配电线路短路电流计算方法综述
电力设备的短路电流计算与分析方法
电力设备的短路电流计算与分析方法电力设备的短路电流计算与分析方法是电力系统设计和运行中非常重要的一环。
短路电流是指在电力设备出现故障时,电流在短路路径上瞬间升高的现象。
正确计算和分析短路电流对于保护设备和确保电力系统的安全稳定运行至关重要。
本文将介绍电力设备的短路电流计算方法和相关的分析技术。
一、短路电流计算方法1.1 对称分量法对称分量法是一种常用的短路电流计算方法。
该方法假设电力系统中的故障电流由正序、负序和零序组成,通过计算这三个分量的短路电流,得到总的短路电流。
正序短路电流表示电流中的三相分量完全相等,负序短路电流表示电流中的三相分量相互交换相位,零序短路电流表示电流中的三相分量相互平衡。
1.2 消弧线圈法消弧线圈法是另一种常用的短路电流计算方法。
在电力系统的高压侧和低压侧添加消弧线圈,通过计算这两个线圈的电压和电流得到短路电流。
消弧线圈能够有效地减小短路电流的幅值,保护电力设备免受电流的冲击。
根据具体的系统参数和运行情况,可以选取合适的消弧线圈参数来计算短路电流。
1.3 电力系统分析软件随着计算机技术的发展,越来越多的电力系统分析软件被开发出来。
这些软件能够模拟电力系统的运行状态,利用数学计算和仿真算法快速准确地计算短路电流。
通过输入电力系统的拓扑结构、电气参数和负载情况,软件可以自动计算各个节点和设备的短路电流。
这种方法不仅提高了计算效率,还减少了人工计算中可能出现的错误。
二、短路电流分析方法2.1 短路电流的影响因素分析在进行短路电流分析时,需要考虑一些影响短路电流的因素。
例如,电源的电压、电力设备的短路容量、电缆和导线的阻抗等。
这些因素对短路电流的大小和分布都有一定的影响。
通过分析这些因素,可以更好地理解电力系统中的短路电流行为,并采取相应的措施来提高电力系统的安全性。
2.2 短路电流的故障识别与定位短路电流的故障识别与定位是电力系统运行中重要的任务。
当系统发生故障时,准确地识别和定位故障点,可以快速采取措施进行修复,以避免故障扩大和影响到正常运行。
电力系统短路电流计算
电力系统短路电流计算电力系统短路电流计算是电力系统设计和运行中非常重要的一项工作。
短路电流是指在系统发生故障时电流的最大值,通常由短路电流计算来确定。
短路电流的计算对于保护设备的选择、电路设计和系统运行状态的分析都具有重要意义。
短路电流计算主要分为对称分量法和非对称分量法两种方法。
下面将对这两种方法进行详细介绍。
1.对称分量法:对称分量法是一种传统的短路电流计算方法,它将三相电流分解为正序、负序和零序三个对称分量,然后再计算每个分量的短路电流。
对称分量法的计算步骤如下:a.首先需要确定系统的短路电流初始值。
可以通过测量系统的各个节点电压和电流来获得。
一般来说,短路电流初始值取系统额定电流的2-3倍。
b.将系统的正常运行条件下的三相电流表示为复数形式:iA,iB和iC。
c.计算三相电流的正序分量:I1=(iA+α^2*iB+α*iC)/3,其中α=e^(j2π/3),j为虚数单位。
d.计算三相电流的负序分量:I2=(iA+α*iB+α^2*iC)/3e.计算三相电流的零序分量:I0=(iA+iB+iC)/3f.计算每个分量的短路电流。
可以使用短路电流公式和阻抗矩阵来计算。
例如,正序分量的短路电流I1'=Z1*I1,其中Z1为正序阻抗。
g.将三个分量的短路电流叠加得到总的短路电流。
2.非对称分量法:非对称分量法是一种更加准确的短路电流计算方法,它考虑了系统故障时的非对称特性,可以更好地反映系统的短路电流分布。
非对称分量法的计算步骤如下:a.获取系统正常运行条件下的三相电流。
b. 将三相电流转换为abc坐标系下的矢量形式。
c.计算叠加故障电流矢量。
d. 将叠加故障电流矢量转换为dq0坐标系的正序、负序和零序分量。
e.根据正、负、零序分量计算短路电流。
非对称分量法相比于对称分量法更加准确,但在计算过程中需要考虑更多的参数和细节,计算复杂度较高。
需要注意的是,短路电流计算是在假设系统中所有设备均采用理想的电气参数的情况下进行的。
电力设备的短路电流计算与分析
电力设备的短路电流计算与分析电力设备的短路电流计算与分析是电力系统中一个重要的工程问题,对保障电力设备的安全运行和系统的稳定性具有重要意义。
本文将就短路电流的定义、计算方法以及短路电流对电力设备的影响等方面展开论述,以期对读者有所启发。
一、短路电流的定义短路电流是指在电力系统中,当系统中某一点出现故障时,由于电流的自动产生,电流从高压侧短路至低压侧的现象。
短路电流的大小与电力系统的电压、电容、电阻等因素有关,它是计算电力设备的过载能力和抗短路能力的重要参考依据。
二、短路电流的计算方法1. 对称短路电流计算:对称短路电流是指三相电流都相等的短路电流。
根据对称短路电流的计算方法,可以通过使用电路图、节点分析法、KVL和KCL等方法进行计算。
2. 不对称短路电流计算:不对称短路电流是指三相电流不相等的短路电流。
对于不对称短路电流的计算,需要考虑电力系统的各种参数,例如电抗器、变压器、电容器等。
常用的计算方法有改进的对称分量法、有限元法、直流等效法等。
三、短路电流对电力设备的影响1. 短路电流对发电机的影响:短路电流会导致发电机产生巨大的电机力矩,对机组设备和轴承产生较大的力矩影响,从而影响机组的可靠性和运行稳定性。
2. 短路电流对变压器的影响:短路电流会导致变压器的电磁力瞬时增大,使变压器的线圈、磁心受力加剧,从而影响变压器的可靠性和安全运行。
3. 短路电流对开关设备的影响:短路电流通过开关设备时,会产生较大的电流和电弧,对开关设备的触头、隔离机构和弹簧等引起较大的机械应力,增加开关设备损坏的风险。
4. 短路电流对电缆的影响:短路电流通过电缆时,由于电流的瞬时增大,会导致电缆的电介质击穿,引发短路故障。
四、短路电流分析在电力设备设计中的应用1. 电力设备选型:通过对短路电流的计算和分析,可以了解电力设备的额定电流和额定短时电流冲击能力,从而选择合适的电力设备以满足系统的要求。
2. 电网规划与改造:短路电流分析可以为电网的规划和改造提供依据,以满足电力系统对电力设备的容错能力和抗干扰能力需求。
短路电流的计算方法
短路电流的计算方法短路电流是指电路中发生短路故障时的电流值。
短路故障指电路中两个或多个电气元件之间的绝缘失效或直接发生短路连接。
短路电流的计算方法需要考虑电源电压、电路阻抗、短路位置等因素。
下面将详细介绍短路电流的计算方法。
1.短路电流基本概念短路电流是指从电源到发生短路故障处的电流。
短路电流的大小直接取决于电源的供电能力和短路处的阻抗。
短路电流一般分为对称短路电流和非对称短路电流两种。
2.对称短路电流计算对称短路电流是指发生短路故障时,电流的各相之间的大小和相位差相同。
对称短路电流的计算一般通过复数法或者对称分量法来进行。
(1)复数法:首先需要获得正常工作条件下电路的电压和电流的复数表示形式,即用复数表示的幅值和相位。
然后根据发生短路故障时电路的分析,将短路电流的每一个分量都转换成复数,然后通过复数的叠加原理,将每个分量的复数相加得到短路电流的复数。
(2)对称分量法:对称分量法是将实际电流分解成对称分量和零序分量的和,其中对称分量包括正序、负序和零序的幅值,计算对称短路电流时只需要考虑对称分量。
对称分量法适用于计算对称短路电流较为复杂的电力系统。
3.非对称短路电流计算非对称短路电流是指发生短路故障时,电流的各相之间的大小和相位差不同。
非对称短路电流的计算需要考虑不同相电流的不同阻抗和各相电源之间的相位差。
非对称短路电流计算的方法有很多,比较常用的方法包括:(1)等效电路法:等效电路法是通过将非对称短路问题转化为等效电路的问题来进行计算。
首先根据故障点的实际情况,绘制等效电路图,然后根据等效电路的特性进行计算。
(2)解析法:解析法是通过对非对称电路进行解析计算,得到各相之间的电流和相位差。
这种方法一般适用于较为简单的电路。
(3)数值法:数值法是通过数值计算的方式来求解非对称短路电流。
数值法的计算过程较为繁琐,但是对于复杂的电路系统可以得到较为准确的结果。
总结:短路电流的计算方法需要根据具体的电路型号和故障情况进行选择。
短路电流具体实际步骤计算,请大家参考!
