机械工程测试技术基础

合集下载

机械工程测试技术基础1-2

机械工程测试技术基础1-2

A( )
2 1
M
M
0
0
(五)卷积特性
两个函数x1(t)与x2(t)的卷积定义为:


x1
(
)
x
2
(t


)d
记作:
x1 (t) * x2 (t)
若: x1(t) X1( f ) 则:x1(t) * x2 (t) X1( f ) X 2 ( f )
x2 (t) X 2 ( f )
δ(t)的图示可用一长度为一个单位的线段来表示,线段位于 原点,表示当时间t0=0有一冲击。若线段位于 t=t0点,则 可定义δ函数的延迟为:

(t

t0
)

0 1
t t0 t t0 ,积分值仍为1。
(2) 函数的采样性质:如果 函数与某一连续函数f(t)相 乘,显然其乘积仅在t=0处为f(0) (t),其余各点(t 0) 之乘积均为零。如果函数与某一连续函数f(t)相乘,并在
)dt

f (t0 )
由于经过此种处理,可将f(t)在任何时刻的值提取出来,所 以称其为筛选性质,或抽样性质。当对信号进行采样时,采 样的过程及采样后信号即可利用此种性质来进行描述.
(3) 函数的与其他函数的卷积:任何函数和函数 (t)的卷
积是一种最简单的卷积积分。例如,一个矩形函数x(t)与 函数
从面积(通常也称其为 函数的强度)的角度来看:


lim (t)dt

0
S (t)dt 1

(t)


0
t0 t 0

+
(t)dt 1
---称之为δ函数。

机械工程测试技术基础试题及答案

机械工程测试技术基础试题及答案

1、什么是测试装置的静态特性?常用哪几个特性参数来描述?答:测试装置的静态特性就是指在静态测量情况下描述实际测试装置及理想定常线性系统的接近程度。

常用的特性参数有灵敏度、线性度和回程误差等。

2、实现不失真测试的条件是什么?分别叙述一、二阶装置满足什么条件才能基本上保证不失真测试。

答:测试装置实现不失真测试的条件是A(ω)=A0=常数φ(ω)=-t0ω为满足上述条件,对于一阶装置,时间常数τ原则上越小越好,对于二阶装置一般选取ξ=0.6~0.8,ω=0~0.58ωn.3、调制波有哪几种?分别说明其含义,并指出常用的有哪两种。

答:调制波有调幅波、调频波和调相波三种。

载波信号的幅值受调制信号控制时,输出的已调波称为调幅波;载波信号的频率受调制信号控制时,输出的已调波称为调频波;载波信号的相位受调制信号控制时,输出的已调波称为调相波;常用的调制波有调幅波和调频波两种。

4、选用传感器时应考虑到哪些原则?答: 选用传感器时应考虑到以下原则:(1)灵敏度 (2)响应特性 (3)线性范围 (4)可靠性(5)精确度 (6)测量方法 (7)稳定性及其他5、电器式传感器包括哪几种,各自的工作原理如何? 答:包括电阻式、电感式、电容式三种。

电阻式传感器工作原理:把被测量转换为电阻变化的一种装置;电感式传感器工作原理:把被测量如位移转换为电感量变化的一种装置;电容式传感器工作原理:把被测物理量转换为电容量变化的一种装置。

一、计算题1、求图中周期性三角波的傅里叶级数。

解:在x(t)的一个周期中可表示为x(t)={A +2A T 0t − T 02≤t ≤0 A −2A T 0t 0≤ t ≤T 02常值分量a 0=1T 0∫x (t )dt T 02−T 02 = 2T 0∫(A −2A T 0t )dt T020 = A 2 余弦分量的幅值a n =2T 0∫x (t )cosnω0tdt T 02−T 02 = 4T 0∫(A −2A T 0t )cosnω0tdt T020=4An2π2sin2nπ2= {4An2π2n=1,3,5,0n=2,4,6,正弦分量的幅值b n = 2T0∫x(t)sinnω0tdtT02−T02= 02、求传递函数为H(s)=51+0.001S的系统对正弦输入x(t)=10sin(62.8t)的稳态响应y(t)。

