夹具设计英文文献

合集下载

机械毕业设计英文外文翻译71车床夹具设计分析

机械毕业设计英文外文翻译71车床夹具设计分析

附录ALathe fixture design and analysisMa Feiyue(School of Mechanical Engineering, Hefei, Anhui Hefei 230022,China)Abstract: From the start the main types of lathe fixture, fixture on the flower disc and angle iron clamp lathe was introduced, and on the basis of analysis of a lathe fixture design points.Keywords: lathe fixture; design; pointsLathe for machining parts on the rotating surface, such as the outer cylinder, inner cylinder and so on. Parts in the processing, the fixture can be installed in the lathe with rotary machine with main primary uranium movement. However, in order to expand the use of lathe, the work piece can also be installed in the lathe of the pallet, tool mounted on the spindle.THE MAIN TYPES OF LATHE FIXTUREInstalled on the lathe spindle on the lathe fixtureInstalled in the fixture on the lathe spindle in addition to three-jaw chuck, four jaw chuck, faceplate, front and rear dial with heart-shaped thimble and a combination of general-purpose lathe fixture folder outside (as these fixtures have been standardized and machine tool accessories, can be purchased when needed do not have to re-design), usually need to design special lathe fixture. Common special lathe folder with the following types.Fixture took disc latheThis process is to find the generic is installed on the faceplate is difficult to ensure the accuracy of the workpiece, so the need to design special lathe fixture. The lathe fixture design process, first select the cylindrical workpieceand the end cylinder B, the semi-circular surface finishing (finishing second circularsurface when the car has been good with circular surface) ispositioned datum, limit of six degrees of freedom, in line with the principle of base overlap.The work piece fixture to ensure the accuracy of measures:The workpiece fixture to ensure the accuracy of measures:(1) tool by the workpiece machining position relative to the guarantee. (2) symmetry of size 0.02. Rely on sets of holes5.56h Φ22.5Φ0.023023+Φ0.023023+Φ180.02±and positioning theworkpiece with the precision of andlocate the position of dimensional accuracy and process specification requirements to ensure that the same parts of the four circular surface must be processed on the same pins.(3) all fixtures and clip bushing hole axis vertical concrete face A tolerance of .because the A side is the fixture with the lathe when the transition assembly base plate installed.(4) specific folder on the-hole plate with the transition to the benchmarks pin design requires processing each batch of parts to be sold in the transitional disk with a coat made of a tight match, and the local processing of the face plate to reduce the transition fixture on the set of small errors.The angle iron fixtureIf the processing technology for the and, drilling, boring, reaming process scheme. Boring is required in the face A face of finishing B ( range) and the A, B sides and the holeaxis face runout does not exceed . In addition, the processing of -hole, you should also ensure that its axis with the axis of thedegree of tolerance for the uranium ; size 5.56h Φ0.0100.00220.5++Φ0.005mm 207H Φ20Φ0.0102.5+Φ0.0110.00510++Φ12Φ10Φ0.02mm 2.5Φ0.0110.00510++Φ0.01mm Φ10Φand the location of ; and and of the axis of the axis of displacement tolerance not more than .Based on the above analysis on the part of process size, choose the -hole on the workpiece surface and M, N two planes to locate the benchmark.Installed on the lathe pallet fixtureLimited equipment in the factory, similar to the shape of the parts box, its small size, designed for easy installation without turning the main pumping in the fixture, you can drag the panel removal tool holder, fixture and workpiece mounted on the pallet. Processing, mounted on the lathe tool on the main primary uranium movement, feed the work piece for movement, so you can expand the scope of application of lathe.LATHE FIXTURE DESIGN POINTSThe design features of the positioning deviceLathe fixture positioning device in the design, in addition to considering the limited degrees of freedom, the most important thing is to make the surface of the workpiece axis coincides with the 15.50.1±80.1mm ± 2.5Φ10Φ17.5Φ0.02mm 17.5Φaxis of spindle rotation. This is described in the previous two sets of lathe fixture when special emphasis. In addition, the positioning device components in the specific folder location on the workpiece surface accuracy and dimensional accuracy of the location has a direct relationship, so the total figure on the fixture, be sure to mark the location positioning device dimensions and tolerances, and acceptance as a fixture conditions.Jig weight design requirementsProcessing in the lathe, the workpiece rotation together with the fixture will be a great centrifugal force and the centrifugal force increases sharply with increasing speed. This precision machining, processing, and the vibration would affect the surface quality of parts. Therefore, the lathe fixture between devices should pay attention to the layout of equipment necessary to balance the design weights.Dlamping device design requirementsLathe fixture in the course of their work should be the role of centrifugal force and cutting force, the size of its force and direction of the workpiece position relative to the base is changing. Therefore, a sufficient clamping device clamping force and a good self-locking.To ensure safe and reliable clamping. However, the clamping force can not be too large, and require a reasonable layout of the force, and will not undermine the accuracy of the location positioning device.Llathe fixture connection with the machine tool spindle design Lathe fixture connected with the spindle directly affects the accuracy of the rotary fixture accuracy, resulting in errors in the workpiece. Therefore, the required fixture rotation axis lathe spindle axis with high concentricity.Lathe fixture connected with the spindle structure, depending on the spindle when turning the front of the structure model is confirmed, by machine instructions or the manual check on. Lathe spindle nose are generally outside the car with cone and cone, or a journal and other structures with the flange end connections to the fixture base. Note, however, check the manual should be used with caution, because many manufacturers of machine tools, machine tools of similar size may differ. The most reliable method for determining, or to field measurements in order to avoid errors or losses. Determine the fixture and the spindle connecting structure, generally based on fixture size of the size of the radial: radialdimension less than , or small lathe fixture. Pairs of fixture requirements of the overall structureLathe fixture generally work in the state of the cantilever in order to ensure process stability, compact fixture structure should be simple, lightweight and safe, overhang length to as small as possible, the center of gravity close to the front spindle bearing. Fixture overhang length L and the ratio of outer diameter D profile can refer to the following values used:Less than the diameter D in fixture, ;Diameter D between the fixture in ,; Fixture diameter D is greater than , .To ensure security, installed in the specific folder on the components of the folder is not allowed out beyond the specific diameter, should also consider cutting the wound and coolant splash and other issues affecting safe operation.References140mm (23)D d <-150mm 1.25L D ≤150300mm :0.9L D ≤300mm 0.6L D ≤[1] Chen Guofu. Lathe fixture [J]. Mechanical workers. Cold, 2000 (12)[2] Dong Yuming. Yang Hongyu. Fixture design in the common problems [J]. Mechanical workers. Cold, 2005 (1)[3] Liu Juncheng The machine clamps the clamping force in the design process calculations [J]. tool technology, 2007 (6)附录B车床夹具设计分析(合肥学院机械工程系,安徽合肥230022)摘要:从车床夹具的主要类型着手,对花盘式车床夹具和角铁式夹具进行了介绍,并在此基础上分析了车床夹具设计要点。

夹具设计英文文献

夹具设计英文文献

A review and analysis of current computer-aided fixture design approachesIain Boyle, Yiming Rong, David C. BrownKeywords:Computer-aided fixture designFixture designFixture planningFixture verificationSetup planningUnit designABSTRACTA key characteristic of the modern market place is the consumer demand for variety. To respond effectively to this demand, manufacturers need to ensure that their manufacturing practices are sufficiently flexible to allow them to achieve rapid product development. Fixturing, which involves using fixtures to secure work pieces during machining so that they can be transformed into parts that meet required design specifications, is a significant contributing factor towards achieving manufacturing flexibility. To enable flexible fixturing, considerable levels of research effort have been devoted to supporting the process of fixture design through the development of computer-aided fixture design (CAFD) tools and approaches. This paper contains a review of these research efforts. Over seventy-five CAFD tools and approaches are reviewed in terms of the fixture design phases they support and the underlying technology upon which they are based. The primary conclusion of the review is that while significant advances have been made in supporting fixture design, there are primarily two research issues that require further effort. The first of these is that current CAFD research is segmented in nature and there remains a need to provide more cohesive fixture design support. Secondly, a greater focus is required on supporting the detailed design of a fixture’s physical structure.2010 Elsevier Ltd. All rights reserved. Contents1. Introduction (2)2. Fixture design (2)3. Current CAFD approaches (4)3.1 Setup planning (4)3.1.1 Approaches to setup planning (4)3.2 Fixture planning (4)3.2.1 Approaches to defining the fixturing requirement (6)3.2.2 Approaches to non-optimized layout planning (6)3.2.3 Approaches to layout planning optimization (6)3.3 Unit design (7)3.3.1 Approaches to conceptual unit design (7)3.3.2 Approaches to detailed unit design (7)3.4 Verification (8)3.4.1 Approaches to constraining requirements verification (8)3.4.2 Approaches to tolerance requirements verification (8)3.4.3 Approaches to collision detection requirements verification (8)3.4.4 Approaches to usability and affordability requirements verification (9)3.5 Representation of fixturing information (9)4. An analysis of CAFD research (9)4.1 The segmented nature of CAFD research (9)4.2 Effectively supporting unit design (10)4.3 Comprehensively formulating th e fixturing requirement (10)4.4 Validating CAFD research outputs (10)5. Conclusion (10)References (10)1. IntroductionA key concern for manufacturing companies is developing the ability to design and produce a variety of high quality products within short timeframes. Quick release of a new product into the market place, ahead of any competitors, is a crucial factor in being able to secure a higher percentage of the market place and increased profit margin. As a result of the consumer desire for variety, batch production of products is now more the norm than mass production, which has resulted in the need for manufacturers to develop flexible manufacturing practices to achieve a rapid turnaround in product development.A number of factors contribute to an organization’s ability to achieve flexible manufacturing, one of which is the use of fixtures during production in which work pieces go through a number of machining operations to produce individual parts which are subsequently assembled into products. Fixtures are used to rapidly, accurately, and securely position work pieces during machining such that all machined parts fall within the design specifications for that part. This accuracy facilitates the interchangeability of parts that is prevalent in much of modern manufacturing where many different products feature common parts.The costs associated with fixturing can account for 10–20% of the total cost of a manufacturing system [1]. These costs relate not only to fixture manufacture, assembly, and operation, but also to their design. Hence there are significant benefits to be reaped by reducing the design costs associated with fixturing and two approaches have been adopted in pursuit of this aim. One has concentrated on developing flexible fixturing systems, such as the use of phase-changing materials to hold work pieces in place [2] and the development of commercial modular fixture systems. However, the significant limitation of the flexible fixturing mantra is that it does not address the difficulty of designing fixtures. To combat this problem, a second research approach has been to develop computer-aided fixture design (CAFD) systems that support and simplify the fixture design process and it is this research that is reviewed within this paper.Section 2 describes the principal phases of and the wide variety of requirements driving the fixture design process. Subsequently in Section 3 an overview of research efforts that havefocused upon the development of techniques and tools for supporting these individual phases of the design process is provided. Section 4 critiques these efforts to identify current gaps in CAFD research, and finally the paper concludes by offering some potential directions for future CAFD research. Before proceeding, it is worth noting that there have been previous reviews of fixturing research, most recently Bi and Zhang [1] and Pehlivan and Summers [3]. Bi and Zhang, while providing some details on CAFD research, tend to focus upon the development of flexible fixturing systems, and Pehlivan and Summers focus upon information integration within fixture design. The value of this paper is that it provides an in-depth review and critique of current CAFD techniques and tools and how they provide support across the entire fixture design process.2. Fixture designThis section outlines the main features of fixtures and more pertinently of the fixture design process against which research efforts will be reviewed and critiqued in Sections 3 and 4, respectively. Physically a fixture consists of devices that support and clamp a work piece [4,5]. Fig.1 represents a typical example of a fixture in which the work piece rests on locators that accurately locate it. Clamps hold the work piece against the locators during machining thus securing the work piece’s location. The locating units themselves consist of the locator supporting unit and the locator that contacts the work piece. The clamping units consist of a clamp supporting unit and a clamp that contacts the work piece and exerts a clamping force to restrain it.Typically the design process by which such fixtures are created has four phases: setup planning, fixture planning, unit design, and verification, as illustrated in Fig. 2 , which is adapted from Kang et al. [6]. During setup planning work piece and machining information is analyzed to determine the number of setups required to perform all necessary machining operations and the appropriate locating datums for each setup. A setup represents the combination of processes that can be performed on a work piece without having to alter the position or orientation of the work piece manually. To generate a fixture for each setup the fixture planning, unit design, and verification phases are executed.During fixture planning, the fixturing requirements for a setup are generated and the layout plan, which represents the first step towards a solution to these requirements is generated. This layout plan details the work piece surfaces with which the fixture’s locating and clamping units will establish contact, together with the surface positions of the locating and clamping points. The number and position of locating points must be such that a work piece’s six degrees of freedom (Fig. 3 ) are adequately constrained during machining [7] and there are a variety of conceptual locating point layouts that can facilitate this, such as the 3-2-1 locating principle [4]. In the third phase, suitable unit designs (i.e., the locating and clamping units) are generated and the fixture is subsequently tested during the verification phase to ensure that it satisfies the fixturing requirements driving the design process. It is worth noting that verification of setups and fixture plans can take place as they are generated and prior to unit design.Fixturing requirements, which although not shown in Kang et al.[6] are typically generated during the fixture planning phase, can be grouped into six classes ( Table 1 ). The ‘‘physical’’requirements class is the most basic and relates to ensuring the fixture can physically support the work piece. The ‘‘tolerance’’requirements relate to ensuring that the locating tolerances aresufficient to locate the work piece accurately and similarly the‘‘constraining’’ requirements focus on maintaining this accuracy as the work piece and fixture are subjected to machining forces. The ‘‘affordability’’ requirements relate to ensuring the fixture represents value, for example in terms of material, operating, and assembly/disassembly costs.The ‘‘collision detection’’ requirements focus upon ensuring that the fixture does not collide with the machining path, the work piece, or indeed itself. The ‘‘usability’’ requirements relate to fixture ergonomics and include for example needs related to ensuring that a fixture features error-proofing to prevent incorrect insertion of a work piece, and chip shedding, where the fixture assists in the removal of machined chips from the work piece.As with many design situations, the conflicting nature of these requirements is problematic. For example a heavy fixture can be advantageous in terms of stability but can adversely affect cost (due to increased material costs) and usability (because the increased weight may hinder manual handling). Such conflicts add to the complexity of fixture design and contribute to the need for the CAFD research reviewed in Section 3.Table 1Fixturing requirements.Generic requirement Abstract sub-requirement examplesPhysical ●The fixture must be physically capable of accommodatingthe work piece geometry and weight.●The fixture must allow access to the work piece features tobe machined.Toleranc e ●The fixture locating tolerances should be sufficient to satisfypart design tolerances.Constraining●The fixture shall ensure work piece stability (i.e., ensure thatwork piece force and moment equilibrium are maintained).●The fixture shall ensure that the fixture/work piece stiffness issufficient to prevent deformation from occurring that could resultin design tolerances not being achieved.Affordabilit y ●The fixture cost shall not exceed desired levels.●The fixture assembly/disassembly times shall not exceeddesired levels.●The fixture operation time shall not exceed desired levels. CollisionPrevention●The fixture shall not cause tool path–fixture collisions to occur.●The fixture shall cause work piece–fixture collisions to occur(other than at the designated locating and clamping positions).●The fixture shall not cause fixture–fixture collisions to occur(other than at the designated fixture component connectionpoints).Usabilit y ●The fixture weight shall not exceed desired levels.●The fixture shall not cause surface damage at the workpiece/fixture interface.●The fixture shall provide tool guidance to designated workpiece features.●The fixture shall ensure error-proofing (i.e., the fixture shouldprevent incorrect insertion of the work piece into the fixture).●The fixture shall facilitate chip shedding (i.e., the fixture shouldprovide a means for allowing machined chips to flow awayfrom the work piece and fixture).3. Current CAFD approachesThis section describes current CAFD research efforts, focusing on the manner in which they support the four phases of fixture design. Table 2 provides a summary of research efforts based upon the design phases they support, the fixture requirements they seek to address (boldtext highlights that the requirement is addressed to a significant degree of depth, whilst normal text that the degree of depth is lesser in nature), and the underlying technology upon which they are primarily based. Sections 3.1–3.4 describes different approaches for supporting setup planning, fixture planning, unit design, and verification, respectively. In addition, Section 3.5 discusses CAFD research efforts with regard to representing fixturing information.3.1. Setup planningSetup planning involves the identification of machining setups, where an individual setup defines the features that can be machined on a work piece without having to alter the position or orientation of the work piece manually. Thereafter, the remaining phases of the design process focus on developing individual fixtures for each setup that secure the work piece. From a fixturing viewpoint, the key outputs from the setup planning stage are the identification of each required setup and the locating datums (i.e., the primary surfaces that will be used to locate the work piece in the fixture).The key task within setup planning is the grouping or clustering of features that can be machined within a single setup. Machining features can be defined as the volume swept by a cutting tool, and typical examples include holes, slots, surfaces, and pockets [8]. Clustering of these features into individual setups is dependent upon a number of factors (including the tolerance dependencies between features, the capability of the machine tools that will be used to create the features, the direction of the cutting tool approach, and the feature machining precedence order), and a number of techniques have been developed to support setup planning. Graph theory and heuristic reasoning are the most common techniques used to support setup planning, although matrix based techniques and neural networks have also been employed.3.1.1. Approaches to setup planningThe use of graph theory to determine and represent setups has been a particularly popular approach [9–11]. Graphs consist of two sets of elements: vertices, which represent work piece features, and edges, which represent the relationships that exist between features and drive setup identification. Their nature can vary, for example in Sarma and Wright [9] consideration of feature machining precedence relationships is prominent, whereas Huang and Zhang [10] focus upon thetolerance relationships that exist between features. Given that these edges can be weighted in accordance with the tolerance magnitudes, this graph approach can also facilitate the identification of setups that can minimize tolerance stack up errors between setups through the grouping of tight tolerances. However, this can prove problematic given the difficulty of comparing the magnitude of different tolerance types to each other thus Huang [12] includes the use of tolerance factors [13] as a means of facilitating such comparisons, which are refined and extended by Huang and Liu [14] to cater for a greater variety of tolerance types and the case of multiple tolerance requirements being associated with the same set of features.While some methods use undirected graphs to assist setup identification [11] , Yao et al. [15] , Zhang and Lin [16] , and Zhang et al. [17] use directed graphs that facilitate the determination and explicit representation of which features should be used as locating datums ( Fig. 4 ) in addition to setup identification and sequencing. Also, Yao et al. refine the identified setups through consideration of available machine tool capability in a two stage setup planning process.Experiential knowledge, in the form of heuristic reasoning, has also been used to assist setup planning. Its popularity stems from the fact that fixture design effectiveness has been considered to be dependent upon the experience of the fixture designer [18] .To support setup planning, such knowledge has typically been held in the form of empirically derived heuristic rules, although object oriented approaches have on occasion been adopted [19] . For example Gologlu [20] uses heuristic rules together with geometric reasoning to support feature clustering, feature machining precedence, and locating datum selection. Within such heuristic approaches, the focus tends to fall upon rules concerning the physical nature of features and machining processes used to create them [21, 22]. Although some techniques do include feature tolerance considerations [23], their depth of analysis can be less than that found within the graph based techniques [24]. Similarly, kinematic approaches [25] have been used to facilitate a deeper analysis of the impact of tool approach directions upon feature clustering than is typically achieved using rule-based approaches. However, it is worth noting that graph based approaches are often augmented with experiential rule-bases to increase their overall effectiveness [16] .Matrix based approaches have also been used to support setup planning, in which a matrix defining feature clusters is generated and subsequently refined. Ong et al. [26] determine a feature precedence matrix outlining the order in which features can be machined, which is then optimized against a number of cost indicators (such as machine tool cost, change over time, etc.) in a hybrid genetic algorithm-simulated annealing approach through consideration of dynamically changing machine tool capabilities. Hebbal and Mehta [27] generate an initial feature grouping matrix based upon the machine tool approach direction for each feature which is subsequently refined through the application of algorithms that consider locating faces and feature tolerances.Alternatively, the use of neural networks to support setup planning has also been investigated. Neural networks are interconnected networks of simple elements, where the interconnections are ‘‘learned’’ from a set of example data. Once educated, these networks can generate solutions for new problems fed into the network. Ming and Mak [28] use a neural network approach in which feature precedence, tool approach direction, and tolerance relationships are fed into a Kohonen self-organizing neural network to group operations for individual features into setups.3.2. Fixture planningFixture planning involves the comprehensive definition of a fixturing requirement in terms ofthe physical, tolerance, constraining, affordability, collision prevention, and usability requirements listed in Table 1 , and the creation of a fixture layout plan. The layout plan represents the first part of the fixture solution to these requirements, and specifies the position of the locating and clamping points on the work piece. Many layout planning approaches feature verification, particularly with regard to the constraining requirements. Typically this verification forms part of a feedback loop that seeks to optimize the layout plan with respect to these requirements. Techniques used to support fixture planning are now discussed with respect to fixture requirement definition, layout planning, and layout optimization.Fig. 4. A work piece (a) and its directed graphs showing the locating datums (b) (adapted from Zhang et al. [17] ).3.2.1. Approaches to defining the fixturing requirementComprehensive fixture requirement definition has received limited attention, primarily focusing upon the definition of individual requirements within the physical, tolerance, and constraining requirements. For example, Zhang et al. [17] under-take tolerance requirement definition through an analysis of work piece feature tolerances to determine the allowed tolerance at each locating point and the decomposition of that tolerance into its sources. The allowed locating point accuracy is composed of a number of factors, such as the locating unit tolerance, the machine tool tolerance, the work piece deformation at the locating point, and so on. These decomposed tolerance requirements can subsequently drive fixture design: e.g., the tolerance of the locating unit developed in the unit design phase cannot exceed the specified locating unit tolerance. In a similar individualistic vein, definition of the clamping force requirements that clamping units must achieve has also received attention [29,30].In a more holistic approach, Boyle et al. [31] facilitate a comprehensive requirement specification through the use of skeleton requirement sets that provide an initial decomposition of the requirements listed in Table 1, and which are subsequently refined through a series of analyses and interaction with the fixture designer. Hunter et al. [32,33] also focus on functional requirement driven fixture design, but restrict their focus primarily to the physical and constraining requirements.3.2.2. Approaches to non-optimized layout planningLayout planning is concerned with the identification of the locating principle, which defines the number and general arrangement of locating and clamping points, the work piece surfaces they contact, and the surface coordinate positions where contact occurs. For non-optimized layoutplanning, approaches based upon the re-use of experiential knowledge have been used. In addition to rule-based approaches [20,34,35] that are similar in nature to those discussed in Section 3.1, case-based reasoning has also been used. CBR is a general problem solving technique that uses specific knowledge of previous problems to solve new ones. In applying this approach to layout planning, a layout plan for a work piece is obtained by retrieving the plan used for a similar work piece from a case library containing knowledge of previous work pieces and their layout plans [18,36,37]. Work piece similarity is typically characterized through indexing work pieces according to their part family classification, tolerances, features, and so on. Lin and Huang [38] adopt a similar work piece classification approach, but retrieve layout plans using a neural network. Further work has sought to verify layout plans and repair them if necessary. For example Roy and Liao [39] perform a work piece deformation analysis and if deformation is too great employ heuristic rules to relocate and retest locating and clamping positions.3.2.3. Approaches to layout planning optimizationLayout plan optimization is common within CAFD and occurs with respect to work piece stability and deformation, which are both constraining requirements. Stability based optimization typically focuses upon ensuring a layout plan satisfies the kinematic form closure constraint (in which a set of contacts completely constrain infinitesimal part motion) and augmenting this with optimization against some form of stability based requirement, such as minimizing forces at the locating and/or clamping points [40–42] . Wu and Chan [43] focused on optimizing stability (measuring stability is discussed in Section 3.4) using a Genetic Algorithm (GA), which is a technique frequently employed in deformation based optimization.GAs, which are an example of evolutionary algorithms, are often used to solve optimization problems and draw their inspiration from biological evolution. Applying GAs in support of fixture planning, potential layout plan solutions are encoded as binary strings, tested, evaluated, and subjected to ‘‘biological’’ modification through reproduction, mutation, and crossover to generate improved solutions until an optimal state is reached. Typically deformation testing is employed using a finite element analysis in which a work piece is discretized to create a series of nodes that represent potential locating and clamping contact points, as performed for example by Kashyap and DeVries [44] . Sets of contact points are encoded and tested, and the GA used to develop new contact point sets until an optimum is reached that minimizes work piece deformation caused by machining and clamping forces [45,46]. Rather than use nodes, some CAFD approaches use geometric data (such as spatial coordinates) in the GA, which can offer improved accuracy as they account for the physical distance that exists between nodes [47,48].Pseudo gradient techniques [49] have also been employed to achieve optimization [50,51]. Vallapuzha et al. [52] compared the effectiveness of GA and pseudo gradient optimization, concluding that GAs provided higher quality optimizations given their ability to search for global solutions, whereas pseudo gradient techniques tended to converge on local optimums.Rather than concentrating on fixture designs for individual parts, Kong and Ceglarek [53] define a method that identifies the fixture workspace for a family of parts based on the individual configuration of the fixture locating layout for each part. The method uses Procrustes analysis to identify a preliminary workspace layout that is subjected to pairwise optimization of fixture configurations for a given part family to determine the best superposition of locating points for a family of parts that can be assembled on a single reconfigurable assembly fixture. This buildsupon earlier work by Lee et al. [54] through attempting to simplify the computational demands of the optimization algorithm.3.3. Unit designUnit design involves both the conceptual and detailed definition of the locating and clamping units of a fixture, together with the base plate to which they are attached (Fig. 5). These units consist of a locator or clamp that contacts the work piece and is itself attached to a structural support, which in turn connects with the base plate. These structural supports serve multiple functions, for example providing the locating and clamping units with sufficient rigidity such that the fixture can withstand applied machining and clamping forces and thus result in the part feature design tolerances being obtained, and allowing the clamp or locator to contact the work piece at the appropriate position. Unit design has in general received less attention than both fixture planning and verification, but a number of techniques have been applied to support both conceptual and detailed unit design.3.3.1. Approaches to conceptual unit designConceptual unit design has focused upon the definition of the types and numbers of elements that an individual unit should comprise, as well as their general layout. There are a wide variety of locators, clamps, and structural support elements, each of which can be more suited to some fixturing problems than others. As with both setup planning and fixture layout planning, rule-based approaches have been adopted to support conceptual unit design, in which heuristic rules are used to select preferred elements from which the units should be constructed in response to considerations such as work piece contact features (surface type, surface texture, etc.) and machining operations within the setup [35,55–58]. In addition to using heuristic rules as a means of generating conceptual designs, Kumar et al.[59] use an inductive reasoning technique to create decision trees from which such fixturing rules can be obtained through examination of each decision tree path.Neural network approaches have also been used to support conceptual unit design. Kumar et al. [60] use a combined GA/neural network approach in which a neural network is trained with a selection of previous design problems and their solutions. A GA generates possible solutionswhich are evaluated using the neural network, which subsequently guides the GA. Lin and Huang[38] also use a neural network in a simplified case-based reasoning (CBR) approach in which fixturing problems are coded in terms of their geometrical structure and a neural network used to find similar work pieces and their unit designs. In contrast, Wang and Rong[37] and Boyle et al.[31] use a conventional CBR approach to retrieve units in which the fixturing functional requirements form the basis of retrieval, which are then subject to refinement and/or modification during detailed unit design.3.3.2. Approaches to detailed unit designMany, but not all systems that perform conceptual design also perform detailed design, where the dominant techniques are rule, geometry, and behavior based. Detailed design involves the definition of the units in terms of their dimensions, material types, and so on. Geometry, in particular the acting height of locating and clamping units, plays a key role in the design of individual units in which the objective is to select and assemble defined unit elements to provide a unit of suitable acting height [61,62]. An et al. [63] developed a geometry based system in which the dimensions of individual elements were generated in relation to the primary dimension of that element (typically its required height) through parametric dimension relationships. This was augmented with a relationship knowledge base of how different elements could be configured to form a single unit. Similarly, Peng et al. [64] use geometric constraint reasoning to assist in the assembly of user selected elements to form individual units in a more interactive approach.Alternatively, rule-based approaches have also been used to define detailed units, in which work piece and fixture layout information (i.e., the locating and clamping positions) is reasoned over using design rules to select and assemble appropriately sized elements [32,55,56] . In contrast, Mervyn et al. [65] adopt an evolutionary algorithm approach to the development of units, in which layout planning and unit design take place concurrently until a satisfactory solution is reached.Typically, rule and geometry based approaches do not explicitly consider the required strength of units during their design. However for a fixture to achieve its function, it must be able to withstand the machining and clamping forces imposed upon it such that part design tolerances can be met. To address this, a number of behaviorally driven approaches to unit design have been developed that focus upon ensuring units have sufficient strength. Cecil [66] performed some preliminary work on dimensioning strap clamps to prevent failure by stress fracture, but does not consider tolerances or the supporting structural unit. Hurtado and Melkote [67] developed a model for the synthesis of fixturing configurations in simple pin-array type flexible machining fixtures, in which the minimum number of pins, their position, and dimensions are determined that can achieve stability and stiffness goals for a work piece through consideration of the fixture/work piece stiffness matrix, and extended this for modular fixtures [68] . Boyle et al. [31] also consider the required stiffness of more complex unit designs within their case-based reasoning method. Having retrieved a conceptual design that offers the correct type of function, this design’s physical structure is then adapted using dynamically selected adaptation strategies until it offers the correct level of stiffness.3.4. VerificationVerification focuses upon ensuring that developed fixture designs (in terms of their setup plans, layout plans, and physical units) satisfy the fixturing requirements. It should be noted from。