短路电流具体实际步骤计算,请大家参考!1. 短路电流计算参考<<电力工程电气设计手册>>电气一次部分第四章相关内容进行计算。
1.1. 计算条件基准容量:Sj = 100 MVA10kV基准电压:U1j = 10.5 kV0.38kV基准电压:U2j = 0.399 kV短路节点 (d2) 短路电流计算时间:t= 0秒短路节点 (d2) 短路假想时间:tj= 0秒短路节点 (d3) 短路电流计算时间:t= 0秒短路节点 (d3) 短路假想时间:tj= 0秒短路节点 (d1) 短路电流计算时间:t= 0秒短路节点 (d1) 短路假想时间:tj= 0秒1.1.1. 系统编号:C1单相短路容量:=200 MVA1.1.1. 双绕组变压器编号:ZB1电压:10/0.4 kV型号:S9-M-2000/10F额定容量:Se = 2000 MVA短路电压百分比:Ud% = 4.5中性点接地电阻:Z =正序阻抗标么值:= 2.25零序阻抗标么值:=01.1.1. 线路编号:L1电压:Ue = 10 kV型号:通用截面:S = 95 mm2根数:n = 1正序阻抗:X1 = 0.214Ω/km 零序阻抗:X0 = 0.0749Ω/km 长度:L = 0.5 km正序阻抗标么值:= 0.0971零序阻抗标么值:= 0.034编号:L2电压:Ue = 0.38 kV型号:通用截面:S = 25 mm2根数:n = 1正序阻抗:X1 = 0.745Ω/km 零序阻抗:X0 = 0.2607Ω/km 长度:L = 0.2 km正序阻抗标么值:= 93.5924零序阻抗标么值:= 32.75731.1. 短路电流计算1.1.1. 系统等值简化阻抗图正序阻抗图:负序阻抗图:零序阻抗图:请点击此1.1.1. 短路电流计算结果短路节点:d1电压等级:10.5kV 三相短路:系统对短路点等值阻抗:= 0.597001短路电流周期分量:= 9.21 kA短路容量:= 167.5 MVA短路冲击电流峰值:= 20.84 kA短路电流全电流最大有效值:= 12.079 kA0秒短路电流非周期分量:= 13.025 kA0秒短路电流非周期分量:= 13.025 kA变压器中性点合计值:0 kA 单相短路:系统对短路点等值阻抗:= 1.728短路电流周期分量:= 9.546 kA短路容量:= 173.61 MVA短路冲击电流峰值:= 21.6 kA短路电流全电流最大有效值:= 12.519 kA0秒短路电流非周期分量:= 13.5 kA0秒短路电流非周期分量:= 13.5 kA变压器中性点合计值:0 kA 两相短路:系统对短路点等值阻抗:= 1.194短路电流周期分量:= 7.976 kA短路容量:= 145.06 MVA短路冲击电流峰值:= 18.048 kA短路电流全电流最大有效值:= 10.46 kA0秒短路电流非周期分量:= 11.28 kA0秒短路电流非周期分量:= 11.28 kA变压器中性点合计值:0 kA两相对地短路:系统对短路点等值阻抗:= 0.878997短路电流周期分量:= 9.389 kA短路容量:= 170.75 MVA短路冲击电流峰值:= 21.245 kA短路电流全电流最大有效值:= 12.314 kA0秒短路电流非周期分量:= 13.278 kA0秒短路电流非周期分量:= 13.278 kA变压器中性点合计值:0 kA短路节点:d2电压等级:0.399kV 三相短路:系统对短路点等值阻抗:= 2.847短路电流周期分量:= 50.82 kA短路容量:短路冲击电流峰值:= 114.993 kA短路电流全电流最大有效值:= 66.65 kA0秒短路电流非周期分量:= 71.87 kA0秒短路电流非周期分量:= 71.87 kA变压器中性点合计值:0 kA单相短路:系统对短路点等值阻抗:= 7.94401短路电流周期分量:= 54.64 kA短路容量:= 75.52 MVA短路冲击电流峰值:= 123.636 kA短路电流全电流最大有效值:= 71.66 kA0秒短路电流非周期分量:= 154.546 kA0秒短路电流非周期分量:= 154.546 kA变压器中性点合计值:54.64 kA 两相短路:系统对短路点等值阻抗:= 5.69402短路电流周期分量:短路容量:= 30.42 MVA短路冲击电流峰值:= 99.606 kA短路电流全电流最大有效值:= 57.732 kA0秒短路电流非周期分量:= 62.254 kA0秒短路电流非周期分量:= 62.254 kA变压器中性点合计值:0 kA两相对地短路:系统对短路点等值阻抗:= 4.104短路电流周期分量:= 53.01 kA短路容量:= 73.26 MVA短路冲击电流峰值:= 119.948 kA短路电流全电流最大有效值:= 69.522 kA0秒短路电流非周期分量:= 149.934 kA0秒短路电流非周期分量:= 149.934 kA变压器中性点合计值:53.01 kA 短路节点:d3电压等级:0.399kV 三相短路:系统对短路点等值阻抗:= 96.4404短路电流周期分量:= 1.5 kA短路容量:= 1.04 MVA短路冲击电流峰值:= 3.394 kA短路电流全电流最大有效值:= 1.967 kA0秒短路电流非周期分量:= 2.121 kA0秒短路电流非周期分量:= 2.121 kA变压器中性点合计值:0 kA 单相短路:系统对短路点等值阻抗:= 227.9短路电流周期分量:= 1.905 kA短路容量:= 2.64 MVA短路冲击电流峰值:= 4.311 kA短路电流全电流最大有效值:= 2.498 kA0秒短路电流非周期分量:= 5.388 kA0秒短路电流非周期分量:= 5.388 kA变压器中性点合计值:1.905 kA 两相短路:系统对短路点等值阻抗:= 192.9短路电流周期分量:= 1.299 kA短路容量:= 0.9 MVA短路冲击电流峰值:= 2.939 kA短路电流全电流最大有效值:= 1.704 kA0秒短路电流非周期分量:= 1.837 kA0秒短路电流非周期分量:= 1.837 kA变压器中性点合计值:0 kA两相对地短路:系统对短路点等值阻抗:= 122.1短路电流周期分量:= 1.841 kA短路容量:= 2.54 MVA短路冲击电流峰值:= 4.166 kA短路电流全电流最大有效值:= 2.414 kA0秒短路电流非周期分量:= 5.208 kA0秒短路电流非周期分量:= 5.208 kA变压器中性点合计值:1.841 kA1.1.1. 计算结果表三相短路计算结果表顺序编号回路名称短路点编号短路容量短路冲击电流峰值全短路电流有效值短路电流周期分量稳态短路电流短路电流计算时间假想时间系统简化阻抗图Sk ich Ich I’’I∞B’’t tjMVA kA kA kA kA s s1. 1 10kV d1 167.5 20.84 12.079 9.21 9.21 1 0 02. 2 0.38kV d2 35.12 114.993 66.65 50.82 50.82 1 0 03. 3 0.38kV d3 1.04 3.394 1.967 1.5 1.5 1 0 0单相短路计算结果表顺序编号回路名称短路点编号短路容量短路冲击电流峰值全短路电流有效值短路电流周期分量稳态短路电流短路电流计算时间假想时间系统简化阻抗图Sk ich Ich I’’I∞B’’t tjMVA kA kA kA kA s s1. 1 10kV d1 173.61 21.6 12.519 9.546 9.546 1 0 02. 2 0.38kV d2 75.52 123.636 71.66 54.64 54.64 1 0 03. 3 0.38kV d3 2.644.311 2.498 1.905 1.905 1 0 0两相短路计算结果表两相对地短路计算结果表处输入图片描述顺序编号回路名称短路点编号短路容量短路冲击电流峰值全短路电流有效值短路电流周期分量稳态短路电流短路电流计算时间假想时间系统简化阻抗图Sk ich Ich I’’I∞B’’t tjMVA kA kA kA kA s s1. 1 10kV d1 145.06 18.048 10.46 7.976 7.976 1 0 02. 2 0.38kV d2 30.42 99.606 57.732 44.02 44.02 1 0 03. 3 0.38kV d3 0.9 2.939 1.704 1.299 1.299 1 0 0顺序编号回路名称短路点编号短路容量短路冲击电流峰值全短路电流有效值短路电流周期分量稳态短路电流短路电流计算时间假想时间系统简化阻抗图Sk ich Ich I’’I∞B’’t tjMVA kA kA kA kA s s1. 1 10kV d1 170.75 21.245 12.314 9.389 9.389 1 0 02. 2 0.38kV d2 73.26 119.948 69.522 53.01 53.01 1 0 03. 3 0.38kV d3 2.544.166 2.414 1.841 1.841 1 0 0。
