初一数学《有理数》教(学)案

合集下载

《有理数》教案设计(最新4篇)

《有理数》教案设计(最新4篇)

《有理数》教案设计(最新4篇)七年级数学有理数教案篇一一、课题2.4有理数的减法二、教学目标1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;2.培养学生观察、分析、归纳及运算能力。

三、教学重点有理数减法法则四、教学难点有理数减法法则五、教学用具三角尺、小黑板、小卡片六、课时安排1课时七、教学过程(一)、从学生原有认知结构提出问题1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).3.填空:(1)______+6=20;(2)20+______=17;(3)______+(-2)=-20;(4)(-20)+______=-6.在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算。

如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算。

(二)、师生共同研究有理数减法法则问题1(1)(+10)-(+3)=______;(2)(+10)+(-3)=______.教师引导学生发现:两式的结果相同,(更多内容请访问首页:)即(+10)-(+3)=(+10)+(-3).教师启发学生思考:减法可以转化成加法运算。

但是,这是否具有一般性?问题2(1)(+10)-(-3)=______;(2)(+10)+(+3)=______.对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).至此,教师引导学生归纳出有理数减法法则:减去一个数,等于加上这个数的。

相反数。

教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数。

初一数学上册第一章有理数复习教案最新3篇

初一数学上册第一章有理数复习教案最新3篇

初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。

在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。

“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。

通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。

所以本节课的学习具有一定的现实地位。

(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。

同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。

另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。

(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。

2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。

3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。

4、教学重点:会进行有理数的乘除法运算。

5、教学难点:有理数乘除法法则的探索与运用。

确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。

七年级数学《有理数》教案模板

七年级数学《有理数》教案模板

七年级数学《有理数》教案模板教案包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等。

有理数指整数可以看作分母为1的分数。

下面就是整理的《有理数》教案,希望大家喜欢。

《有理数》教案1一、素质教育目标(一)知识教学点1.理解有理数乘方的意义.2.掌握有理数乘方的运算.(二)能力训练点1.培养学生观察、分析、比较、归纳、概括的能力.2.渗透转化思想.(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.(四)美育渗透点把记成,显示了乘方符号的简洁美.二、学法引导1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.2.学生学法:探索的性质→练习巩固三、重点、难点、疑点及解决办法1.重点:运算.2.难点:运算的符号法则.3.疑点:①乘方和幂的区别.②与的区别.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.七、教学步骤(一)创设情境,导入新课师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?生:可以记作,读作的四次方.师:呢?生:可以记作,读作的五次方.师:(为正整数)呢?生:可以记作,读作的次方.师:很好!把个相乘,记作,既简单又明确.【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.(二)探索新知,讲授新课1.求个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.巩固练习(出示投影1)(1)在中,底数是__________,指数是___________,读作__________或读作___________;(2)在中,-2是__________,4是__________,读作__________或读作__________;(3)在中,底数是_________,指数是__________,读作__________;(4)5,底数是___________,指数是_____________.【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.生:到目前为止,已经学习过五种运算,它们是:运算:加、减、乘、除、乘方;运算结果:和、差、积、商、幂;教师对学生的回答给予评价并鼓励.【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.2.练习:(出示投影2)计算:1.(1)2,(2),(3),(4).2.(1),,,.(2)-2,,.3.(1)0,(2),(3),(4).学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.师:请同学思考一个问题,任何一个数的偶次幂是什么数?生:任何一个数的偶次幂是非负数.师:你能把上述结论用数学符号表示吗?生:(1)当时,(为正整数);(2)当(3)当时,(为正整数);(4)(为正整数);(为正整数);(为正整数,为有理数).【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.《有理数》教案2教学目标1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

有理数教案 初中

有理数教案 初中

有理数教案初中一、教学目标:1. 让学生理解有理数的定义,掌握有理数的分类及特点。

2. 培养学生运用有理数解决实际问题的能力。

3. 引导学生掌握有理数的运算方法,提高学生的数学运算能力。

二、教学内容:1. 有理数的定义及分类2. 有理数的运算(加法、减法、乘法、除法)3. 有理数的应用三、教学重点与难点:1. 重点:有理数的定义、分类、运算及应用。

2. 难点:有理数的运算规律及应用。

四、教学方法:1. 采用情境教学法,让学生在实际问题中感受有理数的重要性。

2. 运用互动教学法,引导学生参与课堂讨论,提高学生的思维能力。

3. 采用练习法,巩固所学知识,提高学生的实际应用能力。

五、教学过程:1. 导入:通过生活中的实例,如温度、海拔等,引出有理数的概念。

2. 新课讲解:讲解有理数的定义、分类及特点。

举例说明有理数在实际生活中的应用。

3. 课堂互动:让学生举例说明有理数的运算方法,引导学生发现运算规律。

4. 练习巩固:布置课堂练习题,让学生运用所学知识解决实际问题。

5. 总结:对本节课内容进行总结,强调有理数在实际生活中的重要性。

六、课后作业:1. 复习本节课所学内容,巩固有理数的定义、分类及运算方法。

2. 完成课后练习题,提高运用有理数解决实际问题的能力。

3. 思考:有理数在生活中的应用,举例说明。

七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 课后作业:检查学生作业完成情况,评估学生对课堂所学知识的掌握程度。

3. 单元测试:定期进行单元测试,了解学生对有理数的整体掌握情况。

通过本节课的学习,让学生掌握有理数的基本概念、分类、运算及应用,培养学生运用有理数解决实际问题的能力,为后续数学学习奠定基础。

初中《有理数》教案

初中《有理数》教案

初中《有理数》教案教学目标:1. 理解有理数的定义及其分类;2. 掌握有理数的加法、减法、乘法、除法运算规则;3. 能够运用有理数解决实际问题。

教学重点:1. 有理数的定义及其分类;2. 有理数的运算规则。

教学难点:1. 有理数的乘除法运算;2. 运用有理数解决实际问题。

教学准备:1. 教材或教学PPT;2. 练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾小学学过的整数和小数知识,询问学生是否了解整数和小数的局限性;2. 提问:有没有比小数更精确的数呢?引出有理数的概念。

二、新课讲解(15分钟)1. 讲解有理数的定义:有理数是可以表示为两个整数比的数,包括整数、分数、小数等;2. 讲解有理数的分类:正有理数、负有理数和零;3. 讲解有理数的加法、减法、乘法、除法运算规则;4. 通过例题演示和讲解,让学生熟练掌握有理数的运算规则。

三、课堂练习(15分钟)1. 布置练习题,让学生独立完成;2. 选取部分学生的作业进行讲解和点评;3. 针对学生的错误,进行针对性的讲解和辅导。

四、应用拓展(10分钟)1. 让学生举例说明有理数在实际生活中的应用;2. 引导学生思考有理数在科学研究和工程技术中的应用;3. 鼓励学生发挥想象,创造自己的有理数应用实例。