汽车焊接夹具设计外文文献翻译

汽车焊接夹具设计外文文献翻译

汽车焊接夹具设计外文文献翻译(含:英文原文及中文译文)文献出处:Semjon Kim.Design of Automotive Welding Fixtures [J]. Computer-Aided Design, 2013, 3(12):21-32.英文原文Design of Automotive Welding FixturesSemjon Kim1 AbstractAccording to the design theory of car body welding fixture, the welding fixture and welding bus of each station are planned and designed. Then the fixture is modeled and assembled. The number and model of the fixture are determined and the accessibility is judged. Designed to meet the requirements of the welding fixture.Keywords: welded parts; foundation; clamping; position1 IntroductionAssembly and welding fixtures are closely related to the production of high-quality automotive equipment in automotive body assembly and welding lines. Welded fixtures are an important part of the welding process. Assembly and welding fixtures are not only the way to complete the assembly of parts in this process, but also as a test and calibration procedure on the production line to complete the task of testing welding accessories and welding quality. Therefore, the design and manufacture ofwelding fixtures directly affect the production capacity and product quality of the automobile in the welding process. Automotive welding fixtures are an important means of ensuring their manufacturing quality and shortening their manufacturing cycle. Therefore, it is indispensable to correctly understand the key points of welding fixture design, improve and increase the design means and design level of welding fixtures, and improve the adjustment and verification level of fixtures. It is also an auto manufacturing company in the fierce competition. The problem that must be solved to survive.The style of the car is different from that of the car. Therefore, the shape of the welding jig is very different. However, the design, manufacture, and adjustment are common and can be used for reference.2. Structural design of welding fixtureThe structure design of the welding fixture ensures that the clip has good operational convenience and reliable positioning of the fixture. Manufacturers of welding fixtures can also easily integrate adjustments to ensure that the surfaces of the various parts of the structure should allow enough room for adjustments to ensure three-dimensional adjustment. Of course, under the premise of ensuring the accuracy of the welding jig, the structure of the welding jig should be as simple as possible. The fixture design is usually the position of all components on the fixture is determined directly based on the design basis, and ultimately ensure thatthe qualified welding fixture structure is manufactured. According to the working height, the height of the fixture bottom plate can be preliminarily determined, that is, the height of the fixture fixing position. The welding fixture design must first consider the clamping method. There are two types, manual and pneumatic. Manual clamping is generally suitable for small parts, external parts, and small batches of workpieces. For large body parts, planning in the production line, automation High-demand welding fixtures should be pneumatically clamped. Automobile production is generally pneumatically clamped, and manual mass clamping can be used as auxiliary clamping. This can reduce costs accordingly. Some manual clamping products already have standard models and quantities, which can be purchased in the market when needed. For some devices, pneumatic clamping is specified, but if pneumatic clamping is used, the workpiece may be damaged. Therefore, it is possible to manually press the place first to provide a pneumatic clamping force to clamp the workpiece. This is manual-pneumatic. . The fixture clamping system is mounted on a large platform, all of which are fixed in this welding position to ensure that the welding conditions should meet the design dimensions of the workpiece coordinate system positioning fixture, which involves the benchmark.3. Benchmarks of assembly and welding fixtures and their chosen support surfaces3.1 Determination of design basisIn order to ensure that the three-dimensional coordinates of the automatic weldment system are consistent, all welding fixtures must have a common reference in the system. The benchmark is the fixture mounting platform. This is the X, Y coordinate, each specific component is fixed at the corresponding position on the platform, and has a corresponding height. Therefore, the Z coordinate should be coordinated, and a three-dimensional XYZ coordinate system is established. In order to facilitate the installation and measurement of the fixture, the mounting platform must have coordinates for reference. There are usually three types. The structure is as follows:3.1.1 Reference hole methodThere are four reference holes in the design of the installation platform, in which the two directions of the center coordinates of each hole and the coordinates of the four holes constitute two mutually perpendicular lines. This is the collection on the XY plane coordinate system. The establishment of this benchmark is relatively simple and easy to process, but the measurements and benchmarks used at the same time are accurate. Any shape is composed of spatial points. All geometric measurements can be attributed to measurements of spatial points. Accurate spatial coordinate acquisition is therefore the basis for assessing any geometric shape. Reference A coordinated direction formed by oneside near two datums.3.1.2 v-type detection methodIn this method, the mounting platform is divided into two 90-degree ranges. The lines of the two axes make up a plane-mounted platform. The plane is perpendicular to the platform. The surface forms of these two axis grooves XY plane coordinate system.3.1.3 Reference block methodReference Using the side block perpendicular to the 3D XYZ coordinate system, the base of a gage and 3 to 4 blocks can be mounted directly on the platform, or a bearing fixing fixture platform can be added, but the height of the reference plane must be used to control the height , must ensure the same direction. When manufacturing, it is more difficult to adjust the previous two methods of the block, but this kind of measurement is extremely convenient, especially using the CMM measurement. This method requires a relatively low surface mount platform for the reference block, so a larger sized mounting platform should use this method.Each fixture must have a fixed coordinate system. In this coordinate system, its supporting base coordinate dimensions should support the workpiece and the coordinates correspond to the same size. So the choice of bearing surface in the whole welding fixture system 3.2When the bearing surface is selected, the angle between the tangentplane and the mounting platform on the fixed surface of the welding test piece shall not be greater than 15 degrees. The inspection surface should be the same as the welded pipe fittings as much as possible for the convenience of flat surface treatment and adjustment. The surface structure of the bearing should be designed so that the module can be easily handled, and this number can be used for the numerical control of the bearing surface of the product. Of course, designing the vehicle body coordinate point is not necessarily suitable for the bearing surface, especially the NC fixture. This requires the support of the fixture to block the access point S, based on which the digital surface is established. This surface should be consistent with the supported surface. So at this time, it is easier and easier to manufacture the base point S, CNC machining, precision machining and assembly and debugging.3.2 Basic requirements for welding fixtureIn the process of automobile assembly and production, there are certain requirements for the fixture. First, according to the design of the automobile and the requirements of the welding process, the shape, size and precision of the fixture have reached the design requirements and technical requirements. This is a link that can not be ignored, and the first consideration in the design of welding fixture is considered. When assembling, the parts or parts of the assembly should be consistent with the position of the design drawings of the car and tighten with the fixture.At the same time, the position should be adjusted to ensure that the position of the assembly parts is clamped accurately so as to avoid the deformation or movement of the parts during the welding. Therefore, this puts forward higher requirements for welding jig. In order to ensure the smooth process of automobile welding and improve the production efficiency and economic benefit, the workers operate conveniently, reduce the strength of the welder's work, ensure the precision of the automobile assembly and improve the quality of the automobile production. Therefore, when the fixture design is designed, the design structure should be relatively simple, it has good operability, it is relatively easy to make and maintain, and the replacement of fixture parts is more convenient when the fixture parts are damaged, and the cost is relatively economical and reasonable. But the welding fixture must meet the construction technology requirements. When the fixture is welded, the structure of the fixture should be open so that the welding equipment is easy to close to the working position, which reduces the labor intensity of the workers and improves the production efficiency.4. Position the workpieceThe general position of the workpiece surface features is determined relative to the hole or the apparent positioning reference surface. It is commonly used as a locating pin assembly. It is divided into two parts: clamping positioning and fixed positioning. Taking into account thewelding position and all welding equipment, it is not possible to influence the removal of the final weld, but also to allow the welding clamp or torch to reach the welding position. For truly influential positioning pins and the like, consider using movable positioning pins. In order to facilitate the entry and exit of parts, telescopic positioning pins are available. The specific structure can be found in the manual. The installation of welding fixtures should be convenient for construction, and there should be enough space for assembly and welding. It must not affect the welding operation and the welder's observation, and it does not hinder the loading and unloading of the weldment. All positioning elements and clamping mechanisms should be kept at a proper distance from the solder joints or be placed under or on the surface of the weldment. The actuator of the clamping mechanism should be able to flex or index. According to the formation principle, the workpiece is clamped and positioned. Then open the fixture to remove the workpiece. Make sure the fixture does not interfere with opening and closing. In order to reduce the auxiliary time for loading and unloading workpieces, the clamping device should use high-efficiency and quick devices and multi-point linkage mechanisms. For thin-plate stampings, the point of application of the clamping force should act on the bearing surface. Only parts that are very rigid can be allowed to act in the plane formed by several bearing points so that the clamping force does not bend the workpiece or deviate from thepositioning reference. In addition, it must be designed so that it does not pinch the hand when the clamping mechanism is clamped to open.5. Work station mobilization of welding partsMost automotive solder fittings are soldered to complete in several processes. Therefore, it needs a transmission device. Usually the workpiece should avoid the interference of the welding fixture before transmission. The first step is to lift the workpiece. This requires the use of an elevator, a crane, a rack and pinion, etc. The racks and gears at this time Structure, their structural processing, connection is not as simple as the completion of the structure of the transmission between the usual connection structure of the station, there are several forms, such as gears, rack drive mechanism, transmission mechanism, rocker mechanism, due to the reciprocating motion, shake The transfer of the arm mechanism to the commissioning is better than the other one, so the common rocker arm transfer mechanism is generally used.6 ConclusionIn recent years, how to correctly and reasonably set the auxiliary positioning support for automotive welding fixtures is an extremely complicated system problem. Although we have accumulated some experience in this area, there is still much to be learned in this field. Learn and research to provide new theoretical support for continuous development and innovation in the field of welding fixture design. Withthe development of the Chinese automotive industry, more and more welding fixtures are needed. Although the principle of the fixture is very simple, the real design and manufacture of a high-quality welding fixture system is an extremely complicated project.中文译文汽车焊接夹具的设计Semjon Kim1摘要依据车体焊装线夹具设计理论, 对各工位焊接夹具及其焊装总线进行规划、设计, 之后进行夹具建模、装配, 插入焊钳确定其数量、型号及判断其可达性,最终设计出符合要求的焊接夹具。

