.故选D.【点评】此题综合考查了完全平方公式、平方差公式、合并同类项以及幂运算的性质,熟悉各个公式以及法则.3.如图所示,图中不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:A、有四条对称轴,是轴对称图形,故本选项错误;B、有三条对称轴,是轴对称图形,故本选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项正确;D、有二条对称轴,是轴对称图形,故本选项错误.故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【考点】全等三角形的判定.【分析】全等三角形的判定取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【解答】解:A∵.BD=DC,AB=AC,AD=AD∴根据SSS可以判定△ABD≌△ACD;B.∵∠ADB=∠ADC,BD=DC,AD=AD∴根据SAS可以判定△ABD≌△ACD;C.∵∠B=∠C,∠BAD=∠CAD,AD=AD∴根据AAS可以判定△ABD≌△ACD;D.∵∠B=∠C,BD=DC,AD=AD∴根据SSA不可以判定△ABD≌△ACD;故选(D)【点评】本题主要考查了全等三角形的判定,解题时注意:不存在SSA这样一种判定方法.5.把一张长方形纸条按图中,那样折叠后,若得到∠AOB′=70°,则∠B′OG的角度是()A.55° B.65° C.45° D.50°【考点】翻折变换(折叠问题);矩形的性质.【分析】根据翻折变换的性质可得∠BOG=∠B′OG,再根据平角等于180°列方程求解即可.【解答】解:由翻折性质得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=(180°﹣∠AOB′)=(180°﹣70°)=55°.故选A.【点评】本题考查了翻折变换的性质,平角的定义,主要利用了翻折前后对应角相等.6.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时间t 变化的图象大致是()A. B. C. D.【考点】函数的图象.【专题】压轴题.【分析】从A1到A2蚂蚁是匀速前进,随着时间的增多,爬行的高度也将由0匀速上升,从A2到A3随着时间的增多,高度将不再变化,由此即可求出答案.【解答】解:因为蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,从A1⇒A2的过程中,高度随时间匀速上升,从A2⇒A3的过程,高度不变,从A3⇒A4的过程,高度随时间匀速上升,从A4⇒A5的过程中,高度不变,所以蚂蚁爬行的高度h随时间t变化的图象是B.故选:B.【点评】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情况采用排除法求解.7.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B.对小亮有利C.游戏公平 D.无法确定对谁有利【考点】游戏公平性.【专题】应用题.【分析】根据游戏规则:总共结果有4种,分别是奇偶,偶奇,偶偶,奇奇;由此可得:两人获胜的概率相等;故游戏公平.【解答】解:两人写得数字共有奇偶、偶奇、偶偶、奇奇四种情况,因此同为奇数或同为偶数概率为;一奇一偶概率也为,所以公平.故选C.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.8.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的判定与性质.【专题】作图题.【分析】根据作图过程,O′C′=OC,O′B′=OB,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.【解答】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.【点评】本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.9.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.如果∠1=∠2,且∠3=115°,则∠ACB的度数是()A.100°B.115°C.105°D.120°【考点】三角形内角和定理.【分析】根据垂直的定义可得∠BFE=∠BDC=90°,然后根据同位角相等,两直线平行可得CD∥EF,再根据两直线平行,同位角相等可得∠2=∠BCD,然后求出∠1=∠BCD,再根据内错角相等,两直线平行,然后根据两直线平行,同位角相等可得∠3=∠ACB.【解答】解:∵CD⊥AB,EF⊥AB,∴∠BFE=∠BDC=90°,∴CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠3=∠ACB,∵∠3=115°,∴∠ACB=115°.故选(C)【点评】本题考查了平行线的性质与判定,是基础题,熟记平行线的性质与判定方法是解题的关键.10.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠AGE相等的角()A.2个B.3个C.4个D.5个【考点】平行线的性质.【分析】根据对顶角相等得出∠CGF=∠AGE,根据角平分线定义得出∠CAB=∠DAC,根据平行线性质得出∠CGF=∠CAB=∠DCA,∠DAC=∠ACB,即可得出答案.【解答】解:根据对顶角相等得出∠CGF=∠AGE,∵AC平分∠BAD,∴∠CAB=∠DAC,∵AB∥CD∥EF,BC∥AD,∴∠CGF=∠CAB=∠DCA,∠DAC=∠ACB,∴与∠AGE相等的角有∠CGF、∠CAB、∠DAC、∠ABAC,∠DCA,共5个.故选D.【点评】本题考查了平行线性质,对顶角相等,角平分线的定义的应用,主要考查学生的推理能力.二、填空题(xx春•通川区期末)若4a2+2ka+9是一个完全平方式,则k等于±6 .【考点】完全平方式.【专题】常规题型.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵4a2+2ka+9=(2a)2+2ka+32,∴2ka=±2×2a×3,解得k=±6.故答案为:±6.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.12.在一个暗盒中放有若干个红色球和3个黑色球(这些球除颜色外,无其它区别),从中随即取出1个球是红球的概率是.若在暗盒中增加1个黑球,则从中随即取出一个球是红球的概率是.【考点】概率公式.【专题】压轴题.【分析】根据取出1个球是红球的概率是,可得取出1个球是黑球的概率,再由黑色球可求球的总数,从而得出红色球的个数;再根据概率公式即可得到从中随机取出一个球是红球的概率.【解答】解:盒中共有球的个数为:3÷(1﹣)=3÷=5(个),则红球的个数为:5﹣3=2(个),所以增加1个黑球后,从中随机取出一个球是红球的概率是:2÷(5+1)=.故答案为:.【点评】本题考查了统计与概率中概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.13.计算:()﹣2+(﹣2)3﹣20110= ﹣5 .【考点】零指数幂;负整数指数幂.【分析】根据任何一个不为0的数的0次幂都为1和a﹣n=和有理数的加减法进行计算即可.【解答】解:原式=4﹣8﹣1=﹣5.故答案为:﹣5.【点评】本题考查的是负整数指数幂和零指数幂的运算,掌握任何一个不为0的数的0次幂都为1和a﹣n=是解题的关键.14.一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为锐角三角形.【考点】三角形内角和定理.【分析】根据三角形的内角和是180°,求得三个内角的度数即可判断.【解答】解:根据三角形的内角和定理,得三角形的三个内角分别是180°×=40°,180°×=60°,180°×=80°.故该三角形是锐角三角形.【点评】此题考查了三角形的内角和定理以及三角形的分类.三角形按角分类有锐角三角形、直角三角形、钝角三角形.三个角都是锐角的三角形叫锐角三角形;有一个角是钝角的三角形叫钝角三角形;有一个角是直角的三角形叫直角三角形.15.如图所示,在△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9 cm,△BCE的周长为15 cm,求BC的长 6 cm.【考点】线段垂直平分线的性质.【分析】要求BC的长,就要利用已知的周长计算,可先利用垂直平分线的性质求出AC的长,再计算.【解答】解:∵AB边上的垂直平分线DE交AB于D,交AC于E∴AE=BE∵AC=9 cm△BCE的周长为BC+CE+BE=BC+AC=15 cm∴BC=6cm.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(本大题共6个小题,共55分)16.计算:(1)(π﹣3.14)0﹣()﹣2+()xx×(﹣3)xx(2)(a2)6÷a8+(﹣2a)2(﹣a2)【考点】单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;零指数幂;负整数指数幂.【分析】(1)根据零次幂,负整数指数幂与正整数指数幂互为倒数,积的乘方,可得答案;(2)根据幂的乘方,同底数幂的除法,积的乘方,整式的加减,可得答案.【解答】解:(1)原式=1﹣4+1=﹣2;(2)原式=a12÷a8+4a2(﹣a2)=a4﹣2a2=﹣a4.