机械工程测试技术基础知识点

机械工程测试技术基础知识点

第一章绪论1、测试的概念目的:获取被测对象的有用信息。

测试是测量和试验的综合。

测试技术是测量和试验技术的统称。

2、静态测量及动态测量静态测量:是指不随时间变化的物理量的测量。

动态测量:是指随时间变化的物理量的测量。

3、课程的主要研究对象研究机械工程中动态参数的测量4、测试系统的组成5、量纲及量值的传递6、测量误差系统误差、随机误差、粗大误差7、测量精度和不确定度8、测量结果的表达第二章信号分析及处理一、信号的分类及其描述1、分类2、描述时域描述:幅值随时间的变化频域描述:频率组成及幅值、相位大小二、求信号频谱的方法及频谱的特点1、周期信号数学工具:傅里叶级数方法:求信号傅里叶级数的系数频谱特点:离散性谐波性收敛性(见表1-2)周期的确定:各谐波周期的最小公倍数基频的确定:各谐波频率的最大公约数2、瞬变信号(不含准周期信号)数学工具:傅里叶变换方法:求信号傅里叶变换频谱特点:连续性、收敛性3、随机信号数学工具:傅里叶变换方法:求信号自相关函数的傅里叶变换频谱特点:连续性三、典型信号的频谱1、δ(t)函数的频谱及性质△(f)=1 频率无限,强度相等,称为“均匀谱”采样性质:积分特性:卷积特性:2、正、余弦信号的频谱(双边谱)欧拉公式把正、余弦实变量转变成复指数形式,即一对反向旋转失量的合成。

解决了周期信号的傅里叶变换问题,得到了周期信号的双边谱,使信号的频谱分析得到了统一。

3、截断后信号的频谱频谱连续、频带变宽(无限)四、信号的特征参数1、均值:静态分量(常值分量)正弦、余弦信号的均值?2、均方值:强度(平均功率)均方根值:有效值3、方差:波动分量4、概率密度函数:在幅值域描述信号幅值分布规律五、自相关函数的定义及其特点1、定义:2、特点3、自相关图六、互相关函数的定义及其特点1、定义2、特点3、互相关图七、相关分析的应用八、相关系数及相干函数相关系数、相关函数在时域描述两变量之间的相关关系;相干函数在频域描述两变量之间的相关关系。

《机械工程测试技术基础》课后习题及答案详解

《机械工程测试技术基础》课后习题及答案详解

第一章 信号的分类与描述1-1 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n |–ω和φn –ω图,并与表1-1对比。

解答:在一个周期的表达式为00 (0)2() (0)2T A t x t T A t ⎧--≤<⎪⎪=⎨⎪≤<⎪⎩积分区间取(-T/2,T/2)00000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, ) T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的傅里叶级数为001()(1cos )jn tjn t n n n Ax t c ejn e n∞∞=-∞=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±± 。

(1cos ) (=0, 1, 2, 3, )0nInR A c n n n c ⎧=--⎪±±±⎨⎪=⎩ ππ21,3,,(1cos )00,2,4,6, n An A c n n n n ⎧=±±±⎪==-=⎨⎪=±±±⎩πππ1,3,5,2arctan1,3,5,200,2,4,6,nI n nRπn c πφn c n ⎧-=+++⎪⎪⎪===---⎨⎪=±±±⎪⎪⎩没有偶次谐波。

其频谱图如下图所示。

图1-4 周期方波信号波形图1-2 求正弦信号0()sin x t x ωt =的绝对均值x μ和均方根值rms x 。

解答:00002200000224211()d sin d sin d cos TTT Tx x x x x μx t t x ωt t ωt t ωt T T TT ωT ωπ====-==⎰⎰⎰rmsx ==== 1-3 求指数函数()(0,0)at x t Ae a t -=>≥的频谱。