夹具设计外文翻译

夹具设计外文翻译

Application and developmentOf case based reasoning in fixture designFixtures are devices that serve as the purpose of holding the workpiece securely and accurately, and maintaining a consistent relationship with respect to the tools while machining. Because the fixture structure depends on the feature of the product and the status of the process planning in the enterprise, its design is the bottleneck during manufacturing, which restrains to improve the efficiency and leadtime. And fixture design is a complicated process, based on experience that needs comprehensive qualitative knowledge about a number of design issues including workpiece configuration, manufacturing processes involved, and machining environment. This is also a very time consuming work when using traditional CAD tools (such as Unigraphics, CATIA or Pro/E), which are good at performing detailed design tasks, but provide few benefits for taking advantage of the previous design experience and resources, which are precisely the key factors in improving the efficiency. The methodology of case based reasoning (CBR) adapts the solution of a previously solved case to build a solution for a new problem with the following four steps: retrieve, reuse, revise, and retain [1]. This is a more useful method than the use of an expert system to simulate human thought because proposing a similar case and applying a few modifications seems to be self explanatory and more intuitive to humans .So various case based design support tools have been developed for numerous areas[2-4], such as in injection molding and design, architectural design, die casting die design, process planning, and also in fixture design. Sun used six digitals to compose the index code that included workpiece shape, machine portion, bushing, the 1st locating device, the 2nd locating device and clamping device[5]. But the system cannot be used for other fixture types except for drill fixtures, and cannot solve the problem of storage of the same index code that needs to be retained, which is very important in CBR[6].1. Construction of a Case Index and Case Library1.1 Case indexThe case index should be composed of all features of the workpiece, which are distinguished from different fixtures. Using all of them would make the operation in convenient. Because the forms of the parts are diverse, and the technology requirements of manufacture in the enterprise also develop continuously, lots of features used as the case index will make the search rate slow, and the main feature unimportant, for the reason that the relative weight which is allotted to every feature must diminish. And on the other hand, it is hard to include all the features in the case index.1.2 Hierarchical form of CaseThe structure similarity of the fixture is represented as the whole fixture similarity, components similarity and component similarity. So the whole fixture case library, components case library, component case library of fixture are formedcorrespondingly. Usually design information of the whole fixture is composed of workpiece information and workpiece procedure information, which represent the fixture satisfying the specifically designing function demand. The whole fixture case is made up of function components, which are described by the function components’ names and numbers. The components case represents the members. (function component and other structure components,main driven parameter, the number, and their constrain relations.) The component case (the lowest layer of the fixture) is the structure of function component and other components. In the modern fixture design there are lots of parametric standard parts and common non standard parts. So the component case library should record the specification parameter and the way in which it keeps them.2. Strategy of Case RetrievalIn the case based design of fixtures ,the most important thing is the retrieval of the similarity, which can help to obtain the most similar case, and to cut down the time of adaptation. According to the requirement of fixture design, the strategy of case retrieval combines the way of the nearest neighbor and knowledge guided. That is, first search on depth, then on breadth; the knowledge guided strategy means to search on the knowledge rule from root to the object, which is firstly searched by the fixture type, then by the shape of the workpiece, thirdly by the locating method. For example, if the case index code includes the milling fixture of fixture type, the search is just for all milling fixtures, then for box of workpiece shape, the third for 1plane+ 2pine of locating method. If there is no match of it, then the search stops on depth, and returns to the upper layer, and retrieves all the relative cases on breadth.2.1 Case adaptationThe modification of the analogical case in the fixture design includes the following three cases:1) The substitution of components and the component;2) Adjusting the dimension of components and the component while the form remains;3) The redesign of the model.If the components and component of the fixture are common objects, they can be edited, substituted and deleted with tools, which have been designed.2.2 Case storageBefore saving a new fixture case in the case library, the designer must consider whether the saving is valuable. If the case does not increase the knowledge of the system, it is not necessary to store it in the case library. If it is valuable, then the designer must analyze it before saving it to see whether the case is stored as a prototype case or as reference case. A prototype case is a representation that can describe the main features of a case family. A case family consists of those cases whose index codes have the same first 13 digits and different last three digits in the case library. The last three digits of a prototype case are always “000”. A reference case belongs to the same family as the prototype case and is distinguished by the different last three digits.From the concept that has been explained, the following strategies are adopted:1) If a new case matches any existing case family, it has the same first 13 digits as an existing prototype case, so the case is not saved because it is represented well by the prototype case. Or is just saved as a reference case (the last 3 digits are not “000”, and not the same with others) in the case library.2) If a new case matches any existing case family and is thought to be better at representing this case family than the previous prototype case, then the prototype case is substituted by this new case, and the previous prototype case is saved as a reference case.3) If a new case does not match any existing case family, a new case family will be generated automatically and the case is stored as the prototype case in the case library.3. ConclusionCBR, as a problem solving methodology, is a more efficient method than an expert system to simulate human thought, and has been developed in many domains where knowledge is difficult to acquire. The advantages of the CBR are as follows: it resembles human thought more closely; the building of a case library which has self learning ability by saving new cases is easier and faster than the building of a rule library; and it supports a better transfer and explanation of new knowledge that is more different than the rule library. A proposed fixture design framework on the CBR has been implemented by using Visual C ++, UG/Open API in U n graphics with Oracle as database support, which also has been integrated with the 32D parametric common component library, common components library and typical fixture library. The prototype system, developed here, is used for the aviation project, and aids the fixture designers to improve the design efficiency and reuse previous design resources.基于事例推理的夹具设计研究与应用夹具是以确定工件安全定位准确为目的的装置,并在加工过程中保持工件与刀具或机床的位置一致不变。

专业夹具设计全英文介绍

专业夹具设计全英文介绍
Automotive industry fixture design
high precision, high efficiency, and high reliability are required to meet the high standards of automotive manufacturing.
01
Introduction to Fixture Design
Fixture
A device or system used to hold an object or a group of objects in a fixed position or orientation
Function
To provide stability, support, and positioning accuracy for manufacturing processes, such as machining, assembly, inspection, and testing
Ease of Assembly
Improve the ease of assembly and disassembly for fast production and lower maintenance costs
03
Professional fixture design application
Durability
The fixture must be durable and able to stand the rigors of the manufacturing environment
manufacturing process
Identify the specific needs and requirements of the manufacturing process, including the type of workpiece, the manufacturing operations required, and the tolerance required for the final product

机械加工工艺夹具类外文文献翻译、中英文翻译、外文翻译

机械加工工艺夹具类外文文献翻译、中英文翻译、外文翻译

TOOL WEAR MECHANISMS ON THE FLANK SURFACE OF CUTTINGINSERTSFOR HIGH SPEED WET MACHINING5.1 IntroductionAlmost every type of machining such as turning, milling, drilling, grinding..., uses a cutting fluid to assist in the cost effective production of pa rts as set up standard required by the producer [1]. Using coolant with some cutting tools material causes severe failure due to the lack of their resistance to thermal shock (like AL2O3 ceramics), used to turn steel. Other cutting tools materials like cubic boron nitride (CBN) can be used without coolant, due to the type of their function. The aim of using CBN is to raise the temperature of the workpice to high so it locally softens and can be easily machined.The reasons behind using cutting fluids can be summarized as follows.® Extending the cutting tool life achieved by reducing heat generated and as a result less wear rate is achieved. It will also eliminate the heat from theshear zone and the formed chips.® Cooling the work piece of high quality materia l under operation plays an important role since thermal distortion of the surface and subsurfacedamage is a result of excessive heat that must be eliminated or largelyreduced to produce a high quality product.Reducing cutting forces by its lubricating e ffect at the contact interface region and washing and cleaning the cutting region during machining from small chips. The two main reasons for using cutting fluids are cooling and lubrication.Cutting Fluid as a Coolant:The fluid characteristics and condition of use determine the coolant action of the cutting fluid, which improves the heat transfer at the shear zone between the cutting edge, work piece, and cutting fluid. The properties of the coolant in this case must include a high heat capacity to carry away heat and good thermal conductivity to absorb the heat from the cutting region. The water-based coolant emulsion with its excellent high heat capacity is able to reduce tool wear [44]. Cutting Fluid as a Lubricant:The purpose is to reduce friction bet ween the cutting edge, rake face and the work piece material or reducing the cutting forces (tangential component). As the friction drops the heat generated isdropped. As a result, the cutting tool wear rate is reduced and the surface finish is improved.Cutting Fluid PropertiesFree of perceivable odorPreserve clarity throughout lifeKind and unirritated to skin and eyes.Corrosion protection to the machine parts and work piece.Cost effective in terms off tool life, safety, dilution ratio, and fluid lif e.[1]5.1.1 Cutting Fluid TypesThere are two major categories of cutting fluidsNeat Cutting OilsNeat cutting oils are poor in their coolant characteristics but have an excellent lubricity. They are applied by flooding the work area by a pump and re-circulated through a filter, tank and nozzles. This type is not diluted by water, and may contain lubricity and extreme-pressure additives to enhance their cutting performance properties. The usage of this type has been declining for their poor cooling ability, causing fire risk, proven to cause health and safety risk to the operator [1].® Water Based or Water Soluble Cutting FluidsThis group is subdivided into three categories:1.Emulsion ` mineral soluble' white-milky color as a result of emulsion of oil inwater. Contain from 40%-80% mineral oil and an emulsifying agent beside corrosion inhibitors, beside biocide to inhibit the bacteria growth.2.Micro emulsion `semi-synthetic' invented in 1980's, has less oil concentrationand/or higher emulsifier ratio 10%-40% oil. Due to the high levels ofemulsifier the oil droplet size in the fluid are smaller which make the fluid more translucent and easy to see the work piece during operation. Otherimportant benefit is in its ability to emulsify any leakage of oil from themachine parts in the cutting fluid, a corrosion inhibitors, and bacteria control.3.Mineral oil free `synthetic' is a mix of chemicals, water, bacteria control,corrosion inhibitors, and dyes. Does not contain any mineral oils, andprovides good visibility.23 to the work piece. bare in mind that the lack of mineral oil in this type of cuttingfluid needs to take more attention to machine parts lubrication since it should not leave an oily film on the machine parts, and might cause seals degradation due the lack of protection.5.1.2 Cutting Fluid SelectionMany factors influence the selection of cutting fluid; mainly work piece material, type of machining operation, machine tool parts, paints, and seals. Table 5-1 prepared at the machine tool industry res earch association [2] provides suggestions on the type of fluid to be used.5.1.3 Coolant ManagementTo achieve a high level of cutting fluids performance and cost effectiveness, a coolant recycling system should be installed in the factory. This system will reduce the amount of new purchased coolant concentrate and coolant disposable, which will reduce manufacturing cost. It either done by the company itself or be rented out, depends on the budget and management policy of the company [1].Table 5-1 Guide to the selection of cutting fluids for general workshop applications.Machining operation Workpiece materialFree machining and low - carbon Medium- Carbon steels High Carbon and alloy steels Stainlessand heattreated GrindingClear type soluble oil, semi synthetic or chemical Turning General purpose, soluble oil, semi synthetic or synthetic fluid Extreme-pressuresoluble oil,semi-synthetic orsyntheticfluid Milling General purpose, soluble oil, semi synthetic or synthetic Extreme- pressure soluble oil, semi- synthetic or synthetic Extreme-pressuresoluble oil,semi-synthetic orsyntheticfluid(neat cutting oilsmay beDrillingExtreme- pressure soluble oil, semi- synthetic or GearShapping Extreme-pressure soluble oil, Neat-cutting oils preferable HobbingExtreme-pressure soluble oil, semi-synthetic or synthetic fluid (neat cutting oils may be Neat-cutti ng oils BratchingExtreme-pressure soluble oil, semi-synthetic or synthetic fluid (neat Tapping Extreme-pressure soluble oil, semi-synthetic or Neat-cuttingpreferableNote: some entreis deliberately extend over two or more columns, indicating awide range of possible applications. Other entries are confined to a specific class of work material.Adopt ed f rom Edw ard and Wri ght [2]5.2 Wear Mechanisms Under Wet High Speed M achiningIt is a common belief that coolant usage in metal cutting reduces cuttingtemperature and extends tools life. However, this researchshowed that this is not necessarily true to be generalized overcutting inserts materials. Similar research was ca rried out ondifferent cutting inserts materials and cutting conditionssupporting our results. Gu et al [36] have recorded adifference in tool wear mechanisms between dry and wetcutting of C5 milling inserts. Tonshoff et al [44] alsoexhibited different wear mechanisms on AL 2O 3/TiC inserts inmachining ASTM 5115, when using coolants emulsionscompared to dry cutting. In addition, Avila and Abrao [20]experienced difference in wear mechanisms activated at theflank side, when using different coolants in t estingAL 2O 3lTiC tools in machining AISI4340 steel. The wearmechanisms and the behavior of the cutting inserts studied inthis research under wet high speed-machining (WHSM)condition is not fully understood. Therefore, it was theattempt of this research to focus on the contributions incoating development and coating techniques of newlydeveloped materials in order to upgrade their performance attough machining conditions. This valuable research providesinsight into production timesavings and increase inprofitability. Cost reductions are essential in the competitiveglobal economy; thus protecting local markets and consistingin the search of new ones.5.3 Experimental Observations on Wear Mechanisms of Un-CoatedCemented Carbide Cutting Inserts in High Speed WetMachiningIn this section, the observed wear mechanisms are presented of uncoated cemented carbide tool (KC313) in machining ASTM 4140 steel under wet condition. The overall performance of cemented carbide under using emulsion coolant has been improved in terms of extending tool life and reducing machining cost. Different types of wear mechanisms were activated at flank side of cutting inserts as a result of using coolant emulsion during machining processes. This was due to the effect of coolant in reducing the average temperature of the cutting tool edge and shear zone during machining. As a result abrasive wear was reduced leading longer tool life. The materials of cutting tools behave differently to coolant because of their varied resistance to thermal shock. The following observations recorded the behavior of cemented carbide during high speed machining under wet cutting.Figure5-1 shows the flank side of cutting inserts used at a cutting speed of 180m/min. The SEM images were recorded after 7 minutes of machining. It shows micro-abrasion wear, which identified by the narrow grooves along the flank side in the direction of metal flow, supported with similar observations documented by Barnes and Pashby [41] in testing through-coolant-drilling inserts of aluminum/SiC metal matrix composite. Since the cutting edge is the weakest part of the cutting insert geometry, edge fracture started first due to the early non-smooth engagement between the tool and the work piece material. Also, this is due to stress concentrations that might lead to a cohesive failure on the transient filleted flank cutting wedge region [51, 52]. The same image of micro-adhesion wear can be seen at the side and tool indicated by the half cone27 shape on the side of cutting tool. To investigate further, a zoom in view was taken atthe flank side with a magnification of 1000 times and presented in Figure 5-2A. It shows clear micro-abrasion wear aligned in the direction of metal flow, where the cobalt binder was worn first in a higher wear rate than WC grains which protruded as big spherical droplets. Figure 5-2B provides a zoom-in view that was taken at another location for the same flank side. Thermal pitting revealed by black spots in different depths and micro-cracks, propagated in multi directions as a result of using coolant. Therefore, theii~ial pitting, micro-adhesion and low levels of micro-abrasion activated under wet cutting; while high levels of micro-abrasion wear is activated under dry cutting (as presented in the prev ious Chapter).Figure 5-3A was taken for a cutting insert machined at 150mlmin. It shows a typical micro-adhesion wear, where quantities of chip metal were adhered at the flank side temporarily. Kopac [53] exhibited similar finding when testing HSS-TiN drill inserts in drilling SAE1045 steel. This adhered metal would later be plucked away taking grains of WC and binder from cutting inserts material and the process continues. In order to explore other types of wear that might exist, a zoom-in view with magnification of 750 times was taken as shown in Figure5-3B. Figure 5-3B show two forms of wears; firstly, micro-thermal cracks indicated by perpendicular cracks located at the right side of the picture, and supported with similar findings of Deamley and Trent [27]. Secondly, micro-abrasion wear at the left side of the image where the WC grains are to be plucked away after the cobalt binder was severely destroyed by micro-abrasion. Cobalt binders are small grains and WC is the big size grains. The severe distort ion of the binder along with the WC grains might be due to the activation of micro-adhesion and micro-abrasionFigure 5-1 SEM image of (KC313) showing micro abrasion and micro-adhesion (wet).SEM micrographs of (KC313) at 180m/min showing micro-abrasion where cobalt binder was worn first leaving protruded WC spherical droplets (wet).(a)SEM micrographs of (KC313) at 180m/min showing thermal pitting (wet).Figure 5-2 Magnified views of (KC313) under wet cutting: (a) SEM micrographs of (KC313) at 180mlmin showing micro-abrasion where cobalt binderwas worn first leaving protruded WC spherical droplets (wet ), (b) SEMmicrographs of (KC313) at 180.m/min showing thermal pitting (wet ).SEM image showing micro-adhesion wear mechanism under 150m/min (wet).(a)SEM image showing micro-thermal cracks, and micro-abrasion.Figure 5-3 Magnified views of (KC313) at 150m/min (wet): (a) SEM image showing micro-adhesion wear mechanism under 150m/min (wet), (b) SEM image showing micro-fatigue cracks, and micro-abrasion (wet).Wear at the time of cutting conditions of speed and coolant introduction. Therefore, micro-fatigue, micro-abrasion, and micro-adhesion wear mechanisms are activated under wet condition, while high levels of micro-abrasion were observed under dry one.Next, Figure 5-4A was taken at the next lower speed (120m/min). It shows build up edge (BUE) that has sustained its existence throughout the life of the cutting tool, similar to Huang [13], Gu et al [36] and Venkatsh et al [55]. This BUE has protected the tool edge and extended its life. Under dry cutting BUE has appeared at lower speeds (90 and 60 m/min), but when introducing coolant BUE started to develop at higher speeds, This is due to the drop in shear zone temperature that affected the chip metal fl ow over the cutting tool edge, by reducing the ductility to a level higher than the one existing at dry condition cutting. As a result, chip metal starts accumulating easier at the interface between metal chip flow, cutting tool edge and crater surface to form a BUE. In addition to BUE formation, micro-abrasion wear was activated at this speed indicated by narrow grooves.To explore the possibility of other wear mechanisms a zoom-in view with a magnification of 3500 times was taken and shown in Figure 5-4B. Micro- fatigue is evident by propagated cracks in the image similar to Deamley and Trent [27] finding. Furthermore, Figure 5-4B shows indications of micro-abrasion wear, revealed by the abrasion of cobalt binder and the remains of big protruded WC grains. However, the micro-abrasion appeared at this speed of 120m/min is less severe than the same type of micro-wear observed at 150m/min speed, supported with Barnes [41] similar findings. Therefore, micro-abrasion, BUE and micro-fatigue were activated under wet condition while, adhesion, high levels micro-abrasion, and no BUE were under dry cutting.SEM i m a g e o f(KC313) showing build up e d g e under 120m/min (wet).(a)SEM i m a g e o f(KC3 13) showing micro-fatigue, and micro-abrasion (wet). Figure 5-4 SEM images of (KC313) at 120m/min (wet), (a) SEM image of (KC313). showing build up edge, (b) SEM image of(K C313) showing micro-fatigue and micro-abrasion33 Figure 5-5 is for a cutting tool machined at 90m/min, that presents a goodcapture of one stage of tool life after the BUE has been plucked away. The bottom part of the flank side shows massive metal adhesion from the work piece material. The upper part of the figure at the edge shows edge fracture. To stand over the reason of edge fracture, the zoom-in view with magnification of 2000 times is presented in Figure 5-6A. The micro-fatigue crack image can be seen as well as micro-attrition revealed by numerous holes, and supported with Lim et al [31] observations on HSS-TiN inserts. As a result of BUE fracture from the cutting tool edge, small quantities from the cutting tool material is plucked away leaving behind numerous holes. Figure 5-6B is another zoom-in view of the upper part of flank side with a magnification of 1000 times and shows micro-abrasion wear indicated by the narrow grooves. Furthermore, the exact type of micro-wear mechanism appeared at the flank side under 60 m/min. Therefore, in comparison with dry cutting at the cutting speed of 90 m/min and 60 m/min, less micro-abrasion, bigger BUE formation, and higher micro-attrition rate were activated.Figure 5-5 SEM image showing tool edge after buildup edge was plucked away.SEM image showing micro-fatigue crack, and micro-attrition.(a)SEM image showing micro-abrasion.Figure 5-6 SEM images of (KC313) at 90m/min:(a) SEM image showing micro-fatigue crack, and micro-attrition, (b) SEM image showingmicro-abrasion.5.4 Experimental Observations on Wear Mechanisms of Coated CementedCarbide with TiN-TiCN-TiN Coating in High Speed WetMachiningInvestigating the wear mechanisms of sandwich coating under wet cutting is presented in this section starting from early stages of wear. Figure 5-7 shows early tool wear starting at the cutting edge when cutting at 410m/min. Edge fracture can be seen, it has started at cutting edge due to non-smooth contact between tool, work piece, micro-abrasion and stress concentrations. To investigate further the other possible reasons behind edge fracture that leads to coating spalling, a zoom-in view with magnification of 2000 times was taken and presented at Figure 5-8A. Coating fracture can be seen where fragments of TiN (upper coating) had been plucked away by metal chips. This took place as result of micro-abrasion that led to coating spalling. On the other hand, the edge is t he weakest part of the cutting insert geometry and works as a stress concentrator might lead to a cohesive failure on the transient filleted flank cutting wedge region [51, 52].Both abrasion wear and stress concentration factor leave a non-uniform edge configuration at the micro scale after machining starts. Later small metal fragments started to adhere at the developed gaps to be later plucked away by the continuous chip movement as shown in Figure 5-8A. Another view of edge fracture was taken of the same cutting tool with a magnification of 2000 times as shown in Figure 5-8B. It presents fracture and crack at the honed tool edge. A schematic figure indicated by Figure 5-9, presented the progressive coated cutting inserts failure starting at the insert edge. It was also noticed during the inserts test that failure takes place first at the inserts edge then progressed toward the flank side. Consequently, a study on optimizing the cutting edgeFigure 5-7 SEM image of (KC732) at 410m/min showing edge fractur e and micro-abrasion (wet).SEM image showing edge fracture.(a)SEM image showing fracture and crack at the honed insert edge.Figure 5-8 SEM of (KC732) at 410m/min and early wear stage (wet): (a) SEM image showing edge fracture, (b) SEM image showing fr acture and crack atthe honed insert edge.radius to improve coating adhesion, and its wear resistance, might be also a topic for future work.Figure 5-1.0A was taken after tool failure at a speed of 410m/min. It shows completely exposed substrate and severe sliding wear at the flank side. The coating exists at the crater surface and faces less wear than the flank side. Therefore it works as an upper protector for the cutting edge and most of the wear will take place at the flank side as sliding wear. Figu re 5-10B is a zoom-in view with magnification of 3500 times, and shows coating remaining at the flank side. Nonetheless, micro-abrasion and a slight tensile fracture in the direction of metalchip flow. Ezugwa et al [28] and Kato [32] have exhibited simila r finding. However, the tensile fracture in this case is less in severity than what had been observed at dry cutting. This is due to the contribution of coolant in dropping the cutting temperature, which has reduced the plastic deformation at high temperature as a result. Hence, in comparison with the dry cutting at the same speed, tensile fracture was available with less severity and micro-abrasion/sliding. However, in dry cutting high levels of micro-abrasion, high levels of tensile fracture and sliding wear occurred.Figure 5-11 was taken at early stages of wear at a speed of 360m/min. It shows sliding wear, coating spalling and a crack starting to develop between TiN and TiCN coating at honed tool edge. Figure5-12A shows nice presentation of what had been described earlier regarding the development of small fragments on the tool edge. The adhered metal fragments work along with micro-abrasion wear to cause coating spalling.SEM image showing sliding wear.(a)SEM image showing micro-abrasion and tensile fracture.Figure 5-10 SEM images of (KC732) at 410m/min after failure (wet): (a) SEM image showing sliding wear, (b) SEM image showing micro-abrasionand tensile fracture.Figure 5-11 SEM image at early stage of wear of 360m/min (wet) showing coating and spalling developing crack between TiN and TiCN layers.The size of the metal chip adhered at the edge is almost 15g. Since it is unstable it will be later plucked away taking some fragments of coatings with it and the process continues. Another zoom in view with a magnification of 5000 times for the same insert is shown in Figure 5-12B indicating a newly developed crack between the coating layers.Figure 5-13A is taken of the same insert after failure when machining at 360m/min and wet condition. Coating spalling, and sliding wear can be seen and indicated by narrow grooves. In addition, initial development of notch wear can be seen at the maximum depth of cut.Further investigation is carried out by taking a zoom in view with a magnification of 2000 times as shown in Figure 5-13B. A clear micro-abrasion wear and micro-fatigue cracks were developed as shown, which extended deeply through out the entire three coating layers deep until the substrate. Therefore, in comparison with dry cutting, micro-fatigue crack, less tensile fracture, less micro-abrasion wear were activated at wet cutting. While micro- fatigue crack, high levels of micro-abrasion, and high levels of tensile fracture are distinguish the type of wear under dry condition at the same cutting spee d.Next, Figure 5-14A is taken for cutting tools machined at 310m/min. The results are similar to the previous inserts machined at 360m/min, where adhesion of metal fragments occurred at the tool edge, sliding wear and coating spalling. In addition, the black spot appeared at the top of the figure on the crater surface is a void resulting from imperfections in the coating process. At this condition, the crater surface will be worn faster than the flank surface.SEM image showing adhered metal fragments at tool edge.(a)SEM image showing developed crack between coating layers.Figure 5-12 SEM image of (KC732) at early wear 360m/min (wet): (a) SEM image showing adhered metal fragments at tool edge, (b) SEM image showingdeveloped crack between coating layers.(a)SEM image showing coating spalling and sliding wear after tool failure(b)SEM image showing micro-abrasion, and micro-fatigue cracks developedbetween coating layersFigure 5-13 SEM image of KC732 after failure machined at 360m/min(b)(wet): (a) SEM image showing coating spalling and sliding wear after toolfailure, (b) SEM image showing micro-abrasion, and micro-fatiguecracks developed between coating layers.翻译:在高速潮湿机械加工条件下后刀面表层磨损机理5.1 介绍几乎每类型用机器制造譬如转动, 碾碎, 钻井, 研..., 使用切口流体协助零件的有效的生产当设定标准由生产商[ 1 ] 需要。