【点评】本题考查了单项式的乘法,利用幂的乘方,同底数幂的除法,积的乘方,整式的加减.17.先化简,再求值:x(x+2y)﹣(x+1)2+2x,其中x=,y=﹣3.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=x2+2xy﹣(x2+2x+1)+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1,把代入,得原式=2xy﹣1=2××(﹣3)﹣1=﹣3.【点评】本题考查了整式的混合运算和求值的应用,主要考查学生的计算能力和化简能力,题目比较好,难度适中.18.小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.【考点】利用轴对称设计图案.【专题】网格型;开放型.【分析】要补成轴对称图形,关键是找出对称轴,不同的对称轴有不同的轴对称图形,所以此题首先要找出对称轴,再思考怎么画轴对称图形.【解答】解:.【点评】做这类题的关键是找对称轴.而且这是一道开放题,答案不唯一.19.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图象如图所示,根据图象解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)【考点】函数的图象.【专题】行程问题.【分析】把数和形结合在一起,准确理解函数的图象和性质.由图象可知:(1)甲乙出发的先后和到达终点的先后;(2)由路程6公里和运动的时间,可分别求出他们的速度;(3)结合图形可知他们都在行驶的时间段.【解答】解:由图象可知:(1)甲先出发;先出发10分钟;乙先到达终点;先到5分钟.(2)甲的速度为=0.2公里/每分钟,乙的速度为=0.4公里/每分钟.(3)在甲出发后10分钟到25分钟这段时间内,两人都行驶在途中.【点评】结合图形理解函数的图象和性质.20.小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验得出,出现5点朝上的机会最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?【考点】利用频率估计概率;随机事件.【分析】(1)根据概率的公式计算“3点朝上”的频率和“5点朝上”的频率;(2)根据随机事件的性质回答.【解答】解:(1)3点朝上的频率为=;5点朝上的频率为=;(2)小颖和小红说法都错,因为实验是随机的,不能反映事物的概率.【点评】用到的知识点为:频率=所求情况数与总情况数之比.频率能反映出概率的大小,但是要经过n次试验,而不是有数的几次,几次试验属于随机事件,不能反映事物的概率.21.如图,四边形ABCD中,E是AD中点,CE交BA延长线于点F.此时E也是CF中点(1)判断CD与FB的位置关系并说明理由;(2)若BC=BF,试说明:BE⊥CF.【考点】全等三角形的判定与性质.【分析】(1)判断:CD∥FB,利用“边角边”证明△DEC和△AEF全等,根据全等三角形对应角相等可得∠DCE=∠F,再根据内错角相等,两直线平行证明;(2)根据等腰三角形三线合一的性质证明即可.【解答】解:(1)判断:CD∥FB.证明如下:∵E是AD中点,∴AE=DE,∵E是CF中点,∴CE=EF,在△DEC和△AEF中,,∴△DEC≌△AEF(SAS),∴∠DCE=∠F,∴CD∥FB;(2)∵BC=BF,CE=EF,∴BE⊥CF(等腰三角形三线合一).【点评】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,是基础题,熟记性质与三角形全等的判定方法是解题的关键.四、解答题(共1小题,满分10分)22.操作实验:如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD ≌△ACD,所以∠B=∠C.归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.探究应用:如图(4),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E为AB的中点,AB=BC,CE⊥BD.(1)求证:BE=AD;(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由.【考点】几何变换综合题.【分析】归纳结论:作等腰三角形底边上的高,构造全等三角形.探究应用:(1)BE与AD在两个直角三角形中,证这两个直角三角形全等即可;(2)可证点A,C在线段DE的垂直平分线上.注意结合(1)的结论,利用全等证明即可;【解答】解:归纳结论:已知:如图3,在△ABC中,AB=AC.求证:∠B=∠C;过A点作AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,∴△ABD≌△ACD(HL),∴∠B=∠C;探究应用(1)图(4)CABDE∵CB⊥AB,∴∠CBA=90°,∠ABD+∠DBC=90°∵CE⊥BD,∴∠BCE+∠DBC=90°∴∠BCE=∠ABD,在△ADB和△BEC中∴△DAB≌△EBC(ASA)∴BE=AD(2)∵E是AB中点,∴AE=BE∵AD=BE,∴AE=AD在△ABC中,∵AB=AC,∴∠BAC=∠BCA∵AD∥BC,∴∠DAC=∠BCA,∴∠BAC=∠DAC在△ADC和△AEC中,,∴△ADC≌△AEC(SAS)∴DC=CE,∴C在线段DE的垂直平分线上∵AD=AE,∴A在线段DE的垂直平分线上∴AC垂直平分DE.【点评】此题是几何变换综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是作出作∠BAC的角平分线AD判断∠B=∠C.。

2019-2020学年成都市名校七年级第二学期期末质量跟踪监视数学试题含解析

2019-2020学年成都市名校七年级第二学期期末质量跟踪监视数学试题含解析

2019-2020学年成都市名校七年级第二学期期末质量跟踪监视数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每题只有一个答案正确)1.已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A.﹣1 B.0 C.1 D.2【答案】A【解析】把代入方程得:,解得:,故选A.2.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°【答案】B【解析】【分析】先根据全等三角形的性质得∠ACB=∠A′CB′,两边减去∠A′CB即可得到∠ACA′=∠BCB′=30°.【详解】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB-∠A′CB=∠A′CB′-∠A′CB,即∠ACA′=∠B′CB,又∵∠B′CB=30°∴∠ACA′=30°.故选:B.【点睛】本题主要考查了全等三角形的性质.3.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,若∠1=25°,则∠2的度数是()A.35°B.30°C.25°D.20°【答案】D【解析】【分析】过点B作BE平行于m,运用平行线性质,得到∠ABE+ ∠CBE=∠ABC=∠1+ ∠2,从而求出∠2.【详解】过点B作BE平行于m,又因为m∥n,所以BE∥m∥n,所以,∠ABE=∠1, ∠CBE=∠2,所以,∠ABE+ ∠CBE=∠ABC=∠1+ ∠2,所以,45°=25°+∠2,所以,∠2=20°故选:D【点睛】本题考核知识点:平行线性质.添加平行线,由平行线性质得到角相等,从等量关系推出所求的角.4.如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A.50°B.40°C.45°D.25°【答案】B【解析】试题分析:已知AB∥CD,根据平行线的性质可得∠2=∠D;又因EF⊥BD,根据垂线的性质可得∠DEF=90°;在△DEF中,根据三角形的内角和定理可得∠D=180°―∠DEF―∠1=180°―90°―50°=40°,所以5.将直角三角尺和长方形纸片如图放置,图中与∠1互余的角有A .2个B .3个C .4个D .5个【答案】B【解析】【分析】 首先要明确余角的概念:如果两个角的和是直角,那么称这两个角“互为余角”,然后判定即可.【详解】解:在图中标出2345∠、∠、∠、∠,如图所示由已知条件,可得1∠与2∠互余,又∵23∠∠=(对顶角相等)∴1∠与3∠互余,又∵14∠=∠(对顶角相等),4∠与5∠互余∴1∠与5∠互余∴与1∠互余的角有3个,故答案为B.【点睛】此题主要考查互为余角的概念,熟练掌握内涵,注意不要遗漏.6.已知3a =6,3b =4,则32a ﹣b 的值为( )A .3B .4C .6D .9【答案】D【解析】【分析】解:∵3a =6,3b =4,∴32a ﹣b =(3a )2÷3b =36÷4=9,故选:D .【点睛】本题考查的是同底数幂除法,熟练掌握同底数幂除法法则是解题的关键.7.下列计算正确的是( )A .(ab) 2=a 2b 2B .2(a +1)=2a +1C .a 2+a 3=a 6D .a 6÷a 2=a 3【答案】A【解析】【分析】根据积的乘方等于乘方的积,去括号的法则,同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,可得答案.【详解】解:A 、积的乘方等于乘方的积,故A 符合题意;B 、去括号都乘以括号前的倍数,故B 不符合题意;C 、不是同底数幂的乘法指数不能相加,故C 不符合题意;D 、同底数幂的除法底数不变指数相减,故D 不符合题意;故选:A .