机械工程测试技术基础

机械工程测试技术基础
类: 包括性能测试、 可靠性测试、安
全性测试等。
测试技术的应用: 广泛应用于汽车、 航空、航天、机 械制造等领域。
古代:手工测量经验判断 近代:仪器测量数据记录 现代:计算机辅助测试自动化测试 未来:智能化测试远程测试大数据分析
传感器:用于采集 被测对象的物理量
数据采集系统:用 于将传感器采集到 的信号转换为数字 信号
温度传感器:通过热敏电阻或热电 偶等元件测量温度变化广泛应用于 工业、医疗等领域。
流量传感器:通过电磁感应或超声 波等原理测量流体流量广泛应用于 供水、供气等领域。
添加标题
添加标题
添加标题
添加标题
压力传感器:通过压敏电阻或压电 晶体等元件测量压力变化广泛应用 于液压、气动等领域。
加速度传感器:通过压电晶体或电容 式等元件测量加速度变化广泛应用于 汽车安全、航空航天等领域。
数据处理系统:用 于对采集到的数据 进行处理和分析
显示系统:用于显 示测试结果和图表
信号及其描述
信号的定义:信号是信息的载体是物理量随时 间变化的过程
信号的分类:根据信号的性质和特点可以分为 连续信号和离散信号
连续信号:信号的取值是连续的如正弦波、三 角波等
离散信号:信号的取值是离散的如数字信号、 脉冲信号等
实时化:测试技 术将更加实时化 能够实时监测和 预警设备状态
绿色化:测试技 术将更加绿色化 减少对环境的影 响提高能源利用 效率
智能化:测试技术将更加智能化能够自动识别和诊断机械故障 集成化:测试技术与其他技术如物联网、大数据等更加紧密地集成提高测试效率和准确性 实时化:测试技术将更加实时化能够实时监测和预警机械设备的运行状态 绿色化:测试技术将更加注重环保和节能降低机械设备的能耗和污染排放

机械工程测试技术基础PPT(共41页)

机械工程测试技术基础PPT(共41页)

!!!
x t a 0 n 1 1 2 a n jn b e j n 0 t 1 2 a n jn b e j n 0 t
实频谱、虚频谱 余弦函数
正弦函数
!!!
!!!
由于
0
2
T0
当 T 0 趋于无穷 时,频率间隔 成为 d,
离散谱中相邻的谱线紧靠在一起,n0 成为连续变
量,求和符号 就变为积分符号 ,则

且有
A na n 2 b n 2
tg n
an bn
*
xta0 A nco n s0tn
0
注意此二 式的区别
且有
A na n 2 b n 2
tg n
bn an
P 22-23
算例:求右图周期性三角波的傅立叶级数
解:在x(t)的一个周期中可表示为X(t)
xt
A A
2A T0 2A
t t
T0 t 0 2
xt d x t ejtdtejt
2
1 x t ejtdtejtd
2
这就是傅立叶积分
二、傅立叶变换的主要性质(P 30) 熟悉傅立叶变换的性质的重要意义 简化作用,推广于复杂复杂情况!!!
第2章 测试装置的基本特性
§2.1 概述 §2.2 测试装置的静态特性 §2.3 测试装置动态特性的数学描述 §2.4 测试装置对任意输入的响应 §2.5 实现不失真测试的条件 §2.6 测试装置动态特性的测试
0 t T0
t
T 0
2
常值分量
1 T0
a0
T0
x 2
T0
t
dt
2
2 T0
T0 2
0
A

机械工程测试技术基础-简答题

机械工程测试技术基础-简答题

一、 信号及其描述1、周期信号频谱的特点:①离散性——周期信号的频谱是离散的;②谐波性——每条谱线只出现在基波频率的整数倍上,基波频率是诸分量频率的公约数;③收敛性——谐波分量的幅值按各自不同的规律收敛。

2、傅里叶变换的性质:奇偶虚实性、对称性、线性叠加性、时间尺度改变特性、时移和频移特性、卷积特性、积分和微分特性。

3、非周期信号频谱的特点:①非周期信号可分解成许多不同频率的正弦、余弦分量之和,包含了从零到无穷大的所有频率分量;②非周期信号的频谱是连续的;③非周期信号的频谱由频谱密度函数来描述,表示单位频宽上的幅值和相位;④非周期信号频域描述的数学基础是傅里叶变换。