供电工程(电气)变电所短路电流计算总结2
b)
续上页
电源 0
A
B
C
Ik(1)
电源
负荷
0
k(1)
电源 0
c)
A
B
Ik(1,1)
C
Ik(1,1)
k(1,1)
电源
负荷
0
A
B
C
Ik(1)
N
d)
A
(1,1)
B
Ik
C
Ik(1,1)
负荷
k(1)
k(1,1)
负荷
e)
f)
三、计算短路电流的目的
进行短路计算的目的是正确选择和检验电气设备及其保护装置。三相短 路电流是选择和检验电气设备的基本依据。另外还要用到不对称短路的短路 电流、短路冲击电流、稳态短路电流等。
阻抗标么值 I” Ich ich I∞ I(2)
电器设备选择 继电保护整定
灵 敏 度 较 验
Sunday, January 17, 2021
参数解释
I”(I“z)----次暂态短路电流(即三相短路 电流周期分量第一周期有效值),用来 做继电保护整定和校验断路器额定断流 容量;
Ich----三相短路电流第一周期全电流有效 值,用来校验电器和母线的动稳定以及 断路器的额定断流容量
I∞=I”(无穷大容量系统I*=S*=1/x*)
S*= ∞, X*=∞认为I”不衰减
Sunday, January 17, 2021
第一节 概 述
一、短路及其原因、后果
短路是指供电系统中不同电位的导电部分(各相导体、地线等)之间 发生的低阻性短接。
造成短路的主要原因是电气设备载流部分的绝缘损坏,其次是人员误 操作、鸟兽危害等。
短路电流的计算及步骤
短路电流的计算及步骤一、短路电流的计算步骤:1、首先绘出计算电路图2、接着,按所选择的短路计算点绘出等效电路图二、短路电流的计算方法:1、欧姆法2、标幺制法三、采用欧姆法进行三相短路电流的计算根据设计的供电系统图1-1所示。
电力系统出口断路器为SN10-10Ⅲ型。
可计算本饲料厂变电所高压10KV母线上k-1点短路和低压380V母线上k-2点短路的三相短路电流和短路容量。
图1-11.k-1点的三相短路电流和短路容量(U=10.5KV)(1)计算短路电流中各元件的电抗及总电抗1)电力系统的电抗:由附表8查得SN10-10Ⅲ型短路器的断流容量S=750MV·A,因此X===0.1472)架空线路的电抗:由表3-1得X=0.35/km,因此X=X l=0.35 (/km)5km=1.753)绘k-1点短路的等效电路图,如图1-2(a)所示,图上标出各元件的序号(分子)和电抗值(分母),并计算其总电抗为:X= X+ X=0.147+1.75=1.897图1-2 短路等效电路图(欧姆法)(2)计算三相短路电流和短路容量1)三相短路电流周期分量有效值===3.18 kA2)三相短路次暂态电流和稳态电流= = =3.18kA3)三相短路冲击电流及第一个周期短路全电流有效值=2.55=2.553.18kA=8.11kA=1.51=1.513.18kA=4.8kA4)三相短路容量==10.5KV3.18 kA=58.10MV·A2 K-2点的短路电流和短路容量(U=0.4KV)1)电力系统的电抗===2.132)架空线路的电抗==0.35(/km) 5km=2.543)电力变压器的电抗:由附录表5得%=5,因此X===84) 绘k-2点短路的等效电路图,如图5-2(b)所示,图上标出各元件的序号(分子)和电抗值(分母),并计算其总电抗为:= X+ X+ X//= X+ X+=6.753(2)计算三相短路电流和短路容量1)三相短路电流周期分量有效值===34.04kA2)三相短路次暂态电流和稳态电流= = =34.04kA3)三相短路冲击电流及第一个周期短路全电流有效值=1.84=1.8434.04kA=62.64kA=1.09=1.0934.04 kA=37.11Ka4)三相短路容量==0.4KV34.04 kA=23.69MV·A综上所述可列短路计算表,如下表1-1工厂变配电所的选择第一节工厂变配电所类型、所址的选择一、变配电所的任务便配电所担负着从电力系统受电,经过变压,然后配电的任务。
供电系统短路电流的计算
临时供电线路出线柜整定计算由于10KV临时供电线路馈线柜(9208筹建处)主断路器为HVF12-31.5KA/1250A,电流互感器为DL-LZZBJ9-10K2 200/5;控制柜的负荷统计为:ΣPe=440+274+157+440+200=1511KW (1)、电缆出线计算负荷电流:Imax =Ka* Pe/(1.732* Ue*cosΦ)=0.7*Pe/(1.732* Ue*cosΦ)=(0.7*1511)/(1.732*10.5*0.7)=83(A)(2)、保护动作一次侧电流:Iop=(Kk*Kret)/Kre*Imzx=(1.2*1.5)/0.85*83=176A(3)、过电流继电器的动作电流:Izd= (Kx/Ki) Iop= (1.0/200/5)* 176=4.4(A)整定取4.5A式中:Pe---用电负荷总量KW;Iop---过流继电器保护动作一次侧电流值A;Izd---过流继电器整定电流值A;Imax---线路负荷电流值A;Ka----负荷需用系数取0.7;Kk------可靠系数,一般取1.2;Ki-------电流互感器变流比:200/5:Kret---自起动系数,取1.5;Kre----返回系数,DL系列取0.85;Kx-----接线系数取1.0;COSΦ----取0.7(4)、临时供电线路出线末端短路电流的计算:1)、系统电源电抗:基准电压Up =10.5KV 基准容量Sd=50MV A Xy=Up2/Sd=10.52/50=2.205(Ω)2)YJV22-10KV- 3*120 70 m电缆的电阻R0= 0.175Ω电抗X0=0.08ΩR1= R0*L=0.175*0.07=0.0123ΩX1= X0*L=0.08*0.07=0.0056ΩR0 -----高压电缆每公里电阻Ω/Km;X0------高压电缆每公里电抗Ω/Km;3)LGJ-10KV- 3*70 4010 m电缆的电阻R0= 0.432Ω电抗X0=0.369Ω(线路几何间距为1.5米) R2= R0*L=0.432*4.01=1.7323ΩX2= X0*L=0.369*4.01=1.478ΩR0 -----高压钢铝绞线每公里电阻Ω/Km;X0------高压钢铝绞线每公里电抗Ω/Km;ΣR=R1+R2=0.0123+1.7323=1.7446ΩΣX=Xy+X1+X2=2.205+0.0056+1.478=3.6886Ω求d的三相短路电流Id(3)= Up/{1.732*(ΣR2+ΣX 2)1/2}=10500/{1.732*[(1.74462+3.68862)1/2]=1500(A)求d的两相短路电流Id(2)=0.866* Id(3)=0.866*1500=1299(A)临时供电线路出线始端(继电保护安装处)短路电流计算:I"d1(3)min = Up/{1.732* (Xy)1/2}=10500/(1.732*2.2051/2)=4083A I"d1(2)min =0.866* I"d1(3)min =0.866*4083=3536(A)式中:I"d1(3)min----最小运行方式下线路始端(继电保护安装处)三相短路电流;I"d1(2)min-----最小运行方式下线路始端(继电保护安装处)两相短路电流;(5)、过流继电保护的灵敏度校验:Km= Id(2)/(Izd*K1)=1299/(2.3*200/5)=14>1.5 满足要求式中:Km------灵敏度系数应大于1.5;Id(2)-----线路最小运行方式下末端两项短路电流A;(6)、电流速断保护整定计算:速断保护的动作电流按躲过被保护线路末端最大三相短路电流整定:一次动作电流:Iop=Kk*Id(3)=1.2*1500=1800A式中:Iop----速断保护一侧动作电流A;Kk-----可靠系数取1.2;带时限速断保护动作电流:Idz= (Kx/Ki) Iop= (1.0/200/5)*1800 =45A 取46A(7)、带时限速断保护的灵敏度校验:速断保护必须满足最小保护范围的要求,其最小运行方式下的保护范围为:L min=1/X0*[UaK kx/2IzpKt-Xy]=1/0.369*[10000*1/2*46*200/5-3.6886]= -2.63km式中:Ua----保护安装处电网平均线电压;Kt-----电流互感器变比200/5;K kx-----保护装置的接线系数,速断保护一般接于相电流为1;Xy-----系统总电抗Ω;该速断保护不能满足4.01公里线路保护范围的要求;Kb = I"d1(2)min/Iop =3536/1800=1.97即速断保护在系统最小运行方式下保护安装处两项短路电流大于其动作电流,故满足要求。