【点睛】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.8.如图AB//CD 可以得到( )A .12∠=∠B .14∠=∠C .23∠∠=D .34∠=∠【答案】B【解析】【分析】 依据两直线平行,内错角相等,可得∠1=∠1.【详解】本题主要考查了平行线的性质:两直线平行,内错角相等.9.3-不能被()整除.8181A.80 B.81 C.82 D.83【答案】D【解析】【分析】先提出公因式81,然后利用平方差公式进行因式分解即可得出答案.【详解】解:813-81=81×(812-1)=81×(81-1)×(81+1)=81×80×82,所以813-81不能被83整除.故选D.【点睛】本题考查了因式分解的应用,将原式正确的进行因式分解是解决此题的关键.10.用反证法证明“”,对于第一步的假设,下列正确的是A.B.C.D.【答案】C【解析】【分析】首先要理解反证法的概念:反证法是通过断定与论题相矛盾的判断(即反论题)的虚假来确立论题的真实性的论证方法,然后判定与相矛盾的判断是,即可得解.【详解】解:根据题意,判定与相矛盾的判断是,故答案为C.【点睛】此题主要考查对反证法的概念的理解,熟练掌握内涵,即可解题.二、填空题11.若关于x的一元一次不等式组{202x m x m->+<无解,则m的取值范围为______.m≥-【答案】2【解析】202x m x m -⎧⎨+⎩<①>② ,解不等式①得,x <1m ,解不等式②得,x >m-1,∵不等式组无解,∴1m≥m -1,∴m≥-1,故答案为m≥-1.【点睛】本题考查了解一元一次不等式组,解题的关键是熟知:同大取大;同小取小;大小小大中间找;大大小小不用找的原则.12.如图,在做门窗时,工人叔叔常把还没有安装的门窗钉上两根斜拉的木条.工人叔叔这样做的数学道理根据______________.【答案】三角形具有稳定性【解析】【分析】钉上两条斜拉的木条后,形成了两个三角形,故这种做法根据的是三角形的稳定性.【详解】结合图形,为防止变形钉上两条斜拉的木板条,构成了三角形,所以这样做根据的数学道理是三角形的稳定性.故答案是:三角形的稳定性.【点睛】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.13.实数2238,0,﹣π1613,0.1010010001…(相连两个1之间依次多一个0),其中无理数有________个.无理数就是无限不循环小数,根据定义即可作出判断.【详解】解:无理数有,0.10100100012π-⋯(相连两个1之间依次多一个0); 故答案为3.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数. 14.不等式3253x x -≤+的负整数解为__________【答案】−2,−1【解析】【分析】根据不等式的基本性质求得不等式解集,再在解集内确定不等式的负整数解即可【详解】移项,得:3x−5x ⩽3+2,合并同类项,得:−2x ⩽5,系数化为1,得:x ⩾−2.5,∴不等式的负整数解为:−2,−1;故答案为:−2,−1.【点睛】此题考查一元一次不等式的整数解,解题关键在于掌握运算法则15.已知a 的算术平方根是3,b 的立方根是2,a-b 的平方根____________.【答案】±1【解析】【分析】直接利用立方根以及平方根、算术平方根的定义分析得出答案.【详解】解:∵a 的算术平方根是3,b 的立方根是2∴29=a=3,3b=2=8∴a -b=9-8=1∴a-b 的平方根±1此题主要考查了立方根以及平方根、算术平方根的定义,正确把握相关定义是解题关键.16.已知a,b为两个连续的整数,且a b,则a+b=______.【答案】11【解析】=<<=, a b,可推出a和b,再求a+b.【分析】由56【详解】因为a,b为两个连续的整数,且a b,=<=,又因为56所以,a=5,b=6.所以,a+b=5+6=11.故答案为:11=<<=便可推出a和b 【点睛】本题考核知识点:(0)a a=≥. 根据题意,由56的值.17.分解因式22+=__________.a b ab【答案】ab(a+b)【解析】【分析】直接提取公因式ab,进而分解因式得出答案.【详解】解:a2b+ab2=ab(a+b).故答案为:ab(a+b).【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题的关键.三、解答题18.已知a+6和2a﹣15是数m的两个不同的平方根,求数m的值.【答案】m=1【解析】【分析】根据一个非负数的平方根互为相反数,求出a的值,再求出m的值.【详解】解:由题意得:a+6+2a﹣15=0,m=92=1.即m=1.【点睛】本题考查了平方根的知识,解答本题的关键是掌握一个非负数的平方根互为相反数.19.(1)读读做做:平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决教材中的问题:如图①,AB∥CD,则∠B+∠D∠E(用“>”、“=”或“<”填空);(2)倒过来想:写出(1)中命题的逆命题,判断逆命题的真假并说明理由.(3)灵活应用:如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.【答案】(1)=;(2)若∠B+∠D=∠BED,则AB∥CD,该逆命题为真命题,见解析;(3)见解析【解析】【分析】(1)过E作EF∥AB,则EF∥AB∥CD,由平行线的性质得出∠B=∠BEF,∠D=∠DEF,即可得出结论;(2)过E作EF∥AB,则∠B=∠BEF,证出∠D=∠DEF,得出EF∥CD,即可得出结论;(3)过点N作NG∥AB,交AM于点G,则NG∥AB∥CD,由平行线的性质得出∠BAN=∠ANG,∠GNC =∠NCD,由三角形的外角性质得出∠AMN=∠ACM+∠CAM,证出∠ACM+∠CAM=∠ANG+∠GNC,得出∠ACM+∠CAM=∠BAN+∠NCD,由角平分线得出∠ACM=∠NCD,即可得出结论.【详解】(1)解:过E作EF∥AB,如图①所示:则EF∥AB∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠B+∠D=∠BEF+∠DEF,即∠B+∠D=∠BED;故答案为:=;(2)解:逆命题为:若∠B+∠D=∠BED,则AB∥CD;该逆命题为真命题;理由如下:过E作EF∥AB,如图①所示:则∠B=∠BEF,∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,∴∠D=∠BED﹣∠B,∠DEF=∠BED﹣∠BEF,∴∠D=∠DEF,∴EF∥CD,∵EF∥AB,∴AB∥CD;(3)证明:过点N作NG∥AB,交AM于点G,如图②所示:则NG∥AB∥CD,∴∠BAN=∠ANG,∠GNC=∠NCD,∵∠AMN是△ACM的一个外角,∴∠AMN=∠ACM+∠CAM,又∵∠AMN=∠ANM,∠ANM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠BAN+∠NCD,∵CN平分∠ACD,∴∠ACM=∠NCD,∴∠CAM=∠BAN.【点睛】本题考查了命题与定理、平行线的性质与判定、逆命题、三角形的外角性质、角平分线定义等知识;熟练掌握平行线的判定与性质,作出辅助平行线是解决问题的关键.20.取一副三角板按图①拼接,其中,.(1)如图②,三角板固定,将三角板绕点按顺时针方向旋转一定的角度得到,当时,请你判断与的位置关系,并说明理由;(2)如图③,三角板固定,将三角板绕点按逆时针方向旋转一定的角度得到,猜想当为多少度时,能使?并说明理由.【答案】(1)见解析;(2)当时,能使.理由见解析.【解析】【分析】(1)根据题意求得,再由内错角相等,两直线平行即可证得;(2)当时,能使.延长交于点.由,,可求得,再根据求得.由此可得,根据同旁内角互补,两直线平行即可判定.【详解】(1)如图,∵,∴,∴;(2)当时,能使.理由如下:如图,延长交于点.当,又∵,∴,又∵,∴.又∵,∴,∴.【点睛】本题考查了平行线的判定方法,熟练运用平行线的判定定理是解决问题的关键.21.如图,在正方形网格中,每个小正方形的边长都是1个单位长度在平面直角坐标系中,三角形A1B1C1是三角形ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出三角形ABC,并写出点A,B,C的坐标;(2)求出三角形AOA1的面积.【答案】(1)画图见解析,A(﹣3,1),B(0,1),C(﹣1,4);(1)1.【解析】【分析】(1)利用平移的性质即可解答;(1)利用三角形的面积公式计算即可;【详解】(1)三角形ABC 如图所示,A(﹣3,1),B(0,1),C(﹣1,4);(1)连接OA ,AA 1,OA 1,∵AA 1=4,AA 1边上的高为1,∴1AOA S ∆=12×4×1=1. 【点睛】本题考查作图﹣平移变换、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题. 22.求不等式组123122x x -⎧⎪⎨+≤⎪⎩< 【答案】-1<x≤3【解析】【分析】分别求出两个不等式的解集,再找出两个解集的公共解集即可得答案.【详解】123122x x -⎧⎪⎨+≤⎪⎩<①② ∵解不等式①得:x >-1,解不等式②得:x≤3,∴不等式组的解集为-1<x≤3,【点睛】本题主要考查了解一元一次不等式组,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.23.