夹具设计中英文对照

夹具设计中英文对照

Optimization of fixture design with consideration of thermal deformation inface milling考虑端铣中热变形的最佳化夹具设计Huang, YingAbstract摘要Effective methods of fixture design are proposed to reduce machining error caused by cutting heat in face milling. Experiments show that thermal effect is critical to final error in the finish cut and that it dominates cutting accuracy. Therefore, a mathematical model is structured of the cutting heat source on behalf of the cutting tool, and the flatness error generation process in face finishing is demonstrated by computational simulation based on the moving cutting heat source model with FEW Concerning surface flatness due to the moving cutting heat source for relatively thin plate-shaped workpieces, different methodologies have been proposed to reduce flatness error, namely, the application of additional supports and optimization of the fixturing support layout. Cutting experiments and computational analyses show the effectiveness of the additional supports and the optimization methodology applied on the fixture design in view of flatness error due to cutting heat. The proposed methodologies are applicable and beneficial to improve cutting accuracy not only of plate-shaped workpieces but also of other geometry workpieces.用于减小端铣中因切削热而引起的加工误差的有效的夹具设计方法已经被提出。

夹具设计外文文献

夹具设计外文文献

以下是一篇关于夹具设计的外文文献示例:Title: Design and Optimization of Fixture for Manufacturing Systems: A ReviewAbstract: Fixtures play a critical role in manufacturing systems by securely holding the workpiece during various machining and assembly operations. It is essential to design efficient and effective fixtures to ensure accurate and reliable production processes. This paper presents a comprehensive review of fixture design and optimization techniques in manufacturing systems. Various methodologies, such as analytical, heuristic, and numerical approaches, are discussed. The paper also highlights the challenges and future research directions in fixture design and optimization.Keywords: fixture design, manufacturing systems, optimization, workpiece, machining, assemblyIntroduction: Fixtures are widely used in manufacturing systems to provide stability and positioncontrol for the workpiece during machining, welding, and assembly operations. The design and optimization of fixtures are critical for the overall performance and quality of the manufacturing process. This paper aims to review the existing literature on fixture design and optimization techniques to provide insights and guidelines for researchers and practitioners in the field.Methods: The review is based on a systematic analysis of published research articles, conference papers, and patents related to fixture design and optimization. Various search engines and databases were used to identify relevant literature. The selected papers were analyzed and categorized based on the methodology used, such as analytical, heuristic, and numerical approaches.Results: The review demonstrates that fixture design and optimization have been extensively studied in manufacturing systems. Analytical methods, such as mathematical modeling and kinematic analysis, arecommonly used for fixture layout and configuration design. Heuristic approaches, such as rule-based and expert system methods, provide intuitive and practical solutions for fixture design. Numerical optimization techniques, such as finite element analysis and genetic algorithms, offer advanced optimization methods for fixture design.Discussion: The review reveals several challenges in fixture design and optimization, such as the trade-off between fixture complexity and cost, the consideration of dynamic loading conditions, and the integration of advanced materials and technologies. Future research directions include the development of intelligent fixture systems, the application of virtual reality and augmented reality in fixture design, and the exploration of sustainable and eco-friendly fixture materials.Conclusion: Fixture design and optimization are crucial for manufacturing systems to achieve accurate and reliable production processes. This review providesa comprehensive overview of fixture design and optimization techniques in the existing literature. The findings can guide researchers and practitioners in the development of efficient and effective fixtures for manufacturing systems.该文献的详细信息和全文内容可能需要通过在线学术数据库或图书馆资源获取。

钻和镗机床夹具外文文献翻译、中英文翻译、外文翻译

钻和镗机床夹具外文文献翻译、中英文翻译、外文翻译

Northcott,W.H.A treatise on lathes and turning: simple, mechanical, and ornament-al[M].London:Longmans,Green,2010:104-112.Drilling and boring(Excerpts)Flat articles are most conveniently driven by the face-plate,and long articles by the screwed chuck.The manner of attaching work to the former depends altogether upon the shape of the article,and no description will give an idea of all the methods employed.The operator will very frequently have to devise means for attaching his work,but this is not at all difficult.Any means may be employed that will not twist or strain the article,or in revolvingcome in the way of the lathe-bed or tools.A set of bolts of various lengths and with T-heads will be veryuseful,and a set of four of the clamps at Fig.129 are exceedinglyconvenient.In using these,the work is held against the face-plate andthe bolts of the clamps are put into its most convenient slots.Thesmall screw is adjusted so as to raise the end of each clamp,rathermore than the thickness of the work off the face-plate,the large bolt being then tightened in all the four clamps,the work is pinched at four places between the face-plate and the ends of the clamps.It is generally necessary to bore holes as nearly as possible concentric with the rest of the work;for instance,when the article is a spur wheel or a pulley,it is necessary that the hole should be made concentric or true with the teeth of the wheel,or the face of the pulley;so that when the hole is made on driving the article,on a mandril the rim will run true,and will not require much to be turned off it,or more from one side than from another.When certain parts of articles have to remain unturned,it is a good plan to chuck the work true with those portions,without regarding those parts which have to be turned;so that ,when these points are rendered true by turning the whole article is nearly concentric.As the surface of the plate is quite true,it is evident that the surface of the article,or those points of the surface which are against the face-plate,will run true when the hole is bored and the work put on to the mandril.But there is no such guarantee that any part of the edge of the article will be true;it is therefore necessary,before tightening the bolts finally,to set the edge or rim true,in the same manner as when centering a piece of iron.That is,a piece of chalk is held against the work in motion,and,as those parts showing the chalk are the farthest from the centre,a tap with a hammer or mallet is given the article at those points,to drive them nearerthe centre of the lathe.This is repeated until the chalk touches either all round,or at opposite points,when the clamp bolts may be tightened and the boring commenced.When articles have to be true with their inside edges,it is evident that this operation must be reversed.Wherever the chalk shows,those points must be hammered away from the centre.It is a difficult matter for one pair of hands to hold work against the face-plate whilst putting in the bolts for fastening it on in place.Workmen are in the habit of keeping it temporarily in place by forcing it against the face-plate by the boring bit or drill and the centre of the moving headstock.This practice cannot altogether be recommended,as,besides a direct tendency to damage the points of the drill and of the centre,it is a very frequent occurrence for the whole—the work and drill to—come down with a run on to the lathe-bed or to the ground;and this leads to serious damage to all things concerned,as the workman will readily admit if his toes happen to be between the work and the ground.Other more careful workmen—if the work have a rough hole through it already—fasten the work temporarily to the face-plate by means of a bolt,screwing into the centre hole of the lathe-spindle,and a piece of straight iron with a hole through it,for a cross piece to span the hole.This practice is certainly all that can be desired,so far as both safety and convenience go;but it has one objection—the screwing and unscrewing of this bolt are apt to damage or wear the centre hole,and cause the centre to fit slackly.Probably the best plan,when chucking heavy work,is,either to put a block of woo-d of the right height under the work,or to remove the face-plate from the lathe,and lay it horizontal,with its face upwards,when the work may be fastened to it with ease and convenience.When the work is properly chucked,it is set in motion,and the place where the hole is to be commenced should be trued up.The boring-rest is then put in place,just in front of the work;care being taken not to put it near enough for the bolts in revolving to strike against it.There are two holes in this boring-rest;one—the large one—is for the boring bits,the small one is for the drills.One of these holes is placed just opposite the centre of the work,and the proper drill or bit is put through it;the other end of the bits is furnished with a centre mark,into which the centre of the moving headstock must be placed,and the cutting edge of the drill forced into the revolving work,by moving the hand-wheel and forcing out the screw.The rectangular hole in the boring-rest only prevents the bit from revolving;besides this,it has to be kept steady,especially at the commencement of the hole.If the hole be a small one,the boring-wrench is put on over the drill,and the other end of the lever forced down bythe workman's left hand.When the hole is a large one,the pressure thus obtained is not enough;but a larger lever of the same sort is then used,and a good heavy weight hung on to its end,and kept there whilst the bit is cutting its way through the hole.If the article be of wrought iron or steel,the cutting edge of the bit must be kept moist with soapsuds or soda-water;but with brass and cast-iron this is not required.In cutting large holes out of the solid,all the material cannot be removed by one instrument.A small drill must first be sent through,to be followed by a series of others,each taking an increasing cut,until the required size of the hole is nearly obtained,when the last bit should be carefully sent through;but it must not be made to take so heavy a cut as the bits preceding it.In taking a series of heavy cuts at the hole,the metal composing the—article especially if cast-iron or brass—will be rendered rather hot by the friction;it is,therefore,a good plan to allow the article to cool before passing through the finishing or last bit.If this be not done,and the hole is finished whilst the surrounding metal is hot,it will be found that when the metal has cooled,the finishing bit is unable to enter again owing to the contraction of the metal.It may,however,happen that the spindle to work into the hole has been made rather under the standard size.In this case it will be advisable to take advantage of this expansion and contraction of the metal,and make it subservient to our purpose,by boring the last cut but one with a dull bit,and taking a heavy cut.The metal will then be made very hot and the hole will expand;so that if the finishing bit be then quickly passed through the result will be that when the metal cools the hole will again contract,and form a closer fit with the spindle previously turned too small.These little facts are small in themselves;;but,by bearing them in mind,they may frequently be turned to useful account.It is scarcely necessary to observe that,in all cases,care must be taken not to exceed a certain heat,or to allow the work to get hot enough to lower the temper of the tool.Long cylindrical or other shaped articles,through which a holeis required,cannot be conveniently attached to the face-plate;andtherefore,for these articles,the screwed or bell-chuck, Fig.121,isused.The chuck being put on the lathe-spindle,the article isinserted between the screws,which are then screwed down to encompass and tightly hold it.The beginner will,probably,have some little difficulty in adjusting these screws so as to hold the work true;but the matter is much simplified by trueing the inside set of screws first,and afterwards adjusting the outside ones.These screws should be set down tight enough to prevent the article slipping or moving about;but if when the hole is made the material will be thin,care should be taken not to set the screws down tighter than necessary,as otherwise the metal will be compressed,and the hole rendered out of shape in their neighbourhood.When the articles to be drilled are too long for this chuck alone,the ends are turned up true for an inch or two;and one end is then chucked true,and held between the outside set only of the screws of the chuck,whilst the other end is supported by being run in the die-stay.This is fastened to the lathe-bed,at the proper place,and a wooden or metal bearing,having a hole the same size as the end of the work,is put into the V's,and adjusted so as to bring the centre of the work in the line of lathe-centres.The lathe isthen set in motion,and the hole drilled in the usual manner.For these long articles the best tool I know of is the D-bit,shown at Fig.124.Thistool is not half so much used as it ought to be,and,when used it is in conjunction with several other drills,and in such a roundabout manner that very few have patience touse it at all.These other drills are,however quite unnecessary after the D-bit is once started.The best manner of proceeding is as follows:First,place the boring-rest in position,and with an ordinary drill,of the same size as the D-bit,drill out a recess about1/8 or 1/4 of an inch in depth;remove the boring-rest,place the centre mark at the endof the D-bit,against the centre of the headstock,and screw up carefully until the drill isin-to cut;the hole may then be bored through with ease and the certainty of its being true.The drill must be kept well lubricated with soda-water and oil,and occasionally removed,and the hole cleared of shavings.If the hole be more than a foot long,it will be better to drill it half from each end;and,if great truth be required,two of these drills should be used as in the other cases,As in long holes it is rather difficult to keep drills well moistened,the workman will find it a good plan to have a small syringe,and inject or squirt the lubricant into the hole with force;by so doing,not only will the drill be kept wet,but the shavings will,in a great measure,be washed out and the hole cleared.On comparing the D form of drill with others,it will be found that the cutting edge is only equal to half the diameter of the hole;at the same time the drill stem is strong and well able to stand torsional strain,to which drills are mostly subject.In the ordinary drill,the cutting edge is equal to about one and a half diameters of the hole,whilst the stem is not nearly so well calculated to bear the strain.It therefore appears reasonable to conclude that the D-bit is better adapted than the others to cut a long hole out of the solid,or indeed to cut a long hole out at all;and this is found to be the case.I have had considerable practice with this drill,and have so much confidence in its powers that I would undertake,with it alone,to drill a one-inch hole through a shaft thirty orforty feet long.Holes required to be very smooth and straight,or require to be very slightly enlarged,are ground on a lead or copper lap,Fig.128.Also in the of articles which have been hardened or case hardened,the action of the fire is sure to have had a effect uponthe hole.In some cases the hole is bent;in others,the surface is rather blistered;in all cases it is rendered somewhat rough.All imperfections are removed by grinding the holeon a lap.The method of using these laps is very simple:they are put between the lathe-centres,and driven by a lathe-carrier in the ordinary way.The laps'surface is covered with a coat of fine emery powder and oil;the former may be caused to stick tothe lead by being slightly forced into it by a few taps with a hammer.The hole is then put on the lap,which is set in rapid rotation,and the article moved up and down;and,being prevented from moving around with the lap,the inside of the hole is ground by the adhering emery.The emery and oil must be continually replenished,and the surface of the lap kept moist with it,as,if allowed to get dry,the two surfaces will bind or cling to each other,and abrasion will result.If the article be heavy,precaution should be taken of turning it over,so as to grind every portion of the hole alike;otherwise the weight of the article,pressing all on one side of the hole,will cause it to be ground more on that side than the others,and the hole will be rendered non-circular.Care must also be taken to keep the middle of the lap well supplied with emery,and not to grind one end or the two ends of the hole larger than the middle.This,however,is a very common occurrence,and requires some little address to get over.Where practicable,it is also advisable to reverse the direction the lathe occasionally,as sometimes,in lapping out a hole,the hole will draw itself onwards,and the workman's whole force will be insufficient to prevent its tightening itself on and binding.In this case,the best way is to either let the work go around with the lap,and to immediately stop the lathe and drive the work back with a mallet before it gets cool and contracts firmly on to the lap;or to reverse the direction of the lathe,when the hole will generally run back of its own accord,unless it is gone on too far and become tight.It is sometimes a very difficult matter to get work off a lap when the grinding surfaces have allowed to get dry and to abrade themselves.威廉·亨利·诺斯考特.论车床和车削:简单,机械,装饰[M].伦敦:朗文公司,2010:104-112.钻和镗(摘录)平的制品最方便的驱动是通过面板,长的制品用螺纹卡盘。

