力的分解方法,原则

合集下载

力的分解

力的分解

力的分解一、力的分解1、定义:求一个已知力的分力的过程叫做力的分解,力在分解时,一个力只能分解成几个性质相同的力,即力的分解不改变力的性质。

2、力的分解依据:遵循平行四边形定则。

二、力的分解原则1、力的分解如果没有什么限制条件,那么一个力可以有无数组分力代替。

2、将力分解时,需要遵循以下原则:①按实际效果分解②按实际需要进行分解③方便原则:正交分解3、正交分解:将力沿着两个相互垂直的方向分解,叫做力的正交分解。

①坐标系的建立原则:在静力学中,以少分解力和容易分解力为原则。

在动力学中,以加速度方向和垂直于加速度方向为坐标轴建系。

4、求解分力的其他方法:①直角三角形法②相似三角形法的方向③动态矢量三角形法:已知合力F的大小和方向及一个分力F1已知合力F的方向及一个分力F的大小和方向1的大小已知合力F的大小及一个分力F1三、典型例题1、将一个力F分解为两个力F1和F2,那么下列说法中错误的是( )A.F是物体实际受到的力 B.F1和F2不是物体实际受到的力C.物体同时受到F1、F2和F三个力的作用 D.F1和F2共同作用的效果与F相同2、重力为G的物体静止在倾角为θ的斜面上,将重力G分解为垂直斜面向下的力F2和平行斜面向下的力F1,那么( )A.F2就是物体对斜面的压力 B.物体对斜面的正压力方向与F2方向相同C.F1就是物体受到的静摩擦力 D.物体受到重力、斜面对物体的支持力、静摩擦力、F1和F2共五个力的作用3、如下图所示,一名骑独轮车的杂技演员在空中钢索上表演,如果演员和独轮车的总质量为80kg,两侧的钢索互成120°夹角,则每根钢索所受拉力大小为( )A.400N B.600N C.800N D.1 600N4、如下图所示,已知力F和一个分力F1的方向的夹角为θ,则另一个分力F2的最小值为____________.5、下列说法中正确的是()A.一个2 N的力可分解为7 N和4 N的两个分力B.一个2 N的力可分解为9 N和9 N的两个分力C.一个6 N的力可分解为4 N和3 N的两个分力D.一个8 N的力可分解为4 N和3 N的两个分力6、将一个大小为10 N的力分解为两个分力,如果已知其中的一个分力的大小为15 N,则另一个分力的大小可能是()A. 5 NB. 10 NC. 15 ND. 20 N7、物体静止于光滑水平面上,力F作用于物体上的O点,现要使合力沿着OO′方向,如图所示,则必须同时再加一个力F′,如F和F′均在同一水平面上,则这个力的最小值为( )A.F cosθB.F sinθC.FtanθD.Fcotθ4.如图所示,质量为10 kg的物体在水平面上向右运动,此时物体还受到一个向左、大小为20 N的水平推力,物体与水平面之间的动摩擦因数为0.2,则物体水平方向受的合力是()A.20 N,水平向左B.20 N,水平向左C.40 N,水平向左D.0.4 N,水平向左5. 一个重为20N的物体置于光滑的水平面上,当用一个F=5N的力竖直向上拉该物体时,如图所示,物体受到的合力为()A. 15NB. 25NC. 20ND. 0N6、如图所示,物体M在斜向右下方的推力F作用下,在水平地面上恰好做匀速运动,则推力F和物体M 受到的摩擦力的合力方向是()A. 竖直向下B. 竖直向上C. 斜向下偏左D. 斜向下偏右7、如图所示,一物块置于水平地面上。

力的分解 课件

力的分解  课件

力的分解及分解法则 1.一个力在不受条件限制下可分解为无数组分力 将某个力进行分解,如果没有条件约束,从理论上讲有无数组 解,因为同一条对角线可以构成的平行四边形有无穷多个(如图所 示),这样分解是没有实际意义的.实际分解时,一个力按力的作用 效果可分解为一组确定的分力.
2.一个合力分解为一组分力的情况分析 (1)已知合力和两个分力的方向时,有唯一解.
4.正交分解法求合力的步骤 (1)建立坐标系:以共点力的作用点为坐标原点,直角坐标系x 轴和y轴的选择应使尽量多的力在坐标轴上.
(2)正交分解各力:将每一个不在坐标轴上的力分解到x轴和y轴 上,并求出各分力的大小,如图所示.
(3)分别求出x轴、y轴上各分力的矢量和,即: Fx=F1x+F2x+… Fy=F1y+F2y+… (4)求共点力的合力:合力大小F= F2x+F2y ,合力的方向与x轴 的夹角为α,则tan α=FFxy.
小球对墙面的压力F1=F1′=mgtan 60°=100 3 N,方向垂直 墙壁向右;
小球对A点的Βιβλιοθήκη 力F2=F2′=mg cos 60°
=200
N,方向沿OA方
向.
[答案] 见解析
上例中,若将竖直墙壁改为与左端相同的墙角B撑住小球且B端 与A端等高,则小球对墙角的压力分别为多大?方向如何?
[提示] 由几何关系知:FA=FB=mg=100 N,故小球对A、B 点的压力大小都为100 N,方向分别沿OA、OB方向.
【例3】 在同一平面内共点的四个力F1,F2,F3,F4的大小依 次为19 N,40 N,30 N和15 N,方向如图所示,求它们的合力.(sin 37°=0.6,cos 37°=0.8)
思路点拨:①由F1与F2,F2与F3间夹角的大小确定x轴和y轴方 向,便于几个力在坐标轴上的分力计算.