二、测试装置的基本特性1、测量装置的静态特性是在静态测量情况下描述实际测量装置与理想时不变线性系统的接近程度。

线性度——测量装置输入、输出之间的关系与理想比例关系的偏离程度。

灵敏度——单位输入变化所引起的输出变化。

回程误差——描述测量装置同输入变化方向有关的输出特性,在整个测量范围内,最大的差值称为回程误差。

分辨力——能引起输出量发生变化的最小输入量。

零点漂移——测量装置的输出零点偏离原始零点的距离,它是可以随时间缓慢变化的量。

灵敏度漂移——由于材料性质的变化所引起的输入与输出关系的变化。

2、传递函数的特点:①()s H 与输入()t x 及系统的初始状态无关,它只表达系统的传输特性;②()s H 是对物理系统的微分描述,只反映系统传输特性而不拘泥于系统的物理结构;③对于实际的物理系统,输入()t x 和输出()t y 都具备各自的量纲;④()s H 中的分母取决于系统的结构。

3、一阶测试系统和二阶测试系统主要涉及哪些动态特性参数,动态特性参数的取值对系统性能有何影响?一般采用怎样的取值原则? 答:测试系统的动态性能指标:一阶系统的参数是时间常数τ;二阶系统的参数是固有频率n ω和阻尼比ξ。

对系统的影响:一阶系统的时间常数τ值越小,系统的工作频率范围越大,响应速度越快。

机械工程测试技术基础

机械工程测试技术基础

13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。21.8.1721.8.1711:07:1211:07:12August 17, 2021
14、市场营销观念:目标市场,顾客需求,协调市场营销,通过满足消费者需求来创造利润。2021年8月17日星期二上午11时7分12秒11:07:1221.8.17
!!!
2
(1-7)式可改写成为
!!!
x t
a0
n1
1 2
an
jbn
e jn0t
1 2
an
jbn
e
jn
0t
实频谱、虚频谱 余弦函数
正弦函数
!!!
!!!
由于
0
2
T0
当 T0 趋于无穷 时,频率间隔 成为 d ,
离散谱中相邻的谱线紧靠在一起,n0 成为连续变
量,求和符号 就变为积分符号 ,则
设:输入量x(t)、装置(系统)的传输特性h(t)和 输出量y(t)三者之间的关系。如图:
系统
x(t) 输入 (激励) X(s)
X(ω)
h(t)
H(s) H(ω)
y(t)
Y(s) Y(ω)
输出 (响应)
1)如果x(t)、y(t)可以观察(已知),则可推断h(t)。 2)如果h(t)已知,y(t)可测,则可推断x(t)。 3)如果x(t)和h(t)已知,则可推断和估计y(t)。
总复习
第一章 信号及其描述
第一节 信号的分类 与描述
第二节 周期信号与离 散频谱
第三节 非周期信号 与连续频谱瞬变
第四节 随机信号
一、信号的分类

机械工程测试技术基础

机械工程测试技术基础

二、连续信号和离散信号 • 分类依据:
–自变量即时间t是连续的还是离散的 –信号的幅值是连续的还是离散的;
• 连续信号:
–自变量和幅值均为连续的信号称为模拟信号; –自变量是连续、但幅值为离散的信号则称为量化信号
• 离散信号:
–信号的自变量为离散值、但其幅值为连续值时则称该 信号为被采样信号
–信号的自变量及幅值均为离散的则称为数字信号;
Cn
C n
C0
1 2
(an
1 2
(an
a0
jbn ) jbn )
n 1,2,3

x (t) C 0 C n e j n 0 t C n ej n 0 t n 1 ,2 ,3
n 1
n 1
或Leabharlann x(t) Cnejn0t n0,1,2,一-一
n