短路电流的计算方法
短路电流的计算方法短路电流是指电路中出现故障时,电流异常增大的现象。
短路电流的计算方法包括直流短路电流的计算和交流短路电流的计算。
一、直流短路电流的计算方法:直流短路电流的计算是为了确定短路电流对电路和设备的影响,以保证电路和设备安全。
直流短路电流的计算方法主要有以下几种:1.简化计算法:直流电路的短路电流可以通过简化计算法进行估算,根据欧姆定律和功率定律,可以通过电压和总电阻来估算短路电流。
假设短路电流源为电压为U、内阻为Z的电源电路,电源电阻为R,负载电阻为RL,总电阻为RT=RL+R,则短路电流IL=U/(Z+RT)。
2.等效电源法:将电源电路和负载电路转化为等效电源和等效负载电阻,然后根据欧姆定律计算短路电流。
等效电源法适用于简化电路和负载电路比较复杂的情况。
3.发电厂贡献法:针对大型电力系统,可以根据发电机的参数和系统的接线方式来计算各个节点的短路电流。
发电厂贡献法可以精确计算节点的短路电流,但计算过程较为复杂。
二、交流短路电流的计算方法:交流短路电流是指交流电路中出现短路时的电流。
交流短路电流的计算方法包括对称分量法和电流源法等。
1.对称分量法:根据对称分量法,交流短路电流可以分解为正序、负序和零序三个分量。
正序短路电流通常是三相对称的,可以通过正序电压和正序阻抗来计算。
负序短路电流和零序短路电流可以通过负序电压和零序电压以及负序阻抗和零序阻抗来计算。
2.电流源法:电流源法是一种常用的计算交流短路电流的方法,将电源电压和电源阻抗转化为电流源和阻抗的组合,然后根据电流传输方向计算短路电流。
根据基尔霍夫电流定律,在每个节点上列出节点电流方程组,然后根据节点电流的关系求解未知的短路电流。
3.电抗补偿法:电抗补偿法是通过在电路中添加合适的电抗元件,来减小电路的短路电流。
通过选取合适的电抗元件的参数,可以使得电路的短路电流降低到安全范围内。
总之,短路电流的计算方法根据电路的特点和问题的需求选择不同的方法,通过对电压、电流和阻抗的计算和分析,来确定短路电流的数值,以保证电路和设备的安全。
短路电流计算方法
短路电流计算方法
短路电流的计算方法有多种,以下介绍两种常用的方法:
方法一:基于对称分量法
1.利用对称分量法实现A、B、C三相网络与正、负、零三序网络的
参数转换。
2.列出正、负、零序网络方程,大多采用节点导纳矩阵方程描述序
网络中电压、电流的关系。
3.根据故障形式,推导出故障点的边界条件方程。
4.将网络方程与边界条件方程联立求解,求出短路电流及其他分量。
方法二:基于公式计算
5.三相短路电流计算: IK(3)=UN2/{√3·[(∑R)2+(∑X)2]1/2}。
式中IK(3)——三相短路电流、安。
UN2变压器二次侧额定电压,对于127、380、660伏电网,分别取133、400、690伏。
∑R、∑X 短路回路内一相的电阻、电抗的总和,欧。
6.二相短路电流计算:IK(2)=UN2/{2·[(∑R)2+(∑X)2]1/2}式中。
IK(2) ——二相短路电流、安。
7.三相短路电流与二相短路电流值的换算:IK(3)=2 IK(2)/√
3=1.15 。
IK(2)或IK(2)=0.866 IK(3)。
此外,对于不同电压等级,短路电流的计算也有所不同。
例如,若电压等级为6kV,则短路电流等于9.2除以总电抗X∑;若电压等级为10kV,则等于5.5除以总电抗X∑。
配网短路分析及短路电流计算方法综述
大 。短路 也同时引起 电网的 电压降低 ,特别是靠近 短路 点 处 电压 降得更多,结果可能导致部分或全部用户 的供 电遭 到破坏 。再次,使 电力 系统稳定性遭到破坏 。当短路 发生
有短路 电流计算 的结 果作为依据。因此 ,短路 电流计算在
运行。
电力 系 统稳 态 运 行 时 , 发 电厂 中原 动 机 的输 入 功 率 同输 出
功率相 平衡 ,系统 的频率和 电压都是稳定的 。然 而,这种 运动 中的稳 态,并不 是绝 对不变的 。当系统受到某种 干扰 时,上述 功率的平衡 即被打破 ,运动状态也将随之而 变。
由于 系 统 中 包 含 有 许 多 惯 性 元 件 ,运 动 状 态 的变 化不 能 瞬
配 网短路分析及短路 电流计算方法综述
吴 佳
( 浙江省 平 湖 市供 电局 , 江 平湖 3 4 0 浙 1 2 0)
摘 要 : 发 电厂 、 变 电所 以及 整 个 电力 系统 的设 计和 运 行 工作 中必 须进 行短 路 电流 计 算 。在 保护 自动 整 定和 设 置 中 , 在
本 计 算 之一 , 在 电力 系 统 设 计 和 运 行 的 许 多工 作 中 都 必 须
第四,其他 ,例如挖沟 损伤 电缆 ,鸟兽跨接在裸 露的 载流部分等。 短路 的后果 具有破 坏性 ,具 体表 现在 以下几个 方 面 [] 3 :首先 ,设 备遭 到破坏 ,在短路 处常常发 生电弧烧毁
许 范围 内,系统仍 能正常工作 ,正常运行 中的电力系统, 实 际上 就是经常处于 这种 较小 的变动的过程 中。另一种情 况 是,当电力系统发 生各种故障的时候 ,系统 的运行 将经 历剧烈 的变化 ,所趋 于的状态 ,或者使其运行参 数大 大偏 离 正常值 , 以致 电能质量严重变坏 :或者更 为严 重,导致
短路电流的计算方法 Word 文档
1、短路电流的计算方法:1.1、两相短路电流计算公式:I=∑R=R1/K+Rb+R2∑X=Xx+X1/K+Xb+X2式中:I——两相短路电流,A∑R、∑X——短路回路内一相电阻、电抗值的总和,ΩXx——根据三相短路容量计算的系统电抗值,ΩR1、X1——高压电缆的电阻、电抗值,ΩKb——变压器变压比Rb、Xb——变压器的电阻、电抗值,ΩR2、X2——低压电缆的电阻、电抗值,ΩUe——变压器二次侧额定电压,V1.2、三相短路电流计算公式:I=1.15 I2、电缆线路短路保护2.1、1200V及以下电网中电磁式过电流继电器的整定2.1.1、保护干线装置公式:Iz≥IQe+Kx∑Ie式中:IQe——最大容量电动机额定起动电流,A,为电动机额定电流的6.0~7.0倍。
∑Ie——其余电动机额定电流之和,AKx——需用系数,取0.5~1.0,一般取1.0。
2.1.2、校验公式:≥1.5若线路上串联两台以上开关(其间无分支线路),则上一级开关整定值,也应按下一级开关保护范围最远点的两相短路电流来校验,校验灵敏度应满足1.2~1.5的要求,以保证双重保护的可靠性。
若校验不满足时,应采取以下措施:1.加大干线或支线电缆截面。
2.设法减少低压电缆线路的长度。
3.采用相敏保护器或软起动等新技术提高灵敏度。
4.更换大容量变压器或采取变压器并联。
5.增设分段保护开关。
6.采用移动变电站或移动变压器。
2.2、电子保护器的整定:2.2.1、电磁起动器中电子保护器过流整定公式:Iz≤Ie当运行中电流超过Iz时视为过载,电子保护器延时动作;当运行中电流达到8Iz时视为短路,电子保护器瞬时动作。
2.2.2、校验公式:≥1.2若校验不满足时,应采取以下措施:1.加大干线或支线电缆截面。
2.设法减少低压电缆线路的长度。
3.采用相敏保护器或软起动等新技术提高灵敏度。
4.更换大容量变压器或采取变压器并联。
5.增设分段保护开关。
6.采用移动变电站或移动变压器。
短路电流预测方法综述