高中物理必修一-力的分解

高中物理必修一-力的分解

力的分解知识集结知识元力的分解知识讲解力的分解一、力的分解1.力的分解:求一个已知力的分力叫做力的分解.2.分解规律:力的分解是力的合成的逆运算,同样遵守平行四边形定则,即把已知力作为平形四边形的对角线,那么,与已知力共面的平行四边形的两条邻边就表示已知力的两个分力.3.力的分解方法:根据力F产生的作用效果,先确定两个分力的方向,再根据平行四边形定则用作图法作出两个分力F1和F2的示意图,最后根据相关数学知识计算出两个分力的大小二、力的分解的解的问题1.已知两分力方向(1)两分力方向在一条直线上时当两力与合力同向时,无论是同向还是反向,均有无数组解.(2)两分力不在一条直线上时要使问题有解,合力必夹在两分力之间,仅有一组解.2.已知一个分力的大小和方向合力与一个确定的分力已经确定了三角形的三个顶点(三力在一条直线上的情况可看成是压扁的三角形),由三角形定则知,解是唯一的.3.已知两个分力的大小要使问题有解,两个分力的代数和不能小于合力的大小;差的绝对值不能大于合力的大小.在这个前提下讨论,可以做图得到结果.(1)当时在平面内有两解,在空间中有无数解.(如图所示)(2)当时,有唯一解(3)当时,有唯一解4.已知其中一分力F1的方向和另一分力F2的大小时(1)已知方向的分力与合力成锐角时(2)已知方向的分力与合力成直角或钝角时当时,无解.当时,有唯一解.按力的效果进行分解一、按效果分在实际问题中一个力究竟该分解成怎样的两个力,要看力的实际作用效果二、分解方法:1.根据力的实际作用效果确定两个分力的方向2.根据两个分力的方向做平行四边形3.根据平行四边形和相关的数学知识,求出两个分力的大小和方向.正交分解法正交分解法是把力沿着两个经选定的互相垂直的方向作分解,其目的是便于运用普通代数运算公式来解决矢量的运算,它是处理力的合成和分解的复杂问题的一种简便方法,其步骤如下:1.正确选定直角坐标系.通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际问题来确定,原则是使坐标轴与尽可能多的力重合,即:使向两坐标轴投影分解的力尽可能少.在处理静力学问题时,通常是选用水平方向和竖直方向上的直角坐标,当然在其他方向较为简便时也可选用.2.分别将各个力投影到坐标轴上,分别求出x轴和y轴上各力的投影的合力F x和F y:F x=F1x+F2x+F3x+……;F y=F1y+F2y+F3y+……(式中的F1x和F1y是F1在x轴和y轴上的两个分量,其余类推.)这样,共点力的合力大小为:F=.3.设合力的方向与x轴正方向之间的夹角为α,因为tanα=,所以,通过查数学用表,可得α数值,即得出合力F的方向.特别的:若F=0,则可推得F x=0,F y=0.这是处理多个力作用下物体平衡问题的常用的好办法.例题精讲力的分解例1.关于力的分解,下列说法中不正确的是()A.一个力可以分解成两个比它大的分力B.一个力可分解成两个大小跟它相等的力C.如果一个力和它的一个分力的大小方向确定,那么另一个分力就是唯一的D.如果一个力以及它的一个分力大小和另一个分力的方向确定,这两个分力就完全确定了例2.如图所示,将力F分解为F1和F2两个分力,已知F1的大小和F2与F之间的夹角α,且α为锐角,则()A.当F1>F sinα时,一定有两解B.当F1=F sinα时,有唯一解C.当F1<F sinα时,无解D.当F sinα<F1<F时,一定有两解例3.如图所示,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动.若保持F的大小不变,而方向与水平面成53°角时,物块也恰好做匀速直线运动.则物块与桌面间的动摩擦因数为(不计空气阻力,sin53°=0.8,cos53°=0.6)()A.B.C.D.当堂练习单选题练习1.在日常生活中,力的分解有着广泛的应用,如甲图用斧子把木桩劈开的图,已知两个侧面之间的夹角为2θ,斧子对木桩施加一个向下的力F时,产生了大小相等的两个侧向分力F1、F2,由乙图可得下列关系正确的是()A.B.C.D.练习2.如图所示,质量均为M的A、B两滑块放在粗糙水平面上,两轻杆等长,杆与滑块、杆与杆间均用光滑铰链连接,在两杆铰合处悬挂一质量为m的重物C,整个装置处于静止状态,设杆与水平面间的夹角为θ.下列说法正确的是()A.当m一定时,θ越大,轻杆受力越小B.当m一定时,θ越小,滑块对地面的压力越大C.当θ一定时,M越大,滑块与地面间的摩擦力越大D.当θ一定时,M越小,可悬挂重物C的质量m越大练习3.将一个有确定方向的力F=10N分解成两个分力,已知一个分力有确定的方向,与F成30°夹角,另一个分力的大小为6N,则在分解时()A.有无数组解B.有两组解C.有唯一解D.无解练习4.为了行车的方便与安全,上山的公路都是很长的“之”字形盘山公路,这样做的主要目的是()A.减小上山车辆受到的摩擦力B.减小上山车辆的重力C.减小上山车辆对路面的压力D.减小上山车辆的重力平行于路面向下的分力练习5.关于力的分解,下列说法中不正确的是()A.一个力可以分解成两个比它大的分力B.一个力可分解成两个大小跟它相等的力C.如果一个力和它的一个分力的大小方向确定,那么另一个分力就是唯一的D.如果一个力以及它的一个分力大小和另一个分力的方向确定,这两个分力就完全确定了练习6.已知两个共点力F的合力为2N,分力F1的方向与合力F的方向成30°角,分力F2的大小为N.则()A.F2的方向是唯一的B.F2有无数个可能的方向C.F1的大小是唯一的D.F1的大小可取N练习7.如图中按力的作用效果分解正确的是()B.C.D.A.练习8.如图所示,被轻绳系住静止在光滑斜面上的小球.若按力的实际作用效果来分解小球受到的重力G,则G的两个分力的方向分别是图中的()A.1和4 B.3和4 C.2和4 D.3和2练习9.如图,研究物体沿斜面下滑时,常把物体所受的重力分解为()A.斜面支持力和下滑力B.沿斜面向下的下滑力和垂直在斜面上的压力C.平行于斜面向下的分力和垂直于斜面向下的分力D.下滑力和垂直于斜面向下的分力练习10.如图所示,倾角为θ的斜面上固定有一竖直挡板,重为G的光滑小球静止时对斜面的压力为N,小球的重力按照产生的作用效果可分解为()A.垂直于斜面的分力和水平方向的分力,且B.垂直于斜面的分力和水平方向的分力,且N=G cosθC.垂直于斜面的分力和平行于斜面的分力,且D.垂直于斜面的分力和平行于斜面的分力,且N=G cosθ练习11.如图所示,倾角为15°的斜面上放着一个木箱,现有一个与水平方向成45°角的拉力F斜向上拉着木箱.分别以平行于斜面和垂直于斜面的方向为x轴和y轴建立坐标系,把F分解为沿着两个坐标轴的分力.则分力F x和F y的大小分别为()A.F cos15°、F sin15°B.F cos30°、F sin30°C.F cos45°、F sin45°D.F cos60°、F sin60°练习12.如图所示,在高度不同的两水平台阶上放有质量分别为m1、m2的两物体,物体间用轻弹簧相连,弹簧与竖直方向夹角为θ.在m1左端施加水平拉力F,使m1、m2均处于静止状态,已知m1下表面光滑,重力加速度为g,则下列说法正确的是()A.弹簧可能处于压缩状态B.弹簧弹力的大小为C.地面对m2的支持力可能为零D.地面对m2的摩擦力大小为F练习13.如图所示,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动.若保持F的大小不变,而方向与水平面成53°角时,物块也恰好做匀速直线运动.则物块与桌面间的动摩擦因数为(不计空气阻力,sin53°=0.8,cos53°=0.6)()A.B.C.D.多选题练习1.如图所示是骨折病人的牵引装置示意图,绳的一端固定,绕过定滑轮和动滑轮后挂着一个重物,与动滑轮相连的帆布带拉着病人的脚,整个装置在同一竖直平面内.为了使脚所受的拉力减小,可采取的方法是()A.只增加绳的长度B.只减小重物的质量C.只将病人的脚向左移动D.只将两定滑轮的间距增大练习2.将一个力F分解为两个分力F1和F2,则下列说法中正确的是()A.F1和F2的代数和等于FB.F1和F2两个分力在效果上可以取代力FC.F是F1和F2的合力D.物体受到F1、F2和F三个力的作用练习3.图1为斧子劈开树桩的实例,树桩容易被劈开是因为形的斧锋在砍进木桩时,斧刃两侧会对木桩产生很大的侧向压力,将此过程简化成图2的模型,已知斧子是竖直向下且对木桩施加一个竖直向下的力F,斧子形的夹角为θ,则()A.斧子对木桩的侧向压力大小为B.斧子对木桩的侧向压力大小为C.斧锋夹角越大,斧子对木桩的侧向压力越大D.斧锋夹角越小,斧子对木桩的侧向压力越大练习4.如图所示,将力F分解为F1和F2两个分力,已知F1的大小和F2与F之间的夹角α,且α为锐角,则()A.当F1>F sinα时,一定有两解B.当F1=F sinα时,有唯一解C.当F1<F sinα时,无解D.当F sinα<F1<F时,一定有两解练习5.将力F分解为两个共点力,已知其中一个分力F1的方向与F的夹角为θ,则()A.若已知另一个分力的方向,就可得到确定的两个分力B.若已知F1的大小,就可以得到确定的两个分力C.若已知另一个分力的大小,一定可以得到确定的两个分力D.另一个分力的最小值为F sinθ练习6.已知两个共点力的合力为60N,分力F1的方向与合力F的方向成30°角,分力F2的大小为35N,下列说法中正确的有()A.F1的大小是唯一的B.F1的大小有两个可能的值C.F2有两个可能的方向D.可能任意方向填空题练习1.如图所示,重10N的物体静止在倾斜的长木板上,按照重力的实际作用效果将重力分解为:沿_____________方向的分力和沿____________方向的分力.请准确画出两个分力的图示(要求保留作图痕迹),由图示可读得:F1=______N,F2=______N.(精确到0.1N)按照重力作用的实际效果,可以将重力沿垂直木板方向和平行木板方向进行分解.木板上物体的重力,按效果分解的力图如图.解答题练习1.'已知共点力F1=10N,F2=10N,F3=5(1+)N,方向如图所示.求:(1)F1、F2的合力F合的大小和方向(先在图甲中作图,后求解);(2)F1、F2、F3的合力F合的大小和方向(先在图乙中作图,后求解).'练习2.'如图一大人拉着装有货物的木箱匀速前进,用的拉力为200N,车和货物的总重为500N.F与水平线的夹角为37°,(sin37°=0.6、cos37°=0.8)求:(1)F沿水平方向的分力和竖直方向的分力是多少?(2)地面对木箱的摩擦力是多少?方向向哪?(3)地面对木箱的支持力是多少?(4)画出木箱受力图.'练习3.'如图所示,一物块置于水平地面上.当用与水平方向成60°角的力F1拉物块时,物块做匀速直线运动;当改用与水平方向成60°角的力F2推该物块时,物块仍做匀速直线运动.已知物块与地面间的动摩擦因数为,求F1与F2的大小之比.'练习4.'如图1用水平拉力F刚好能使质量为m的物块在静止水平木板上做匀速直线运动,已知重力加速度为g,求:(1)物块与木板间的动摩擦因数μ是多少?(2)若将水平拉力F改为与水平方向斜向上成θ角度的拉力F1拉物块如图2,仍使物块沿该水平木板做匀速直线运动,则拉力F1为多大?(3)如图3若将木板一端固定,另一端抬高,使木板与水平面成α角度,形成一斜面,现用平行于斜面向上的力F2沿斜面向上拉物块,仍能使物块做匀速直线运动,则拉力F2又是多大?'。