这就是傅里叶级数的复指数展开形式
n0td e tj n0t
• 小结: – 从式一-二九可知一个非(ZHOU)期函数可分解成 频率f连续变化的谐波的叠加式中Xfdf的是谐波ej二πf 的系数决定着信号的振幅和相位 – Xf或Xω为xt的连续频谱 – 由于Xf一般为实变量f的复函数故可将其写为
X(f)X(f)ej(f)
将上式中的称X非((f )ZHOU)期信号xt的连续幅值谱 称(xft)的连续相位谱 例题一-三求矩形窗函数的频谱
二、傅里叶级数的复指数函数展开式
由欧拉公式可知:
ejt cotsjsin t(j1) cso i n tts 1 2j((e e jj tt e ejj tt))
2
代入式一-七有:
x ( 令t) a 0 n 1 1 2 (a n jn b ) e j n 0 t 1 2 (a n jn b ) e j n 0 t

机械工程测试技术基础知识点

机械工程测试技术基础知识点

机械工程测试技术基础知识点第一章绪论1. 测试技术是测量和试验技术的统称。

2. 工程测量可分为静态测量和动态测量。

3. 测量过程的四要素分别是被测对象、计量单位、测量方法和测量误差。

4. 基准是用来保存、复现计量单位的计量器具5. 基准通常分为国家基准、副基准和工作基准三种等级。

6. 测量方法包括直接测量、间接测量、组合测量。

7. 测量结果与被测量真值之差称为测量误差。

8. 误差的分类:系统误差、随机误差、粗大误差。

第二章信号及其描述1. 由多个乃至无穷多个不同频率的简单周期信号叠加而成,叠加后存在公共周期的信号称为一般周期信号。

2. 周期信号的频谱是离散的,而非周期信号的频谱是连续的。

1.信号的时域描述,以时间为独立变量。

4.两个信号在时域中的卷积对应于频域中这两个信号的傅里叶变换的乘积。

5信息传输的载体是信号。

6一个信息,有多个与其对应的信号;一个信号,包含许多信息。

7从信号描述上:确定性信号与非确定性信号。

8从信号幅值和能量:能量信号与功率信号。

9从分析域:时域信号与频域信号。

10从连续性:连续时间信号与离散时间信号。

11从可实现性:物理可实现信号与物理不可实现信号。

12可以用明确数学关系式描述的信号称为确定性信号。

13不能用数学关系式描述的信号称为随机信号。

14周期信号。

按一定时间间隔周而复始出现的信号15一般周期信号:由多个乃至无穷多个不同频率的简单周期信号叠加而成,叠加后存在公共周期的信号。

16准周期信号:由多个简单周期信号合成,但其组成分量间无法找到公共周期。

或多个周期信号中至少有一对频率比不是有理数。

17瞬态信号(瞬变非周期信号):在一定时间区间内存在,或随着时间的增加而幅值衰减至零的信号。

18非确定性信号:不能用数学式描述,其幅值、相位变化不可预知,所描述物理现象是一种随机过程。

19一般持续时间无限的信号都属于功率信号。

20一般持续时间有限的瞬态信号是能量信号(可以理解成能量衰减的过程)。

机械工程测试技术基础

机械工程测试技术基础

3、 测试系统的组成
• 测试系统是指由相关的器件、仪器和测试 装置有机组合而成的具有获取某种信息之 功能的整体。
测试系统框图
• 传感器:直接用于被测量,并能按一定规律将被测 量转换成同种或别种量值输出。这种输出通常是电 信号。
• 信号调理:把来自传感器的信号转换成更适合于传 输和处理的形式。如幅值放大、阻抗的变化转换成 电压的变化、或阻抗的变化转换成频率的变化。
测量误差=测量值 - 真值
二、测量误差产生的原因