五、总结(5分钟)1. 回顾本节课所学内容,让学生复述有理数的定义、分类和运算规则;2. 强调有理数在实际生活中的重要性;3. 提醒学生要注意有理数运算的细节。

六、作业布置(5分钟)1. 布置课后作业,要求学生巩固本节课所学内容;2. 鼓励学生进行有理数应用题的练习。

教学反思:本节课通过讲解和练习,让学生掌握了有理数的定义、分类和运算规则,了解了有理数在实际生活中的应用。

在教学过程中,要注意引导学生积极参与课堂活动,发挥学生的主动性,提高学生的学习兴趣。

同时,要关注学生的学习情况,及时发现和纠正学生的错误,提高学生的学习效果。

有理数第一课时教案

有理数第一课时教案

第一章《有理数》 第一课时1.1 正数和负数(1)一、生活中的实例问题1:师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX ,身高1.69米,体 重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%…问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。

问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.问题4:请同学们举出用正数和负数表示的例子.问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.知识小结:1、 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;2、正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

作业设计:【基础平台】1.任意写出5个正数:________________;任意写出5个负数:_______________.2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作____,-4万元表示________________.3.已知下列各数:51-,432-,3.14,+3065,0,-239. 则正数有_____________________;负数有____________________.4.向东行进-50m 表示的意义是……………………………………………………〖 〗A .向东行进50m C .向北行进50mB .向南行进50m D .向西行进50m 5.下列结论中正确的是 ……………………………………………………………〖 〗A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有 ……〖 〗 A .2个 B .3个C .4个D .5个 7.下列各数中,哪些是正数?哪些是负数?+8,-25,68,O ,722,-3.14,0.001,-889.正数有:负数有:【自主检测】1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.某天中午11时的温度是11℃,早晨6时气温比中午低7℃,则早晨温度为_____℃,若早晨6时气温比中午低13℃,则早晨温度为_______℃.4.“甲比乙大-3岁”表示的意义是______________________.5.在下列四组数(1)-3,2.3,41;(2)43,0,212;(3)311,0.3,7;(4) 21,51,2中,三个数都不是负数的组是〖 〗A .(1)(2)B .(2)(4)C .(3)(4)D .(2)(3)(4) 6.在-7,0,-3,34,+9100,-0.27中,负数有〖 〗A .0个 B .1个 C .2个 D .3个7.指出下列各数中,哪些是正数?哪些是负数?-2,312+,0,513,204,-0.02,+3.65,715-. 正数有:负数有:【拓展平台】1.写出比O 小4的数 ,比4小2的数 ,比-4小2的数 .2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.3.学校对初一男生进行立定跳远的测试,以能跳1.7m 及以上为达标,超过1.7m 的厘米数用正数表示,不足l.7m的厘米数用负数表示.第一组10名男生成绩如下(单位cm):+2-4 0 +5 +8 -7 0 +2 +10 -3 问:第一组有百分之几的学生达标?1.1 正数和负数(2)回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。

人教版七年级数学上册第一章《有理数》(大单元教学设计)

人教版七年级数学上册第一章《有理数》(大单元教学设计)
4.理解绝对值的概念,掌握求一个数的绝对值的方法,并能够应用于解决实际问题。
5.掌握有理数的乘方运算规则,能够求解简单的乘方问题。
(二)过程与方法
1.通过小组讨论、互动问答等方式,培养学生合作学习的能力,提高解决问题的效率。
2.通过实际例题的分析与解答,培养学生运用数学知识解决实际问题的能力,让学生体会数学与生活的紧密联系。
为了巩固学生对有理数知识的掌握,培养他们运用所学解决问题的能力,特布置以下作业:
1.基础知识巩固:
-完成课本第1-2页的练习题,涉及有理数的概念、分类及简单的加减运算。
-结合实际生活,举例说明有理数在生活中的应用。
2.运算能力提升:
-完成课本第3-4页的练习题,涵盖有理数的混合运算,包括加减乘除及括号的运用。
1.回顾本节课所学内容:引导学生回顾有理数的概念、运算规则、相反数和绝对值等知识点。
2.归纳总结:教师总结本节课的重点和难点,强调有理数运算的注意事项。
3.布置作业:布置适量的课后作业,要求学生在课后巩固所学知识。
4.激发兴趣:鼓励学生在课后继续探索有理数的奥秘,提高他们的自主学习能力。
五、作业布置
1.教学方法:
-采用启发式教学,引导学生通过观察、思考、总结,发现有理数的运算规律。
-利用数轴、符号等工具,形象地展示有理数的特点,帮助学生理解和记忆。
-设计丰富的教学活动,如小组讨论、互动问答、实际例题分析等,激发学生的学习兴趣和参与度。
2.教学策略:
-针对学生的认知水平,逐步引导他们从整数运算向有理数运算过渡,降低学习难度。
-对运算过程中容易出错的地方进行重点讲解和示范,帮助学生掌握正确的运算方法。
-注重培养学生的数学思维,引导他们在解决实际问题时,能够灵活运用所学知识。