力的分解原则和方法

力的分解原则和方法

力的分解原则和方法力的分解原则是物理学中的一种基本概念,用于将一个力分解为多个力的合力。

力的分解可以将复杂的力系统简化为更容易处理的问题,是物理学和工程学中常用的方法之一。

力的分解方法主要有平行力分解法和正交力分解法两种。

1.平行力分解法平行力分解法是将一个力分解为平行于特定方向的多个力的合力。

这种方法适用于力矩问题和多体系统问题的求解。

其基本原理是利用平行四边形法则或三角法则将力分解为多个平行的力,然后再计算这些力的合力。

例如,一个斜向上的力F可以被分解为平行于水平方向的力F_x和平行于竖直方向的力F_y。

使用三角法则可以得到F_x = F*cosθ和F_y = F*sinθ。

其中,θ是力F与水平方向的夹角。

2.正交力分解法正交力分解法是将一个力分解为垂直于特定方向的多个力的合力。

这种方法适用于斜面问题和斜坡上物体的自由体图分析。

其基本原理是将力分解为正交或垂直的两个力,一个是垂直于斜面或斜坡的力,另一个是平行于斜面或斜坡的力。

例如,一个斜向上的力F可以被分解为垂直于斜面的力F_n和平行于斜面的力F_t。

使用三角法则可以得到F_n = F*sinθ和F_t =F*cosθ。

其中,θ是力F与斜面的夹角。

力的分解原则还包括力的矢量分解和力的标量分解。

1.力的矢量分解力的矢量分解是将一个力矢量分解为不同方向上的分力矢量的和。

这种方法可以应用于三维空间中力的分解问题。

对于一个力矢量F,可以分解为x轴、y轴和z轴上的分力矢量F_x、F_y和F_z。

例如,一个力矢量F = F_xi + F_yj + F_zk可以分解为F_xi、F_yj和F_zk三个分力矢量的和。

其中,i、j和k是x、y和z轴上的单位矢量。

2.力的标量分解力的标量分解是将一个力分解为标量的和。

这种方法适用于只需要考虑力的大小而不考虑方向时的问题。

对于一个力F,可以分解为x 轴、y轴和z轴上的分力F_x、F_y和F_z。

例如,一个力F可以分解为F_x + F_y + F_z。

高中物理必修1:3.5.2力的分解原则方法及其应用

高中物理必修1:3.5.2力的分解原则方法及其应用
重力分解为: 使物体拉紧AO线、BO线的分力F1、F2, 大小相等,F1=F2=mg/(2sinα)
拉力分解为: 拉伸AB的分力F1=Ftanα 压缩BC的分力F2=mg/cosα
力的分解的原则和方法
1. 具体问题中将一个力分解为两个分力,一般根据这个力在该问题 中的实际效果,这就要求在力的分解之前必须搞清楚力的效果,也 就搞清了分力的方向,而搞清了分力的方向后,分解将是唯一的.
A. Fsinα B. Fcosα C. Ftanα D. F/tanα
B
例2 人们短途出行、购物的简便双轮小车如图所示,若小车在匀速
行驶的过程中支架与水平方向的夹角保持不变,不计货物与小车间
的摩擦力,则货物对杆A、B的压力大小之比FA:FB为 ( )
A. 1: 3 C. 2:1
B. 3 :1 D. 1:2
C. F3
D. F4
G
B
解析: 鸟沿虚线斜向上加速飞行,加速度沿着虚线向上,故合力F沿着虚线向 上。鸟受重力和空气对它的作用力,根据三角形定则作图如图所示,可 知选项B正确。
练习 水平横梁一端插在墙壁内,另一端装小滑轮B.轻绳的一端C固
定于墙壁上,另一端跨过滑轮后悬挂一质量m=10kg的重物,
∠CBA=30°,则滑轮受到绳子的作用力大小为(g取10 m/s2)( )
F1
F
F2
力的分解的原则和方法
2. 力的分解问题的关键是根据力的作用效果,画出力的平行四边形, 接下来就转化为一个根据已知边角关系求解的几何问题.分解时尽 量出现直角、等力的条件,这样可以简化计算.
例1 如图所示,拖拉机拉着耙耕地、拉力F与水平方向成α角,若 将该力沿水平和竖直方向分解,则它的水平分力为( )