车床机床夹具类外文文献翻译、中英文翻译、外文翻译

车床机床夹具类外文文献翻译、中英文翻译、外文翻译

中北大学信息商务学院本科毕业设计英文参考资料题目 Lathes系名专业姓名学号指导教师2016年6 月2 日译文标题车床简介原文标题Lathes作者(Serope kalpakjian)译名卡尔帕基安国籍美国原文出处/原文:LathesLathes are machine tools designed primarily to do turning, facing and boring, Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathes also can do drilling and reaming, their versatility permits several operations to be done with a single setup of the work piece. Consequently, more lathes of various types are used in manufacturing than any other machine tool.The essential components of a lathe are the bed, headstock assembly, tailstock assembly, and the leads crew and feed rod.The bed is the backbone of a lathe. It usually is made of well normalized or aged gray or nodular cast iron and provides s heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Some makers use an inverted V-shape for all four ways, whereas others utilize one inverted V and one flat way in one or both sets, They are precision-machined to assure accuracy of alignment. On most modern lathes the way are surface-hardened to resist wear and abrasion, but precaution should be taken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed.The headstock is mounted in a foxed position on the inner ways, usually at the left end of the bed. It provides a powered means of rotating the word at various speeds . Essentially, it consists of a hollow spindle, mounted in accurate bearings, and a set of transmission gears-similar to a truck transmission—through which the spindle can be rotated at a number of speeds. Most lathes provide from 8 to 18 speeds, usually in a geometric ratio, and on modern lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives.Because the accuracy of a lathe is greatly dependent on the spindle, it is of heavyconstruction and mounted in heavy bearings, usually preloaded tapered roller or ball types. The spindle has a hole extending through its length, through which long bar stock can be fed. The size of maximum size of bar stock that can be machined when the material must be fed through spindle.The tailsticd assembly consists, essentially, of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon, with a means for clamping the entire assembly in any desired location, An upper casting fits on the lower one and can be moved transversely upon it, on some type of keyed ways, to permit aligning the assembly is the tailstock quill. This is a hollow steel cylinder, usually about 51 to 76mm(2to 3 inches) in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a hand wheel and screw.The size of a lathe is designated by two dimensions. The first is known as the swing. This is the maximum diameter of work that can be rotated on a lathe. It is approximately twice the distance between the line connecting the lathe centers and the nearest point on the ways, The second size dimension is the maximum distance between centers. The swing thus indicates the maximum work piece diameter that can be turned in the lathe, while the distance between centers indicates the maximum length of work piece that can be mounted between centers.Engine lathes are the type most frequently used in manufacturing. They areheavy-duty machine tools with all the components described previously and have power drive for all tool movements except on the compound rest. They commonly range in size from 305 to 610 mm(12 to 24 inches)swing and from 610 to 1219 mm(24 to 48 inches) center distances, but swings up to 1270 mm(50 inches) and center distances up to3658mm(12 feet) are not uncommon. Most have chip pans and a built-in coolant circulating system. Smaller engine lathes-with swings usually not over 330 mm (13 inches ) –also are available in bench type, designed for the bed to be mounted on a bench on a bench or cabinet.Although engine lathes are versatile and very useful, because of the time required for changing and setting tools and for making measurements on the work piece, thy are not suitable for quantity production. Often the actual chip-production tine is less than 30% of the total cycle time. In addition, a skilled machinist is required for all the operations, and such persons are costly and often in short supply. However, much of the operator’s time is consumed by simple, repetitious adjustments and in watching chips being made. Consequently, to reduce or eliminate the amount of skilled labor that is required, turret lathes, screw machines, and other types of semiautomatic and automatic lathes have been highly developed and are widely used in manufacturing.2 Numerical ControlOne of the most fundamental concepts in the area of advanced manufacturing technologies is numerical control (NC). Prior to the advent of NC, all machine tools ere manually operated and controlled. Among the many limitations associated with manual control machine tools, perhaps none is more prominent than the limitation of operator skills. With manual control, the quality of the product is directly related to and limited to the skills of the operator. Numerical control represents the first major step away from human control of machine tools.Numerical control means the control of machine tools and other manufacturing systems through the use of prerecorded, written symbolic instructions. Rather than operating a machine tool, an NC technician writes a program that issues operational instructions to the machine tool. For a machine tool to be numerically controlled, it must be interfaced with a device for accepting and decoding the programmed instructions, known as a reader.Numerical control was developed to overcome the limitation of human operators, and it has done so. Numerical control machines are more accurate than manually operated machines, they can produce parts more uniformly, they are faster, and the long-run tooling costs are lower. The development of NC led to the development of several other innovations in manufacturing technology:Electrical discharge machining,Laser cutting,Electron beam welding.Numerical control has also made machine tools more versatile than their manually operated predecessors. An NC machine tool can automatically produce a wide of parts, each involving an assortment of widely varied and complex machining processes. Numerical control has allowed manufacturers to undertake the production of products that would not have been feasible from an economic perspective using manually controlled machine tolls and processes.Like so many advanced technologies, NC was born in the laboratories of the Massachusetts Institute of Technology. The concept of NC was developed in the early 1950s with funding provided by the U.S. Air Force. In its earliest stages, NC machines were able to made straight cuts efficiently and effectively.However, curved paths were a problem because the machine tool had to be programmed to undertake a series of horizontal and vertical steps to produce a curve. The shorter the straight lines making up the steps, the smoother is the curve, Each line segment in the steps had to be calculated.This problem led to the development in 1959 of the Automatically Programmed Tools (APT) language. This is a special programming language for NC that uses statementssimilar to English language to define the part geometry, describe the cutting tool configuration, and specify the necessary motions. The development of the APT language was a major step forward in the fur ther development from those used today. The machines had hardwired logic circuits. The instructional programs were written on punched paper, which was later to be replaced by magnetic plastic tape. A tape reader was used to interpret the instructions written on the tape for the machine. Together, all of this represented a giant step forward in the control of machine tools. However, there were a number of problems with NC at this point in its development.A major problem was the fragility of the punched paper tape medium. It was common for the paper tape containing the programmed instructions to break or tear during a machining process. This problem was exacerbated by the fact that each successive time a part was produced on a machine tool, the paper tape carrying the programmed instructions had to be rerun through the reader. If it was necessary to produce 100 copies of a given part, it was also necessary to run the paper tape through the reader 100 separate tines. Fragile paper tapes simply could not withstand the rigors of a shop floor environment and this kind of repeated use.This led to the development of a special magnetic plastic tape. Whereas the paper carried the programmed instructions as a series of holes punched in the tape, the plastic tape carried the instructions as a series of magnetic dots. The plastic tape was much stronger than the paper tape, which solved the problem of frequent tearing and breakage. However, it still left two other problems.The most important of these was that it was difficult or impossible to change the instructions entered on the tape. To made even the most minor adjustments in a program of instructions, it was necessary to interrupt machining operations and make a new tape. It was also still necessary to run the tape through the reader as many times as there were parts to be produced. Fortunately, computer technology became a reality and soon solved the problems of NC associated with punched paper and plastic tape.The development of a concept known as direct numerical control (DNC) solved the paper and plastic tape problems associated with numerical control by simply eliminating tape as the medium for carrying the programmed instructions. In direct numerical control, machine tools are tied, via a data transmission link, to a host computer. Programs for operating the machine tools are stored in the host computer and fed to the machine tool an needed via the data transmission linkage. Direct numerical control represented a major step forward over punched tape and plastic tape. However, it is subject to the same limitations as all technologies that depend on a host computer. When the host computer goes down, the machine tools also experience downtime. This problem led to the development of computernumerical control.3 TurningThe engine lathe, one of the oldest metal removal machines, has a number of useful and highly desirable attributes. Today these lathes are used primarily in small shops where smaller quantities rather than large production runs are encountered.Th e engine lathe has been replaced in today’s production shops by a wide variety of automatic lathes such as automatic of single-point tooling for maximum metal removal, and the use of form tools for finish on a par with the fastest processing equipment on the scene today.Tolerances for the engine lathe depend primarily on the skill of the operator. The design engineer must be careful in using tolerances of an experimental part that has been produced on the engine lathe by a skilled operator. In redesigning an experimental part for production, economical tolerances should be used.Turret Lathes Production machining equipment must be evaluated now, more than ever before, this criterion for establishing the production qualification of a specific method, the turret lathe merits a high rating.In designing for low quantities such as 100 or 200 parts, it is most economical to use the turret lathe. In achieving the optimum tolerances possible on the turrets lathe, the designer should strive for a minimum of operations.Automatic Screw Machines Generally, automatic screw machines fall into several categories; single-spindle automatics, multiple-spindle automatics and automatic chucking machines. Originally designed for rapid, automatic production of screws and similar threaded parts, the automatic screw machine has long since exceeded the confines of this narrow field, and today plays a vital role in the mass production of a variety of precision parts. Quantities play an important part in the economy of the parts machined on the automatic screw machine. Quantities less than on the automatic screw machine. The cost of the parts machined can be reduced if the minimum economical lot size is calculated and the proper machine is selected for these quantities.Automatic Tracer Lathes Since surface roughness depends greatly on material turned, tooling , and feeds and speeds employed, minimum tolerances that can be held on automatic tracer lathes are not necessarily the most economical tolerances.In some cases, tolerances of 0.05mm are held in continuous production using but one cut . groove width can be held to 0.125mm on some parts. Bores and single-point finishes can be held to 0.0125mm. On high-production runs where maximum output is desirable, a minimum tolerance of 0.125mm is economical on both diameter and length of turn。

夹具设计中英文对照

夹具设计中英文对照

Optimization of fixture design with consideration of thermal deformation inface milling考虑端铣中热变形的最佳化夹具设计Huang, YingAbstract摘要Effective methods of fixture design are proposed to reduce machining error caused by cutting heat in face milling. Experiments show that thermal effect is critical to final error in the finish cut andthat it dominates cutting accuracy. Therefore, a mathematical model is structured of the cutting heat source on behalf of the cutting tool, and the flatness error generation process in face finishing is demonstrated by computational simulation based on the moving cutting heat source model with FEW Concerning surface flatness due to the moving cutting heat source for relatively thin plate-shaped workpieces, different methodologies have been proposed to reduce flatness error, namely, the application of additional supports and optimization of the fixturing support layout. Cutting experiments and computational analyses show the effectiveness of the additional supports and the optimization methodology applied on the fixture design in view of flatness error due to cutting heat. The proposed methodologies are applicable andbeneficial to improve cutting accuracy not only of plate-shaped workpieces but also of other geometry workpieces.用于减小端铣中因切削热而引起的加工误差的有效的夹具设计方法已经被提出。

专业夹具设计外文翻译.doc

专业夹具设计外文翻译.doc

译文标题精密机械加工工艺原文标题Precision Machining Technology作者Peter J. Hoffman 译名彼得·J·霍夫曼国籍美国原文出处Cengage Learning译文:在机械加工过程中,工件受到切削力、离心力、惯性力等的作用,为了保证在这些外力作用下,工件仍能在夹具中保持已由定位元件确定的加工位置,而不致发生振动或位移、夹具结构中应设置夹紧装置将工件可靠夹牢。

一、夹紧装置的组成夹紧装置的种类很多,但其结构均由两部分组成。

1 .动力装置夹紧力的来源,一是人力;二是某种装置所产生的力。

能产生力的装置称为夹具的动力装置。

常用的动力装置有:气动装置、液压装置、电动装置、电磁装置、气—液联动装置和真空装置等。

由于手动夹具的夹紧力来自人力,所以它没有动力装置。

2 .夹紧部分接受和传递原始作用力使之变为夹紧力并执行夹紧任务的部分,一般由下列机构组成:1 )接受原始作用力的机构。

如手柄、螺母及用来连接气缸活塞杆的机构等。

2)中间递力机构。

如铰链、杠杆等。

3 )夹紧元件。

如各种螺钉压板等。

其中中间递力机构在传递原始作用力至夹紧元件的过程中可以起到诸如改变作用力的方向、改变作用力的大小以及自锁等作用。

二、夹紧装置的基本要求在不破坏工件定位精度,并保证加工质量的前提下,应尽量使夹紧装置做到:1.夹紧力的大小适当。

既要保证工件在整个加工过程中其位置稳定不变、振动小,又要使工件不产生过大的夹紧变形。

2 .工艺性好。

夹紧装置的复杂程度应与生产纲领相适应,在保证生产效率的前提下,其结构应力求简单,便于制造和维修。

3 .使用性好。

夹紧装置的操作应当方便、安全、省力。

三、基本夹紧机构原始作用力转化为夹紧力是通过夹紧机构来实现的。

在众多的夹紧机构中以斜楔、螺旋、偏心以及由它们组合而成的夹紧机构应用最为普遍。

(一)紧机构 采用斜传力元紧元紧机斜楔 机构。

直接采用,斜楔条件是:斜楔的升角小于斜楔与工 件、斜 具的摩擦角之和。

一种自动化夹具设计方法机械加工工艺外文文献翻译、中英文翻译、外文翻译

一种自动化夹具设计方法机械加工工艺外文文献翻译、中英文翻译、外文翻译
第2步:确定方向和夹紧力。输入必要的加工方向向量mdv1,mdv2……mdvn,面对nvs的支持力,并确定法向量。如果加工方向向下(对应的方向向量[0,0,-1]),和面的支持向量平行于加工方向,那么,夹紧力方向平行向下加工方向[0,0,-1]。如果必需要侧面夹紧并没有可夹紧的地方,那么在其中放置一个夹具夹紧下调,然后边钳方向计算如下。让sv和tv辅助常规的向量代替次要的和三级定位孔。然后,使用夹紧机构夹紧一个方向,例如,av应平行于这两个法向量,即,正常向量应分别与每块表面的sv和tv向量平行。侧面夹紧面应该是一对分别平行于面sv和tv的平面孔。
图1 夹具设计方法图
3.判断夹具尺寸
在这项工作中所用到的夹具都来自一个系列。夹具的原理与图二相同。在这一节里,描述了一个自动化夹具。锁模力所需的有关螺杆的螺纹装置大小或保存到位钳。夹紧力平衡加工工件使工件保持恰当的位置。让锁模力为W和螺杆直径为D。各种螺丝夹紧力大小,可以按以下方式确定:最初,极限拉伸强度(抗拉强度)和该夹具的材料(供应情况而定)可以从数据检索库检索。各种材料有不同的拉伸强度。该夹具材料的选择,也可直接采用启发式规则进行。例如,如果部分材料是低碳钢,那么钳材料可低碳钢或机器钢。为了确定设计应力,抗拉强度值应除以安全系数(如4或5)。根区的螺丝格A1(如一个螺丝钳)可以被确定:[锁模力/设计应力]。随后,螺栓截面全面积可以计算为等于{格A1 /(65%),}(因为螺丝的地方可能会发生根切面积约为65%螺栓的总面积) 。螺钉的直径D可以被确定等同于(D2的3.14 / 4)。另一项涉及可用于方程有关的宽度B,高度H和跨度的钳L的螺丝直径为D(B,H和L可以为不同的值计算D):d2=4/3BH2/L.
中国地质大学长城学院
本科毕业设计外文资料翻译