1.测量方法引起的误差 基准误差(基准不统一)方法误差,物理量转换 为电量转换误差,安装操作误差。
2.设备引起的误差 测量器件的误差,如标准法码,量规,刻度尺, 电器电阻误差等。 如设计误差,零件误差,安装误差,系统老化等
3.环境条件引起的误差 如:温度、湿度、气压、光照、电磁场,振动等。
2 视觉测试技术
视觉测试技术是建立在计算机视觉研究 基础上的一门新兴测试技术。与计算机视 觉研究的视觉模式识别、视觉理解等内容 不同,视觉测试技术重点研究物体的几何 尺寸及物体的位置测量,如三维面形的快 速测量、大型工件同轴度测量、共面性测 量等。它可以广泛应用于在线测量、逆向 工程等主动、实时测量过程。
c)准确度
不确定度 :意味着对测量结果可信性、有效 性的怀疑程度或不肯定程度,是定量说明测 量结果的质量的一个参数。
测量不确定度就是说明被测量之值分散性 的参数,它不说明测量结果是否接近真值。
测量不确定度用标准〔偏〕差表示,这时称其 为标准不确定度。
第一章 信号及其描述
• 了解信号的分类 • 掌握对周期性信号及非周期信号的描述 • 了解随机信号
机械工程测试技术基础
绪论
• 了解测试的基本概念 • 理解测试的基本内容与任务 • 掌握信号和信息的关系 • 理解测试系统的组成及各环节功能 • 了解测试信息处理技术的发展方向

机械工程测试技术基础

机械工程测试技术基础

机械工程测试技术基础
机械工程测试技术基础是针对机械工程中的实验试验和设备检测技术的基本知识。

它主要包括测量原理、测量方法、试验技术、装置和设备等内容。

通过机械工程测试技术的基础知识学习,可以帮助人们更深刻的理解实际的机械工程测试技术,以便在后续的工作中能够更准确的判断出机械设备的参数和性能特点,有效提高设备制造和使用的质量和效率。

同时还可以为机械工程试验过程及结果的分析提供正确的理论依据,并对机械设备的安全性、稳定性和可靠性提供可靠的保证。

机械工程测试技术基础第9章应变、力与扭矩测量

机械工程测试技术基础第9章应变、力与扭矩测量

拉(压)应变:
机械应变
i
指示应变
uy
1 4
u0
S
g
特点: 1、不能消除弯矩的影响
2、能补偿温度的影响
2、 试件受力状态图
电桥接法:
都受力,互为补偿
拉(压)应变:
i
1
电桥输出电压:
uy
1 4
u0
S
g
1
特点: 1、不能消除弯矩的影响 2、能补偿温度的影响
3、输出电压提高到(1+ )
3、试件受力状态图
传感器的原边绕组(励磁绕组)和副边绕 组(测量绕组)互相垂直地安装在导磁体中, 原边绕组通过交流电。当不受力时,原边绕组 的磁力线呈对称分布,且不与副边绕组相交链, 此时副边绕组不产生感应电势(图8—7.b)。
当受力时,材料的导磁率发生变化,使磁力线 分布发生变化,磁力线与副边绕组相交链,在副 边绕组中感应电势,电势的大小正比于外力的大 小,测得该感应电势便知与之成比例的外力。
(4)
u0sg
i / 4
例8-2:如图3所示,悬臂梁弹性模 量 E 20 1010 Pa , 贴 片 处 的 抗 弯 截 面 系 数 W 2 106 m3 ,应变片 R1 R2,现用仪器
测得P力作用的指示应变为2000 ,求P力
的大小。
图3
(三)弯曲、拉(压)联合作用时的测量
测拉(压)
两个绕有线圈的铁心A和B相 互垂直放置,其开口端距被测轴表 面1~2mm间隙。A线圈通以交流电, 形成通过转轴的交变磁场。
转轴不受扭,磁力线与B线圈不交链;转 轴受扭矩作用后,应力的变化使部分磁力线 与B线圈交链,并在其中产生感应电势,该 感应电势与扭矩成正比关系。 特 点:

机械工程测试技术基础第三版第七章

机械工程测试技术基础第三版第七章
14
第三节 振动测量传感器
二、电容传感器
图7-7为电容式传感器工作原理图。
图7-7 15
第三节 振动测量传感器
二、电容传感器
图7-8为电容传感器输出信号示意图。
图7-8 16
第三节 振动测量传感器
三、磁电式速度计
磁电式速度传感器是利用电磁感应原理工作的传感器,将传感器中 的线圈作为质量块,当传感器运动时,线圈在磁场中作切割磁力线 的运动,其产生的电势大小与输入的速度成正比。 如果将壳体固定在一试件上,通过压缩弹簧片,使顶杆以F力顶 住另一试件,则线圈在磁场中运动速度就是两试件的相对速度, 速度计的输出电压与两试件的相对速度成正比例。 图7-9就是按这种原理工作的磁电式相对速度计的简图
按所测的振动性质可将传感器分为绝对式和相对式。 绝对式传感器的输出描述被测物的绝对振动;绝对式传感 器的壳体固定在被测件上,其内部利用其弹簧一质量系统 来感受振动,其力学模型如下图。
10
第三节 振动测量传感器
二、单自由度制动系统受迫振动小结
惯性式传感器的力学模型 11
第三节 振动测量传感器
一、涡流位移传感器
30
第三节 振动测量传感器
六、现代振动测量与振动传感器的发展
近年来惯性加速度计在结构设计上有很大的改进。如图所示。
1:阻抗变换器 2:质量块 3:敏感元件 4:底座 5:外壳
新型的三轴传感器中心部分结构图。
31
第三节 振动测量传感器
六、现代振动测量与振动传感器的发展
新兴三轴传感器X、Y、 Z三个方向的主振型图。
22
第三节 振动测量传感器
四、压电加速度计
加速度传感器的工作原理示意图及等效电路如图所示。
a工作原理示意图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该公式就是离散傅立叶计算公式(DFT)
2) 快速傅立叶变换 (FFT) FFT是实施DFT的一种有效算法,通过仔细选择和重新排列中间结果,速度上较DFT有明显的优点。
展开各点的DFT计算公式: XR(1)=x(0).cos(2pi*0*1/N)+x(1).cos(2pi*1*1/N)+x(2).cos(2pi*2*1/N)….. XR(2)=x(0).cos(2pi*0*2/N)+x(1).cos(2pi*1*2/N)+x(2).cos(2pi*2*2 /N)…..
b)灵活、方便的计算机虚拟仪器开发系统
2 模数(A/D) 1) A/D转换过程
采样――利用采样脉冲序列p(t),从连续时间信号x(t)中抽取一系列离散样值,使 之成为采样信号x(nTs)的过程. 量化――把采样信号x(nTs)经过舍入变为只有有限个有效数字的数,这一过程称 为量化. 编码――将离散幅值经过量化以后变为二进制数字的过程。
Next A=sqr(XR*XR+XI*XI) Q=atn(XI/XR)
VBScript 样例
连续傅立叶变换编程计算实验:
采样信号频谱是一个连续频谱,不可能计算出所有频率点值,X( f )只能离散取值,频率取样 间隔定义为:
Δf=fs/N 频率取样点为{0, Δf, 2Δf, 3Δf, ....},有:
3 采样定理
1) 采样信号的频谱
采样过程是将采样脉冲序列p(t) 与信号x(t)相乘来.
2) 频混现象 频域解释
时域解释
3)采样定理 为保证采样后信号能真实地保留原始模拟信号信息,信号采样频率必须至少为原信号中最高
频率成分的2倍。这是采样的基本法则,称为采样定理。
fs>2fmax
需要注意的是,在对信号进行采样时,满足了采样定理,只能保证不发生频率混叠,只能保证 对信号的频谱作逆傅立叶变换时,可以完全变换为原时域采样信号xs(t),而不能保证此时的 采样信号能真实地反映原信号x(t)。工程实际中采样频率通常大于信号中最高频率成分的3到5 倍。
的时间片段进行分析,这个信号截取过程成为信号的截断。
为便于数学处理,通常对截断的信号做周期延拓,得到虚拟的无限长的信号。
周期延拓后的信号与真实信号是不同的,下面我们就从数学的角度来看这种处理带来的误差 情况。
设有余弦信号x(t), 用矩形窗函数w(t)与其相乘,得到截断信号: y(t) =x(t)w(t)
学习要求: 1数字信号处理概述 2了解信号模数转换原理 3掌握信号采样定理,能正确选择采样频率 4了解信号截断、能量泄露、栅栏效应等现象 5DFT与FFT 6栅栏效应与窗函数 7常用的数字信号处理算法
1 数字信号处理概述
1)数字信号处理的主要研究内容 数字信号处理主要研究用数字序列来表示测试信号,并用数学公式和运算来对这些
将截断信号谱 XT(ω)与原始信号谱X(ω)相比较可知,它已不是原来的两条谱线,而是两段振荡的连续谱. 原来集中在f0处的能量被分散到两个较宽的频带中去了,这种现象称之为频谱能量泄漏。
能量泄漏实验:
6.5 DFT与FFT
1)离散傅立叶变换 离散傅里叶变换(Discrete Fourier Transform)一词是为适应计算机作傅里叶变换运算而引
出的一个专用名词。
x(t)
xT(t)
截断、周期延拓
周期信号xT(t)的傅里叶变换:
对周期信号xT(t)采样,将离散序列xT(n),将积分转为集合:
傅里叶变换公式
N1
H(f) x(n)ej2fntt n0
展开,得连续傅立叶变换计算公式:
N1
H(f) x(n)ej2fntt
n0
N1
N1
[x(n)co2s(fnt)jx(n)sin 2(fnt) ]t
数字序列进行处理。其主要内容包括数字波形分析、幅值分析、频谱分析和数字滤波。
2)测试信号数字化处理的基本ห้องสมุดไป่ตู้骤
对象
物理信号
传感 器
电信号
信号 调制
电信号
A/D转
数字信号
计算 机