如图,在平面直角坐标系中,直线AB∥ x轴,线段AB与y 轴交于点M ,已知点A的坐标是(-2,3),BM=4,点C 与点B 关于x 轴对称.(1)在图中描出点C ,并直接写出点 B 和点C 的坐标:B ,C ;(2)联结AC 、BC ,AC 与x 轴交于点 D ,试判断△ABC 的形状,并直接写出点D的坐标;(3)在坐标平面内,x 轴的下方,是否存在这样的点P ,使得△ACP 是等腰直角三角形?如果存在,直接写出点P 的坐标;如果不存在,试说明理由.【答案】(1)点C见解析,B(4,3),C(4,-3);(2)△ABC 是等腰直角三角形,点D(1,0);(3)存在点P,使得△ ACP 是等腰直角三角形,点P1(-2,-3)或P2 (-8,-3)或P3 (-2,-9).【解析】【分析】(1)根据点C与点B关于x轴对称描出点C即可得坐标;(2)根据点坐标求出线段AB、BC的长度,依据∠ABC=90︒即可确定△ABC是等腰直角三角形,然后求出DE=CE=3可得点D的坐标;(3)分三种情况作出图形,进而确定点P的坐标即可.【详解】解:(1)如图,可知点B(4,3),C(4,-3);(2)如图,∵B(4,3),∴AB=6,∵C(4,-3),BC⊥x轴,∴BC=6,∴AB=BC,∠ABC=90︒,∴△ABC是等腰直角三角形,设BC交x轴于点E,则∠DEC=90︒,OE=4,∵∠DCE=45︒,∴DE=CE=3,∴OD=OE-DE=4-3=1,∴D(1,0);(3))存在点P,使得△ACP 是等腰直角三角形,如图,①当∠APC是直角时,P1(-2,-3);②当∠PAC是直角时,P2(-8,-3);③当∠PCA是直角时,P3(-2,-9),故点P1(-2,-3)或P2 (-8,-3)或P3 (-2,-9).【点睛】此题考查等腰三角形的性质,(2)中根据点坐标求出线段AB 、BC 的长度,依据∠ABC=90︒即可确定△ABC 是等腰直角三角形;(3)中需分三种情况确定点P 的坐标.24()239327324--=________. 【答案】532+【解析】【分析】 原式第一项利用平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根定义计算,再进行实数的减法运算即可.【详解】 原式=33+3-32--(2) 5=+32【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.25.某校准备购买一批文具袋和水性笔,已知文具袋的单价是水性笔单价的5倍,购买5支水性笔和3个文具袋共需60元.(1)求文具袋和水性笔的单价;(2)学校准备购买文具袋10个,水性笔若干支(超过10支).文具店给出两种优惠方案:A :购买一个文具袋,赠送1支水性笔;B :购买水性笔10支以上,超过10支的部分按原价八折优惠,文具袋不打折. ①设购买水性笔x 支,方案A 的总费用为__________元,方案B 的总费用为__________元;②该学校选择哪种方案更合算?请说明理由.【答案】(1)水性笔的单价3元,文具袋的单价为15元;(2)①3120x +, 2.4156x +;②当购买数量大于60支时,选择B 方案更合算;当购买数量等于60支时,选择A 方案或选择B 方案均可;当购买数量小于60支时,选择A 方案更合算【解析】【分析】(1)设水性笔的单价m 元,文具袋的单价为5m 元,根据题意列出方程,求解即可;(2)①根据题意可直接写出y 1,y 2与x 的函数关系式;②分y 1>y 2时,y 1=y 2时,y 1<y 2时三种情况讨论,列出不等式,求解即可.【详解】解:(1)设水性笔的单价m 元,文具袋的单价为5m 元,根据题意得:53560m m +⨯=解得:3m =,则515m =(2))①根据题意得:y 1=10×15+3(x-10)=3x+120y 2=10×15+3×10+3×0.8×(x-10)=2.4x+156②设13120y x =+,2 2.4156y x =+当12y y >时,3120 2.4156x x +>+解得: 60x >若12y y =时,3120 2.4156x x +=+解得:60x =若12y y <时,3120 2.4156x x +<+解得:60x <因此当购买数量大于60支时,选择B 方案更合算;当购买数量等于60支时,选择A 方案或选择B 方案均可;当购买数量小于60支时,选择A 方案更合算.【点睛】此题考查一次函数的应用,一元一次不等式的应用,理清题意是列出不等式解题的关键.。

2023-2024学年四川省成都市高新区七年级(下)期末数学试卷

2023-2024学年四川省成都市高新区七年级(下)期末数学试卷

2023-2024学年四川省成都市高新区七年级(下)期末数学试卷一、选择题(本大题共8小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列标志中,是轴对称图形的是()A.B.C.D.2.(4分)下列事件中,是必然事件的是()A.掷一枚硬币,正面朝上B.任意买一张电影票,座位号是单号C.在同一平面内,任意画一个三角形,其内角和是180°D.射击运动员射击一次,命中靶心3.(4分)芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计体积更小的晶体管.某芯片的晶体管栅极的宽度为0.0000014cm.将数据0.0000014用科学记数法表示为()A.14×10﹣7B.1.4×10﹣6C.0.14×10﹣5D.1.4×10﹣54.(4分)下列运算正确的是()A.x2•x3=x6B.(﹣x3)2=x6C.6x6÷2x2=3x3D.(x+y)2=x2+y25.(4分)如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,∠B=∠E,BF=EC,添加下列一个条件,仍不能判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.∠ACB=∠DFE6.(4分)在弹性限度内,弹簧伸长的长度与所挂重物的质量成正比.下表是研究某种弹簧的长度与所挂物体质量关系的实验表格,则弹簧不挂物体时的长度为()所挂物体重量x(kg)1235弹簧长度y(cm)9111317A.6cm B.7cm C.8cm D.8.5cm7.(4分)如图,直线m∥n,△ABC是直角三角形,∠B=90°,点C在直线n上.若∠1=60°,则∠2的度数是()A.30°B.35°C.40°D.45°8.(4分)数学活动课上,小明用一张边长为4cm的正方形纸片制作了一副如图1的七巧板,并用这副七巧板设计成如图2的“天鹅”作品,该“天鹅”作品中,阴影部分的面积为()A.8cm2B.7cm2C.6cm2D.5cm2二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)计算:(x+1)(x+2)=.10.(4分)数学实践活动中,为了测量校园内假山底部A,B两点之间的距离,小明首先在地面上取一个可以直接到达A点和B点的点C,连接AC并延长到点D,使CD=AC,连接BC并延长到点E,使CE =CB,并测得D,E两点之间的距离为8m,则A,B两点之间的距离为.11.(4分)某种黄豆在相同条件下的发芽试验,结果如下表所示:试验粒数n5001000200040007000100001200015000发芽的粒数m42186817143456602085801030812915发芽的频率0.8420.8680.8570.8640.8600.8580.8590.861估计该种黄豆发芽的概率为(精确到0.01).12.(4分)如图,△ABC的周长为20,BC=8,分别以点B和点C为圆心,大于BC的长为半径画弧,两弧相交于点M和N,作直线MN,交边AB于点D,连接CD,则△ADC的周长为.13.(4分)如图,将长方形ABCD沿对角线AC折叠,B的对应点为E,AE与CD交于点F.若∠FCE=50°,则∠CAB的度数为.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:(﹣1)4+|﹣4|+(π﹣3)0+()﹣2;(2)计算:[(x﹣2y)2﹣x(x﹣2y)]÷2y.15.(8分)某路口东西方向交通信号灯的设置时间为:红灯20秒,绿灯27秒,黄灯m秒.张师傅随机地由东向西开车到达该路口.(1)张师傅遇到红灯的概率大还是遇到绿灯的概率大?为什么?(2)若张师傅遇到红灯的概率为,则黄灯每次开启多少秒?16.(8分)如图,在△ABC中,点D在AB边上,连接CD,DG为△BCD的角平分线,DG∥AC,点E,F分别在线段AC,AD上,且∠AEF=∠CDG.(1)求证:CD∥EF;(2)∠A=35°,求∠CEF的度数.17.(10分)某市电力公司为鼓励居民节约用电,采用分档计费的方法计算电费,各档次计费方法如表:档次标准第一档每月用电不超过210度时,按0.6元/度计费第二档每月用电超过210度但不超过400度时,其中的210度按0.6元/度计费,超过210度的部分按0.7元/度计费第三档每月用电超过400度时,其中的210度按0.6元/度计费,超过210度但不超过400度的部分按0.7元/度计费,超出400度的部分按0.9元/度计费(1)小明家5月用电200度,需交电费元;(2)若设某月用电量为x(210<x≤400)度,应交电费为y元,求y与x之间的关系式;(3)若小明家8月交电费268元,求小明家8月用了多少度电?18.(10分)在等腰直角△ABC中,∠BAC=90°,点D在边BC上,过点B作射线AD的垂线,垂足为点E.