文章编号:1004-289X(2024)02-0001-09短路电流预测方法综述李嘉敏1ꎬ庄胜斌1ꎬ杨广辉1ꎬ唐玲玲2(1.福州大学电气工程与自动化学院ꎬ福建㊀福州㊀350108ꎻ2.福建电力职业技术学院ꎬ福建㊀泉州㊀362008)摘㊀要:随着用电负荷与新型电力系统容量的不断增大ꎬ短路保护如何与之适配的技术难题日渐突出ꎮ系统发生短路故障时ꎬ可对短路电流发展进行预测ꎬ并根据该规律制定最佳保护与控制方案ꎬ力求安全前提下ꎬ使得短路造成的停电范围㊁设施损害最小ꎮ因此ꎬ短路电流预测方法被广泛研究ꎮ首先对短路电流进行了数学分析ꎬ得出其主要特征与影响因素ꎻ其次ꎬ以不同短路电流预测应用场景为分类依据ꎬ将国内外主要相关贡献归纳为节点预测㊁零点预测和峰值预测共三种研究类型ꎬ并总结了各类型预测方法的优缺点ꎻ最后ꎬ对短路电流预测方法进一步的研究方向和趋势进行了展望ꎮ关键词:短路电流预测ꎻ节点预测ꎻ过零预测ꎻ峰值预测中图分类号:TM71㊀㊀㊀㊀㊀文献标识码:BASummaryoftheShortCircuitCurrentPredictionMethodLIJia ̄min1ꎬZHUANGSheng ̄bin1ꎬYANGGuang ̄hui1ꎬTANGLing ̄ling2(1.CollegeofElectricalEngineeringandAutomationꎬFuzhouUniversityꎬFuzhou350108ꎬChinaꎻ2.FujianVocational ̄technicalSchoolofElectricPowerꎬQuanzhou362008ꎬChina)Abstract:Withthecontinuousexpansionofpowerloadandnewpowersystemcapacityꎬthetechnicalproblemthatadaptingshort ̄circuitprotectiontowhichhasbecomeincreasinglyprominent.Whenashort ̄circuitfaultoccursinthesystemꎬtheshort ̄circuitcurrentdevelopmentcanbepredicted.Accordingtotheregularityꎬthebestprotectionandcontrolschemecanbeformulatedsoastonarrowpoweroutageareaandreducefacilitydamagecausedbytheshortcircuitundersafety.Thereforeꎬshort ̄circuitcurrentpredictionmethodshavebeenwidelystudied.Inthispa ̄perꎬtheshort ̄circuitcurrentismathematicallyanalyzedꎬanditsmaincharacteristicsandinfluencingfactorsareob ̄tained.Secondlyꎬbasedondifferentapplicationscenariosofshort ̄circuitcurrentpredictionꎬthemainrelevantcontri ̄butionsathomeandabroadaresummarizedintothreeresearchtypes:nodepredictionꎬzeropredictionandpeakpre ̄diction.Theadvantagesanddisadvantagesofeachtypeofpredictionmethodaresummarized.Finallyꎬthefurtherre ̄searchdirectionsandtrendsofshort ̄circuitcurrentpredictionmethodsareprospected.Keywords:predictionofshortcircuitcurrentꎻnodepredictionꎻzero ̄crossingpredictionꎻpeakprediction1㊀引言随着分布式新能源和储能的大规模不断并网与区域电网的不断互联ꎬ电力系统短路电流水平不断提高[1ꎬ2]ꎮ部分电网出现由于更换不及时造成短路电流水平已接近或超出保护设备的额定分断能力ꎬ且无限提升设备的短路承载力是不现实的ꎮ短路电流的发展预测ꎬ可为短路故障电流早期抑制与选择性保护提供科学的决策依据ꎬ同时也是指导电网规划与建设㊁继电保护设计的主要技术手段[3]ꎮ因此ꎬ快速准确的短路故障电流预测技术研究对电网安全运行有着十分重要的意义ꎮ㊀㊀近年来ꎬ国内外提出的短路电流预测可分为三类:(1)节点预测短路电流方法ꎻ(2)过零预测短路电流方法ꎻ(3)峰值预测短路电流方法ꎬ如图1所示ꎮ以上三种短路电流预测方法适应不同的应用场景ꎮ节点预测方法ꎬ即从电力系统的网络拓扑结构及分布式电源㊁储能㊁负荷或潮流分布的角度出发ꎬ通过仿真电路计算或已训练的神经网络模型对特定网络节点的短路电流水平进行预估ꎬ以便在网架改造或建设初期配置合理的继电保护设备ꎻ过零预测方法则是在电网发生短路故障时ꎬ实时㊁快速㊁准确地进行短路电流特征参数估计并预测出过零时刻ꎬ以实现断路器相位控制开断ꎬ适当协调不断增大的系统短路容量与断路器分断能力提升困难且浪费之间的矛盾ꎻ峰值预测方法ꎬ是在短路故障保护在故障发生后时刻进行动作ꎬ该时间内故障电流激增ꎬ若提前预测出峰值便可指导限流与分断措施实施ꎮ同时ꎬ若在系统规划建设时利用短路故障信号数学模型及人工智能算法进行短路电流峰值预测ꎬ有利于实现系统全局选择性㊁经济协调保护方案设计ꎮ图1㊀短路电流预测分类图㊀㊀算法快速性与准确性的恰当配合是短路电流预测方法有效作用的关键ꎬ不同应用场景对于预测算法性能的要求也不尽相同ꎮ国内外学者从不同角度出发对短路电流预测方法做了大量研究ꎬ本文在此基础上对各类预测方法加以详细分类总结ꎬ客观分析了现有方法存在的问题和不足ꎬ并对短路电流预测方法的未来发展趋势进行展望ꎮ2㊀短路故障特性分析电流与电压信号可以直观反映电力系统的运行状态ꎬ当发生短路故障时ꎬ电压下跌而电流剧增ꎮ然而电压信号易受到干扰及噪声的影响并不稳定ꎬ从保护的角度出发一般更多以短路故障电流信号作为关键信息依据ꎬ因此ꎬ大量文献针对短路电流剧增现象进行故障检测研究[4-6]ꎮ系统发生短路故障时的简化电路如图2所示ꎬ假设电源等效为无穷大㊁理想系统ꎮ图2㊀简化短路故障等效电路图㊀㊀图2中R1㊁L1为电源侧等效电阻及电感ꎬR2㊁L2为等效负载电阻及电感ꎬu(t)为等效电源ꎬisc为线路电流ꎮ假设系统在t=0时刻发生短路故障ꎬ故障发生后系统等效阻抗由(R1+R2)+jw(L1+L2)(R1+R2)+(jωL1+jωL2)突然变为R1+jwL1R1+jωL1()ꎮ由基尔霍夫定律可得:L1disc(t)dt+Risc(t)=Umsin(wt+α)(1)㊀㊀对式(1)求解可得线路短路电流的瞬时公式ꎬ即isc(t)=Imsin(wt+α-φ)+[Im(sin(α-φ0)-sin(α-φ))]e-tτ(2)㊀㊀式中ꎬIm=Um/Zk为短路电流周期分量峰值ꎻIm0=Um/Z为短路前的电流峰值ꎻα为故障电压初相角ꎻϕ为短路回路阻抗角ꎻϕ0为短路前回路阻抗角ꎻτ=L1/R1为衰减时间常数ꎮ在不同故障初相角下ꎬ即不同短路故障发生时刻的短路电流如图3所示ꎮ图3㊀不同故障初相角下电流随时间变化曲线㊀㊀由式(2)与图3分析可得:㊀㊀(1)故障初相角对短路电流第一峰值有显著影响ꎮ在0ʎ故障初相角下ꎬ短路电流第一峰值接近短路电流最大峰值ꎬ随着故障初相角增大至180ʎꎬ短路电流第一峰值减小至接近0ꎮ(2)不同故障初相角下的短路电流上升速率有明显不同ꎮ在90ʎ故障初相角附近ꎬ短路电流上升速率最大ꎬ畸变特征最为明显ꎻ在0ʎ及180ʎ故障初相角附近ꎬ短路电流上升速率最小ꎬ畸变特征最不明显ꎮ㊀㊀(3)短路故障发生后短路电流呈现明显的非周期性ꎬ非周期性分量按照指数规律衰减ꎬ衰减的速度由时间常数决定ꎬ则与短路阻抗有关ꎮ3㊀短路电流的节点预测3.1㊀节点预测概述㊀㊀随着电网分布式电源数量的快速增长与充电桩等新型电力电子设施的大规模接入ꎬ导致电网结构越来越趋于复杂化ꎬ电网负荷水平持续增加㊁负荷特性日益多样ꎬ短路电流情况也愈复杂ꎬ传统的短路电流计算方法已经难以满足电网安全稳定运行的要求ꎮ基于逐渐升高的电网信息化程度ꎬ利用在电力网络中采集的海量数据与人工智能算法相结合ꎬ对短路电流进行短期㊁超短期的预测能够起到良好的效果ꎮ网络节点预测法是先构建各节点电路短路模态ꎬ然后通过分析短路电流水平预估可能发生短路故障的节点位置ꎮ与传统的短路电流计算方法相比ꎬ网络节点预测法在通过减少数据的输入量来提高计算速度的同时ꎬ还能保证预测精度[7]ꎮ3.2㊀节点预测法分类㊀㊀网络节点预测法主要可以分为两类:第一类是特征提取法ꎬ通过快速提取和分析短路电流的暂态特征分量ꎬ根据暂态特征的分量的变化ꎬ来实现短路电流预测[8-10]ꎻ第二类是机器学习法ꎬ建立考虑各种因素对短路电流的影响ꎬ确定预测模型的输入特征量ꎬ采用神经网络等机器学习方法训练历史数据ꎬ建立电力网络短路电流水平的预测模型[7-11]ꎮ其预测依据与特点如表1所示ꎮ表1㊀网络节点预测法中不同方法的比较预测方法预测依据特点特征提取法短路电流关于特征分量的数字表达式对历史数