初一数学《有理数》教案

初一数学《有理数》教案

初一数学《有理数》教案教学目标】1.知识与技能:理解有理数的意义。

能够按要求分类给出的有理数。

了解有理数分类的作用。

2.过程与方法:培养学生树立分类讨论的观点。

培养学生正确进行分类的能力。

3.情感、态度与价值观:通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育。

教学重点和难点】重点:能够把所给的各数填入它所在的数集的图里。

难点:掌握有理数的两种分类。

教学过程设计】一)创设情境,导入新课抢答环节:让学生讨论已经认识了哪些类型的数。

二)合作交流,解读探究让学生议论有理数的特点,包括整数、分数、负整数和负分数。

引导学生将有理数分为整数和分数两大类,并将整数和分数进一步分为正数和负数。

让学生归纳总结正数集合、负数集合、整数集合、分数集合、有理数集合的概念。

三)应用迁移,巩固提高让学生将给出的数填入相应的数集合内。

让学生评价两位同学的分类方法是否正确。

优秀教案欢迎下载今天我们研究了有理数的定义和分类方法。

有理数可以按照正、负、零来分类,也可以按照整数和分数来分类。

同时,我们要注意正负数和整数、分数的区别。

除此之外,我们还可以自己制定一种分类标准,比如将有理数分成大于1的数、小于1的数和等于1的数。

在生活中,我们也常常对事物进行分类,比如按年龄可以分为婴儿、幼儿、儿童、少年、青年、中年和老年。

在课堂跟踪反馈环节,我们通过填空和选择题的方式来夯实基础和提升能力。

同时,我们还讨论了字母a可以表示哪些数,以及某校对初一新生男生进行引体向上测试的成绩分析。

通过这些练和讨论,我们加深了对有理数的理解和应用。

1.2.1 有理数在本节课中,我们研究了有理数的概念和分类。

有理数包括正有理数、负有理数和零,其中正有理数包括正整数和正分数,负有理数包括负整数和负分数。

我们还研究了有理数的加减法和乘除法,并通过练题巩固了所学知识。

接下来,我们进行了引体向上实验,通过实验数据计算出了10名男生的达标率为50%,共做了49个引体向上。

初中数学初一数学上册《有理数的运算》教案、教学设计

初中数学初一数学上册《有理数的运算》教案、教学设计
2.有理数混合运算的顺序和规则,尤其是乘除与加减的混合运算。
3.在实际问题中,正确识别和应用有理数的运算规则,解决复杂问题。
教学设想:
1.创设情境导入:通过生活实例,如温度变化、收支记账等,引出有理数的概念,让学生感受到数学与生活的紧密联系,降低学生对负数和有理数运算的陌生感。
2.分层次教学:针对学生的不同基础,设计不同难度的题目和练习,使基础薄弱的学生能够逐步掌握基础知识,而基础较好的学生则能够得到进一步的提升。
3.引导学生通过观察、分析、归纳等方法,发现并总结有理数运算的规律,培养学生的逻辑思维能力。
4.运用数轴辅助教学,让学生直观地理解有理数的大小关系和运算规律,提高解决问题的能力。
(三)情感态度与价值观
1.培养学生严谨、认真的学习态度,让学生明白数学学习需要细心、耐心和毅力。
2.引导学生体验数学学习的乐趣,激发学生对数学知识的探索欲望,培养学生的创新精神。
五、作业布置
为了巩固学生对本章节知识的掌握,提高他们的实际应用能力,我将在课后布置以下几类作业:
1.基础知识巩固题:设计一些有关有理数的基本概念、分类和简单运算的题目,让学生通过练习,加强对基础知识的巩固。
2.实际应用题:出一部分与生活实际相关的题目,让学生运用有理数知识解决生活中的问题,提高学生将数学知识应用于实际情境的能力。
3.鼓励学生积极参与课堂讨论,尊重他人意见,培养学生的合作意识和团队精神。
4.培养学生面对困难时勇于挑战、积极思考的良好品质,提高学生解决问题的能力。
二、学情分析
针对初一学生,他们在小学阶段已经接触过整数和简单的分数运算,具备一定的数学基础。但在进入初中阶段,有理数的概念和运算规律对学生来说是一个新的挑战。学生在此阶段往往对负数的理解较为困难,对有理数的分类和混合运算容易产生混淆。因此,在教学过程中,要关注以下几点:

数学七年级上册第二章《有理数》教案 (9)

数学七年级上册第二章《有理数》教案 (9)

2.5有理数的大小比较【名师说课】课程标准分析本节课的课程标准要求是让学生会利用绝对值比较两个负数的大小,在此基础上,进而掌握有理数大小比较的一般方法,会比较任意有理数的大小.通过掌握有理数比较大小的各种方法,培养学生的逻辑思维能力.在不断加深对有理数比较大小的方法的认识的同时,体会数形结合的数学思想.由有理数中两个负数大小比较的过程,体会数学中转化思想的应用.教材分析1.地位与作用:有理数的大小比较是在小学学过对两个正数的大小比较的基础上,以及本章第2节中利用数轴对正数与零、负数与零、正数与负数的大小比较已初步认识的情况下学习的,对前面学习的基础依赖较重,同时它又是为后面学习有理数的加减打基础的,所以它在教材中起一个纽带的作用,既为前面学过的旧知识作一个总结,又为后面的新知识的学习做好衔接.2.重点与难点:本节的重点是有理数大小比较的方法步骤,难点是有理数大小比较的方法的灵活选择与两个负数的大小比较.教法分析本节教学的基础是:(1)小学阶段对两个正数的大小比较知识;(2)数轴一节中正数与零、负数与零、正数与负数的大小比较.所以在教学中对小学阶段学过的两个正的小数或分数的大小比较知识作适当的复习,减少新课学习中的困难.比较两个负数的大小是本节教学的难点,要充分利用数轴和绝对值的知识,通过演示,将数轴上在原点左侧表示的数的“点距原点越远”,与“这个数的绝对值越大”相对应起来,也可多举一些实例,让学生在直观上感受到两个负数大小比较法则的合理性.两个负数比较大小的过程是一个完整的推理过程,要有意识地培养学生的推理能力,并注意数学上转化思想的渗透,对例题和习题中出现的需先化简再比较大小的一些数,要培养学生良好的解题习惯,仔细读题,化简后再进行比较;两个以上数的比较大小,应强调将这些数按从小到大或从大到小顺序排列,再用同方向的不等号连接.教学中应通过师生互动,学生自我探究,让学生充分参与到学习过程中.学法分析1.学习中应注意结合数轴,理解本节的关键法则:两个负数,绝对值大的反而小.2.两个负数的大小比较是本节的重难点,也是中考热点之一,要充分利用绝对值和数轴的知识来比较有理数的大小,利用绝对值可以不用数轴就能比较有理数大小,但用数轴比较有理数的大小仍是一种既直观又简便的方法,我们可以根据需要自由选择.【教学目标】知识与技能会用绝对值比较两个负数的大小.过程与方法掌握有理数大小比较的一般方法.情感态度与价值观由两个负数比较大小的过程,体会数学上转化思想的应用,培养学生的推理能力.【教学重难点】重点:有理数大小比较的方法、步骤及各种方法的灵活选择.难点:两个负数的大小比较.【教学过程】一、旧知回顾设计意图:温故而知新,有利于学生衔接前后知识,为新知作铺垫,并能调动学生的学习热情.师:1.在数轴上表示两个有理数,如何比较它们的大小呢?2.试在数轴上画出-2,-5表示的点.让学生完成,概括得出数轴上右边的数总比左边的数大.正数都大于零,负数都小于零,正数大于负数.二、探究新知设计意图:学生通过观察归纳,有利于他们概括能力的培养.1.学生分组讨论:两个负数的大小比较与这两个数的绝对值有何关系?2.概括得出:两个负数,绝对值大的反而小.3.例如:比较-34和-23的大小.因为|-34|=34=912,|-23|=23=812,又因为:912>812,即|-34|>|-23|,所以-34<-23. 通过规范两个负数大小比较的解题步骤,加强对学生数学逻辑推理的培养.4.随堂练习:比较下列各对数的大小:①-1与-0.01;②-|-2|与0;③-0.3与-13;④-(-19)与-|-110|. 学生分组完成,用投影展示错误,进行剖析.(通过以上练习,强化学生对法则的理解)三、拓展训练设计意图:通过字母比较培养学生抽象思维能力.教师出示例题:已知a >0,b <0,且|b |>|a |,比较a ,-a ,b ,-b 的大小.分析:方法一:可通过数轴来比较大小,先在数轴上找出a ,-a ,b ,-b 的大致位置再比较.方法二:直接通过计算各数的绝对值,然后比较大小,对于a ,-b 两个正数,绝对值大的原数也大;对于-a ,b 两个负数,绝对值大的反而小.四、巩固练习设计意图:进一步巩固有理数大小的比较法则.1.比较大小,并用“<”连接.(1)-34,-712,-56; (2)-(-10),-|-10|,9,-|+18|,0.2.有理数a 、b 在数轴上表示如下图,用“>”或“<”填空.(1)a ________b ; (2)|a |________|b |;(3)-a ______-b ; (4)1a ________1b. 五、课堂小结设计意图:通过提问,让学生知识系统化.你学会了比较有理数的大小有几种方法?答:有两种方法,方法一:利用数轴把这些数用数轴上的点表示出来,然后“根据数轴上右边的数总比左边的数大”来比较.方法二:利用比较法则:正数大于零,负数小于零,两个负数的绝对值大的反而小来进行.六、课后作业1.比较下列每对数的大小:(1)-0.1与-0.001;(2)-(+19)和-|-110|. 【答案】(1)因为|-0.1|=0.1,|-0.001|=0.001,且0.1>0.001,所以-0.1<-0.001;(2)因为-(+19)=-19,且|-19|=19;-|-110|=-110,且|-110|=110;19>110,所以-(+19)<-|-110|. 2.比较下列每对数的大小:(1)-(-5)与-|-5|;(2)-(+3)与0;(3)-45与-|-34|;(4)-π与-|-3.14|. 【答案】(1)化简得:-(-5)=5,-|-5|=-5,因为正数大于一切负数,所以-(-5)>-|-5|.(2)化简得:-(+3)=-3,因为负数小于0,所以-(+3)<0.(3)化简得:-|-34|=-34,这是两个负数的大小比较,因为|-45|=45=1620,|-34|=34=1520,且1620>1520,所以-45<-|-34|. (4)化简得:-|-3.14|=-3.14.这是两个负数比较大小,因为|-π|=π,|-3.14|=3.14,而π>3.14,所以-π<-|-3.14|.3.已知有理数a 、b 、c 在数轴上位置如下图:则|c -1|+|a -c |+|a -b |化简后的结果是______.A .b -1B .2a -b -1C .1+2a -b -2cD .1-2c +b【答案】D【板书设计】一、旧知回顾二、探究新知三、拓展训练四、巩固练习五、课堂小结六、课后作业。