(1)如图1,过点C作射线AD的垂线,垂足为点F,求证:△ABE≌△CAF;(2)在射线EB上取点G,使EG=AE,连接AG,CG,CG与AD交于点H.①如图2,若∠AGC=90°,AE=4,求线段BG的长;②若=,求的值.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)已知4×2n=64,则n=.20.(4分)图1是某移动硬臀助力机械手,图2是其示意图,现立柱CD⊥基座AB,小臂FG∥立柱CD,上臂DE与立柱CD构成的角∠CDE为160°,下臂EF与上臂DE构成的角∠FED为98°,则小警FG与下臂EF构成角∠EFG度数为.21.(4分)如图所示是一圆形飞镖游戏板,大圆的半径OB是小圆半径OA的2倍,向游戏板随机投掷一枚飞镖(飞每次都落在游戏板上),则击中阴影部分的概率是.22.(4分)任取一个三位数,把这个三位数的百位数字乘2,若积不大于9,则将积作为下一个数的百位数字,若积大于9,则将积的两个数位上的数字之和作为下一个数的百位数字,对起始数的十位数字和个位数字进行相同的操作,得到下一个数的十位数字和个位数字,完成第1次操作;然后重复这个过程.如:以126作为原始数,第一次操作后得到的数为243.若以470作为原始数,则第99次操作后得到的数是.23.(4分)如图,在面积为的锐角△ABC中,AB=,∠C=30°,D是△ABC内部一点,E,F分别是边BC,AC上的动点,连接AD,BD,DE,DF,EF.若△ABD的面积为1,则△DEF周长的最小值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲、乙两人分别从A,C两地同时出发前往B地,甲匀速步行至B地,乙前15分钟匀速步行,中途休息了一段时间后,再匀速骑共享单车至B地.已知,乙骑行的速度是自己步行速度的3倍,甲、乙两人同时到终点.甲、乙两人各自到A地的距离(米)与所用时间(分)的关系如图所示,请结合图象解答下列问题:(1)A,C两地之间的距离是米;(2)求乙中途休息了多少分钟;(3)乙骑行前,甲步行多少分钟,甲、乙两人之间的距离为400米.25.(10分)[基础](1)x+y=5,xy=1,求x2+y2的值.[变式](2)已知(2m﹣399)2+(400﹣2m)2=5,求(2m﹣399)(m﹣200)的值.[应用](3)为深入贯彻落实中共中央国务院《关于全面加强新时代大中小学劳动教育的意见》某校规划了如图所示的五边形ABHMD劳动试验田,该劳动试验田中,四边形ABCD区域的形状是边长为a米的正方形,四边形ECGF(点E在DC上)区域及四边形FGHM区域的形状都是边长为b米的正方形.图中阴影部分区域种植了小白菜,已知DE的长为1.5米,ab=27,求劳动试验田中小白菜的种植面积.26.(12分)在Rt△ABC中,∠A=90°,∠C=30°,BD为△ABC的角平分线,点E,F分别在边AB,BC上,∠EDF=120°.(1)如图1,求证:DE=DF;(2)如图2,∠CDF=45°,连接EF,EF与BD交于点G.猜想AE与DG之间的数量关系,并说明理由;(3)在(2)的条件下,若=,求证:=.。

2019-2020学年四川省成都市新都区七年级下学期期末数学试卷 (解析版)

2019-2020学年四川省成都市新都区七年级下学期期末数学试卷 (解析版)

2019-2020学年四川省成都市新都区七年级第二学期期末数学试卷一、选择题(共10小题).1.下列运算正确的是()A.3a+2a=a5B.a2•a3=a6C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b22.已知∠A=45°,则∠A的补角等于()A.45°B.90°C.135°D.180°3.如图所示,已知AB∥CD,∠B=140°,∠D=150°,求∠E的度数.()A.40°B.30°C.70°D.290°4.某人的头发的直径约为85微米,已知1微米=0.000001米;则该人头发的直径用科学记数法表示正确的是()米.A.8.5×105B.8.5×10﹣5C.85×10﹣8D.8.5×10﹣85.下列标志中,可以看作是轴对称图形的是()A.B.C.D.6.已知x a=3,x b=5,则x a﹣2b=()A.B.C.D.﹣217.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg012345y/cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm8.下面的说法正确的个数为()①若∠α=∠β,则∠α和∠β是一对对顶角;②若∠α与∠β互为补角,则∠α+∠β=180°;③一个角的补角比这个角的余角大90°;④同旁内角相等,两直线平行.A.1B.2C.3D.49.下列事件属于不确定的是()A.太阳从东方升起B.等边三角形的三个内角都是60°C.|a|<﹣1D.买一张彩票中一等奖10.如图,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,则∠BGE=()A.100°B.90°C.80°D.70°二.填空题:(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.计算:(m﹣1)(m+1)﹣m2=.12.已知:关于x的二次三项式x2﹣8x+k是完全平方式,则常数k等于.13.在一不透明的口袋中有4个为红球,3个蓝球,他们除颜色不同外其它完全一样,现从中任摸一球,恰为红球的概率为.14.将一副三角板如图放置,若AE∥BC,则∠AFD=度.三、解答题:(本大题共6个小题,共54分,解答过程写在答题卡上)15.化简下列式子:(1)(﹣ab2)3(8a2b4)÷(﹣4a4b5)(2)2﹣2+(π﹣2020)0﹣13÷|﹣|+(﹣1)2020.16.先化简,再求值:[(x﹣5y)(x+5y)﹣(x﹣2y)2+y2]÷2y,其中x=﹣1,y=17.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.试判断∠AED与∠D之间的数量关系,并说明理由.18.如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD的顶点与点E都是格点.(1)作出四边形ABCD关于直线AC对称的四边形AB′CD′;(2)求四边形ABCD的面积;(3)若在直线AC上有一点P,使得P到D、E的距离之和最小,请作出点P(请保留作图痕迹),且求出PC=.19.为了测试某种汽车在高速路上匀速行驶的耗油量,专业测试员将汽车加满油,对汽车行驶中的情况做了记录,并把试验的数据制成如下表所示:汽车行驶时间x(h)0123…剩余油量y(L)60524436…(1)根据上表的数据,请用x表示y,y=.(2)若油箱中的剩余油量为20升,汽车行驶了多少小时?(3)若该汽车贮满汽油准备从高速路出发,要匀速前往需要7小时车程的某目的地,当余油量不足5升时,油箱将会报警,请问汽车能在油箱报警之前到达目的地吗?请说明理由.20.如图1,∠MON=80°,点A、B在∠MON的两条边上运动,∠OAB与∠OBA的平分线交于点C.(1)点A、B在运动过程中,∠ACB的大小会变吗?如果不会,求出∠ACB的度数;如果会,请说明理由.(2)如图2,AD是∠MAB的平分线,AD的反向延长线交BC的延长线于点E,点A、B在运动过程中,∠E的大小会变吗?如果不会,求出∠E的度数;如果会,请说明理由.(3)在(2)的条件下,若∠MON=n,请直接写出∠ACB=;∠E=.四、填空题:(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.已知:2x+3y+3=0,计算:4x•8y的值=.22.若化简(2x+m)(2x﹣2020)的结果中不含x的一次项,则常数m的值为.23.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为秒时,△ABP和△DCE全等.24.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和.如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3“分裂”后,其中有一个奇数是135,则m的值是.25.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图)…,按此方式依次操作,则第7个正六边形的边长是.五.解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.已知关于x、y的多项式mx3﹣3nxy2+2x3+mxy2+xy2﹣2中不含x3项和xy2项.(1)求代数式(2m﹣3n)2+(2m+3n)2的值;(2)对任意非零有理数a、b定义新运算“⊕”为a⊕b=b﹣,求关于x的方程m⊕x =n的解.27.你能求(x﹣1)(x2019+x2018+x2017+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手,先分别计算下列各式的值.①(x﹣1)(x+1)=x2﹣1②(x﹣1)(x2+x+1)=x3﹣1③(x﹣1)(x3+x2+x+1)=x4﹣1…由此我们可以得到:(x﹣1)(x2019+x2018+x2017+…+x+1)=.请你利用上面的结论,再完成下面两题的计算:(1)(﹣2)99+(﹣2)98+(﹣2)97+…+(﹣2)+1;(2)若x3+x2+x+1=0,求x2020的值.28.如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.