据需求低ꎬ预测精度高ꎬ数据处理量少ꎬ运算量小ꎬ程序运行速度快等优势ꎬ有利于在硬件系统上的实时实现机器学习法神经网络对历史数据的训练需要大量历史数据并对数据进行预处理ꎬ拟合程度强ꎬ但容易陷入局部最优ꎬ需引入其他算法来优化参数㊀㊀文献[12]通过设定220kV电厂接入的分布模型ꎬ得到该电厂短路电流与接入发电机容量之间的关系ꎬ由此建立了系统最大供电规模与220kV电网的短路电流关系ꎮ文献[13]选用三次B样条区数为小波函数ꎬ对短路电流实施二进小波变换ꎬ获得各尺度小波变换的平滑分量及小波分量ꎬ将小波分量变化作为短路故障信息特征对峰值电流进行预测ꎮ文献[14]在短路故障早期诊断基础上ꎬ提出一种基于最小二乘法的低压配电系统短路电流峰值预测计算方法ꎬ利用少量电流数据与故障电压初相角进行曲线拟合ꎬ预测短路电流发展趋势及峰值ꎮ㊀㊀文献[10]通过大量的历史数据的训练得到隐含层与输出层的权值ꎬ即可利用训练好的模型对未知的短路电流值进行预测ꎬ无需知道具体输入输出量之间的表达式ꎬ但存在过学习和易陷入局部最优解的缺陷ꎮ为解决上述不足ꎬ文献[11]将故障发生后0.2ms的电流值和故障初始相位角作为多层神经网络的输入特征向量来预测低压分布式系统短路电流的大小ꎮ文献[15]提出一种将小波变换短路故障早期检测技术与极端学习机相结合的短路电流预测方法ꎬ将特征提取法与机器学习法结合在一起ꎬ结合二者优势从而提高了预测精度ꎮ㊀㊀综上所述ꎬ网络节点预测法是在电网架构相对稳定的前提下ꎬ通过对电网节点的短路水平进行预测㊁辨识ꎬ对合理平衡电网短路容量和输电容量的资源㊁减少设备投资具有指导意义ꎻ同时对电网可能出现的短路故障进行预测分析ꎬ为电力系统的规划设计和运行工作提供有效依据[3]ꎮ4㊀短路故障电流过零点预测4.1㊀电流过零预测概述㊀㊀新能源渗透比例与用电需求持续上升ꎬ带来低压交流系统短路容量增大ꎬ对保护电器的短路分断能力也提出了较高要求ꎮ现有断路器产品的最大开断性能已无法匹配部分区域电网的短路电流ꎬ而大批量地更换高分断能力开关是不经济且不可持续的ꎬ因此有必要对短路电流过零预测进行研究ꎬ使开关可在短路电流过零时将故障隔离ꎬ实现小电弧能量开断ꎬ减小短路故障分断时对开关设备的损害ꎮ但由于短路故障的多样性和直流衰减分量的影响ꎬ故障电流并非周期性过零ꎬ因此快速提取故障电流的特征参数并准确估计故障电流零点是短路电流相控开断技术的关键基础ꎮ㊀㊀故障电流选相控制技术可缩短断路器动作时灭弧室的燃弧时间ꎬ降低触头间隙电弧能量ꎬ减小触头电侵蚀ꎬ能够有效提高断路器的开断容量和寿命[16-17]ꎮ相控分断是通过对短路电流波形的拟合重构ꎬ在短路故障发生后ꎬ通过零点预测算法精确预测一个目标过零点ꎬ根据开关机构固有分闸动作时间ꎬ延迟一定时刻触发断路器分闸ꎬ使得断路器触头在时刻分离后ꎬ经过最佳燃弧时间ꎬ在目标电流自然过零点处熄弧ꎬ这样燃弧时间短而能量积累少ꎬ有利于绝缘介质恢复ꎬ从而避免电弧重燃㊁实现短路故障开断[18]ꎬ如图4所示ꎮ㊀㊀断路器相控开断时序如图5所示ꎬ其中tzpr为零点预测算法响应时间ꎻtwait为零点预测结束到发出分闸动作信号之间的等待时间ꎻtcbo为操动机构固有动作时间ꎻtarc为燃弧时间ꎻto为从接受分闸动作信号到电弧熄灭的总时间ꎬ即为开关分闸动作总时间ꎮ图4㊀相控分断流程图5㊀故障电流相控分断时序4.2㊀零点预测法分类㊀㊀国内外关于利用短路电流离散采样数据估算短路特征参数预测目标过零点以实现提前发出断路器分断指令的预测算法主要可分为基于傅里叶算法的零点预测法㊁基于最小二乘算法的零点预测法与其他预测法三大类ꎮ4.2.1㊀基于傅里叶算法的零点预测法㊀㊀傅立叶算法在电力系统谐波分析㊁故障诊断等领域中应用广泛[19]ꎬ在短路电流零点预测领域中已有研究的包括全波傅立叶算法和半波傅立叶算法[20-23]ꎮ基于傅氏算法的预测流程如图6所示ꎬ该算法对于只含有奇数次谐波分量的信号处理效果很好ꎬ能够保证零点预测的速度与准确度ꎬ但在直流衰减分量或者偶数次谐波含量较大时的信号时预测精度不佳[24]ꎮ㊀㊀文献[25]采用改进快速傅里叶算法对6个采样数据长度的窗口对短路电流进行分解计算ꎬ但实验为理想状态ꎬ实际会出现的谐波分量并未充分考虑ꎮ文献[26]对比了最小二乘参数辨识与改进快速傅里叶变换两种方法在短路电流含有不同噪声㊁采样不同期情况下的过零预测效果ꎬ最终得出:理想状态下改进快速傅里叶算法预测精度高ꎬ但在受到采样采集系统的噪声和电网频率的较大波动影响时ꎬ最小二乘参数辨识算法可靠性与准确度更高ꎮ图6㊀基于傅氏算法的预测流程图4.2.2㊀基于最小二乘算法的零点预测法㊀㊀最小二乘法是一种通过求解估计值与实际值之间的误差平方和最小问题从而找到最符合样本数据的函数的经典方法ꎬ计算简单ꎬ具有灵活的数据窗口ꎬ但其提取参数的过程常常将短路电流中的衰减直流分量表达式用泰勒级数展开式的前两项近似代替[27]ꎬ该截断误差使得其采样窗长通常需超过半个周波(10ms)才能对参数进行有效提取ꎮ基于最小二乘算法的预测流程如图7所示ꎮ㊀㊀文献[28]提出一种基于加权最小二乘法的零点预测法ꎬ对电流参数进行估计ꎬ可以在10ms内实现短路电流过零点的预测ꎬ预测误差在ʃ1ms以内ꎬ但采用相位角替换会产生随机误差ꎻ文献[27]提出一种能够消除直流衰减分量影响的递推最小二乘校正算法ꎬ利用递推原理对计算过程进行分解以提高计算速度ꎮ文献[29-30]提出了补偿时间常数的改进递推最小二乘法ꎬ该算法具有可变的数据窗ꎬ参数估计精度高ꎬ收敛速度快ꎬ计算简便ꎬ且对高频分量的滤波能力强ꎬ在故障电流含有谐波时仍然有效ꎬ但是部分工况下算法预测时间较长ꎮ文献[31]提出了带有遗忘因子的最小二乘法来提高算法对频率偏移问题的耐受能力ꎬ提升了预测初始阶段的零点精度ꎬ但是随着时间推移ꎬ零点预测误差仍会逐渐增大ꎮ图7㊀基于最小二乘法的预测流程4.2.3㊀其他零点预测方法㊀㊀小波分析法在时频域分析时可以聚焦原始信号细节处ꎬ能够自动划分信号频段ꎮ但小波变换会有 边界效应 的缺陷ꎬ须经过较长时间的采样数据过渡ꎬ实际应用在零点预测时需事先启动计算ꎬ耗费单片机算力资源[32]ꎮ㊀㊀文献[33]提出了一种 安全点算法 以预测短路电流过零时刻ꎮ该算法为简化计算模型ꎬ做出 电流中的直流分量并不衰减 的假设与利用故障电流基波分量的过零时刻为 安全点 替代实际波形过零点ꎮ该算法在直流含量较低㊁衰减缓慢的场合可实现准确快速的预测ꎬ然而简化模型的同时也导致当谐波含量较大时预测精度不足ꎮ㊀㊀Thomas等人[34-35]针对 安全点算法 存在的缺陷ꎬ提出了 自适应算法 ꎬ该算法对电流中的衰减直流分量进行泰勒展开[28ꎬ36]ꎬ且能够自适应地变换采样窗长以更好地实现故障判断ꎮ自适应算法考虑了直流分量的衰减特性ꎬ但是该算法模型的拟合阶数增加ꎬ需要在线进行矩阵和除法运算ꎬ计算量大ꎬ难以满足快速性的技术要求ꎮ文献[37]提出了基于自适应神经元的短路电流参数提取算法ꎬ当矩阵维数较大时ꎬ计算量大不利于短路故障的快速隔离ꎮ㊀㊀Prony算法模型将短路电流的周期分量和直流衰减分量综合进行考虑ꎬ直接利用采样信号得到电流的特征参数ꎬ且在参数求解时应用最小二乘拟合ꎬ对测量过程中带来的噪声有所消除[36ꎬ38]ꎮProny算法可在时域内直接得到待分析信号的幅值㊁相位㊁频率和衰减因子ꎬ计算量小ꎬ适合分析按照指数规律变化的信号ꎬ但仅适合离线计算[39]ꎮ㊀㊀文献[40]将支持向量机(SVM)应用于短路电流零点预测ꎬ该算法原理简单ꎬ对大量数据进行离线训练后即可得到预测结果ꎬ目前只在特定的短路故障中可应用ꎬ实时性和通用性还有待提高ꎮ文献[41]基于神经网络模型提出了一种电力系统谐波频率的分析方法ꎬ整次谐波的求解精度较高ꎬ但是该算法可能受网络本身收敛系数的影响而出现难以收敛的现象ꎮ㊀㊀文献[42]通过长度为3的电流数据采样滑动窗口不断求解更新短路电流的周期分量幅值和衰减时间常数ꎬ并根据计算参数重构短路故障电流波形ꎬ进而预测故障电流过零点㊁实现断路器相位控制开断ꎮ该预测方法故障辨识参数计算准确㊁计算量小㊁预测短路电流与实际波形吻合度高ꎬ与改进递推最小二乘法相比ꎬ其具有快速㊁精度高的优点ꎮ㊀㊀综上所述ꎬ现有方法均通过数字信号分析算法实现零点预测ꎮ目前所研究算法存在模型简化带来误差与模型完整带来求解复杂的矛盾ꎮ这些算法虽然较传统傅里叶㊁最小二乘拟合等方法已有诸多改善ꎬ但由于硬件电流传感器对模拟信号采集调理放大环节的信噪比和短路工况下电路频率稳定性等因素的制约ꎬ难以同时满足现场预测精度与实时性的要求ꎮ如何将不同算法组合起来进行目标过零点预测ꎬ兼顾预测精度与短耗时ꎬ是未来研究热门方向且具有开阔的应用前景ꎮ5㊀短路电流的峰值预测5.1㊀峰值预测概述㊀㊀为解决如何根据短时故障信息精准采取最佳的抗短路故障的技术措施这一难题ꎬ有必要进行短路电流峰值预测与发展规律研究ꎮ依托故障信息的短时辨识ꎬ结合轻量化峰值预测算法ꎬ可实现短路电流尚未 