初一数学有理数教案5篇

初一数学有理数教案5篇

初一数学有理数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初一数学有理数教案5篇教案的撰写过程促使教师思考教学目标,确保教学的针对性和有效性,为了提高教学质量,教案在撰写过程需要更加注重教学效果的评估,下面是本店铺为您分享的初一数学有理数教案5篇,感谢您的参阅。

初一上册数学《有理数》教案

初一上册数学《有理数》教案

初一上册数学《有理数》教案初一上册数学《有理数》教案初一上册数学《有理数》教案1《1.2有理数》教学设计【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类《1.2.1有理数》同步练习含答案5.对-3.14,下面说法正确的是(B)A.是负数,不是分数B.是负数,也是分数C.是分数,不是有理数D.不是分数,是有理数《1.2有理数》同步练习含答案解析8.如果a与1互为相反数,则|a|=( )A.2B.﹣2C.1D.﹣1【考点】绝对值;相反数.【分析】根据互为相反数的定义,知a=﹣1,从而求解.互为相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:根据a与1互为相反数,得a=﹣1.所以|a|=1.故选C.【点评】此题主要是考查了相反数的概念和绝对值的性质.9.若|1﹣a|=a﹣1,则a的取值范围是( )A.a>1B.a≥1C.a<1D.a≤1【考点】绝对值.【分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.【解答】解:∵|1﹣a|=a﹣1,∴1﹣a≤0,∴a≥1,故选B.【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.初一上册数学《有理数》教案2教学目标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。

教学难点正确理解分类的标准和按照一定的标准进行分类知识重点正确理解有理数的概念教学过程(师生活动)设计理念探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).问题1:观察黑板上的9个数,并给它们进行分类.学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如:对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数.按照书本的说法,得出“整数”“分数”和“有理数”的概念.看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

初一数学第一章有理数教案

初一数学第一章有理数教案

初一数学第一章有理数教案(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--个性化教学辅导教案学科: 数学 年级: 初一 任课教师: 李春雨 总课时: 共 16 讲第一讲 有理数一、 教学目标1、 掌握正数和负数的概念及其意义2、 掌握有理数的概念,会对有理数按照一定的标准进行分类3、 掌握数轴的概念,理解数轴上的点和有理数的对应关系,正确地画出数轴,会用数轴上的点表示给定的有理数4、 掌握相反数的概念,进一步理解数轴上的点与数的对应关系5、 掌握绝对值的概念,有理数大小比较法则,学会绝对值的计算,会比较两个或多个有理数的大小6、 体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想二、 教学重难点重点:1、正确区分两种不同意义的量2、数轴的概念和用数轴上的点表示有理数3、相反数、绝对值的概念难点:1、正确理解有理数的概念及分类2、归纳相反数在数轴上表示的点的特征3、两个负数大小的比较三、 教学过程导入:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数),在生活中,仅有整数和分数够用了吗?(简单讲解天气预报中的气温为零下的情况,引入负数)1、 正数和负数正数:像+,+12,,258这样大于0的数(“+”通常省略不写)叫正数。

负数:像-5,-3,这样在正数前加上“-”的数叫做负数,负数小于0。

例题:把下列各数填在相应的集合内:15,-6,-,21,0,,-411,51,8,-2,27,71,-43,正数集:{ };负数集:{ };正分数集:{ };负分数集:{ };整数集:{ };自然数集:{ }.(1)为了用数表示具有相反意义的量,我们把某种量的一种意义规定为正的,而把与它相反的一种意义规定为负的。

负数是根据实际需要而产生的。

如:收入1000元与支出500元、向东走2km与向西走3km,上升与下降,规定收入为正则收入记做+1000,支出记做-500,规定向东走为正则向东走2km记做+2km,向西走记做-3km,上升与下降让学生解答。

人教版七年级上数学:1.2.1《有理数》学案(附模拟试卷含答案)

人教版七年级上数学:1.2.1《有理数》学案(附模拟试卷含答案)

数学:1.2.1《有理数》学案(人教版七年级上)【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类【导学指导】一、温故知新1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)__________________________________________二、自主探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为类,分别是:引导归纳:统称为整数,统称为有理数。