参考答案一、选择题:(每小题3分,共30分:在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,并将自己所选答案的字母涂在答题卡上)1.下列运算正确的是()A.3a+2a=a5B.a2•a3=a6C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2【分析】分别利用合并同类项法则以及同底数幂的乘法和平方差公式以及完全平方公式计算分析得出即可.解:A、3a+2a=5a,故此选项错误;B、a2•a3=a5,故此选项错误;C、(a+b)(a﹣b)=a2﹣b2,正确;D、(a+b)2=a2+b2+2ab,故此选项错误;故选:C.2.已知∠A=45°,则∠A的补角等于()A.45°B.90°C.135°D.180°【分析】根据两个角的和等于180°,则这两个角互补计算即可.解:180°﹣45°=135°,则∠A的补角等于135°,故选:C.3.如图所示,已知AB∥CD,∠B=140°,∠D=150°,求∠E的度数.()A.40°B.30°C.70°D.290°【分析】过点E作EF∥AB,再由平行线的性质求出∠BEF与∠DEF的度数,进而可得出结论.解:过点E作EF∥AB,∵∠B=140°,∴∠BEF=180°﹣140°=40°.∵AB∥CD,∴CD∥EF.∵∠D=150°,∴∠DEF=180°﹣150°=30°,∴∠BED=∠BEF+∠DEF=40°+30°=70°.故选:C.4.某人的头发的直径约为85微米,已知1微米=0.000001米;则该人头发的直径用科学记数法表示正确的是()米.A.8.5×105B.8.5×10﹣5C.85×10﹣8D.8.5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:85×0.000001=0.000 085=8.5×10﹣5,故选:B.5.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念,可得答案.解:A、是中心对称图形,故A错误;B、是中心对称图形,故B错误;C、是轴对称图形,故C正确;D、是中心对称图形,故D错误;故选:C.6.已知x a=3,x b=5,则x a﹣2b=()A.B.C.D.﹣21【分析】根据幂的乘方,可化成要求的形式,根据同底数幂的除法,可得答案.解:x2b=(x b)2=25,则x a﹣2b=x a÷x2b=3÷25=,故选:A.7.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg012345y/cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm【分析】由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项正确;B、弹簧不挂重物时的长度为10cm,故B选项错误;C、物体质量每增加1kg,弹簧长度y增加0.5cm,故C选项正确;D、由C知,y=10+0.5x,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D选项正确;故选:B.8.下面的说法正确的个数为()①若∠α=∠β,则∠α和∠β是一对对顶角;②若∠α与∠β互为补角,则∠α+∠β=180°;③一个角的补角比这个角的余角大90°;④同旁内角相等,两直线平行.A.1B.2C.3D.4【分析】根据相关的定义或定理,逐个进行判断,可知有2个是正确的,故选B.解:①错误,不符合对顶角的定义.②正确,满足补角的定义.③正确,一个角的补角减去这个角的余角等于(180°﹣α)﹣(90°﹣α)=90°.④错误,同旁内角互补,两直线平行.故选:B.9.下列事件属于不确定的是()A.太阳从东方升起B.等边三角形的三个内角都是60°C.|a|<﹣1D.买一张彩票中一等奖【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.解:太阳从东方升起是必然事件,A不正确;等边三角的三个内角都是60°是必然事件,B不正确;|a|<﹣1是不可能事件,C不正确;买一张彩票中一等奖是随机事件,D正确;故选:D.10.如图,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,则∠BGE=()A.100°B.90°C.80°D.70°【分析】先根据平行线的性质得出∠DEF=∠EFG,再由图形翻折变换的性质得出∠GEF=∠DEF,根据三角形外角的性质即可得出结论.解:∵四边形纸片ABCD是矩形纸片,∴AD∥BC.∴∠DEF=∠EFG,又∵∠EFG=50°,∴∠DEF=50°,∵四边形EFC′D′由四边形EFCD翻折而成,∴∠GEF=∠DEF=50°,∴∠EGB=50°+50°=100°.故选:A.二.填空题:(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.计算:(m﹣1)(m+1)﹣m2=﹣1.【分析】原式利用平方差公式化简,去括号合并即可得到结果.解:原式=m2﹣1﹣m2=﹣1.故答案为:﹣1.12.已知:关于x的二次三项式x2﹣8x+k是完全平方式,则常数k等于16.【分析】原式利用完全平方公式的结构特征判断即可确定出k的值.解:∵二次三项式x2﹣8x+k是完全平方式,∴k=16.故答案为:16.13.在一不透明的口袋中有4个为红球,3个蓝球,他们除颜色不同外其它完全一样,现从中任摸一球,恰为红球的概率为.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.解:袋子中球的总数为4+3=7,而红球有4个,则从中任摸一球,恰为红球的概率为.故答案为.14.将一副三角板如图放置,若AE∥BC,则∠AFD=75度.【分析】根据两直线平行,同旁内角互补及三角板的特征进行做题.解:因为AE∥BC,∠B=60°,所以∠BAE=180°﹣60°=120°;因为两角重叠,则∠DAF=90°+45°﹣120°=15°,∠AFD=90°﹣15°=75°.故∠AFD的度数是75度.故答案为:75.三、解答题:(本大题共6个小题,共54分,解答过程写在答题卡上)15.化简下列式子:(1)(﹣ab2)3(8a2b4)÷(﹣4a4b5)(2)2﹣2+(π﹣2020)0﹣13÷|﹣|+(﹣1)2020.【分析】(1)直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案;(2)直接利用负整数指数幂的性质和零指数幂的性质、实数运算法则分别化简得出答案.解:(1)(﹣ab2)3(8a2b4)÷(﹣4a4b5)=﹣a3b6•8a2b4÷(﹣4a4b5)=﹣8a5b10÷(﹣4a4b5)=2ab5;(2)2﹣2+(π﹣2020)0﹣13÷|﹣|+(﹣1)2020=+1﹣1÷+1=+1﹣2+1=.16.先化简,再求值:[(x﹣5y)(x+5y)﹣(x﹣2y)2+y2]÷2y,其中x=﹣1,y=【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.解:[(x﹣5y)(x+5y)﹣(x﹣2y)2+y2]÷2y=[x2﹣25y2﹣x2+4xy﹣4y2+y2]÷2y=[4xy﹣28y2]÷2y=2x﹣14y,当x=﹣1,y=时,原式=﹣2﹣7=﹣9.17.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.试判断∠AED与∠D之间的数量关系,并说明理由.【分析】根据平行线的判定定理得出CE∥FG,根据平行线的性质得出∠C=∠FGD,求出∠FGD=∠EFG,根据平行线的判定得出AB∥CD,再根据平行线的性质得出即可.解:∠AED+∠D=180°,理由是:∵∠CED=∠GHD,∴CE∥FG,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°.18.如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD的顶点与点E都是格点.(1)作出四边形ABCD关于直线AC对称的四边形AB′CD′;(2)求四边形ABCD的面积;(3)若在直线AC上有一点P,使得P到D、E的距离之和最小,请作出点P(请保留作图痕迹),且求出PC=5.【分析】(1)根据要求画出图形即可;(2)对角线垂直的四边形的面积=对角线乘积的一半;(3)作点E关于直线AC的对称点E′,连接DE′交直线AC于P,点P即为所求,此时PC=5.解:(1)四边形AB′CD′如图所示;(2)S四边形ABCD=×6×3=9.(3)作点E关于直线AC的对称点E′,连接DE′交直线AC于P,点P即为所求,此时PC=5.故答案为5.19.为了测试某种汽车在高速路上匀速行驶的耗油量,专业测试员将汽车加满油,对汽车行驶中的情况做了记录,并把试验的数据制成如下表所示:汽车行驶时间x(h)0123…剩余油量y(L)60524436…(1)根据上表的数据,请用x表示y,y=60﹣8x.(2)若油箱中的剩余油量为20升,汽车行驶了多少小时?(3)若该汽车贮满汽油准备从高速路出发,要匀速前往需要7小时车程的某目的地,当余油量不足5升时,油箱将会报警,请问汽车能在油箱报警之前到达目的地吗?请说明理由.【分析】(1)根据表格数据可知,汽车的耗油量为8L/h,根据:剩余油量=开始时存油量﹣行驶过程中消耗油量可列函数关系式;(2)根据题意求y=20时x的值即可;(3)求当x=7时汽车的剩余油量y,并判断与5的大小即可.