力的合成和力的分解定律

力的合成和力的分解定律

力的合成和力的分解定律力的合成和力的分解定律是物理学中的重要概念,主要涉及力的合成、力的分解和力的平行四边形法则。

一、力的合成力的合成是指多个力共同作用于一个物体时,可以将其看作一个总力的作用。

根据平行四边形法则,多个力的合力等于这些力的矢量和。

即在力的图示中,将各个力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是多个力的合力。

二、力的分解力的分解是指一个力作用于一个物体时,可以将其分解为多个分力的作用。

根据平行四边形法则,一个力可以被分解为两个分力,这两个分力分别与原力构成两个力的矢量和。

在力的图示中,将原力的箭头分别与两个分力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是原力。

三、力的平行四边形法则力的平行四边形法则是描述力的合成和分解的基本规律。

根据该法则,多个力共同作用于一个物体时,它们的合力等于这些力的矢量和。

同样地,一个力可以被分解为两个分力,这两个分力的合力等于原力。

在力的图示中,力的合成和分解都遵循平行四边形法则,即各个力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是合力或分力。

力的合成和力的分解定律在实际生活中有广泛的应用,如物理学中的力学问题、工程设计、体育竞技等。

通过力的合成和分解,可以简化复杂力的计算,便于分析和解决问题。

综上所述,力的合成和力的分解定律是物理学中的重要概念,掌握这些知识有助于更好地理解和解决力学问题。

习题及方法:1.习题:两个力F1和F2,F1 = 5N,F2 = 10N,它们之间的夹角为60度,求这两个力的合力。

解题方法:根据力的合成,将两个力的矢量和画在一个坐标系中,将F1和F2按照夹角60度画出矢量图,然后用平行四边形法则求出合力。

答案:合力F = √(F1² + F2² + 2F1F2cos60°) = √(5² + 10² + 2510*0.5) = 15N。

《力的分解》 讲义

《力的分解》 讲义

《力的分解》讲义一、什么是力的分解在我们的日常生活和物理学的研究中,经常会遇到一个力产生多个效果的情况。

为了更清晰地理解和分析这种现象,就引入了力的分解这一重要概念。

力的分解,简单来说,就是将一个已知力按照特定的要求分解为两个或多个分力。

这些分力的合力应该等于原来的那个已知力。

比如说,一个斜向上拉物体的力,可以分解为一个水平方向的力和一个竖直方向的力。

这两个分力共同的作用效果,与那个斜向上的拉力是相同的。

二、力的分解的原则力的分解并不是随意进行的,而是遵循一定的原则。

1、平行四边形定则这是力的分解最基本的原则。

如果已知一个力 F 作为平行四边形的对角线,那么从力 F 的作用点出发,就可以作出两个邻边,这两个邻边就代表了力 F 的两个分力 F1 和 F2 。

2、按照实际效果分解根据力所产生的实际效果来确定分力的方向。

比如,放在斜面上的物体受到的重力,可以分解为沿斜面下滑的力和垂直斜面压斜面的力,因为重力在斜面上产生了这两个实际的效果。

三、力的分解的方法1、正交分解法这是一种非常常用的方法。

先建立一个直角坐标系,然后将已知力沿着坐标轴分解为相互垂直的两个分力。

通常选择让较多的力落在坐标轴上,这样可以简化计算。

例如,一个物体受到多个力的作用,我们可以将这些力分别投影到x 轴和 y 轴上,然后分别计算 x 轴和 y 轴上的合力。

2、按角度分解当已知力与某一方向的夹角时,可以利用三角函数来分解力。

比如,已知力 F 与水平方向的夹角为θ ,那么水平方向的分力 Fx =F cosθ ,竖直方向的分力 Fy =F sinθ 。

四、力的分解的应用1、桥梁设计在桥梁的建设中,需要考虑桥梁所承受的各种力,如重力、车辆的压力等。

通过力的分解,可以计算出桥梁各个部分所承受的力的大小和方向,从而确保桥梁的结构安全。

2、机械运动分析在分析机械的运动和受力情况时,力的分解起着关键作用。

比如,对于一个在斜面上运动的物体,通过力的分解可以知道物体所受的合力,进而分析它的加速度和运动状态。

第三节 力的分解

第三节 力的分解

第三节力的分解【知识点的认识】1.力的分解(1)力的分解定义:已知一个力求它的分力的过程叫力的分解.(2)力的分解法则:满足平行四边形定则.2.分解力的方法(1)按实际作用效果分解力分解的步骤:①分析力的作用效果②据力的作用效果定分力的方向;(画两个分力的方向)③用平行四边形定则定分力的大小;④据数学知识求分力的大小和方向(2)正交分解法:将一个力(矢量)分解成互相垂直的两个分力(分矢量),即在直角坐标系中将一个力(矢量)沿着两轴方向分解,如果图中F分解成F x和F y,它们之间的关系为:Fx=F•cosφ,①Fy=F•sinφ,②F=,③tanφ=,④正交分解法是研究矢量常见而有用的方法,应用时要明确两点,①x轴、y轴的方位可以任意选择,不会影响研究的结果,但若方位选择的合理,则解题较为方便:②正交分解后,F x在y轴上无作用效果,F y在x轴上无作用效果,因此F x和F y不能再分解.(3)图解法:根据平行四边形定则,利用邻边及其夹角跟对角线长短的关系分析力的大小变化情况的方法,通常叫作图解法.也可将平行四边形定则简化成三角形定则处理,更简单.图解法具有直观、简便的特点,多用于定性研究,应用图解法时应注意正确判断某个分力方向的变化情况及其空间范围.【知识点的应用及延伸】分解﹣个力的可能情况(1)已知两分力求合力有唯一解,而求一个力的两个分力,如不限制条件有无数组解,如图(a)所示,力F可在不同方向上进行分解.要得到唯一确定的解应附加一些条件:①已知合力和两个分力的方向,可求得两个分力的大小.图(b)所示把已知合力F分解成沿OA、OB方向的两个分力,可从F的矢端作OA、OB 的平行线,画出力的平行四边形得两分力F1、F2.②已知合力和一个分力的大小、方向,可求得另一个分力的大小和方向.如图(c)已知合力F、分力F1,则连接合力F和分力F1的矢端,即可作出力的平行四边形得另一分力F2.③已知合力、一个分力F1的方向与另一分力F2的大小,求F1的大小和F2的方向(无解、有一组解或两组解).如上图所示,已知力F、α(F1与F的夹角)和F2的大小,这时有四种情况,下面采用图示法和三角形知识进行分析,从力F的端点O作出分力F1的方向,以F的矢端为圆心,用分力F2的大小为半径作圆.a.当F2<Fsinα时,圆与F1无交点,说明此时无解,如图(a)所示.b.当F2=Fsinα时,圆与F1相切,此时有一解,如图(b)所示.c.当F≥F2>Fsinα时,圆与F1有两个交点,此时有两解,如图(c)所示.d.当F2>F时,圆与F1作用线只有一个交点,此时只有一解,如图(d)所示.(2)在实际问题中,一般根据力的作用效果或处理问题的方便及需要进行分解.【命题方向】(1)第一类常考题型是考查对力的分解的理解:如图所示,拖拉机拉着耙耕地,拉力F与水平方向成α角,若将该力沿水平和竖直方向分解,则它的水平分力为()A.Fsinα B.Fcosα C.Ftanα D.Fcotα分析:利用力的平行四边形定则将力F分解后,根据几何关系求解.解答:将力F沿水平和竖直方向正交分解,如图根据几何关系,可知F1=Fcosα故选B.点评:本题关键将力正交分解后,根据几何关系求解.(2)第二类常考题型是结合其他知识点对力的分解应用的考查:如图,用绳AC和BC吊起一个重50N的物体,两绳与竖直方向的夹角分别为30°和45°,求绳AC和BC对物体的拉力.分析:对结点C受力分析,受重力和两个拉力,根据共点力平衡条件并运用正交分解法列方程求解即可.解:对悬点C受力分析,因为C点平衡,所以有F AC cos30°+F BC cos45°=GF AC sin30°=F BC sin45°解得:F AC=50(﹣1)NF BC=25(﹣)N答:绳AC和BC对物体的拉力为50(﹣1)N和25(﹣)N.点评:本题关键受力分析后运用共点力平衡条件列式求解;注意三力平衡通常用合成法,四力平衡通常用正交分解法.【课堂检测】一.选择题(共12小题)1.如图轻质支架,A、B固定在竖直墙上,C点通过细绳悬挂一重物,则重物对C点的拉力按效果分解正确的是()A.B.C.D.2.小明想推动家里的衣橱,但使足了力气也推不动,他便想了个妙招,如图所示,用A、B两块木板,搭成一个人字形架,然后往中央一站,衣橱居然被推动了,下列说法中正确的是()A.A板对衣橱的推力一定小于小明的重力B.人字形架的底角越大,越容易推动衣橱C.人字形架的底角越小,越容易推动衣橱D.A板对衣橱的推力大小与人字形架的底角大小无关3.如图所示,被轻绳系住静止在光滑斜面上的小球.若按力的实际作用效果来分解小球受到的重力G,则G的两个分力的方向分别是图中的()A.1和4B.3和4C.2和4D.3和24.关于力的分解,下列说法正确的是()A.一个2N的力可以分解为8N和8N的两个分力B.一个3N的力可以分解为8N和4N的两个分力C.一个7N的力可以分解为5N和1N的两个分力D.一个8N的力可以分解为4N和3N的两个分力5.将一个有确定方向的力F=10N分解成两个分力,已知一个分力有确定的方向,与F成30°夹角,另一个分力的大小为6N,则在分解时()A.有无数组解B.有两组解C.有唯一解D.无解6.已知力F的大小为10N,要把它分解成两个力,以下关于两分力大小不可能的是()A.6N,6N B.3N,4N C.100N,100N D.428N,419N 7.如图所示,物体P静止在倾角为α的斜面上,其所受的重力可分解成平行于斜面的F1和垂直于斜面的F2,则()A.P受到重力、F1、F2、支持力和摩擦力的作用B.P受到重力、支持力和摩擦力的作用C.当α增大时,F2也随着增大D.当α减小时,F1却逐渐增大8.如图所示,分解一个水平向右的力F,F=6N,已知一个分力F1=4N和另一个分力F2与F的夹角为30°,以下说法正确的是()A.只有唯一解B.一定有两组解C.可能有无数解D.可能有两组解9.下图中按力的作用效果分解正确的是()A.B.C.D.10.将一个力F分解为两个分力F1和F2时,以下情况中不可能的是()A.F1与F2的大小都大于FB.F1、F2与F都在同一直线上C.F1与F2的大小都等于FD.F1与F2的大小、方向都于F相同11.分解一个确定大小和方向的力,在下列给出的四种附加条件中,能得到唯一确定解的情况,正确的说法是()①已知两个分力的方向,求两个分力的大小②已知两个分力的大小,求两个分力的方向③已知一个分力的大小和方向,求另一个分力的大小和方向④已知一个分力的大小和另一个分力的方向,求第一个分力的方向和另一个分力的大小.A.①和②B.①和③C.②和④D.③和④12.如图所示,小球静止时对斜面的压力为N,小球所受的重力G,可根据它产生的作用效果分解成()A.垂直于斜面的分力和水平方向的分力,且N=B.垂直于斜面的分力和水平方向的分力,且N=GcosθC.垂直于斜面的分力和平行于斜面的分力,且N=D.垂直于斜面的分力和平行于斜面的分力,且N=Gcosθ二.填空题(共4小题)13.如图所示,斜面的倾角为θ,圆柱体质量为m。

《力的分解》 知识清单

《力的分解》 知识清单

《力的分解》知识清单一、力的分解的概念力的分解是力的合成的逆运算,是将一个力按照实际作用效果分解为两个或多个分力的过程。

打个比方,一个斜向上拉物体的力,可以分解为水平方向和竖直方向的两个分力。

这就像是把一捆树枝拆开成一根根独立的树枝一样。

二、力的分解遵循的原则1、平行四边形定则力的分解同样遵循平行四边形定则。

如果已知合力和两个分力的方向,我们可以以合力为对角线,以两个分力的方向为邻边,作出平行四边形,两个邻边就代表两个分力的大小和方向。

2、唯一性在没有条件限制时,一个力可以分解为无数组不同的分力。

但如果给定了条件,比如已知两个分力的方向,或者已知一个分力的大小和方向,力的分解就是唯一的。

三、按实际作用效果分解力1、放在斜面上的物体重力作用在物体上,会产生两个实际作用效果。

一个是使物体沿斜面下滑,另一个是使物体压紧斜面。

所以重力可以分解为沿斜面向下的力和垂直于斜面向下的力。

2、悬挂在绳子上的物体物体受到重力和绳子的拉力。

重力可以分解为沿绳子方向和垂直绳子方向的两个分力。

沿绳子方向的分力与绳子的拉力平衡,垂直绳子方向的分力使物体有摆动的趋势。

3、水平拉动放在地面上的物体拉力在水平方向,可以分解为向前的动力和使物体压紧地面的压力。

四、力的正交分解1、正交分解的概念正交分解是将一个力分解为相互垂直的两个分力的方法。

通常选择两个互相垂直的方向作为坐标轴,比如水平方向和竖直方向。

2、步骤(1)建立坐标系:选择合适的坐标轴,一般以物体的运动方向或便于分析的方向为坐标轴。

(2)分解力:将力沿着坐标轴进行分解。

(3)计算分力大小:根据三角函数关系,计算出分力的大小。

3、优点正交分解可以使复杂的力的分析变得简单、清晰,便于计算和解决问题。

五、力的分解的应用1、桥梁的设计在桥梁的结构中,需要考虑各种力的作用。

通过力的分解,可以分析桥梁所受的压力、拉力等,从而确保桥梁的安全性和稳定性。

2、体育运动比如举重运动员在举起杠铃时,手臂肌肉所承受的力可以通过力的分解来分析,以了解如何更好地发力和保持平衡。

《力的分解》教学设计

《力的分解》教学设计

《力的分解》教学设计一、教学任务分析1.教材地位和作用这节课是第五章第二节的内容,是在学习完《力的合成》之后的内容。

力的分解一直是力学部分教学的重点和难点,能否掌握好这一方法对解决共点力的平衡及牛顿运动定律的问题起着举足轻重的作用。

教材通过生活中的简单例子,从等效替代的角度让学生去理解力的分解,并通过力的分解是力的合成的逆运算让学生掌握力的分解的方法,最后通过用力的分解在生活生产中的应用,培养学生应用知识解决实际问题的能力。