问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳2、正数集合与负数集合所有的正数组成集合,所有的负数组成集合【课堂练习】1、P8练习(做在课本上)2.把下列各数填入它所属于的集合的圈内:15, -1, -5,2,813, 0.1, -5.32, -80, 123, 2.333;正整数集合 负整数集合正分数集合 负分数集合【要点归纳】: 有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数【拓展训练】1、下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数c .-2000既是负数,也是整数,但不是有理数 D .O 是正数和负数的分界2、在下表适当的空格里画上“√”号【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,C,D 是线段 AB 上两点,若 CB=4cm,DB=7cm,且 D 是 AC 的中点,则 AB 的长等于()A.6cmB.7cmC.10cmD.11cm2.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cmB.3cmC.6cmD.7cm3.在同一平面上,若∠BOA=60.3°,∠BOC=20°30′,则∠AOC的度数是( )A.80.6°B.40°C.80.8°或39.8°D.80.6°或40°4.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为283,则满足条件的x不同值最多有( )A.6个B.5个C.4个D.3个5.在如图的2017年11月份的月历表中,任意框出表中竖列上三个相邻的数,下面列出的这三个数的和①24,②35,③51,④72,其中不可能的是( )A.①②B.②④C.②③D.②③④6.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程6010628m m+=-①;6010628m m+=+②;1086062n n-+=③;1086062n n+-=④中,其中正确的有()A.①③B.②④C.①④D.②③7.下列运算中正确的是()A.x+x=2x2B.(x4)2= x8C.x3.x2=x6D.(-2x) 2=-4x28.下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是()A .96B .86C .68D .529.把正方形按如图所示的规律拼图案,其中第①个图案中有1个正方形,第②个图案中有5个正方形,第③个图案中有9个正方形…按此规律排列下去,则第⑧个图案中正方形的个数为( )A .25B .29C .33D .3710.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2009次后,点B ( )A .不对应任何数B .对应的数是2007C .对应的数是2008D .对应的数是2009 11.小明做了以下4道计算题:①(-1)2010=2010;②0-(-1)=-l ;③-+=-;④÷(-)=-1. 其中做对的共有A .1道B .2道C .3道D .4道 12.计算:534--⨯的结果是( ) A.17- B.7-C.8-D.32-二、填空题13.一个人从A 点出发向北偏东30°方向走到B 点,再从B 点出发向南偏东15°方向走到C 点,此时C 点正好在A 点的北偏东70°的方向上,那么∠ACB 的度数是___________. 14.计算:12°20'×4=______________.15.如图,小红将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm ,则可列方程为_____.16.当x=__________时,代数式6x+l 与-2x-13的值互为相反数.17.去括号合并:(3)3(3)a b a b --+=_________.18.观察下列等式①223415-⨯=,②225429-⨯=,③2274313-⨯=,…根据上述规律,第n 个等式是________________.(用含有n 的式子表示)19.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12- ,则这个常数是_______. 20.比较大小,4-______3(用“>”,“<”或“=”填空). 三、解答题21.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t 秒后OM 恰好平分∠BOC ,则t= (直接写结果)(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多少秒后OC 平分∠MON ?请说明理由; (3)在(2)问的基础上,那么经过多少秒∠MOC=36°?请说明理由.22.一个角的补角比它的余角的3倍少20︒,求这个角的度数.23.如图在长方形ABCD 中,AB=12cm ,BC=8cm ,点P 从A 点出发,沿A→B→C→D 路线运动,到D 点停止;点Q 从D 点出发,沿D→C→B→A 运动,到A 点停止.若点P 、点Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,用x (秒)表示运动时间. (1)求点P 和点Q 相遇时的x 值.(2)连接PQ ,当PQ 平分矩形ABCD 的面积时,求运动时间x 值.(3)若点P 、点Q 运动到6秒时同时改变速度,点P 的速度变为每秒3cm ,点Q 的速度为每秒1cm ,求在整个运动过程中,点P 、点Q 在运动路线上相距路程为20cm 时运动时间x 值.24.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?25.已知代数式A=2x 2+5xy ﹣7y ﹣3,B=x 2﹣xy+2.(1)求3A ﹣(2A+3B )的值;(2)若A ﹣2B 的值与x 的取值无关,求y 的值. 26.已知A=22x +3xy-2x-l ,B= -2x +xy-l . (1)求3A+6B ;(2)若3A+6B 的值与x 无关,求y 的值. 27.计算:(1)(3)74--+-- (2) 211()(6)5()32-⨯-+÷-28.计算:(1) 16÷(﹣2)3﹣(18-)×(﹣4) (2) 221211()[2(3)]233---÷⨯-+-【参考答案】*** 一、选择题 1.C 2.D 3.C 4.B 5.B 6.A 7.B 8.C 9.B 10.C 11.B 12.A 二、填空题 13.95˚ 14.49°20' 15.4x=5(x-4) 16.17.-10 SKIPIF 1 < 0 解析:-10b18.(2n+1) SKIPIF 1 < 0 −4×n SKIPIF 1 < 0 =4n+1. 解析:(2n+1) 2−4×n 2=4n+1.19.120.<;三、解答题21.(1)5;(2)5秒时OC平分∠MON,理由详见解析;(3)详见解析. 22.35°23.(1)x=323;(2)4 或20;(3)4或14.524.这本名著共有216页.25.(1)﹣x2+8xy﹣7y﹣9;(2)y=026.(1) 15xy-6x-9 ;(2)25.27.(1)6;(2)22.28.(1)﹣212;(2)52.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.在一些商场、饭店或写字楼中,常常能看到一种三翼式旋转门在圆柱体的空间內旋转.旋转门的三片旋转翼把空间等分成三个部分,如图是从上面俯视旋转门的平面图,两片旋转翼之间的角度是( )A.100°B.120°C.135°D.150°2.如图所示,两个直角∠AOB ,∠COD 有公共顶点O ,下列结论:(1)∠AOC =∠BOD ;(2)∠AOC +∠BOD =90°;(3)若OC 平分∠AOB ,则OB 平分∠COD ;(4)∠AOD 的平分线与∠COB 的平分线是同一条射线.其中正确的个数是( )A.1B.2C.3D.43.如图是某年的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如3,4,5,10,11,12,17,18,19).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和不可能为下列数中的( )A .81B .90C .108D .2164.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A.3229x x -=+ B.3(2)29x x -=+ C.2932x x+=- D.3(2)2(9)x x -=+5.如图,点O (0,0),A (0,1)是正方形OAA 1B 的两个顶点,以OA 1对角线为边作正方形OA 1A 2B 1,再以正方形的对角线OA 2作正方形OA 1A 2B 1,…,依此规律,则点A 2017的坐标是( )A .(0,21008)B .(21008,21008)C .(21009,0)D .(21009,-21009)6.当x 分别取-2019、-2018、-2017、…、-2、-1、0、1、12、13、…、12017、12018、12019时,分别计算分式2211x x -+的值,再将所得结果相加,其和等于( )A .-1B .1C .0D .20197.下列根据等式的性质变形正确的是( ) A.若3x+2=2x ﹣2,则x =0 B.若12x =2,则x =1 C.若x =3,则x 2=3x D.若213x +﹣1=x ,则2x+1﹣1=3x 8.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,“?”的值为( )A .55B .56C .63D .649.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有( )个. A .2 B .3 C .4 D .510.阿里巴巴数据显示,2017年天猫商城“双11”全球狂欢交易额超957亿元,数据957亿用科学记数法表示为( ) A.895710⨯B.995.710⨯C.109.5710⨯D.100.95710⨯11.国庆长假期间,以生态休闲为特色的德阳市近郊游备受青睐.假期各主要景点人气爆棚,据市旅游局统计,本次长假共实现旅游收入5610万元.将这一数据用科学记数法表示为( ) A.75.6110⨯B.80.56110⨯C.656.110⨯D.85.6110⨯12.甲从点A 出发沿北偏东35°方向走到点B ,乙从点A 出发沿南偏西20°方向走到点C ,则∠BAC 等于 ( ) A.15°B.55°C.125°D.165°二、填空题13.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC+∠DOB =_____.14.已知∠AOB=3∠BOC,射线0D 平分∠AOC,若∠BOD=30°,则∠BOC 的度数为________.15.某通信公司的移动电话计费标准每分钟降低a 元后,再下调了20%,现在收费标准是每分钟b 元,则原来收费标准每分钟是_____元.16.一件夹克衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹克衫的成本是_____.17.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数1 2 3 4 … n 正三角形个数 4 7 10 13 … a n18.已知1mn m n =--,则()()11m n ++的值为________.19.计算2﹣(﹣3)的结果为_____.20.如果,那么____.三、解答题21.如图,C ,D 为线段AB 上的两点,M ,N 分别是线段AC ,BD 的中点.(1)如果CD=5cm ,MN=8cm ,求AB 的长;(2)如果AB=a ,MN=b ,求CD 的长.22.已知:点C ,D 是直线AB 上的两动点,且点C 在点D 左侧,点M ,N 分别是线段AC 、BD 的中点.(1)如图,点C 、D 在线段AB 上.①若AC=10,CD=4,DB=6,求线段MN 的长;②若AB=20,CD=4,求线段MN 的长;(2)点C 、D 在直线AB 上,AB=m ,CD=n ,且m >n ,请直接写出线段MN 的长(用含有m ,n 的代数式表示).23.中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二、个人所得税纳税税率如下表所示:(1)若甲、乙两人的每月工资收入额分别为4500元和6000元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为85元,则丙每月的工资收入额应为多少?24.昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.25.先化简,再求值:4a 2b+ab 2-4(ab 2+a 2b ),其中|a+1|+(b-2)2=026.计算:(1)()()()332122-⨯-+-÷(2)201813121234⎛⎫-+-+-⨯ ⎪⎝⎭(3)先化简,再求值:221131a 2a b a b 4323⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中3a 2=,1b 2=-. 27.已知|x+1|+(y+2)2=0,求x+y 的值.28.712311263-+【参考答案】***一、选择题1.B2.C3.D4.B5.B6.A7.C8.C9.B10.C11.A12.D二、填空题13.180°14.15°或30°.15.(a+ SKIPIF 1 < 0 b ).解析:(a+54b ). 16.17.3n+1.18.2;19.520.-13或-3三、解答题21.(1)线段AB 的长为11cm ;(2)2b ﹣a .22.(1)①12;②12;(2)2m n +. 23.(1)甲每月应缴纳的个人所得税为30元;乙每月应缴纳的个人所得税145元;(2)丙每月的工资收入额应为5400元.24.甲车速度为106千米/时,乙车速度为86千米/时.25.26.() 12-;()24-;(3)54-. 27.﹣3.28.1312。