中英文文献翻译-切削加工工序和夹具设计

中英文文献翻译-切削加工工序和夹具设计

英文原文Cutting process and fixture designMachine tools have evolved from the early foot-powered lathes of the Egyptians and John Wilkinson's boring mill. They are designed to provide rigid support for both the workpiece and the cutting tool and can precisely control their relative positions and the velocity of the tool with respect to the workpiece. Basically, in metal cutting, a sharpened wedge-shaped tool removes a rather narrow strip of metal from the surface of a ductile workpiece in the form of a severely deformed chip. The chip is a waste product that is considerably shorter than the workpiece from which it came but with a corresponding increase in thickness of the uncut chip. The geometrical shape of workpiece depends on the shape of the tool and its path during the machining operation.Most machining operations produce parts of differing geometry. If a rough cylindrical workpiece revolves about a central axis and the tool penetrates beneath its surface and travels parallel to the center of rotation, a surface of revolution is produced, and the operation is called turning. If a hollow tube is machined on the inside in a similar manner, the operation is called boring. Producing an external conical surface uniformly varying diameter is called taper turning, if the tool point travels in a path of varying radius, a contoured surface like that of a bowling pin can be produced; or, if the piece is short enough and the support is sufficiently rigid, a contoured surface could be produced by feeding a shaped tool normal to the axis of rotation. Short tapered or cylindrical surfaces could also be contour formed.Flat or plane surfaces are frequently required. They can be generated by radial turning or facing, in which the tool point moves normal to the axis of rotation. In other cases, it is more convenient to hold the workpiece steady and reciprocate the tool across it in a series of straight-line cuts with a crosswise feed increment before each cutting stroke. This operation is called planning and is carried out on a shaper. For larger pieces it is easier to keep the tool stationary and draw the workpiece under it as in planning. The tool is fed at each reciprocation. Contoured surfaces can be produced by using shaped tools.Multiple-edged tools can also be used. Drilling uses a twin-edged fluted tool for holes with depths up to 5 to 10 times the drill diameter. Whether thedrill turns or the workpiece rotates, relative motion between the cutting edge and the workpiece is the important factor. In milling operations a rotary cutter with a number of cutting edges engages the workpiece. Which moves slowly with respect to the cutter. Plane or contoured surfaces may be produced, depending on the geometry of the cutter and the type of feed. Horizontal or vertical axes of rotation may be used, and the feed of the workpiece may be in any of the three coordinate directions.Basic Machine ToolsMachine tools are used to produce a part of a specified geometrical shape and precise I size by removing metal from a ductile material in the form of chips. The latter are a waste product and vary from long continuous ribbons of a ductile material such as steel, which are undesirable from a disposal point of view, to easily handled well-broken chips resulting from cast iron. Machine tools perform five basic metal-removal processes: I turning, planning, drilling, milling, and grinding. All other metal-removal processes are modifications of these five basic processes. For example, boring is internal turning; reaming, tapping, and counter boring modify drilled holes and are related to drilling; bobbing and gear cutting are fundamentally milling operations; hack sawing and broaching are a form of planning and honing; lapping, super finishing. Polishing and buffing are variants of grinding or abrasive removal operations. Therefore, there are only four types of basic machine tools, which use cutting tools of specific controllable geometry: 1. lathes, 2. planers, 3. drilling machines, and 4. milling machines. The grinding process forms chips, but the geometry of the abrasive grain is uncontrollable.The amount and rate of material removed by the various machining processes may be I large, as in heavy turning operations, or extremely small, as in lapping or super finishing operations where only the high spots of a surface are removed.A machine tool performs three major functions: 1. it rigidly supports the workpiece or its holder and the cutting tool; 2. it provides relative motion between the workpiece and the cutting tool; 3. it provides a range of feeds and speeds usually ranging from 4 to 32 choices in each case.Speed and Feeds in MachiningSpeeds, feeds, and depth of cut are the three major variables for economical machining. Other variables are the work and tool materials, coolant and geometry of the cutting tool. The rate of metal removal and power required for machining depend upon these variables.The depth of cut, feed, and cutting speed are machine settings that must be established in any metal-cutting operation. They all affect the forces, the power, and the rate of metal removal. They can be defined by comparing them to the needle and record of a phonograph. The cutting speed (V) is represented by the velocity of- the record surface relative to the needle in the tone arm at any instant. Feed is represented by the advance of the needle radially inward per revolution, or is the difference in position between two adjacent grooves. The depth of cut is the penetration of the needle into the record or the depth of the grooves.Turning on Lathe CentersThe basic operations performed on an engine lathe are illustrated. Those operations performed on external surfaces with a single point cutting tool are called turning. Except for drilling, reaming, and lapping, the operations on internal surfaces are also performed by a single point cutting tool.All machining operations, including turning and boring, can be classified as roughing, finishing, or semi-finishing. The objective of a roughing operation is to remove the bulk of the material as rapidly and as efficiently as possible, while leaving a small amount of material on the work-piece for the finishing operation. Finishing operations are performed to obtain the final size, shape, and surface finish on the workpiece. Sometimes a semi-finishing operation will precede the finishing operation to leave a small predetermined and uniform amount of stock on the work-piece to be removed by the finishing operation.Generally, longer workpieces are turned while supported on one or two lathe centers. Cone shaped holes, called center holes, which fit the lathe centers are drilled in the ends of the workpiece-usually along the axis of the cylindrical part. The end of the workpiece adjacent to the tailstock is always supported by a tailstock center, while the end near the headstock may be supported by a headstock center or held in a chuck. The headstock end of the workpiece may be held in a four-jaw chuck, or in a type chuck. This method holds the workpiece firmly and transfers the power to the workpiece smoothly; the additional support to the workpiece provided by the chuck lessens the tendency for chatter to occur when cutting. Precise results can be obtained with this method if care is taken to hold the workpiece accurately in the chuck.Very precise results can be obtained by supporting the workpiece between two centers. A lathe dog is clamped to the workpiece; together they are driven by a driver plate mounted on the spindle nose. One end of the Workpiece is mecained;then the workpiece can be turned around in the lathe to machine the other end. The center holes in the workpiece serve as precise locating surfaces as well as bearing surfaces to carry the weight of the workpiece and to resist the cutting forces. After the workpiece has been removed from the lathe for any reason, the center holes will accurately align the workpiece back in the lathe or in another lathe, or in a cylindrical grinding machine. The workpiece must never be held at the headstock end by both a chuck and a lathe center. While at first thought this seems like a quick method of aligning the workpiece in the chuck, this must not be done because it is not possible to press evenly with the jaws against the workpiece while it is also supported by the center. The alignment provided by the center will not be maintained and the pressure of the jaws may damage the center hole, the lathe center, and perhaps even the lathe spindle. Compensating or floating jaw chucks used almost exclusively on high production work provide an exception to the statements made above. These chucks are really work drivers and cannot be used for the same purpose as ordinary three or four-jaw chucks.While very large diameter workpieces are sometimes mounted on two centers, they are preferably held at the headstock end by faceplate jaws to obtain the smooth power transmission; moreover, large lathe dogs that are adequate to transmit the power not generally available, although they can be made as a special. Faceplatejaws are like chuck jaws except that they are mounted on a faceplate, which has less overhang from the spindle bearings than a large chuck would have.I ntroduction of MachiningMachining as a shape-producing method is the most universally used and the most important of all manufacturing processes. Machining is a shape-producing process in which a power-driven device causes material to be removed in chip form. Most machining is done with equipment that supports both the work piece and cutting tool although in some cases portable equipment is used with unsupported workpiece.Low setup cost for small Quantities. Machining has two applications in manufacturing. For casting, forging, and press working, each specific shape to be produced, even one part, nearly always has a high tooling cost. The shapes that may he produced by welding depend to a large degree on the shapes of raw material that are available. By making use of generally high cost equipment but without special tooling, it is possible, by machining; to start with nearly any form of raw material, so tong as the exterior dimensions are great enough, and produce any desired shape from any material. Therefore .machining is usually the preferred method for producing one or a few parts, even when the design of the part would logically lead to casting, forging or press working if a high quantity were to be produced.Close accuracies, good finishes. The second application for machining is based on the high accuracies and surface finishes possible. Many of the parts machined in low quantities would be produced with lower but acceptable tolerances if produced in high quantities by some other process. On the other hand, many parts are given their general shapes by some high quantity deformation process and machined only on selected surfaces where high accuracies are needed. Internal threads, for example, are seldom produced by any means other than machining and small holes in press worked parts may be machined following the press working operations.Primary Cutting ParametersThe basic tool-work relationship in cutting is adequately described by means of four factors: tool geometry, cutting speed, feed, and depth of cut.The cutting tool must be made of an appropriate material; it must be strong, tough, hard, and wear resistant. The tool s geometry characterized by planes and angles, must be correct for each cutting operation. Cutting speed is the rate at which the work surface passes by the cutting edge. It may be expressed in feet per minute.For efficient machining the cutting speed must be of a magnitude appropriate to the particular work-tool combination. In general, the harder the work material, the slower the speed.Feed is the rate at which the cutting tool advances into the workpiece. "Where the workpiece or the tool rotates, feed is measured in inches per revolution. When the tool or the work reciprocates, feed is measured in inches per stroke, Generally, feed varies inversely with cutting speed for otherwise similar conditions.The depth of cut, measured inches is the distance the tool is set into the work. It is the width of the chip in turning or the thickness of the chip in a rectilinear cut. In roughing operations, the depth of cut can be larger than for finishing operations.The Effect of Changes in Cutting Parameters on Cutting TemperaturesIn metal cutting operations heat is generated in the primary and secondary deformation zones and these results in a complex temperature distribution throughout the tool, workpiece and chip. A typical set of isotherms is shown in figure where it can be seen that, as could be expected, there is a very large temperature gradient throughout the width of the chip as the workpiece material is sheared in primary deformation and there is a further large temperature in the chip adjacent to the face as the chip is sheared in secondary deformation. This leads to a maximum cutting temperature a short distance up the face from the cutting edge and a small distance into the chip.Since virtually all the work done in metal cutting is converted into heat, it could be expected that factors which increase the power consumed per unit volume of metal removed will increase the cutting temperature. Thus an increase in the rake angle, all other parameters remaining constant, will reduce the power per unit volume of metal removed and the cutting temperatures will reduce. When considering increase in unreformed chip thickness and cutting speed the situation is more complex. An increase in undeformed chip thicknesstends to be a scale effect where the amounts of heat which pass to the workpiece, the tool and chip remain in fixed proportions and the changes in cutting temperature tend to be small. Increase in cutting speed; however, reduce the amount of heat which passes into the workpiece and this increase the temperature rise of the chip m primary deformation. Further, the secondary deformation zone tends to be smaller and this has the effect of increasing the temperatures in this zone. Other changes in cutting parameters have virtually no effect on the power consumed per unit volume of metal removed and consequently have virtually no effect on the cutting temperatures. Since it has been shown that even small changes in cutting temperature have a significant effect on tool wear rate it is appropriate to indicate how cutting temperatures can be assessed from cutting data.The most direct and accurate method for measuring temperatures in high -speed-steel cutting tools is that of Wright &. Trent which also yields detailed information on temperature distributions in high-speed-steel cutting tools. The technique is based on the metallographic examination of sectioned high-speed-steel tools which relates microstructure changes to thermal history.Trent has described measurements of cutting temperatures and temperature distributions for high-speed-steel tools when machining a wide range of workpiece materials. This technique has been further developed by using scanning electron microscopy to study fine-scale microstructure changes arising from over tempering of the tempered martens tic matrix of various high-speed-steels. This technique has also been used to study temperature distributions in both high-speed -steel single point turning tools and twist drills.Wears of Cutting ToolDiscounting brittle fracture and edge chipping, which have already been dealt with, tool wear is basically of three types. Flank wear, crater wear, and notch wear. Flank wear occurs on both the major and the minor cutting edges. On the major cutting edge, which is responsible for bulk metal removal, these results in increased cutting forces and higher temperatures which if left unchecked can lead to vibration of the tool and workpiece and a condition where efficient cutting can no longer take place. On the minor cutting edge, which determines workpiece size and surface finish, flank wear can result in an over sized product which has poor surface finish. Under most practical cutting conditions, the tool will fail due to major flank wear before the minor flank wear is sufficiently large to result in the manufacture of an unacceptable component.Because of the stress distribution on the tool face, the frictional stress in the region of sliding contact between the chip and the face is at a maximum at the start of the sliding contact region and is zero at the end. Thus abrasive wear takes place in this region with more wear taking place adjacent to the seizure region than adjacent to the point at which the chip loses contact with the face. This result in localized pitting of the tool face some distance up the face which is usually referred to as catering and which normally has a section in the form of a circular arc. In many respects and for practical cutting conditions, crater wear is a less severe form of wear than flank wear and consequently flank wear is a more common tool failure criterion. However, since various authors have shown that the temperature on the face increases more rapidly with increasing cutting speed than the temperature on the flank, and since the rate of wear of any type is significantly affected by changes in temperature, crater wear usually occurs at high cutting speeds.At the end of the major flank wear land where the tool is in contact with the uncut workpiece surface it is common for the flank wear to be more pronounced than along the rest of the wear land. This is because of localised effects such as a hardened layer on the uncut surface caused by work hardening introduced by a previous cut, an oxide scale, and localised high temperatures resulting from the edge effect. This localised wear is usually referred to as notch wear and occasionally is very severe. Although the presence of the notch will not significantly affect the cutting properties of the tool, the notch is often relatively deep and if cutting were to continue there would be a good chance that the tool would fracture.If any form of progressive wear allowed to continue, dramatically and the tool would fail catastrophically, i. e. the tool would be no longer capable of cutting and, at best, the workpiece would be scrapped whilst, at worst, damage could be caused to the machine tool. For carbide cutting tools and for all types of wear, the tool is said to have reached the end of its useful life long before the onset of catastrophic failure. For high-speed-steel cutting tools, however, where the wear tends to be non-uniform it has been found that the most meaningful and reproducible results can be obtained when the wear is allowed to continue to the onset ofcatastrophic failure even though, of course, in practice a cutting time far less than that to failure would be used. The onset of catastrophic failure is characterized by one of several phenomena, the most common being a sudden increase in cutting force, the presence of burnished rings on the workpiece, and a significant increase in the noise level.Mechanism of Surface Finish ProductionThere are basically five mechanisms which contribute to the production of a surface which have been machined. These are:(l) The basic geometry of the cutting process. In, for example, single point turning the tool will advance a constant distance axially per revolution of the work price and the resultant surface will have on it, when viewed perpendicularly to the direction of tool feed motion, a series of cusps which will have a basic form which replicates the shape of the tool in cut.(2) The efficiency of the cutting operation. It has already been mentioned that cutting with unstable built-up-edges will produce a surface which contains hard built-up-edge fragments which will result in a degradation of the surface finish. It can also be demonstrated that cutting under adverse conditions such as apply when using large feeds small rake angles and low cutting speeds, besides producing conditions which lead to unstable built-up-edge production, the cutting process itself can become unstable and instead of continuous shear occurring in the shear zone, tearing takes place, discontinuous chips of uneven thickness are produced, and the resultant surface is poor. This situation is particularly noticeable when machining very ductile materials such as copper and aluminum.(3) The stability of the machine tool. Under some combinations of cutting conditions; workpiece size, method of clamping ,and cutting tool rigidity relative to the machine tool structure, instability can be set up in the tool which causes it to vibrate. Under some conditions this vibration will reach and maintain steady amplitude whilst under other conditions the vibration will built up and unless cutting is stopped considerable damage to both the cutting tool and workpiece may occur. This phenomenon is known as chatter and in axial turning is characterized by long pitch helical bands on the workpiece surface and short pitch undulations on the transient machined surface.(4)The effectiveness of removing swarf. In discontinuous chip production machining, such as milling or turning of brittle materials, it is expected that the chip (swarf) will leave the cutting zone either under gravity or with the assistance of a jet of cutting fluid and that they will not influence the cut surface in any way. However, when continuous chip production is evident, unless steps are taken to control the swarf it is likely that it will impinge on the cut surface and mark it. Inevitably, this marking besides looking.(5)The effective clearance angle on the cutting tool. For certain geometries of minor cutting edge relief and clearance angles it is possible to cut on the major cutting edge and burnish on the minor cutting edge. This can produce a good surface finish but, of course, it is strictly a combination of metal cutting and metal forming and is not to be recommended as a practical cutting method. However, due to cutting tool wear, these conditions occasionally arise and lead to a marked change in the surface characteristics.Limits and TolerancesMachine parts are manufactured so they are interchangeable. In other words, each part of a machine or mechanism is made to a certain size and shape so will fit into any other machine or mechanism of the same type. To make the part interchangeable, each individual part must be made to a size that will fit the mating part in the correct way. It is not only impossible, but also impractical to make many parts to an exact size. This is because machines are not perfect, and the tools become worn. A slight variation from the exact size is always allowed. The amount of this variation depends on the kind of part being manufactured. For examples part might be made 6 in. long with a variation allowed of 0.003 (three-thousandths) in. above and below this size. Therefore, the part could be 5.997 to 6.003 in. and still be the correct size. These are known as the limits. The difference between upper and lower limits is called the tolerance.A tolerance is the total permissible variation in the size of a part.The basic size is that size from which limits of size arc derived by the application of allowances and tolerances.Sometimes the limit is allowed in only one direction. This is known as unilateral tolerance.Unilateral to learning is a system of dimensioning where the tolerance (that is variation) is shown in only one direction from the nominal size. Unilateral to learning allow the changing of tolerance on a hole or shaft without seriously affecting the fit.When the tolerance is in both directions from the basic size it is known as a bilateral tolerance (plus and minus).Bilateral to learning is a system of dimensioning where the tolerance (that is variation) is split and is shown on either side of the nominal size. Limit dimensioning is a system of dimensioning where only the maximum and minimum dimensions arc shown. Thus, the tolerance is the difference between these two dimensions.Surface Finishing and Dimensional ControlProducts that have been completed to their proper shape and size frequently require some type of surface finishing to enable them to satisfactorily fulfill their function. In some cases, it is necessary to improve the physical properties of the surface material for resistance to penetration or abrasion. In many manufacturing processes, the product surface is left with dirt .chips, grease, or other harmful material upon it. Assemblies that are made of different materials, or from the same materials processed in different manners, may require some special surface treatment to provide uniformity of appearance.Surface finishing may sometimes become an intermediate step processing. For instance, cleaning and polishing are usually essential before any kind of plating process. Some of the cleaning procedures are also used for improving surface smoothness on mating parts and for removing burrs and sharp corners, which might be harmful in later use. Another important need for surface finishing is for corrosion protection in a variety of: environments. The type of protection procedure will depend largely upon the anticipated exposure, with due consideration to the material being protected and the economic factors involved.Satisfying the above objectives necessitates the use of main surface-finishing methods that involve chemical change of the surface mechanical work affecting surface properties, cleaning by a variety of methods, and the application of protective coatings, organic and metallic.In the early days of engineering, the mating of parts was achieved by machining one part as nearly as possible to the required size, machining the mating part nearly to size, and then completing its machining, continually offering the other part to it, until the desired relationship was obtained. If it was inconvenient to offer one part to the other part during machining, the final work was done at the bench by a fitter, who scraped the mating parts until the desired fit was obtained, the fitter therefore being a 'fitter' in the literal sense. J It is obvious that the two parts would have to remain together, and m the event of one having to be replaced, the fitting would have to be done all over again. In these days, we expect to be able to purchase a replacement for a broken part, and for it to function correctly without the need for scraping and other fitting operations.When one part can be used 'off the shelf' to replace another of the same dimension and material specification, the parts are said to be interchangeable. A system of interchangeability usually lowers the production costs as there is no need for an expensive, 'fiddling' operation, and it benefits the customer in the event of the need to replace worn parts.Automatic Fixture DesignTraditional synchronous grippers for assembly equipment move parts to the gripper center-line, assuring that the parts will be in a known position after they arc picked from a conveyor or nest. However, in some applications, forcing the part to the center-line may damage cither the part or equipment. When the part is delicate and a small collision can result in scrap, when its location is fixed by a machine spindle , or when tolerances are tight, it is preferable to make a gripper comply with the position of the part, rather than the other way around. For these tasks, zaytran Inc. Of Elyria, Ohio, has created the GPN series of non- synchronous, compliant grippers. Because the force and synchronizations systems of the grippers are independent, the synchronization system can be replaced by a precision slide system without affecting gripper force. Gripper sizes range from 51b gripping force and 0.2 in. stroke to 40Glb gripping force and 6in stroke. Grippers。

机械加工夹具毕业外文翻译、加工基础外文文献翻译、中英文翻译

机械加工夹具毕业外文翻译、加工基础外文文献翻译、中英文翻译

山东轻工业学院中英文翻译专业:机械电子工程本姓名:准考证号:外文出处:(用外文写)附件: 1.外文资料翻译译文;2.外文原文。

Introduction of MachiningHave a shape as a processing method, all machining process for the production of the most commonly used and most important method. Machining process is a process generated shape, in this process, Drivers device on the workpiece material to be in the form of chip removal. Although in some occasions, the workpiece under no circumstances, the use of mobile equipment to the processing, however, the majority of the machining is not only supporting the workpiece also supporting tools and equipment to complete.Machining know the process has two aspects. Small group of low-cost production. For casting, forging and machining pressure, every production of a specific shape of the workpiece, even a spare part, almost have to spend the high cost of processing. Welding to rely on the shape of the structure, to a large extent, depend on effective in the form of raw materials. In general, through the use of expensive equipment and without special processing conditions, can be almost any type of raw materials, mechanical processing to convert the raw materials processed into the arbitrary shape of the structure, as long as the external dimensions large enough, it is possible. Because of a production of spare parts, even when the parts and structure of the production batch sizes are suitable for the original casting, Forging or pressure processing to produce, but usually prefer machining.Strict precision and good surface finish, machining the second purpose is the establishment of the high precision and surface finish possible on the basis of. Many parts, if any other means of production belonging to the large-scale production, Well Machining is a low-tolerance and can meet the requirements of small batch production. Besides, many parts on the production and processing of coarse process to improve its general shapeof the surface. It is only necessary precision and chooses only the surface machining. For instance, thread, in addition to mechanical processing, almost no other processing method for processing. Another example is the blacksmith pieces keyhole processing, as well as training to be conducted immediately after the mechanical completion of the processing.Primary Cutting ParametersCutting the work piece and tool based on the basic relationship between the following four elements to fully describe: the tool geometry, cutting speed, feed rate, depth and penetration of a cutting tool.Cutting Tools must be of a suitable material to manufacture, it must be strong, tough, hard and wear-resistant. Tool geometry -- to the tip plane and cutter angle characteristics -- for each cutting process must be correct.Cutting speed is the cutting edge of work piece surface rate; it is inches per minute to show. In order to effectively processing, and cutting speed must adapt to the level of specific parts -- with knives. Generally, the more hard work piece material, the lower the rate.Progressive Tool to speed is cut into the work piece speed. If the work piece or tool for rotating movement, feed rate per round over the number of inches to the measurement. When the work piece or tool for reciprocating movement and feed rate on each trip through the measurement of inches. Generally, in other conditions, feed rate and cutting speed is inversely proportional to。