解:(1)由表格数据可知,行驶时间延长1小时,剩余油量减少8L,即耗油量为8L/h,∴y=60﹣8x;(2)根据题意,当y=20时,得:60﹣8x=20,解得:x=5,故若油箱中的剩余油量为20升,汽车行驶了5小时;(3)不能在油箱报警之前到达目的地,根据题意,当x=7时,y=60﹣8×7=4<5,故汽车不能在油箱报警之前到达目的地.故答案为:(1)60﹣8x.20.如图1,∠MON=80°,点A、B在∠MON的两条边上运动,∠OAB与∠OBA的平分线交于点C.(1)点A、B在运动过程中,∠ACB的大小会变吗?如果不会,求出∠ACB的度数;如果会,请说明理由.(2)如图2,AD是∠MAB的平分线,AD的反向延长线交BC的延长线于点E,点A、B在运动过程中,∠E的大小会变吗?如果不会,求出∠E的度数;如果会,请说明理由.(3)在(2)的条件下,若∠MON=n,请直接写出∠ACB=90°+•n°;∠E =•n°.【分析】(1)证明∠ACB=90°+∠O即可.(2)证明∠O即可.(3)利用(1)(2)结论解决问题即可.解:(1)如图1中,∵AC平分∠OABMCB平分∠OBA,∴∠CAB=∠OAB,∠CBA=∠OBA,∴∠ACB=180°﹣(∠CAB+∠CBA)=180°﹣(∠OAB+∠OBA)=180°﹣(180°﹣∠O)=90°+∠O,∵∠O=80°,∴∠ACB=90°+40°=130°.(2)如图2中,由题意可以假设∠MAD=∠DAB=x,∠ABE=∠EBO=y.则有,可得∠O,∵∠O=80°,∴∠E=40°.(3)由(1)(2)可知,∠ACB=90°+•n°,∠E=•n°.故答案为:90°+•n°,•n°四、填空题:(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.已知:2x+3y+3=0,计算:4x•8y的值=.【分析】根据幂的乘方与积的乘方、同底数幂的乘法的计算公式即可得结果.解:∵2x+3y+3=0,∴2x+3y=﹣3,4x•8y=22x•23y=2(2x+3y)=2﹣3=.故答案为:.22.若化简(2x+m)(2x﹣2020)的结果中不含x的一次项,则常数m的值为2020.【分析】根据多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.然后使一次项的系数为0即可得常数m的值.解:(2x+m)(2x﹣2020)=4x2+(2m﹣4040)x﹣2020m,∵结果中不含x的一次项,∴2m﹣4040=0,解得m=2020.则常数m的值为2020.故答案为:2020.23.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为1或7秒时,△ABP和△DCE全等.【分析】由条件可知BP=2t,当点P在线段BC上时可知BP=CE,当点P在线段DA 上时,则有AD=CE,分别可得到关于t的方程,可求得t的值.解:设点P的运动时间为t秒,则BP=2t,当点P在线段BC上时,∵四边形ABCD为长方形,∴AB=CD,∠B=∠DCE=90°,此时有△ABP≌△DCE,∴BP=CE,即2t=2,解得t=1;当点P在线段AD上时,∵AB=4,AD=6,∴BC=6,CD=4,∴AP=BC+CD+DA=6+4+6=16,∴AP=16﹣2t,此时有△ABP≌△CDE,∴AP=CE,即16﹣2t=2,解得t=7;综上可知当t为1秒或7秒时,△ABP和△CDE全等.故答案为:1或7.24.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和.如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3“分裂”后,其中有一个奇数是135,则m的值是12.【分析】观察规律,分裂成的数都是奇数,且第一个数是底数乘以与底数相邻的前一个数的积再加上1,奇数的个数等于底数,然后找出2013所在的奇数的范围,即可得解.解:∵23=3+5,33=7+9+11,43=13+15+17+19,…∴m3分裂后的第一个数是m(m﹣1)+1,共有m个奇数,∵12×(12﹣1)+1=133,13×(13﹣1)+1=157,∴奇数135是底数为12的数的立方分裂后的一个奇数,∴m=12.故答案为:12.25.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图)…,按此方式依次操作,则第7个正六边形的边长是×()6a.【分析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长,同理可得出第七个正六边形的边长.解:如图1,连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中,∵,∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,如图2,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是()3a,第四个正六边形的边长是×()3a;第五个等边三角形的边长是()4a,第五个正六边形的边长是×()3a;…第n个正六边形的边长是×()n﹣1a,∴第七个正六边形的边长是×()6a.故答案为:×()6a.五.解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.已知关于x、y的多项式mx3﹣3nxy2+2x3+mxy2+xy2﹣2中不含x3项和xy2项.(1)求代数式(2m﹣3n)2+(2m+3n)2的值;(2)对任意非零有理数a、b定义新运算“⊕”为a⊕b=b﹣,求关于x的方程m⊕x =n的解.【分析】(1)多项式合并后,根据结果中不含x3项和xy2项,求出m与n的值,代入原式计算即可得到结果;(2)方程利用题中的新定义化简,计算即可求出解.解:(1)原式=(m+2)x3+(﹣3n+m+1)xy2﹣2,由题意得m+2=0,﹣3n+m+1=0,解得m=﹣2,n=﹣,∴(2m﹣3n)2+(2m+3n)2=8m2+18n2=8×4+18×=32+2=34;(2)由题意,得x﹣=﹣,解得:x=.故关于x的方程m⊕x=n的解是x=.27.你能求(x﹣1)(x2019+x2018+x2017+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手,先分别计算下列各式的值.①(x﹣1)(x+1)=x2﹣1②(x﹣1)(x2+x+1)=x3﹣1③(x﹣1)(x3+x2+x+1)=x4﹣1…由此我们可以得到:(x﹣1)(x2019+x2018+x2017+…+x+1)=x2020﹣1.请你利用上面的结论,再完成下面两题的计算:(1)(﹣2)99+(﹣2)98+(﹣2)97+…+(﹣2)+1;(2)若x3+x2+x+1=0,求x2020的值.【分析】归纳总结得到一般性规律,写出即可;(1)原式变形后,利用得出的规律计算即可求出值;归纳总结得到一般性规律,写出即可;(2)根据(x﹣1)(x3+x2+x+1)=x4﹣1,代入已知可得x的值,根据x3+x2+x+1=0,x2≥0,得x<0,可得x=﹣1,代入可得结论.解:(x﹣1)(x2019+x2018+x2017+…+x+1)=x2020﹣1;故答案为:x2020﹣1;(1)(﹣2)99+(﹣2)98+(﹣2)97+…+(﹣2)+1=(﹣2﹣1)•==;(2)∵(x﹣1)(x3+x2+x+1)=x4﹣1,x3+x2+x+1=0,∴x4=1,则x=±1,∵x3+x2+x+1=0,∴x<0,∴x=﹣1,∴x2020=1.28.如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.【分析】(1)根据等边三角形的性质、三角形的外角的性质得到∠EDB=∠B,根据等腰三角形的判定定理证明;(2)取AB的中点O,连接CO、EO,分别证明△ACD≌△OCE和△COE≌△BOE,根据全等三角形的性质证明;(3)取AB的中点O,连接CO、EO、EB,根据(2)的结论得到△CEG≌△DCO,根据全等三角形的性质解答.【解答】(1)证明:∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=30°,∴∠EDB=∠B,∴DE=EB;(2)解:ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,在△ACD和△OCE中,,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,在△COE和△BOE中,,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(3)取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=3,∵GE∥AB,∴∠G=180°﹣∠A=120°,在△CEG和△DCO中,,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+3+3,解得,a=2,即CG=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省成都市高新区2019-2020学年七年级下学期
期末数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 下列计算正确的是()
A.a3?a2=a6B.b4?b4=2b4C.x5+x5=x10D.y7?y=y8
2. 新冠疫情发生以来,各地根据教育部“停课不停教,停课不停学”的相关通知精神,积极开展线上教学.下列在线学习平台的图标中,是轴对称图形的是()
A.B.