初中数学_有理数教学设计学情分析教材分析课后反思

初中数学_有理数教学设计学情分析教材分析课后反思

《有理数》教学设计1、教学目标:(1)知道正负数的概念,能够用正负数表示具有相反意义的量。

(1)掌握有理数的概念,会对有理数按一定的标准进行分类,培养分类能力。

(3)经历有理数的分类过程,树立对数分类讨论的观点。

重点:正确理解有理数的概念。

难点:正确理解分类的标准,会按照一定的标准进行分类。

2、教学意图:由于本节课例习题有限,所以补充例习题较多。

通过例题的教学,强化学生对有理数相关概念的理解,使学生进一步感受各类数集的相互联系与区别,提高对数集的认识。

通过习题1,纠正学生易出现的错误认识,深化概念的理解。

特别是对0的认识、整数集与正数集的区别、正数与负数同有理数的关联在本题中重点体现。

课堂练习与课后习题的设置主要是针对例题的巩固与补充。

习题(2—6)目的是考查学生对数集的认识程度,同时也是对学生认知能力进一步提升。

3、认知难点与突破方法:本节课的难点在于正确理解有理数的相关概念和分类标准,并按照标准分类。

教学中引导学生掌握相关概念是关键,让学生明确“整数”和“分数”的概念与小学里所学的“正数”和“分数”的概念不同之处。

通过“找区别”明确概念,通过“找联系”确定分类标准,并对有理数进行归类。

进而,逆向写出分类表。

让学生通过感性认知逐步向理性升华,符合学生的认知规律,易于学生接受。

最后通过例、习题的训练强化巩固对概念及相互关系的理解掌握。

一、复习旧知、出示目标1、把下列各数填入相应的大括号内:+6,,3。

8,0,-4,-6。

2,-3。

8,正数集合负数集合2、都找到家了吗?0,既不是正数,也不是负数。

3、这是小学学过的,我们今天更进一步学习!看本节课的学习目标。

二、新课引入1、出示图片:(1)让不同学生分别说出图片上的数都是些什么数,即让学生说出各类数的名称。

教师进一步引导学生归纳出种不同类型的数:正整数、零、负整数、正分数、负分数。

(2)日常生活中,还有很多像零上、零下这样用正负数表示具有相反意义的量,再看着几个题。

初一数学有理数导学案

初一数学有理数导学案

初一数学有理数导学案【课题】有理数【教学目标】知识:会判断正负数,能应用正、负数表示生活中具有相反意义的量能力:借助生活中的实例,体会负数引入的必要性和有理数应用的广泛性。