夹具类外文文献翻译——集成和信息辅助夹具设计与制造

夹具类外文文献翻译——集成和信息辅助夹具设计与制造

附录附录1:外文翻译集成和信息辅助夹具设计与制造F. MERVYN, A. SENTHIL KUMAR* and A. Y. C NEE虽然大量的研究已应用于开发计算机辅助夹具设计系统,但夹具设计制造领域和其他领域之间的信息交换并没有彻底处理。

本文针对这一差距,在夹具设计中通过应用适当的信息模型研究计算机辅助夹具设计系统和集成支持制造业。

夹具设计的模型主要是介绍有关夹具设计,以及其他设计和制造活动。

对应用在XML的信息模型和信息交流中的一个基于XML的消息传递模型的方法进行了讨论。

关键词:夹具设计,综合设计和制造;信息建模;1.介绍在一个旨在降低产品交货时间和成本以及提高产品质量的过程中,企业寻求各种工程所涉及的一体化进程设计和制造产品。

适当的整合将允许在一个产品实现涉及领域作出的决定适用于其他领域的需要,导致整体的最优解设计和制造产品。

计算机辅助系统发挥了关键作用在于协助不同领域开展工作。

开发集成设计和制造系统的一个关键成功因素在于能在各种电脑辅助系统的信息进行交流。

夹具设计领域的发展已出现大量的电脑辅助系统的应用。

在制造过程设备服务于持有目的工件和保持一个安全方面的一致关系的工具。

已通过各种办法发展半自动化,自动化夹具设计系统。

张毕(2001)努力提出的这些最新成果。

尽管通过大量的研究,适应各域之间的信息和其他制造业领域的交流,但是需求并没有得到彻底处理。

适当的夹具设计信息模型描述知识和技术规格将有助于大大提高产品质量和缩短产品交货时间。

本文的目的是要为解决通过对相应的信息化辅助模式的夹具设计系统,并支持集成设计和制造。

该这项工作的范围只限于加工装置本文组织如下:第2条的有关研究进行讨论在发展生产的信息模型;第3条提出了一个活动模型夹具设计;第4给出了不同的夹具设计信息模式,以支持集成设计和制造,而第5条提出了一个使用XML的例子,实现了信息模型。