2.教学的重点和难点教学重点:(1)探究力的分解的依据;(2)利用平行四边形定则进行力的分解。

教学难点:(1)力的作用效果的确定;(2)在具体问题中如何根据实际情况将一个力进行合理的分解。

二、学情分析1、从学生知识储备上来看,本节之前,学生已经掌握了力的基本概念和表示方法,并且熟悉了生活中常见的几种力的定义和特点,也已经掌握了平行四边形的作图方法,熟知了解直角三角形有关的数学知识。

但是学生对依据作用效果进行力的分解缺少感性认识。

2、从学习意识上看:学生刚刚学习完《力的合成》,他们可能会遇到这样的困惑,刚学习完《力的合成》,为何又要进行力的分解。

教师如果处理不好,很容易让学生形成一种为了学习而学习的错误认识,会打击他们思考问题的积极性。

三、教学目标1、知识与技能(1)正确理解分力的概念,理解力的分解的含义;(2)认识到力的分解与力的合成互为逆运算并满足平行四边形定则。

初步掌握根据力的实际作用效果确定分力方向的原则;(3)会用计算法根据平行四边形定则求分力。

2、过程与方法(1)学习物理学的研究方法,领略等效替代的思维;(2)提高观察思考、建立物理模型及运用数学工具解决问题的能力;(3)了解概念的建立是客观事实的需求,提高用物理知识解决实际问题的能力。

3、情感态度与价值观培养学生对科学的好奇心与求知欲。

培养分析观察能力,物理思维能力和科学的研究态度,了解物理规律与数学规律之间存在的和谐美。

4-2 力的分解(解析版)

4-2  力的分解(解析版)