思想:会判断一个数是正数还是负数。

情感:学习本课时一定要借助生活实例,发散思维去识记。

【教学重难点】1、有理数的分类。

2、相反意义的量的判断【教学方法】讲授法、点拨法、演示法、讨论法【教具与教学准备】多媒体【学情分析】1.学生非常熟悉正数加正数,正数加零的情况。

2.有理数的分类、数轴、绝对值的相关知识已经掌握。

3.学生善于形象思维,思维活跃,能积极参与讨论。

【教学过程】一、激趣导入,日清释疑:1、想一想:①在小学时我门都学习了哪些数?它们在实际生活中都有怎样的应用?你能用它来表示零上5℃和零下7℃这两个数吗?2、阅读课本P24——P25,并解决课本相关问题.预习疑难摘要3、看一看,说一说:②看本章章前图《全国主要城市天气预报》和温度计图,从中你发现了哪些你熟悉的数?发现了你不熟悉的数吗?仔细观察一下,它们是怎样表示的?你会读吗?4、生活中你还见过哪些需带“—”号的数?请举例.③二、自主探究,合作学习:1、交流“自主探究”中的第3、4题2、正负数的区分④ 正数:象5,1,2,+3,+101....这样的数叫正数. 负数:在正数前面加“—”号的数,如-3,-21,….. 零既不是正数也不是负数.三、成果展示,答疑解惑:1.(1)若股市涨100点,记作+100点,则下跌20点记作(2)向西走5m 记作-5m ,则向东走8m 记作(3)如果家庭月收入2000元记作+2000元,则月费用支出800元记作2.说一说,下面的量有什么特点?你能用恰当的方式表示它们吗?(1)赢利1000元与亏损800元.(2)水位上升1.2米和下降1.5米(3)温度为零上5℃和零下4℃题后反思:⑥通过本题,你能得到一个什么结论?3.(1)若顺时针转90°记作-90,则180°的意义为(2)若收入50元记作+50元,则-80元的意义为(3)本公司购进-500吨钢材表示四、反馈检测,归纳提升:(一)小组总结:①下列各数迷路了,你能把它们送回各自的家吗?29,-5.5,76,-1,90%,0,-31,0.01最后还有哪个数没找到自己的家?你能说出它不回家的理由吗?(二)归纳提升:①正数、负数、零三者之间有什么关系?⑦②若整数和分数统算有理数,试着把下图补充完整.正整数整数有理数分数【作业设计】1.判断(1)体重减少3千克与身高增加3cm 是相反意义的量( )(2)一个数不是正数就是负数( )(3)如果下降记作“—”,那么不升不降记作0( )2.填空(1).若收入500元记作+500元,则支出500元记作 元.(2)若卖出20辆自行车记作-20辆,则买进100辆自行车记作 辆.(3)若+12℃表示气温升高1.2℃,则-2℃表示4.把下列各数填入表示它所在的括号内-18,320,3.145,0,2004,-712,-0.235,95% 整数{ }正数{ }负数{ }分数{ }有理数{ }【板书设计】有理数什么是有理数?正整数整数有理数分数【教学反思】通过本节课的教学,学生对有理数的概念以及分类有了一个基本的认识,在认识的过程中充分体会到了有理数在生活中的广泛应用。

新人教版七年级数学上册《有理数》优质教案

新人教版七年级数学上册《有理数》优质教案

1.2有理数1.2.1有理数【知识与技能】1.了解有理数的意义,并能把有理数按要求分类.2.会把给出的有理数填入集合内.【过程与方法】1.从直观认识到理性认识,从而建立有理数概念.2.通过学习有理数概念,体会对应的思想,数的分类的思想.【情感态度】通过有理数意义、分类的学习,体会数的分类、归纳思想方法.【教学重点】有理数的概念.【教学难点】从直观认识到理性认识,从而建立有理数概念.一、情境导入,初步认识问题现在,我们已经知道除了小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数?学生列举:3,5.7,-7,-9,-10,0,1/3,2/5,-536,-7.4,5.2,……议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数. 【教学说明】我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?【教学说明】以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?试一试.我们把所有正数组成的集合,叫做正数集合.试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合?二、典例精析,掌握新知例1 把下列各数填入相应的集合内:12/7,-3.1416,0,2004,-8/5,-0.23456,10%,10.1,0.67,-89.【答案】【教学说明】以上是对数进行分类,教师应让学生上台板演,并接着做教材第6~7页的练习,以巩固知识.例2以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈.【教学说明】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视.例3如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【教学说明】此题开放性较强.同时,要求学生能用分类的思想对a全面认识.例4观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.2/3,3/4,4/5,,6/7,……,你的答案是 .【分析】找出各项数的特点是本题关键所在,第一个数为2/3,后一个数是前一个数的分子、分母都加1所得的数.【答案】5/6三、运用新知,深化理解1.把下列各数填入相应的大括号内:-7,0.125,1/2,-31/2,3,0,50%,-0.3.(1)整数集合{ ……}(2)分数集合{ ……}(3)负分数集合{ ……}(4)非负数集合{ ……}(5)有理数集合{ ……}2.下列说法正确的是()A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2千克),(25±0.3)千克的字样,其中任选两袋,它们质量相差最大的是千克.4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?6.若向东走8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【教学说明】这几道题均较简单,可由学生独立自主完成.【答案】四、师生互动,课堂小结今天你获得了哪些知识?【教学说明】由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.1.布置作业:从教材习题1.2中选取.2.完成练习册中本课时的练习.本课时是在引入负数概念的基础上对所学过的数按照一定的标准进行分类,再提出有理数的概念.教学中应让学生了解分类是解决数学问题的常用方法,通过本节课的学习要认识分类的思想并能对事物用已知的数学知识进行简单的分类.教学时可为学生设置不同情境,引领学生自主参与学习与探寻,体验获取新知的过程,学生间互相交流和评价,以减少“分类”给学习带来的困难.教师寄语同学们,生活让人快乐,学习让人更快乐。

初一数学有理数教案模板6篇

初一数学有理数教案模板6篇

初一数学有理数教案模板6篇初一数学有理数教案模板6篇提高课堂教学质量是每个教师的共同目标。

然而,在实际教学中,我们常常会遇到一些问题,下面是小编为大家整理的初一数学有理数教案,如果大家喜欢可以分享给身边的朋友。

初一数学有理数教案【篇1】学习目标:1、学会用计算器进行有理数的除法运算.2、掌握有理数的混合运算顺序.3、通过探究、练习,养成良好的学习习惯学习重点:有理数的混合运算学习难点:运算顺序的确定与性质符号的处理教学方法:观察、类比、对比、归纳教学过程一、学前准备1、计算1)(—0.0318)÷(—1.4)2)2+(—8)÷2二、探究新知1、由上面的问题1,计算方便吗想过别的方法吗2、由上面的问题2,你的计算方法是先算法,再算法。