成熟 时预知电流发展规律ꎬ继而可根据该规律制定选择性限制㊁分断保护策略ꎬ以保证短路故障下低压配电网全范围的最优保供电服务ꎮ5.2㊀电流峰值预测方法分类㊀㊀目前关于短路电流峰值预测的方法主要可分为两类:一类是从短路电流的数学模型出发ꎬ采集短路故障早期的电流(电压)信号ꎬ计算出模型的特征参数ꎬ进行曲线拟合ꎬ可在时间序列上对短路电流的发展趋势进行外推预测ꎬ称为趋势外推预测法ꎻ另一类是以人工智能算法为工具ꎬ以故障后某个时刻的电流㊁故障电压初相角或其他电气量为输入特征量ꎬ以短路电流峰值为输出结果ꎬ建立短路电流峰值预测模型并加以训练及测试ꎬ称为人工智能预测法[43]ꎮ5.2.1㊀趋势外推预测法㊀㊀趋势外推预测法的主要实现过程包括确立短路电流随时间的数学模型㊁利用实时(历史)数据求出模型的特征参数㊁在时间序列上进行递推预测ꎬ其关键在于数学模型建立的有效性与特征参数提取的准确性ꎮ傅氏算法㊁最小二乘法㊁灰色算法等多种算法均可在线提取短路电流的特征参数ꎮ㊀㊀傅氏算法是目前应用最广泛的峰值预测法ꎬ它的预测精度高ꎬ滤波效果好ꎬ但至少需要采样半个周波(10ms)的数据量ꎬ检测时间过长ꎮ为解决傅氏算法的滤波效果与响应速度之间的矛盾ꎬ文献[44]提出一种可根据需要滤除指定谐波分量的数字信号处理算法ꎬ为短窗傅氏算法在微机继电保护中的应用提供了理论基础ꎮ随后ꎬ文献[43]采用短窗傅氏算法ꎬ建立五元滤波矩阵对短路电流信号进行分解ꎬ通过基本四则运算求出周期分量与直流衰减分量的特征参数ꎬ最终确定电流离散表达式ꎬ实现短路电流趋势的预测ꎮ㊀㊀文献[45]结合短路电流的一阶微分方程ꎬ提出将灰色理论应用于低压配电系统的短路电流预测ꎮ文献[46]提出等维信息递推预测算法可缩短总体预测时间ꎬ并通过调整初始迭代点㊁选择合适的外推因子等方式提高预测精度ꎮ文献[10]在实现低压配电系统短路故障早期检测的基础上ꎬ采用最小二乘法将故障电压初相角和少量已采集到的短路电流数据进行曲线拟合ꎬ并对其进行残差修正以得到更好的预测效果ꎮ㊀㊀趋势外推预测法的模型简单ꎬ易于在线实现ꎬ且在参数提取过程中具有数据窗口灵活㊁计算过程简单的优点ꎮ但是趋势外推法必须经过一定的数据窗口对信号进行采样ꎬ导致其在预测速度上有所滞后ꎬ难以满足实际工程应用中短路电流峰值预测的实时性要求ꎮ5.2.2㊀人工智能预测法㊀㊀人工智能预测法是通过算法模拟人类的思考㊁学习方式ꎬ根据历史数据和模型算法ꎬ对未来事件㊁趋势㊁情况进行预测和分析从而得到预测条件与待预测量之间的关系ꎮ目前用于短路电流峰值预测的人工智能算法有人工神经网络(ANN)㊁BP神经网络㊁遗传算法(GA)㊁支持向量机(SVM)㊁极端学习机(ELM)和二维云模型等ꎮ㊀㊀2011年ꎬ文献[47]首次提出将人工神经网络应用于短路电流峰值预测ꎬ以故障电压初相角及故障后0.2ms的短路电流瞬时值作为预测模型输入特征量ꎬ利用仿真模型得到的短路电流数据进行训练与预测ꎬ验证了ANN算法的可行性ꎮ文献[15]直接采用极端学习机算法ꎬ以故障后0.2ms的短路电流瞬时值及故障电压初相角为输入ꎬ经离线训练后应用于NICompact-RIO硬件上ꎬ实现短路电流的在线预测ꎮ㊀㊀文献[48]提出可充分动态应用新数据且相对误差最小的灰色BP神经网络动态预测模型ꎬ改进了传统灰色预测模型数据迭代不合理的问题ꎬ适用于原始样本点少㊁非线性和随机性强的复杂系统ꎮ其以短路电流㊁故障初相角㊁灰色模型预测结果和结果相对残差作为BP神经网络的输入参数对灰色模型训练ꎬ得到能快速准确地进行短路电流峰值预测的模型ꎮ灰色BP神经网络模型预测流程如图8所示ꎮ㊀㊀文献[49]利用粒子群优化算法去改善传统ELM短路电流峰值预测准确性低和效果不稳定的缺点ꎬ通过故障点位置不确定下的全相角故障数据建立预测模型ꎬ并分析了粒子群算法在不同适应度函数ꎬ即平均相对误差㊁均方根误差和灰色绝对关联度下的精度与预测实时性ꎬ得出灰色绝对关联度做适应度函数的短路电流峰值预测模型最佳的结论ꎮ㊀㊀人工智能预测中不同方法的比较ꎬ如表2所示ꎮ人工智能预测法最主要的优点在于它能够自动学习并发现历史数据中的规律和模式ꎬ即可通过数据训练建立预测模型ꎬ无需计算出输入与输出之间的表达式ꎮ人工神经网络的学习能力非常强大ꎬ能充分逼近复杂的非线性关系ꎬ具有鲁棒性和容错能力ꎬ然而一个完善的人工神经网络需要具有大量的历史数据和时间来训练ꎬ且有可能会陷入局部最优解ꎮ支持向量机适用于小样本和非线性数据的预测ꎬ能够避免过拟合和局部最小值问题ꎬ但核函数计算复杂ꎬ对缺失数据敏感ꎬ并且求解支持向量所需时间较长ꎮ极端学习机参数设置简单ꎬ学习速度快ꎬ泛化能力强ꎬ但可能产生无效的隐层节点ꎬ且精度和速度具有随机性ꎮ二维云模型预测过程中兼顾模糊性和随机性ꎬ虽然每次预测的精度不尽相同ꎬ但都能够集中在一定范围之内[50]ꎬ能够使得预测结果更加合理ꎬ然而其预测速度未得到实际验证ꎬ且通过硬件实现也相对困难ꎮ图8㊀灰色BP神经网络模型预测流程图表2㊀AI短路电流峰值预测方法对比文献[]AI类型预测耗时/ms预测峰值偏差/100%[15]极限学习机1.903.2[48]BP神经网络0.06(迭代次数为3时)1.93[50]二维云模型/1.71[49]粒子群优化极限学习机2.901.36。
短路电流计算方法与分析
短路电流计算方法与分析在电力系统运行中,短路事故是一种常见但危险的故障。
当电力系统中出现短路故障时,电流会迅速增大,导致设备损坏、火灾甚至人身伤害。
因此,准确计算短路电流对于保障电力系统的安全稳定运行至关重要。
本文将介绍短路电流的计算方法与分析。
1. 短路电流的概念与分类短路电流是指电力系统中由于故障引起的电流异常增大。
根据故障的类型,短路电流可以分为三类:对称短路电流、不对称短路电流和混合短路电流。
对称短路电流是指发生于同名三相电压之间的短路故障引起的电流增大;不对称短路电流是指发生于不同名两相电压之间的短路故障引起的电流增大;混合短路电流是对称短路电流和不对称短路电流的综合体。
2. 短路电流的计算方法计算短路电流的方法可以分为两类:解析计算方法和数值计算方法。
2.1 解析计算方法解析计算方法是指利用电气知识和电气特性方程,推导和求解短路电流的方法。
常见的解析计算方法有:(1)阻抗法:根据电力系统各个元件的阻抗特性,将系统抽象为等效电路,然后利用电路计算方法求解短路电流。
(2)对称分量法:将三相电压和电流转化为正序、负序和零序分量,然后根据对称分量法的原理求解短路电流。
(3)节点电流法:根据电流守恒原理,在电力系统的各个节点处建立方程,然后求解方程组,得到短路电流。
解析计算方法相对精确,但对于复杂的电力系统,计算过程复杂且繁琐。
2.2 数值计算方法数值计算方法是指利用计算机进行短路电流计算的方法。
常见的数值计算方法有:(1)蒙特卡洛法:通过随机抽样和统计分析,模拟电力系统中短路电流的概率分布,从而得到短路电流的估计值。
(2)有限元法:将电力系统建模为有限元网格,并利用有限元法求解电气特性方程,得到短路电流的数值结果。
(3)潮流求解法:利用电力系统的潮流计算工具,根据电力系统的节点功率平衡和各个元件的导纳特性,迭代求解电网潮流,得到短路电流。
数值计算方法能够针对复杂系统进行计算,但计算结果受模型和参数设置的影响。
短路电流计算概述
短路电流计算一、短路电流计算概述1、电力系统或电气设备的短路故障原因1)自然方面的原因。
雷击、雾闪、暴风雪、动物活动、大气污染、其他外力破坏等,造成单相接地短路或相间短路。
2)人为原因。
误操作、运行方式不当、运行维护不良或安装调试错误,导致电气设备过负荷、过电压、设备损坏等造成单相接地短路或相间短路。
3)设备本身原因。
设备制造质量、设备本身缺陷、绝缘老化等原因造成单相接地或相间短路故障、2、短路种类1)单相接地短路约占全部短路的75%以上,对大电流接地系统,继电保护应尽快切断单相接地短路.对中性点经小电阻或中阻接地系统,继电保护应瞬时或延时切断单相接地短路。
对不接地系统,当单相接地电流超过允许值时,继电保护应有选择性地切断单相接地短路。
对中性点经消弧线圈接地或不接地系统,单相接地电流不超过允许值时,允许短时间单相接地运行,但要求尽快消除单相接地短路点。
2)两相接地短路一般不超过全部短路的10%.大电流接地系统中,两相接地短路大部分发生于同一地点,少数在不同地点发生两相接地短路。
中性点非直接接地的系统中,常见是先发生一点接地,而后其他两相对地电压升高,在绝缘薄弱处将绝缘击穿后造成第二点接地,此两点多数不在同一点,继电保护应尽快切断两相接地短路。