4.2 力的分解考点精讲考点1:分力力的分解1.力的分解原则(1)一个力分解为两个力,从理论上讲有无数组解.因为同一条对角线可以构成的平行四边形有无穷多个(如图所示).(2)把一个力分解成两个分力,仅是一种等效替代关系,不能认为在这两个分力方向有两个施力物体(或受力物体).(3)也不能错误地认为F2就是物体对斜面的压力,因为F2不是斜面受到的力,且性质与压力不同,仅在数值上等于物体对斜面的压力.(4)实际分解时,按力的作用效果可分解为两个确定的分力.2.按实际效果分解的几个实例(1)重力的两个效果:①使球压紧竖直墙壁的分力F1①使球拉紧悬线的分力F2(2)分力大小:F1=mg tan α,F2=mgcos α(1)重力的两个效果:①对OA的拉力F1①对OB的拉力F2(2)分力大小:F1=mg tan α,F2=mgcos α(1)重力的两个效果:①拉伸AB的分力F1①压缩BC的分力F2(2)分力大小:F1=mg tan α,F2=mgcos α【例1】将一个有确定方向的力F=10 N分解成两个分力,已知一个分力F1有确定的方向,与F成30°夹角,另一个分力F2的大小为6 N,则在分解时()A.有无数组解B.有两组解C.有唯一解D.无解【解析】B由已知条件可得F sin 30°=5 N,又5 N<F2<10 N,即F sin 30°<F2<F,所以F1、F2和F可构成如图所示的两个三角形,故此时有两组解,选项B正确.【例2】如图所示,光滑斜面的倾角为θ,有两个相同的小球分别用光滑挡板A、B挡住,挡板A沿竖直方向,挡板B垂直于斜面,则两挡板受到小球的压力大小之比为多大?斜面受到两小球的压力大小之比为多大?【解析】对小球1所受的重力来说,其效果有二:第一,使小球沿水平方向挤压挡板;第二,使小球垂直压紧斜面.因此,力的分解如图甲所示,由此可得两个分力的大小分别为F1=G tan θ,F2=Gcos θ.对小球2所受的重力G来说,其效果有二:第一,使小球垂直挤压挡板;第二,使小球垂直压紧斜面.因此,力的分解如图乙所示,由此可得两个分力的大小分别为F3=G sin θ,F4=G cos θ.由力的相互性可知,挡板A、B受到小球的压力之比为F1①F3=1①cos θ,斜面受到两小球的压力之比为F2①F4=1①cos2θ.甲 乙【技巧与方法】力的分解的原理与步骤1. 原理:若两个力共同作用的效果与某一个力作用时的效果完全相同,则可用这两个力“替代”这一个力.2. 步骤① 根据已知力的实际效果确定两个分力的方向.① 根据两个分力的方向作出力的平行四边形,确定表示分力的有向线段. ① 利用数学知识解平行四边形或三角形,计算分力的大小和方向. 【针对训练】1.(多选)一根长为L 的易断的均匀细绳,两端固定在天花板上的A 、B 两点.若在细绳的C 处悬挂一重物,已知AC >CB ,如图所示,则下列说法中正确的是( )A .增加重物的重力,BC 段先断B .增加重物的重力,AC 段先断 C .将A 端往左移比往右移时绳子容易断D .将A 端往右移比往左移时绳子容易断【解析】AC 研究C 点,C 点受重物的拉力,其大小等于重物的重力,即T =G .将重物对C 点的拉力分解为对AC 和BC 两段绳的拉力,其力的平行四边形如图所示.因为AC >CB ,得F BC >F AC .当增加重物的重力G 时,按比例F BC 增大得较多,所以BC 段绳先断,因此A 项正确,B 项错误.将A 端往左移时,F BC 与F AC 两力夹角变大,合力T 一定,则两分力F BC 与F AC 都增大.将A 端向右移时两分力夹角变小,两分力也变小,由此可知C 项正确,D 项错误.故选A 、C.2.甲、乙两人用绳子拉船,使船沿OO ′方向航行,甲用1 000 N 的力拉绳子,方向如图所示,要使船沿OO ′方向航行,乙的拉力最小值为( )A .500 3 NB .500 NC .1 000 ND .400 N【解析】B 要使船沿OO ′方向航行,甲和乙的拉力的合力方向必须沿OO ′方向.如图所示,作平行四边形可知,当乙拉船的力的方向垂直于OO ′时,乙的拉力F 乙最小,其最小值为F 乙min =F 甲sin 30°=1 000×12N =500 N ,故B 正确.考点2:力的正交分解1.正交分解的适用情况:适用于计算三个或三个以上共点力的合成.2.正交分解的目的:将力的合成化简为同向、反向或垂直方向的分力,便于运用普通代数运算公式解决矢量的运算,“分”的目的是为了更好地“合”.3.力的正交分解的依据:分力与合力的等效性. 4.正交分解的基本步骤(1)建立坐标系:以共点力的作用点为坐标原点,直角坐标系x 轴和y 轴的选择应使尽量多的力落在坐标轴上.(2)正交分解各力:将每一个不在坐标轴上的力分解到x 轴和y 轴上,并求出各分力的大小,如图所示.(3)分别求出x 轴、y 轴上各分力的合力,即: F x =F 1x +F 2x +… F y =F 1y +F 2y +…(4)求共点力的合力: 合力大小F =F 2x +F 2y ,合力的方向与x 轴的夹角为α,则tan α=F yF x,即α=arctanF yF x. 【例3】 在同一平面内共点的四个力F 1、F 2、F 3、F 4的大小依次为19 N 、40 N 、30 N 和15 N ,方向如图所示,求它们的合力.(sin 37°=0.6,cos 37°=0.8)【分析】当物体受多个力作用时,一般采用正交分解法求解,可按以下思路: 建立坐标系→分解各力→求F x 、F y →求F 合【解析】如图甲,建立直角坐标系,把各个力分解到这两个坐标轴上,并求出x 轴和y 轴上的合力F x和F y ,有甲F x =F 1+F 2cos 37°-F 3cos 37°=27 N , F y =F 2sin 37°+F 3sin 37°-F 4=27 N.因此,如图乙所示,合力:乙F =F 2x +F 2y≈38.2 N ,tan φ=F y F x=1. 即合力的大小约为38.2 N ,方向与F 1夹角为45°斜向右上. 【答案】38.2 N ,方向与F 1夹角为45°斜向右上【技巧与方法】正交分解时坐标系的选取原则与方法(1)原则:用正交分解法建立坐标系时,通常以共点力作用线的交点为原点,并尽量使较多的力落在坐标轴上,以少分解力为原则.(2)方法:应用正交分解法时,常按以下方法建立坐标轴. ① 研究水平面上的物体时,通常沿水平方向和竖直方向建立坐标轴. ① 研究斜面上的物体时,通常沿斜面方向和垂直斜面方向建立坐标轴.① 研究物体在杆或绳的作用下转动时,通常沿杆(或绳)方向和垂直杆(或绳)的方向建立坐标轴. 【针对训练】3.如图所示,一物块置于水平地面上,当用与水平方向成60°角的力F 1拉物块时,物块做匀速直线运动;当改用与水平方向成30°角的力F 2推物块时,物块仍做匀速直线运动.若F 1和F 2的大小相等,则物块与地面之间的动摩擦因数为( )A.3-1 B .2-3 C.32-12D .1-32【解析】B 将两种情况下的力沿水平方向和竖直方向正交分解,因为两种情况下物块均做匀速直线运动,故有F 1cos 60°=μ(mg -F 1sin 60°),F 2cos 30°=μ(mg +F 2sin 30°),再由F 1=F 2,解得μ=2-3,故B 正确.4.大小均为F 的三个力共同作用在O 点,如图所示,F 1、F 3与F 2之间的夹角均为60°,求它们的合力.【解析】 以O 点为原点、F 1的方向为x 轴正方向建立直角坐标系.