3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)4、结合问题2,你先猜想,有理数的混合运算顺序应该是?5、阅读P36,并动手做做三、新知应用1、计算1)、18—6÷(—2)×2)11+(—22)—3×(—11)3)(—0.1)÷×(—100)2、师生小结四、回顾与反思请你回顾本节课所学习的主要内容3页五、自我检测1、选择题1)若两个有理数的和与它们的积都是正数,则这两个数()A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数2)下列说法正确的是()A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-13)关于0,下列说法不正确的是()A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数4)下列运算结果不一定为负数的是()A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积5)下列运算有错误的是()A.÷(-3)=3×(-3)B.C.8-(-2)=8+2D.2-7=(+2)+(-7)6)下列运算正确的是()A.;B.0-2=-2;C.;D.(-2)÷(-4)=22、计算1)6—(—12)÷(—3)2)3×(—4)+(—28)÷73)(—48)÷8—(—25)×(—6)4)六、作业1、P39第7题(4、5、7、8)、第8题2、选做题:P39第10、11、12、1314、15题初一数学有理数教案【篇2】教学目标1,在现实背景中理解有理数加法的意义。

《有理数》教学设计(通用16篇)

《有理数》教学设计(通用16篇)

《有理数》教学设计《有理数》教学设计(通用16篇)作为一名优秀的教育工作者,常常要根据教学需要编写教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。

那要怎么写好教学设计呢?下面是小编为大家收集的《有理数》教学设计,仅供参考,欢迎大家阅读。

《有理数》教学设计篇1一、教学目标1、知识与技能目标掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、能力与过程目标经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、情感与态度目标通过学生自己探索出法则,让学生获得成功的喜悦。

二、教学重点、难点重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

三、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。

教师:由于长期干旱,水库放水抗旱。

每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?学生:26米。

教师:能写出算式吗?学生:……教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题2、小组探索、归纳法则(1)教师出示以下问题,学生以组为单位探索。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

① 2 ×32看作向东运动2米,×3看作向原方向运动3次。

结果:向运动米2 ×3=② -2 ×3-2看作向西运动2米,×3看作向原方向运动3次。

结果:向运动米-2 ×3=③ 2 ×(-3)2看作向东运动2米,×(-3)看作向反方向运动3次。

结果:向运动米2 ×(-3)=④ (-2)×(-3)-2看作向西运动2米,×(-3)看作向反方向运动3次。

结果:向运动米(-2)×(-3)=(2)学生归纳法则①符号:在上述4个式子中,我们只看符号,有什么规律?(+)×(+)=()同号得(-)×(+)=()异号得(+)×(-)=()异号得(-)×(-)=()同号得②积的绝对值等于。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 . 1 有理数
【教学目标】
1•知识与技能
①理解有理数的意义.
②能把给出的有理数按要求分类.
③了解o在有理数分类的作用.
2•过程与方法
经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.
3•情感、态度与价值观
通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.
【教学重点和难点】
重点:会把所给的各数填入它所在的数集的图里.
难点:掌握有理数的两种分类.
【教学过程设计】
(一)创设情境,导入新课
设置抢答环节:现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数•大家讨论一下,到目前为止,你已经认识了哪些类型的数.
(二)合作交流,解读探究
1 2 5
①议一议:3,5.7, -7,-9,-10,0, — , — , -3 ,-7.4,5.2 …
3 5 6
你能说说这些数的特点吗?
学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分
数.
说明:我们把所有的这些数统称为有理数.
②试一试:你能对以上各种类型的数作出一张分类表吗?
正整数 0 负整数 正分数 负分数
说明:以上分类,若学生思考有困难,可加以引导:因为整
数和分数统称为
有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数 呢?
③做一做:以上按整数和分数来分,那可不可以按性质(正数、负数)来分
呢,试一试.
有理数零 ④ 数的集合
把所有正数组成的集合,叫做正数集合.
试一试:试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集 合.
(三)应用迁移,巩固提高
例1把下列各数填入相应的集合内:
有理数 整数 分数 正有理数
正整数 正分数
负有理数
负整数
负分数 么?
例2以下是两位同学的分类方法, 你认为他们的分类的结果正确吗?为什
正有理数 有理数
负有理数 正数
整数 有理数分

负数

〖答案〗 两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈. 例3如果用字母表示一个数,那a 可能是什么样的数,一定为正数吗?与 你的伙伴交流一下你的看法.
〖答案〗 不一定,a 可能是正数,可能是负数,也可能是 0.
(四) 总结反思,拓展升华
提问:今天你获得了哪些知识? 由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类 的方法•我们要能正确地判断一个数属于哪一类,要特别注意“ 0”的正确说法.
正有理数
1 .有理数按正、负可分为 零
负有理数
整数
按整数分,可分为 ―
分数
(1) 你能自己再制定一个标准,对有理数进行另一种分类吗?
(2) 生活中,我们也常常对事物进行分类,请你举例说明.
〖答案〗 (1)如将有理数分成大于1的数,小于1的数,等于1的数.
(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、 中年、
老年.
2 .下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示 什么数的集合呢?
正整数
正分数 负整数
负分数
〖答案〗负分数
(五)课堂跟踪反馈
①夯实基础
1•把下列各数填入相应的大括号内:
1 1
-7 ,0.125,丄,-3 丄,3,0,50% -0.3
2 2
(1)整数集合{-7,3,0}
1 1
(2)分数集合{0.125,2,-3 1,50% -0.3}
1
(3)负分数集合{-3 ,-0.3}
1
(4)非负数集合{0.125,-,3, 0, 50%}
2
1 1
(5)有理数集合{-7,0.125,-,-3 —,3,0,50% -0.3}
2 2
2.下列说法正确的是(D)
A.整数就是自然数
B. 0不是自然数
C.正数和负数统称为有理数
D. 0是整数而不是正数
3.某商店出售的三种规格的面粉袋上写着(25±0.1 )千克,(25±0.2?千克),(25±
0.3 )千克的字样,从中任意两袋,它们质量相差最大的是0.6 千克.
②提升能力
4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以
表示什么样的数?
〖答案〗a可以表示正整数,正分数,0,负整数或负分数.
5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,?
超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:
—2 -1 2 -1 3 0 -1 -2 1 0
(1)这10名男生有百分之几达标(即达标率)?
(2)这10名男生共做了多少个引体向上?
〖答案〗(1)50%(2)5X 10-1=49 (个)
③开放探究
若向东8米记作+ 8米,如果一个人从A地出发先走+ 12米,再走-15米, 又走+ 18米,最后走-20米,你能判断这个人此时在何处吗?
〖答案〗在A地西边5米处.
(六)布置作业:课本第八页练习题
【教学板书】
1.2.1有理数
正整数正有理数
正整数
正分数
整数0
有理数零有理数负整数
分数正分数负分数
负有理数
负整数
负分数
【教学反思】
本节的教学重点是让学生明确有理数的概念,难点是根据不同的分类标准对有理数进行分类。

通过具体的数的分类练习培养学生的正确分类能力,在确定分类标准时应防止出现“重”、“漏”的错误,即要求每一个数必须属于某一类,又不能同时属于不同的两类。

相关文档
最新文档