显示
D/A转 换
控制
3) 数字信号处理的优势 (1)用数学计算和计算机显示代替复杂的电路和机械结构
(2)计算机软硬件技术发展的有力推动 a)多种多样的工业用计算机。
• 如4位码,只表示24=16种不同的信号幅度,这些幅度称为量化电平。 • 当离散时间信号幅度与量化电平不相同时,就要以最接近的一个量化电平来近似它。 • 所以经过A/D变换器后,不但时间离散化了,而且幅度也量化了,产生一个二进制流。
2) A/D转换器的技术指标 • 分辨率 用输出二进制数码的位数表示。位数越多,量化误差越
n0
n0
按上式,用计算机编程很容易计算出指定频率点的值:
f=? //计算的频率点 Fs=5120 N=1024 dt=1.0/Fs pi=3.1415926 XR=0 XI=0
For n=0 To N-1 XR=XR+x(n)*cos(2*pi*f*n*dt)*dt XI=XI+x(n)*sin(2*pi*f*n*dt)*dt
其中有大量cos、sin项的重复计算,FFT就是用技巧减少这些重复计算。
当采样点数为1024点,DFT要求一百万次以 上计算量,而FFT则只要求10240次。
FFT的Matlab实现
fs=1000 t=0:1/fs:0.6; f1=100; f2=300; x=sin(2*pi*f1*t)+sin(2*pi*f2*t); subplot(711) plot(x); title(‘f1(100Hz)\f2(300Hz)的正弦信号,初相0’) xlabel(‘序列(n)’) grid on
小,分辨力越高。常用有8位、10位、12位、16位等。 • 转换精度 转换精度LSB/2 LSB: Least Significant Bit 最低有效位 • 转换速度 完成1次转换所用的时间,如100ms(10Hz);10us(100kHz) • 模拟信号的输入范围;如5V, +/-5V,10V,+/-10V等。
频混现象实验:
频混计算:
正常
Fs 频混
Fs 工程处理:
混迭频率=Fs-信号频率
Fs Fs
Fs/2
A/D采样前的抗混迭滤波:
对象
物理信号
传感 器
电信号
信号 调理
电信号
A/D转

数字信号
计算 机
显示
放大
展开 低通滤波(0-Fs/2)
4 信号的截断、能量泄漏 当运用计算机进行测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限
相关文档
最新文档