分别把各个力分解到两个坐标轴上,如图所示.F 1x =F 1,F 1y =0,F 2x =F 2cos 60°,F 2y =F 2sin 60°,F 3x =-F 3cos 60°,F 3y =F 3sin 60°,x 轴和y 轴上的合力分别为F x =F 1x +F 2x +F 3x =F 1+F 2cos 60°-F 3cos 60°=F ,F y =F 1y +F 2y +F 3y =0+F 2sin 60°+F 3sin 60°=3F ,求出F x 和F y 的合力即是所求的三个力的合力,如图所示.F 合=F 2x +F 2y ,代入数据得F 合=2F ,tan θ=F yF x =3,所以θ=60°,即合力F 合与F 2的方向相同. 【答案】 2F ,与F 2的方向相同考点达标一、选择题1.关于共点力,下列说法中不正确的是( )A .作用在一个物体上的两个力,如果大小相等,方向相反,这两个力是共点力B .作用在一个物体上的两个力,如果是一对平衡力,则这两个力是共点力C .作用在一个物体上的几个力,如果它们的作用点在同一点上,则这几个力是共点力D .作用在一个物体上的几个力,如果它们的作用线交于同一点,则这几个力是共点力【解析】A 共点力是几个力作用于同一点或力的作用线相交于同一点的力.若受两个力平衡的物体,则物体所受的必定是共点力,所以A 错,B 、C 、D 对.2.如图所示,F 1、F 2为两个相互垂直的共点力,F 是它们的合力,已知F 1的大小为6 N ,F 的大小等于10 N ,若改变F 1、F 2的夹角,则它们的合力大小还可能是( )A.0B.8 NC.16 N D.18 N【解析】B F1、F2为两个相互垂直的共点力,合力F的大小等于10 N,所以根据勾股定理可得,F2=F2-F21=102-62N=8 N,两力合成时,合力范围为:|F1-F2|≤F≤F1+F2,故2 N≤F≤14 N,所以还可能是B选项.3.下列图中,F1、F2、F3恰好构成封闭的直角三角形,这三个力的合力最大的是()A B C D【解析】C由矢量合成法则可知A图的合力为2F3,B图的合力为0,C图的合力为2F2,D图的合力为2F3,因F2为直角三角形的斜边,故这三个力的合力最大的为C图.4.有三个力,大小分别为13 N、3 N、29 N.那么这三个力的合力最大值和最小值应该是()A.29 N,3 N B.45 N,0 NC.45 N,13 N D.29 N,13 N【解析】C当三个力同方向时,合力最大,为45 N;任取其中两个力,如取13 N、3 N两个力,其合力范围为10 N≤F≤16 N,29 N不在该范围之内,故合力不能为零,当13 N、3 N的两个力同向,与29 N的力反向时,合力最小,最小值为13 N,则C正确,A、B、D错误.5.如图所示的水平面上,橡皮绳一端固定,另一端连接两根弹簧,F1、F2和F3三个力的合力为零.下列判断正确的是()A.F1>F2>F3B.F3>F1>F2C.F2>F3>F1D.F3>F2>F1【解析】B三个力的合力为零,即F1、F2的合力F3′与F3等大反向,三力构成的平行四边形如图所示,由数学知识可知F3>F1>F2,B正确.6.如图所示为两个共点力的合力F的大小随两分力的夹角θ变化的图像,则这两个分力的大小分别为()A .1 N 和4 NB .2 N 和3 NC .1 N 和5 ND .2 N 和4 N【解析】B 由题图知,两力方向相同时,合力为5 N .即F 1+F 2=5 N ;方向相反时,合力为1 N ,即|F 1-F 2|=1 N .故F 1=3 N ,F 2=2 N ,或F 1=2 N ,F 2=3 N ,B 正确.二、非选择题7.如图所示,有五个力作用于同一点O ,表示这五个力的有向线段恰分别构成一个正六边形的两邻边和三条对角线.已知F 1=10 N ,则这五个力的合力大小为多少?【解析】 方法一:巧用对角线特性.如图甲所示,根据正六边形的特点及平行四边形定则知:F 2与F 5的合力恰好与F 1重合;F 3与F 4的合力也恰好与F 1重合;故五个力的合力大小为3F 1=30 N.甲 乙方法二:利用对称法.如图乙所示,由于对称性,F 2和F 3的夹角为120°,它们的大小相等,合力在其夹角的平分线上,故力F 2和F 3的合力F 23=2F 2cos 60°=2(F 1cos 60°)cos 60°=F 12=5 N .同理,F 4和F 5的合力也在其角平分线上,由图中几何关系可知:F 45=2F 4cos 30°=2(F 1cos 30°)cos 30°=32F 1=15 N .故这五个力的合力F =F 1+F 23+F 45=30 N.巩固提升一、选择题1.某物体所受n 个共点力的合力为零,若把其中一个力F 1的方向沿顺时针方向转过90°,并保持其大小不变,其余力保持不变,则此时物体所受的合力大小为 ( )A .F 1 B.2F 1 C .2F 1D .0【解析】B 物体所受n 个力的合力为零,则其中n -1个力的合力一定与剩下来的那个力等大反向,故除F 1以外的其他各力的合力的大小也为F 1,且与F 1反向,故当F 1转过90°时,合力应为2F 1,B 正确.2.一根细绳能承受的最大拉力是G,现把一重为G的物体系在绳的中点,分别握住绳的两端,先并拢,然后缓慢地左右对称地分开,若要求绳不断,则两绳间的夹角不能超过()A.45° B.60°C.120° D.135°【解析】C由于细绳是对称分开的,因而两绳的拉力相等,为保证绳不断,两绳拉力的合力大小等于G,随着两绳夹角的增大,两绳中的拉力增大,当两绳的夹角为120°时,绳中拉力刚好等于G.故C正确,A、B、D错误.3.如图所示,物体M在斜向右下方的推力F作用下,在水平地面上恰好做匀速运动,则推力F和物体M受到的摩擦力的合力方向()A.竖直向下B.竖直向上C.斜向下偏左D.斜向下偏右【解析】A物体M受四个力作用(如图所示),支持力F N和重力G的合力一定在竖直方向上,由平衡条件知,摩擦力F f和推力F的合力与支持力F N和重力G的合力必定等大反向,故F f与F的合力方向竖直向下.4.手握轻杆,杆的另一端安装有一个轻质小滑轮C,支撑着悬挂重物的绳子,如图所示,现保持滑轮C的位置不变,使杆向下转动一个角度,则杆对滑轮C的作用力将()A.变大B.不变C.变小D.无法确定【解析】B物体的重力不变,那么绳子的拉力大小仍然等于物体的重力,保持滑轮C的位置不变,即两段绳子间的夹角不变,所以两绳子拉力的合力不变,轻质滑轮的重力不计,所以两绳子拉力的合力与杆对滑轮C的作用力等大反向,所以杆对滑轮C的作用力不变,故选B.二、非选择题5.如图所示,一条小船在河中向正东方向行驶,船上挂起一风帆,帆受侧向风作用,风力大小F1为100 N,方向为东偏南30°,为了使船受到的合力能恰沿正东方向,岸上一人用一根绳子拉船,绳子取向与河岸垂直,求出风力和绳子拉力的合力大小及绳子拉力F2的大小.【解析】如图所示,以F 1、F 2为邻边作平行四边形,使合力F 沿正东方向, 则F =F 1cos 30°=100×32N =50 3 N. F 2=F 1sin 30°=100×12N =50 N.6.(13分)如图所示,两根相同的橡皮条OA 、OB ,开始时夹角为0°,在O 点处打结吊一重50 N 的物体后,结点O 刚好位于圆心.现将A 、B 分别沿圆周向两边移到A ′、B ′,使①AOA ′=①BOB ′=60°.欲使结点仍为圆心处,则此时结点处应挂多重的物体?【解析】根据在原位置时物体静止,求出橡皮条的拉力.由于变化位置后结点位置不变,因此每根橡皮条的拉力大小不变,但是方向变化.设OA 、OB 并排吊起重物时,橡皮条产生的弹力均为F ,则它们产生的合力为2F ,且与G 1平衡,所以F =G 12=502 N =25 N .当A ′O 、B ′O 夹角为120°时,橡皮条伸长不变,橡皮条产生的弹力仍为25 N ,两根橡皮条互成120°角,所以合力的大小为25 N ,即应挂的重物重25 N.。