C.D.
3. 空气的密度是 0.001293g/,0.001293 用科学记数法表示为( ) A.1.293×B.1.293×C.1.293×D.12.93×
4. 下列长度的三根小木棒,能摆成三角形的是()
A.3cm,4cm,5cm B.8cm,7cm,15cm
C.15cm,13cm,1cm D.5cm,5cm,11cm
5. 下列能判断AB∥CD的是()
A.∠1=∠4B.∠2=∠3
C.∠A=∠C D.∠A+∠ABC=180°
6. 下列事件为必然事件的是()
A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是
D.掷一枚质地均匀的硬币,正面朝上180°
7. 如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是( )
A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF
8. 下列整式运算正确的是()
A.(a﹣b)2=a2﹣b2B.(a+2)(a﹣2)=a2﹣2
C.(a+2)(a﹣2)=a2﹣4 D.
9. 如图,在ABC中,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD的度数为()
A.30°B.40°C.60°D.90°
10. 小颖站在离家不远的公交车站等车,下列各图中能够最好地刻画等车这段时间小颖离家距离与时间关系的是()
A.B.C.D.
二、填空题
11. 计算:(﹣x3y)2=_____.
12. 等腰三角形的一个底角为,则它的顶角的度数为__________.
13. 已知:a+b=3,则代数式a2+2ab+b2的值为_____.
14. 如图,在ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径
画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=_____
度.
三、解答题
15. 计算:
(1)(﹣)﹣2﹣(π﹣3)0+|﹣|×33;
(2)(a﹣b﹣3)(a﹣b+3).
16. 化简求值:[(xy+2)(xy﹣2)﹣2x2y2+4]÷(xy),其中x=10,

17. 已知:如图,A、B、C、D在同一直线上,且AE∥DF,AE=DF,AB=CD.求
证:∠E=∠F.
18. 如图,在长度为1个单位长度的小正方形组成的正方形网格中,ABC的三个顶点A、B、C都在格点上.
(1)在图中画出与ABC关于直线y成轴对称的A
1B
1
C
1

(2)求ABC的面积;
(3)在x轴上找出一点P,使得PB+PC的值最小.(不需计算,在图上直接标记出点P的位置)
19. 我市一水果批发市场某商家批发苹果采取分段计价的方式,其价格如下
购买苹果数x(千克)不超过50千克的部分超过50千克的部分
每千克价格(元)10 8
(1)小刚购买苹果40千克,应付多少元?
(2)若小刚购买苹果x千克,用去了y元.分别写出当0≤x≤50和x>50时,y与x的关系式;
(3)计算出小刚若一次性购买80千克所付的费用比分两次共购买80千克(每次都购买40千克)所付的费用少多少元?
20. 如图,ABC和DEF是两个等腰直角三角形,∠BAC=∠DFE=90°,
AB=AC,FD=FE,DEF的顶点E在边BC上移动,在移动过程中,线段DE与线段AB相交于点P,线段EF与线段CA相交于点Q.
(1)如图1,当E为BC中点,且BP=CQ时,求证:△BPE≌△CQE;
(2)如图2,当ED经过点A,且BE=CQ时,求∠EAQ的度数;
(3)如图3,当E为BC中点,连接AE、PQ,若AP=3,AQ=4,PQ=5,求AC的长.
四、填空题
21. 已知当时,的值为3,则当时,的值为
________.
22. 在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的
人数是_____.
23. 三角形中,如果有一个内角是另外一个内角的3倍,我们把这个三角形叫做“三倍角三角形”.在一个“三倍角三角形”中有一个内角为60°,则另外两个角分别为_____.
24. 如图,在ABC中,AB=AC,D为线段BC上一动点(不与点B、C重合),连接AD,作∠DAE=∠BAC,且AD=AE,连接CE.
(1)如图1,当CE∥AB时,若∠BAD=35°,则∠DEC_____度;
(2)如图2,设∠BAC=α (90°<α<180°),在点D运动过程中,当
DE⊥BC时,∠DEC=_____.(用含α的式子表示)
五、解答题
25. 如图,点C为线段AB的中点,以BC为边作正方形BCDE,点F、点G分别在边DE、DC上,且满足DF=DG,连接BF,连接AG并延长交BF于点H,连接DH.以下结论:①ACG≌BEF;②HD=HG;③AH⊥BF;④∠DHG=45°.其中
正确的有_____(填序号).
26. (1)已知:a(a+1)﹣(a2+b)=3,a(a+b)+b(b﹣a)=13,求代数式ab的值.(2)已知等腰ABC的两边分别为a、b,且a、b满足a2+b2﹣6a﹣14b+58=0,求ABC的周长.
27. 小张和小王是同一单位在A、B两市的同事,已知A、B两市相距400km,周六上午小王从B市出发,开车匀速前往A市的公司开会,1小时后小张从A 市的公司出发,沿同一路线开车匀速前往B市,小张行驶了一段路程后,得知小王要到A市的公司开会,便立即加速返回公司(折返的时间忽略不计).已知小张返回时的速度比去时的速度每小时快20km.两人距B市的距离y(km)与小张行驶时间x(h)间的关系如图所示,请结合图象解答下列问题:
(1)小王的速度为km/h,a的值为;
(2)求小张加速前的速度和b的值;
(3)在小张从出发到回到A市的公司过程中,当x为何值时,两人相距
20km?
28. 已知:ABC为等边三角形.
(1)如图1,点D、E分别为边BC、AC上的点,且BD=CE.
①求证:ABD≌BCE;
②求∠AFE的度数;
(2)如图2,点D为ABC外一点,BA、CD的延长线交于点E,连接AD,已知∠BDC=60°,且AD=2,CD=5,求BD的长;
(3)如图3,线段DB的长为3,线段DC的长为2,连接BC,以BC为边作等边ABC,连接AD,直接写出当线段AD取最大值与最小值时∠BDC的度数.。

相关文档
最新文档