3)两相及三相短路不超过全部短路的10%,这种短路更为严重,继电保护应迅速切断两相及三相短路。
4)断相或断相接地线路断相一般伴随断相接地,两相运行一般不允许长期存在,应由继电保护自动或运行人员手动断开健全相5)绕组匝间短路多发生在发电机、变压器、电动机等电机电器的绕组中,占短路的概率很少,但对某一电机来说该概率不一定很少,如变压器绕组匝间短路占变压器全部短路的比例相当大,这种短路严重损坏设备,要求保护迅速切除这种短路。
3、短路电流计算的重要性短路电流将引起下列严重后果:短路电流往往会有电弧产生,它不仅能烧坏故障元件本身,也可能烧坏周围设备和伤害周围人员。
巨大的短路电流通过导体时,一方面会使导体大量发热,造成导体过热甚至熔化,以及绝缘损坏;另一方面巨大的短路电流还将产生很大的电动力作用于导体,使导体变形或损坏.短路也同时引起系统电压大幅度降低,特别是靠近短路点处的电压降低得更多,从而可能导致部分用户或全部用户的供电遭到破坏。
电力系统中的短路电流计算方法使用技巧
电力系统中的短路电流计算方法使用技巧电力系统中存在短路电流是不可避免的事实,而准确计算短路电流对于电力系统的设计和保护至关重要。
短路电流计算是电力系统工程中必不可少的一环,本文将介绍电力系统中短路电流的计算方法以及使用技巧。
一、短路电流计算方法1. 对称组件法对称组件法是一种常用的短路电流计算方法,通过将非对称电路转化为对称电路来简化计算。
它是基于对称分量的概念,将三相系统分解成正序、负序和零序三个对称分量,再进行计算。
对称组件法的主要步骤如下:(1)将非对称电源转化为对称分量;(2)计算对称分量的序电流和短路阻抗;(3)将对称分量变换为实际电流值。
该方法适用于对称性较好的系统,能够有效地计算短路电流。
2. 软件仿真方法随着计算机技术的发展,软件仿真方法在电力系统的短路电流计算中得到广泛应用。
软件工具(如PSCAD、ETAP等)可以模拟复杂的电力系统,并在计算过程中考虑各种影响因素,如电源类型、电源接线方式、线路参数等。
软件仿真方法的优势在于可以更真实地模拟电力系统的实际运行情况,提供更准确的计算结果。
3. 实测法实测法是指在实际运行的电力系统中进行短路电流的实测,并根据实测结果进行分析和计算。
实测法能够考虑系统中的各种非理想因素,如电源的实际接线状态、电源的非线性特性、系统的负载变化等。
通过实测方法获取的数据可以用于校验计算结果的准确性,并进一步优化系统的设计和保护措施。
二、短路电流计算方法使用技巧1. 选择合适的计算方法根据实际情况选择合适的短路电流计算方法非常重要。
对于简单的电力系统,对称组件法可能是一个理想的选择。
而对于复杂的系统,软件仿真方法能够更好地模拟实际运行情况。
在特定情况下,实测法也是一个有效的手段。
2. 准确获取系统参数短路电流计算的准确性很大程度上依赖于输入数据的准确性。
确保获取到准确的系统参数,如短路阻抗、变压器的等效电路参数等。
尽可能多地采集现场数据,并进行准确的测量和分析。
短路电流计算方法—注册电气工程师供配电专业
短路电流计算方法—注册电气工程师供配电专业短路电流是指电路中产生短路时所流过的电流,短路电流的大小对于电气系统的运行至关重要。
短路电流大到一定程度就会引起设备的损坏、电气火灾等危险后果。
因此,对短路电流进行计算和分析是电气工程师必须要掌握的技能之一。
一、短路电流的定义短路电流是由于电气系统中某一段短路而导致的电路中所流过的电流。
电流在短路点处突然变得非常大,此时的电气系统可能出现安全隐患,有可能引起电气火灾事故。
二、短路电流的计算方法短路电流的计算方法不止一种,下面我们就以故障电路为例,分别介绍两种常用的计算方法。
1. 故障电流法所谓故障电流法,是通过假设电气系统的电源电压不变,而单个发生故障装置的电流流过的情况下,来计算短路电流的大小。
在故障点产生短路后,电流的路径发生变化,电流的大小也会增加,故障点前后的电流之比就是短路电流的大小。
2. 阻抗折算法阻抗折算法是指用同等感性把电动力负荷变成”等效电抗器”来求出故障电流的方法。
具体来说,就是将发生故障的电气系统把负荷替换成一个等效阻抗,再用等效阻抗和电源电压对应,根据欧姆定律计算电路中的电流值,最终得到的结果即是短路电流的大小。
这种方法相对于故障电流法比较准确,但计算过程相对较为复杂。
三、短路电流计算的重要意义短路电流的计算工作在电气系统的设计中是非常重要的一步。
准确的短路电流计算可以帮助电业工程师正确选取电气设备,也可以避免电气系统的故障和安全隐患。
因此,学会短路电流的计算方法是每个电业工程师必须掌握的技能之一。
再次强调,正确的短路电流计算对于电气系统的运行至关重要,电气工程师应该严格按照国家标准进行计算,并不断地学习和更新电气知识,进一步提高自身的技能水平。
短路电流计算方法
短路电流计算方法
短路电流计算是电力系统中一项非常重要的工作,它是针对线路或设备在短路状态下电流的大小和方向的计算。
正确地计算短路电流有助于选择合适的保护装置来保护设备,以及评估系统的稳态和动态行为。
下面是短路电流计算的基本方法及步骤。
一、短路电流基本原理
短路电流是指在电力系统中,短路处的电阻很小,使得电流极大,电力系统对电流的负荷能力不足而出现故障。
因此,短路电流大小的计算就显得特别重要。
总的短路电流分为三种类型:
1.三相短路电流
短路故障时,电源中发生三相短路。
三相短路电流的计算是根据 Ohm 定律进行的,即
l = V / Z
其中,l 是电流,V 是电压,Z 是短路阻抗,它由以下式子得到:
Z = (Z1*Z2)/(Z1+Z2)
其中,Z1 和 Z2 分别是两端的线圈或电容器的阻抗。
2.两相短路电流
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配电线路短路电流计算方法综述
短路电流是电力系统中的一种异常电流,它在配电线路中的计算和分析对于工程设计和日常运行非常重要。
在建设和维护电气系统时,准确计算短路电流能够确保线路安全和设备的正常运行。
本文将综述配电线路短路电流的计算方法。
1. 简介
配电线路的短路电流是指在电路中某一点突然短路时,电流产生的最大幅值。
短路电流的计算是为了保证设备的选择能够满足系统的短路电流要求,从而确保设备的正常工作和安全。
2. 短路电流计算方法
2.1 对称分量法
对称分量法是最常用的计算短路电流的方法之一。
它的基本原理是将三相短路抽象为对称电源和对称负载的相互作用。
对称分量法可以准确计算短路电流的幅值和相位,但它需要进行复杂的计算和繁琐的手工绘图。
2.2 等效电源法
等效电源法是一种简化计算短路电流的方法。
它将复杂的配电线路简化为等效电源和等效阻抗,从而减少计算的复杂性。
等效电源法适用于计算短路电流的近似值,但其结果可能会有一定的误差。
2.3 有限元法
有限元法是利用计算机仿真技术来计算配电线路短路电流的一种方法。
它通过离散化线路,建立数学模型,利用有限元软件进行计算和分析。
有限元法可以提供较为准确的短路电流计算结果,但其需要较高的计算资源和软件支持。
3. 计算步骤
无论使用哪种计算方法,配电线路短路电流的计算步骤大致相似:
3.1 确定短路发生位置和类型
首先,需要确定短路发生的位置和类型。
短路可以发生在配电线路的任何节点,包括变压器、开关柜等设备。
3.2 收集系统参数
收集系统参数是进行短路电流计算的基础。
包括线路的电流容量、电阻、电抗
等参数。
3.3 线路模型建立
根据系统参数,建立配电线路的等效电路模型。
模型的复杂性取决于计算的准
确程度要求。
3.4 进行计算
根据选定的短路电流计算方法,进行计算。
例如,对称分量法需要进行对称分
量计算,而等效电源法则直接应用等效电源进行计算。
3.5 分析结果
对计算结果进行分析,包括短路电流的大小、相位、稳态和瞬态等特性。
4. 计算工具
现在,有许多计算工具可用于配电线路短路电流的计算。
这些工具可以大大简
化计算过程,并提高计算结果的准确性。
例如,ETAP、PowerFactory等软件可以
进行短路电流计算和系统分析。
5. 短路电流计算的重要性
准确计算配电线路的短路电流对于设备的选择和系统的安全运行至关重要。
过
高的短路电流可能会导致设备损坏、火灾等事故。
而过低的短路电流则会导致设备无法正常启动和运行。
综上所述,配电线路短路电流的计算是电力系统中重要的任务之一。
通过选择
合适的计算方法和工具,可以准确地计算短路电流,并确保设备的选择和系统的安全运行。
在今后的实践中,我们应不断提高计算方法的准确性和计算工具的实用性,以满足社会的需求。