第6节介绍交流信息的夹具设计方法为基础上的信息模型和第7条最后的文件。

6102曲轴工艺及夹具设计外文献英文

6102曲轴工艺及夹具设计外文献英文

6102曲轴工艺及夹具设计外文献英文黑龙江八一农垦大学毕业论文(设计)Process Planning and Concurrent EngineeringT. Ramayah and Noraini IsmailABSTRACTThe product design is the plan for the product and its components and subassemblies. To convert the product design into a physical entity, a manufacturing plan is needed. The activity of developing such a planis called process planning. It is the link between product design and manufacturing. Process planning involves determining the sequence of processing and assembly steps that must be accomplished to make the product. In the present chapter, we examine processing planning and several related topics.1.Process PlanningProcess planning involves determining the most appropriate manufacturing and assembly processes and the sequence in which they should be accomplished to produce a given part or product according to specifications set forth in the product design documentation. The scope and variety of processes that can be planned are generally limited by the available processing equipment and technological capabilities of the company of plant. Parts that cannot be made internally must be purchased from outside vendors. It should be mentioned that the choice ofprocesses is also limited by the details of the product design. This is a point we will return to later.Process planning is usually accomplished by manufacturing engineers. The process planner must be familiar with the particular manufacturing processes available in the factory and be able to interpret engineering drawings. Base d on the planner’s knowledge, skill, and experience, the processing steps are developed in the most logical sequence to make each part. Following is a list of the many decisions and details usually include within the scope of process planning..Interpretation of design drawings. The part of product design must be analyzed (materials, dimensions, tolerances, surface finished, etc.) at the start of the process planning procedure..Process and sequence. The process planner must select which processes are required and their sequence. A brief description of processing steps must be prepared..Equipment selection. In general, process planners must developplans that utilize existing equipment in the plant. Otherwise, the component must be purchased, or an investment must be made in new equipment.- 1 -黑龙江八一农垦大学毕业论文(设计).Tools, dies, molds, fixtures, and gages. The process must decide what tooling is required for each processing step. The actual design and fabrication of these tools is usually delegated to a tool designdepartment and tool room, or an outside vendor specializing in that type of tool is contacted..Methods analysis. Workplace layout, small tools, hoists for lifting heavy parts, even in some cases hand and body motions must be specified for manual operations. The industrial engineering department is usually responsible for this area..Work standards. Work measurement techniques are used to set time s .Cutting tools and cutting conditions. These must be specified for machining operations, often with reference to standard handbook recommendations.2.Process planning for partsFor individual parts, the processing sequence is documented on aform called a route sheet. Just as engineering drawings are used to specify the product design, route sheets are used to specify the process plan. They are counterparts, one for product design, the other for manufacturing.A typical processing sequence to fabricate an individual part consists of: (1) a basic process, (2) secondary processes, (3) operations to enhance physical properties, and (4) finishing operations.A basic process determines the starting geometry of the work parts. Metal casting, plastic molding, and rolling of sheet metal are examples of basic processes. The starting geometry must often be refined by secondary processes, operations that transform the starting geometry (or close to final geometry). The secondary geometry processes that might beused are closely correlated to the basic process that provides the starting geometry. When sand casting is the basic processes, machining operations are generally the second processes. When a rolling mill produces sheet metal, stamping operations such as punching and bending are the secondary processes. When plastic injection molding is the basic process, secondary operations are often unnecessary, because most of the geometric features that would otherwise require machining can be created by the molding operation. Plastic molding and other operation that require no subsequent secondary processing are called net shape processes. Operations that require some but not much secondary processing (usually machining) are referred to as near net shape processes. Some impression die forgings are in this category. These parts can often be shaped in the forging operation (basic processes) so that minimal machining (secondary processing) is required.Once the geometry has been established, the next step for some parts is to improve their mechanical and physical properties. Operations to enhance properties do not alter the geometry of the part; instead, they alter physical properties. Heat treating operations on metal parts are the most common examples. Similar heating treatments are performed on glass to produce tempered glass. For- 2 -黑龙江八一农垦大学毕业论文(设计)most manufactured parts, these property-enhancing operations are not required in the processing sequence.Finally finish operations usually provide a coat on the work parts (or assembly) surface. Examples included electroplating, thin film deposition techniques, and painting. The purpose of the coating is to enhance appearance, change color, or protect the surface from corrosion, abrasion, and so forth. Finishing operations are not required on many parts; for example, plastic molding rarely require finishing. When finishing is required, it is usually the final step in the processing sequen 3.Processing Planning for AssembliesThe type of assembly method used for a given product depends onfactors such as: (1) the anticipated production quantities; (2) complexity of the assembled product, for example, the number of distinct components; and (3) assembly processes used, for example, mechanical assembly versus welding. For a product that is to be made in relatively small quantities, assembly is usually performed on manual assembly lines. For simple products of a dozen or so components, to be made in large quantities, automated assembly systems are appropriate. In any case, there is a precedence order in which the work must be accomplished. The precedence requirements are sometimes portrayed graphically on a precedence diagram.Process planning for assembly involves development of assembly instructions, but in more detail .For low production quantities, the entire assembly is completed at a single station. For high production on an assembly line, process planning consists of allocating work elements to the individual stations of the line, a procedure called linebalancing. The assembly line routes the work unit to individual stations in the proper order as determined by the line balance solution. As in process planning for individual components, any tools and fixtures required to accomplish an assembly task must be determined, designed, built, and the workstation arrangement must be laid out. 4.Make or Buy DecisionAn important question that arises in process planning is whether a given part should be produced in the company’s own factory or purchased from an outside vendor, and the answer to this question is known as the make or buy decision. If the company does not possess the technological equipment or expertise in the particular manufacturing processesrequired to make the part, then the answer is obvious: The part must be purchased because there is no internal alternative. However, in many cases, the part could either be made internally using existing equipment, or it could be purchased externally from a vendor that process similar manufacturing capability.- 3 -黑龙江八一农垦大学毕业论文(设计)In our discussion of the make or buy decision, it should be recognized at the outset that nearly all manufactures buy their raw materials from supplies. A machine shop purchases its starting bar stock from a metals distributor and its sand castings from a foundry. Aplastic molding plant buys its molding compound from a chemical company.A stamping press factory purchases sheet metal either fro a distributoror direct from a rolling mill. Very few companies are vertically integrated in their production operations all the way from raw materials, it seems reasonable to consider purchasing at least some of the partsthat would otherwise be produced in its own plant. It is probably appropriate to ask the make or buy question for every component that is used by the company.There are a number of factors that enter into the make or buy decision. One would think that cost is the most important factor in determining whether to produce the partor purchase it. If an outside vendor is more proficient than the company’s own plant in the manufacturing processes used to make the part, then the internal production cost is likely to be greater than the purchase price even after the vendor has included a profit. However, if the decision to purchase results in idle equipment and labor in the company’s own plant, then the apparent advantage of purchasing the p art may be lost. Consider the following example make or Buy Decision.The quoted price for a certain part is $20.00 per unit for 100 units. The part can be produced in the company’s own plant for $28.00. The components of making the part are as follows:Unit raw material cost = $8.00 per unitDirect labor cost =6.00 per unitLabor overhead at 150%=9.00 per unitEquipment fixed cost =5.00 per unitTotal =28.00 per unitShould the component by bought or made in-house?Solution: Although the vendor’s q uote seems to favor a buy decision, let us consider the possible impact on plant operations if the quote is accepted. Equipment fixed cost of $5.00 is an allocated cost based on investment that was already made. If the equipment designed for this job becomes unutilized because of a decision to purchase the part, then the fixed cost continues even if the equipment stands idle. In the same way, the labor overhead cost of $9.00 consists of factory space, utility, and labor costs that remain even if the part is purchased. By this reasoning, a buy decision is not a good decision because it might be cost the company as much as $20.00+$5.0+$9.00=$34.00 per- 4 -黑龙江八一农垦大学毕业论文(设计)unit if it results in idle time on the machine that would have been used to produce the part. On the other hand, if the equipment inquestion can be used for the production of other parts for which the in-house costs are less than the corresponding outside quotes, then a buy decision is a good decision.Make or buy decision are not often as straightforward as in this example. A trend in recent years, especially in the automobile industry, is for companies to stress the importance of building closerelationships with parts suppliers. We turn to this issue in our later discussion of concurrent engineering.5. Computer-aided Process PlanningThere is much interest by manufacturing firms in automating the task of process planning using computer-aided process planning (CAPP) systems. The shop-trained people who are familiar with the details of machining and other processes are gradually retiring, and these people will be available in the future to do process planning. An alternative way of accomplishing this function is needed, and CAPP systems are providingthis alternative. CAPP is usually considered to be part of computer-aided manufacturing (CAM). However, this tends to imply that CAM is a stand-along system. In fact, a synergy results when CAM is combined with computer-aided design to create a CAD/CAM system. In such a system, CAPP becomes the direct connection between design and manufacturing. The benefits derived from computer-automated process planning include the following:.Process rationalization and standardization. Automated process planning leads to more logical and consistent process plans than when process is done completely manually. Standard plans tend to result in lower manufacturing costs and higher product quality..Increased productivity of process planner. The systematic approach and the availability of standard process plans in the data files permit more work to be accomplished by the process planners..Reduced lead time for process planning. Process planner workingwith a CAPP system can provide route sheets in a shorter lead time compared to manual preparation..Improved legibility. Computer-prepared rout sheets are neater and easier to read than manually prepared route sheets..Incorporation of other application programs. The CAPP program canbe interfaced with other application programs, such as cost estimating and work standards.6. Concurrent Engineering and Design for Manufacturing- 5 -黑龙江八一农垦大学毕业论文(设计)Concurrent engineering refers to an approach used in product development in which the functions of design engineering, manufacturing engineering, and other functions are integrated to reduce the elapsed time required to bring a new product to market. Also called simultaneous engineering, it might be thought of as the organizational counterpart to CAD/CAM technology. In the traditional approach to launching a new product, the two functions of design engineering and manufacturing engineering tend to be separated and sequential, as illustrated inFig.(1).(a).The product design department develops the new design, sometimes without much consideration given to the manufacturing capabilities of the company, There is little opportunity for manufacturing engineers to offer advice on how the design might be alerted to make it more manufacturability. It isas if a wall exits between design and manufacturing. When the design engineering department completes the design, it tosses the drawings and specifications over the wall, and only then does process planning begin.- 6 -黑龙江八一农垦大学毕业论文(设计)Fig.(1). Comparison: (a) traditional product development cycle and (b) product development using concurrent engineeringBy contrast, in a company that practices concurrent engineering, the manufacturing engineering department becomes involved in the product development cycle early on, providing advice on how the product and its components can be designed to facilitate manufacture and assembly. It also proceeds with early stages of manufacturing planning for the product. This concurrent engineering approach is pictured in Fig.(1).(b).In addition to manufacturing engineering, other function are also involved in the product development cycle, such as quality engineering, the manufacturing departments, field service, vendors supplying critical components, and in some cases the customer who will use the product. All if these functions can make contributions during product development to improve not only the new product’s function and performance, but also its produceability, inspectability, testability, serviceability, and maintainability. Through early involvement, as opposed- 7 -黑龙江八一农垦大学毕业论文(设计)to reviewing the final product design after it is too late to conveniently make any changes in the design, the duration of the product development cycle is substantially reduced.Concurrent engineering includes several elements: (1) design for several manufacturing and assembly, (2) design for quality, (3) design for cost, and (4) design for life cycle. In addition, certain enabling technologies such as rapid prototyping, virtual prototyping, and organizational changes are required to facilitate the concurrent engineering approach in a company.7. Design for Manufacturing and AssemblyIt has been estimated that about 70% of the life cycle cost of a product is determined by basic decisions made during product design. These design decisions include the material of each part, part geometry, tolerances, surface finish, how parts are organized into subassemblies,and the assembly methods to be used. Once these decisions are made, the ability to reduce the manufacturing cost of the product is limited. For example, if the product designer decides that apart is to be made of an aluminum sand casting but which processes features that can be achieved only by machining(such as threaded holes and close tolerances), the manufacturing engineer has no alternative expect to plan a process sequence that starts with sand casting followed by the sequence of machining operations needed to achieve the specified features .In this example, a better decision might be to use a plastic molded part that can be made in a single step. It is important for the manufacturing engineer to be given the opportunity to advice the design engineer as the product design is evolving, to favorably influence the manufacturability of the product.Term used to describe such attempts to favorably influence the manufacturability of a new product are design for manufacturing (DFM) and design for assembly(DFA). Of course, DFM and DFA are inextricably linked, so let us use the term design for manufacturing and assembly (DFM/A). Design for manufacturing and assembly involves the systematic consideration of manufacturability and assimilability in the development of a new product design. This includes: (1) organizational changes and (2) design principle and guidelines..Organizational Changes in DFM/A. Effective implementation of DFM/A involves making changes in a company’s organization structure, either formally or informally, so that closer interaction and bettercommunication occurs between design and manufacturing personnel. This can be accomplished in several ways: (1)by creating project teams consisting of product designers, manufacturing engineers, and other specialties (e.g. quality engineers, material scientists) to develop the new product design; (2) by requiring design engineers to spend some career time in manufacturing to witness first-hand how manufacturability and assembility are impacted by a product’s design; and (3)by assigning manufacturing engineers to the product design department on either a temporary or full-time basis to serve as reducibility consultants.- 8 -黑龙江八一农垦大学毕业论文(设计).Design Principles and Guidelines. DFM/A also relies on the use of design principles and guidelines for how to design a given product to maximize manucturability and assembility. Some of these are universal design guidelines that can be applied to nearly any product design situation. There are design principles that apply to specific processes, and for example, the use of drafts or tapers in casted and molded parts to facilitate removal of the part from the mold. We leave these more process-specific guidelines to texts on manufacturing processes.The guidelines sometimes conflict with one another. One of the guidelines is to “simplify part geometry, avoid unnecessary features”. But another guidelin e in the same table states that “special geometric features must sometimes be added to components” to design the product for foolproofassembly. And it may also be desirable to combine features ofseveral assembled parts into one component to minimize the number of parts in the product. In these instances, design for part manufacture is in conflict with design for assembly, and a suitable compromise must be found between the opposing sides of the conflict.- 9 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A review and analysis of current computer-aided fixture design approachesIain Boyle, Yiming Rong, David C. BrownKeywords:Computer-aided fixture designFixture designFixture planningFixture verificationSetup planningUnit designABSTRACTA key characteristic of the modern market place is the consumer demand for variety. To respond effectively to this demand, manufacturers need to ensure that their manufacturing practices are sufficiently flexible to allow them to achieve rapid product development. Fixturing, which involves using fixtures to secure work pieces during machining so that they can be transformed into parts that meet required design specifications, is a significant contributing factor towards achieving manufacturing flexibility. To enable flexible fixturing, considerable levels of research effort have been devoted to supporting the process of fixture design through the development of computer-aided fixture design (CAFD) tools and approaches. This paper contains a review of these research efforts. Over seventy-five CAFD tools and approaches are reviewed in terms of the fixture design phases they support and the underlying technology upon which they are based. The primary conclusion of the review is that while significant advances have been made in supporting fixture design, there are primarily two research issues that require further effort. The first of these is that current CAFD research is segmented in nature and there remains a need to provide more cohesive fixture design support. Secondly, a greater focus is required on supporting the detailed design of a fixture’s physical structure.2010 Elsevier Ltd. All rights reserved. Contents1. Introduction (2)2. Fixture design (2)3. Current CAFD approaches (4)3.1 Setup planning (4)3.1.1 Approaches to setup planning (4)3.2 Fixture planning (4)3.2.1 Approaches to defining the fixturing requirement (6)3.2.2 Approaches to non-optimized layout planning (6)3.2.3 Approaches to layout planning optimization (6)3.3 Unit design (7)3.3.1 Approaches to conceptual unit design (7)3.3.2 Approaches to detailed unit design (7)3.4 Verification (8)3.4.1 Approaches to constraining requirements verification (8)3.4.2 Approaches to tolerance requirements verification (8)3.4.3 Approaches to collision detection requirements verification (8)3.4.4 Approaches to usability and affordability requirements verification (9)3.5 Representation of fixturing information (9)4. An analysis of CAFD research (9)4.1 The segmented nature of CAFD research (9)4.2 Effectively supporting unit design (10)4.3 Comprehensively formulating the fixturing requirement (10)4.4 Validating CAFD research outputs (10)5. Conclusion (10)References (10)1. IntroductionA key concern for manufacturing companies is developing the ability to design and produce a variety of high quality products within short timeframes. Quick release of a new product into the market place, ahead of any competitors, is a crucial factor in being able to secure a higher percentage of the market place and increased profit margin. As a result of the consumer desire for variety, batch production of products is now more the norm than mass production, which has resulted in the need for manufacturers to develop flexible manufacturing practices to achieve a rapid turnaround in product development.A number of factors contribute to an organization’s ability to achieve flexible manufacturing, one of which is the use of fixtures during production in which work pieces go through a number of machining operations to produce individual parts which are subsequently assembled into products. Fixtures are used to rapidly, accurately, and securely position work pieces during machining such that all machined parts fall within the design specifications for that part. This accuracy facilitates the interchangeability of parts that is prevalent in much of modern manufacturing where many different products feature common parts.The costs associated with fixturing can account for 10–20% of the total cost of a manufacturing system [1]. These costs relate not only to fixture manufacture, assembly, and operation, but also to their design. Hence there are significant benefits to be reaped by reducing the design costs associated with fixturing and two approaches have been adopted in pursuit of this aim. One has concentrated on developing flexible fixturing systems, such as the use of phase-changing materials to hold work pieces in place [2] and the development of commercial modular fixture systems. However, the significant limitation of the flexible fixturing mantra is that it does not address the difficulty of designing fixtures. To combat this problem, a second research approach has been to develop computer-aided fixture design (CAFD) systems that support and simplify the fixture design process and it is this research that is reviewed within this paper.Section 2 describes the principal phases of and the wide variety of requirements driving the fixture design process. Subsequently in Section 3 an overview of research efforts that havefocused upon the development of techniques and tools for supporting these individual phases of the design process is provided. Section 4 critiques these efforts to identify current gaps in CAFD research, and finally the paper concludes by offering some potential directions for future CAFD research. Before proceeding, it is worth noting that there have been previous reviews of fixturing research, most recently Bi and Zhang [1] and Pehlivan and Summers [3]. Bi and Zhang, while providing some details on CAFD research, tend to focus upon the development of flexible fixturing systems, and Pehlivan and Summers focus upon information integration within fixture design. The value of this paper is that it provides an in-depth review and critique of current CAFD techniques and tools and how they provide support across the entire fixture design process.2. Fixture designThis section outlines the main features of fixtures and more pertinently of the fixture design process against which research efforts will be reviewed and critiqued in Sections 3 and 4, respectively. Physically a fixture consists of devices that support and clamp a work piece [4,5]. Fig.1 represents a typical example of a fixture in which the work piece rests on locators that accurately locate it. Clamps hold the work piece against the locators during machining thus securing the work piece’s location. The locating units themselves consist of the locator supporting unit and the locator that contacts the work piece. The clamping units consist of a clamp supporting unit and a clamp that contacts the work piece and exerts a clamping force to restrain it.Typically the design process by which such fixtures are created has four phases: setup planning, fixture planning, unit design, and verification, as illustrated in Fig. 2 , which is adapted from Kang et al. [6]. During setup planning work piece and machining information is analyzed to determine the number of setups required to perform all necessary machining operations and the appropriate locating datums for each setup. A setup represents the combination of processes that can be performed on a work piece without having to alter the position or orientation of the work piece manually. To generate a fixture for each setup the fixture planning, unit design, and verification phases are executed.During fixture planning, the fixturing requirements for a setup are generated and the layout plan, which represents the first step towards a solution to these requirements is generated. This layout plan details the work piece surfaces with which the fixture’s locating and clamping units will establish contact, together with the surface positions of the locating and clamping points. The number and position of locating points must be such that a work piece’s six degrees of freedom (Fig. 3 ) are adequately constrained during machining [7] and there are a variety of conceptual locating point layouts that can facilitate this, such as the 3-2-1 locating principle [4]. In the third phase, suitable unit designs (i.e., the locating and clamping units) are generated and the fixture is subsequently tested during the verification phase to ensure that it satisfies the fixturing requirements driving the design process. It is worth noting that verification of setups and fixture plans can take place as they are generated and prior to unit design.Fixturing requirements, which although not shown in Kang et al.[6] are typically generated during the fixture planning phase, can be grouped into six class es ( Table 1 ). The ‘‘physical’’requirements class is the most basic and relates to ensuring the fixture can physically support the work piece. The ‘‘tolerance’’requirements relate to ensuring that the locating tolerances aresufficient to locate the work piece accurately and similarly the‘‘constraining’’ requirements focus on maintaining this accuracy as the work piece and fixture are subjected to machining forces. The ‘‘affordability’’ requirements relate to ensuring the fixture represents value, for example in terms of material, operating, and assembly/disassembly costs.The ‘‘collision detection’’ requirements focus upon ensuring that the fixture does not collide with the machining path, the work piece, or indeed itself. The ‘‘usability’’ requirements relate to fixture ergonomics and include for example needs related to ensuring that a fixture features error-proofing to prevent incorrect insertion of a work piece, and chip shedding, where the fixture assists in the removal of machined chips from the work piece.As with many design situations, the conflicting nature of these requirements is problematic. For example a heavy fixture can be advantageous in terms of stability but can adversely affect cost (due to increased material costs) and usability (because the increased weight may hinder manual handling). Such conflicts add to the complexity of fixture design and contribute to the need for the CAFD research reviewed in Section 3.Table 1Fixturing requirements.Generic requirement Abstract sub-requirement examplesPhysical ●The fixture must be physically capable of accommodatingthe work piece geometry and weight.●The fixture must allow access to the work piece features tobe machined.Toleranc e ●The fixture locating tolerances should be sufficient to satisfypart design tolerances.Constraining●The fixture shall ensure work piece stability (i.e., ensure thatwork piece force and moment equilibrium are maintained).●The fixture shall ensure that the fixture/work piece stiffness issufficient to prevent deformation from occurring that could resultin design tolerances not being achieved.Affordabilit y ●The fixture cost shall not exceed desired levels.●The fixture assembly/disassembly times shall not exceeddesired levels.●The fixture operation time shall not exceed desired levels. CollisionPrevention●The fixture shall not cause tool path–fixture collisions to occur.●The fixture shall cause work piece–fixture collisions to occur(other than at the designated locating and clamping positions).●The fixture shall not cause fixture–fixture collisions to occur(other than at the designated fixture component connectionpoints).Usabilit y ●The fixture weight shall not exceed desired levels.●The fixture shall not cause surface damage at the workpiece/fixture interface.●The fixture shall provide tool guidance to designated workpiece features.●The fixture shall ensure error-proofing (i.e., the fixture shouldprevent incorrect insertion of the work piece into the fixture).●The fixture shall facilitate chip shedding (i.e., the fixture shouldprovide a means for allowing machined chips to flow awayfrom the work piece and fixture).3. Current CAFD approachesThis section describes current CAFD research efforts, focusing on the manner in which they support the four phases of fixture design. Table 2 provides a summary of research efforts based upon the design phases they support, the fixture requirements they seek to address (boldtext highlights that the requirement is addressed to a significant degree of depth, whilst normal text that the degree of depth is lesser in nature), and the underlying technology upon which they are primarily based. Sections 3.1–3.4 describes different approaches for supporting setup planning, fixture planning, unit design, and verification, respectively. In addition, Section 3.5 discusses CAFD research efforts with regard to representing fixturing information.3.1. Setup planningSetup planning involves the identification of machining setups, where an individual setup defines the features that can be machined on a work piece without having to alter the position or orientation of the work piece manually. Thereafter, the remaining phases of the design process focus on developing individual fixtures for each setup that secure the work piece. From a fixturing viewpoint, the key outputs from the setup planning stage are the identification of each required setup and the locating datums (i.e., the primary surfaces that will be used to locate the work piece in the fixture).The key task within setup planning is the grouping or clustering of features that can be machined within a single setup. Machining features can be defined as the volume swept by a cutting tool, and typical examples include holes, slots, surfaces, and pockets [8]. Clustering of these features into individual setups is dependent upon a number of factors (including the tolerance dependencies between features, the capability of the machine tools that will be used to create the features, the direction of the cutting tool approach, and the feature machining precedence order), and a number of techniques have been developed to support setup planning. Graph theory and heuristic reasoning are the most common techniques used to support setup planning, although matrix based techniques and neural networks have also been employed.3.1.1. Approaches to setup planningThe use of graph theory to determine and represent setups has been a particularly popular approach [9–11]. Graphs consist of two sets of elements: vertices, which represent work piece features, and edges, which represent the relationships that exist between features and drive setup identification. Their nature can vary, for example in Sarma and Wright [9] consideration of feature machining precedence relationships is prominent, whereas Huang and Zhang [10] focus upon thetolerance relationships that exist between features. Given that these edges can be weighted in accordance with the tolerance magnitudes, this graph approach can also facilitate the identification of setups that can minimize tolerance stack up errors between setups through the grouping of tight tolerances. However, this can prove problematic given the difficulty of comparing the magnitude of different tolerance types to each other thus Huang [12] includes the use of tolerance factors [13] as a means of facilitating such comparisons, which are refined and extended by Huang and Liu [14] to cater for a greater variety of tolerance types and the case of multiple tolerance requirements being associated with the same set of features.While some methods use undirected graphs to assist setup identification [11] , Yao et al. [15] , Zhang and Lin [16] , and Zhang et al. [17] use directed graphs that facilitate the determination and explicit representation of which features should be used as locating datums ( Fig. 4 ) in addition to setup identification and sequencing. Also, Yao et al. refine the identified setups through consideration of available machine tool capability in a two stage setup planning process.Experiential knowledge, in the form of heuristic reasoning, has also been used to assist setup planning. Its popularity stems from the fact that fixture design effectiveness has been considered to be dependent upon the experience of the fixture designer [18] .To support setup planning, such knowledge has typically been held in the form of empirically derived heuristic rules, although object oriented approaches have on occasion been adopted [19] . For example Gologlu [20] uses heuristic rules together with geometric reasoning to support feature clustering, feature machining precedence, and locating datum selection. Within such heuristic approaches, the focus tends to fall upon rules concerning the physical nature of features and machining processes used to create them [21, 22]. Although some techniques do include feature tolerance considerations [23], their depth of analysis can be less than that found within the graph based techniques [24]. Similarly, kinematic approaches [25] have been used to facilitate a deeper analysis of the impact of tool approach directions upon feature clustering than is typically achieved using rule-based approaches. However, it is worth noting that graph based approaches are often augmented with experiential rule-bases to increase their overall effectiveness [16] .Matrix based approaches have also been used to support setup planning, in which a matrix defining feature clusters is generated and subsequently refined. Ong et al. [26] determine a feature precedence matrix outlining the order in which features can be machined, which is then optimized against a number of cost indicators (such as machine tool cost, change over time, etc.) in a hybrid genetic algorithm-simulated annealing approach through consideration of dynamically changing machine tool capabilities. Hebbal and Mehta [27] generate an initial feature grouping matrix based upon the machine tool approach direction for each feature which is subsequently refined through the application of algorithms that consider locating faces and feature tolerances.Alternatively, the use of neural networks to support setup planning has also been investigated. Neural networks are interconnected networks of simple elements, where the interconnections are ‘‘learned’’ from a set of example data. Once educated, these networks can generate solutions for new problems fed into the network. Ming and Mak [28] use a neural network approach in which feature precedence, tool approach direction, and tolerance relationships are fed into a Kohonen self-organizing neural network to group operations for individual features into setups.3.2. Fixture planningFixture planning involves the comprehensive definition of a fixturing requirement in terms ofthe physical, tolerance, constraining, affordability, collision prevention, and usability requirements listed in Table 1 , and the creation of a fixture layout plan. The layout plan represents the first part of the fixture solution to these requirements, and specifies the position of the locating and clamping points on the work piece. Many layout planning approaches feature verification, particularly with regard to the constraining requirements. Typically this verification forms part of a feedback loop that seeks to optimize the layout plan with respect to these requirements. Techniques used to support fixture planning are now discussed with respect to fixture requirement definition, layout planning, and layout optimization.Fig. 4. A work piece (a) and its directed graphs showing the locating datums (b) (adapted from Zhang et al. [17] ).3.2.1. Approaches to defining the fixturing requirementComprehensive fixture requirement definition has received limited attention, primarily focusing upon the definition of individual requirements within the physical, tolerance, and constraining requirements. For example, Zhang et al. [17] under-take tolerance requirement definition through an analysis of work piece feature tolerances to determine the allowed tolerance at each locating point and the decomposition of that tolerance into its sources. The allowed locating point accuracy is composed of a number of factors, such as the locating unit tolerance, the machine tool tolerance, the work piece deformation at the locating point, and so on. These decomposed tolerance requirements can subsequently drive fixture design: e.g., the tolerance of the locating unit developed in the unit design phase cannot exceed the specified locating unit tolerance. In a similar individualistic vein, definition of the clamping force requirements that clamping units must achieve has also received attention [29,30].In a more holistic approach, Boyle et al. [31] facilitate a comprehensive requirement specification through the use of skeleton requirement sets that provide an initial decomposition of the requirements listed in Table 1, and which are subsequently refined through a series of analyses and interaction with the fixture designer. Hunter et al. [32,33] also focus on functional requirement driven fixture design, but restrict their focus primarily to the physical and constraining requirements.3.2.2. Approaches to non-optimized layout planningLayout planning is concerned with the identification of the locating principle, which defines the number and general arrangement of locating and clamping points, the work piece surfaces they contact, and the surface coordinate positions where contact occurs. For non-optimized layoutplanning, approaches based upon the re-use of experiential knowledge have been used. In addition to rule-based approaches [20,34,35] that are similar in nature to those discussed in Section 3.1, case-based reasoning has also been used. CBR is a general problem solving technique that uses specific knowledge of previous problems to solve new ones. In applying this approach to layout planning, a layout plan for a work piece is obtained by retrieving the plan used for a similar work piece from a case library containing knowledge of previous work pieces and their layout plans [18,36,37]. Work piece similarity is typically characterized through indexing work pieces according to their part family classification, tolerances, features, and so on. Lin and Huang [38] adopt a similar work piece classification approach, but retrieve layout plans using a neural network. Further work has sought to verify layout plans and repair them if necessary. For example Roy and Liao [39] perform a work piece deformation analysis and if deformation is too great employ heuristic rules to relocate and retest locating and clamping positions.3.2.3. Approaches to layout planning optimizationLayout plan optimization is common within CAFD and occurs with respect to work piece stability and deformation, which are both constraining requirements. Stability based optimization typically focuses upon ensuring a layout plan satisfies the kinematic form closure constraint (in which a set of contacts completely constrain infinitesimal part motion) and augmenting this with optimization against some form of stability based requirement, such as minimizing forces at the locating and/or clamping points [40–42] . Wu and Chan [43] focused on optimizing stability (measuring stability is discussed in Section 3.4) using a Genetic Algorithm (GA), which is a technique frequently employed in deformation based optimization.GAs, which are an example of evolutionary algorithms, are often used to solve optimization problems and draw their inspiration from biological evolution. Applying GAs in support of fixture planning, potential layout plan solutions are encoded as binary strings, tested, evaluated, and subjected to ‘‘biological’’ modification through reproduction, mutation, and crossover to generate improved solutions until an optimal state is reached. Typically deformation testing is employed using a finite element analysis in which a work piece is discretized to create a series of nodes that represent potential locating and clamping contact points, as performed for example by Kashyap and DeVries [44] . Sets of contact points are encoded and tested, and the GA used to develop new contact point sets until an optimum is reached that minimizes work piece deformation caused by machining and clamping forces [45,46]. Rather than use nodes, some CAFD approaches use geometric data (such as spatial coordinates) in the GA, which can offer improved accuracy as they account for the physical distance that exists between nodes [47,48].Pseudo gradient techniques [49] have also been employed to achieve optimization [50,51]. Vallapuzha et al. [52] compared the effectiveness of GA and pseudo gradient optimization, concluding that GAs provided higher quality optimizations given their ability to search for global solutions, whereas pseudo gradient techniques tended to converge on local optimums.Rather than concentrating on fixture designs for individual parts, Kong and Ceglarek [53] define a method that identifies the fixture workspace for a family of parts based on the individual configuration of the fixture locating layout for each part. The method uses Procrustes analysis to identify a preliminary workspace layout that is subjected to pairwise optimization of fixture configurations for a given part family to determine the best superposition of locating points for a family of parts that can be assembled on a single reconfigurable assembly fixture. This buildsupon earlier work by Lee et al. [54] through attempting to simplify the computational demands of the optimization algorithm.3.3. Unit designUnit design involves both the conceptual and detailed definition of the locating and clamping units of a fixture, together with the base plate to which they are attached (Fig. 5). These units consist of a locator or clamp that contacts the work piece and is itself attached to a structural support, which in turn connects with the base plate. These structural supports serve multiple functions, for example providing the locating and clamping units with sufficient rigidity such that the fixture can withstand applied machining and clamping forces and thus result in the part feature design tolerances being obtained, and allowing the clamp or locator to contact the work piece at the appropriate position. Unit design has in general received less attention than both fixture planning and verification, but a number of techniques have been applied to support both conceptual and detailed unit design.3.3.1. Approaches to conceptual unit designConceptual unit design has focused upon the definition of the types and numbers of elements that an individual unit should comprise, as well as their general layout. There are a wide variety of locators, clamps, and structural support elements, each of which can be more suited to some fixturing problems than others. As with both setup planning and fixture layout planning, rule-based approaches have been adopted to support conceptual unit design, in which heuristic rules are used to select preferred elements from which the units should be constructed in response to considerations such as work piece contact features (surface type, surface texture, etc.) and machining operations within the setup [35,55–58]. In addition to using heuristic rules as a means of generating conceptual designs, Kumar et al.[59] use an inductive reasoning technique to create decision trees from which such fixturing rules can be obtained through examination of each decision tree path.Neural network approaches have also been used to support conceptual unit design. Kumar et al. [60] use a combined GA/neural network approach in which a neural network is trained with a selection of previous design problems and their solutions. A GA generates possible solutionswhich are evaluated using the neural network, which subsequently guides the GA. Lin and Huang[38] also use a neural network in a simplified case-based reasoning (CBR) approach in which fixturing problems are coded in terms of their geometrical structure and a neural network used to find similar work pieces and their unit designs. In contrast, Wang and Rong[37] and Boyle et al.[31] use a conventional CBR approach to retrieve units in which the fixturing functional requirements form the basis of retrieval, which are then subject to refinement and/or modification during detailed unit design.3.3.2. Approaches to detailed unit designMany, but not all systems that perform conceptual design also perform detailed design, where the dominant techniques are rule, geometry, and behavior based. Detailed design involves the definition of the units in terms of their dimensions, material types, and so on. Geometry, in particular the acting height of locating and clamping units, plays a key role in the design of individual units in which the objective is to select and assemble defined unit elements to provide a unit of suitable acting height [61,62]. An et al. [63] developed a geometry based system in which the dimensions of individual elements were generated in relation to the primary dimension of that element (typically its required height) through parametric dimension relationships. This was augmented with a relationship knowledge base of how different elements could be configured to form a single unit. Similarly, Peng et al. [64] use geometric constraint reasoning to assist in the assembly of user selected elements to form individual units in a more interactive approach.Alternatively, rule-based approaches have also been used to define detailed units, in which work piece and fixture layout information (i.e., the locating and clamping positions) is reasoned over using design rules to select and assemble appropriately sized elements [32,55,56] . In contrast, Mervyn et al. [65] adopt an evolutionary algorithm approach to the development of units, in which layout planning and unit design take place concurrently until a satisfactory solution is reached.Typically, rule and geometry based approaches do not explicitly consider the required strength of units during their design. However for a fixture to achieve its function, it must be able to withstand the machining and clamping forces imposed upon it such that part design tolerances can be met. To address this, a number of behaviorally driven approaches to unit design have been developed that focus upon ensuring units have sufficient strength. Cecil [66] performed some preliminary work on dimensioning strap clamps to prevent failure by stress fracture, but does not consider tolerances or the supporting structural unit. Hurtado and Melkote [67] developed a model for the synthesis of fixturing configurations in simple pin-array type flexible machining fixtures, in which the minimum number of pins, their position, and dimensions are determined that can achieve stability and stiffness goals for a work piece through consideration of the fixture/work piece stiffness matrix, and extended this for modular fixtures [68] . Boyle et al. [31] also consider the required stiffness of more complex unit designs within their case-based reasoning method. Having retrieved a conceptual design that offers the correct type of function, this design’s physical structure is then adapted using dynamically selected adaptation strategies until it offers the correct level of stiffness.3.4. VerificationVerification focuses upon ensuring that developed fixture designs (in terms of their setup plans, layout plans, and physical units) satisfy the fixturing requirements. It should be noted from。

相关文档
最新文档