高一上学期物理专题知识及习题-力的合成和分解

高一上学期物理专题知识及习题-力的合成和分解

力的合成和分解1.通过实验探究,得出力的合成与分解遵从的规律——平行四边形定则。

2.会用作图法和直角三角形的知识解决共点力的合成与分解问题。

3.运用力的合成与分解知识分析日常生活中的相关问题,培养将物理知识应用于生活和生产实践的意识。

一、共点力如果几个力共同作用在同一点上,或者虽不作用在同一点上,但它们的延长线交于一点,这样的一组力叫做共点力.二、合力和分力1、定义:当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力产生的效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力,原来的几个力叫做分力.2、关系:合力与分力之间的关系是一种等效替代的关系,合力作用的效果与分力共同作用的效果相同.三、力的合成和分解1、力的合成(1)定义:求几个力的合力的过程. (2)运算法则①平行四边形定则:求两个互成角度的分力的合力,可以用表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.如图甲所示,F1、F2为分力,F 为合力.②三角形定则:把两个矢量的首尾顺次连接起来,第一个矢量的起点到第二个矢量的终点的有向线段为合矢量.如图乙,F1、F2为分力,F 为合力.2、共点力合成的方法①作图法:从力的作用点起,按同一标度作出两个分力F1和F2的图示,再以F1和F2的图示为邻边作平行四边形,画出过作用点的对角线,量出对角线的长度,计算出合力的大小,量出对角线与某一力的夹角确定合力的方向(如图所示)。

②计算法:根据平行四边形定则作出力的示意图,然后利用勾股定理、三角函数、正弦定理等求出合力.3、合力范围的确定(1)两个共点力的合力范围:|F1-F2|≤F≤F1+F2.①两个力的大小不变时,其合力随夹角的增大而减小.②合力的大小不变时,两分力随夹角的增大而增大.③当两个力反向时,合力最小,为|F1-F2|;当两个力同向时,合力最大,为F1+F2.(2)三个共点力的合力范围①最大值:三个力同向时,其合力最大,为F max=F1+F2+F3.②最小值:以这三个力的大小为边,如果能组成封闭的三角形,则其合力的最小值为零,即F min=0;如果不能,则合力的最小值等于最大的一个力减去另外两个力的大小之和,即F min=F1-(F2+F3)(F1为三个力中最大的力).(3)计算法:几种特殊情况的共点力的合成。

力的分解

力的分解

B A
1.力的分解遵守平行四边形定则. 2.力的分解的一般步骤:
第一步
根据力的作 用效果确定 两个分力的 方向;
第二步
根据已知合 力和两个分 力方向作平 行四边形;
第三步
根据平行四 边形或三角 形知识确定 分力的大小 和方向.
b
a
Fb F
F1 F F2
Fa
F1=F/sinθ
F2
θ
θ F
F1
F2=Fcotθ
分解力的步骤:
1、分析力的作用效果。
2、根据力的作用效果确定分力的方向。
3、应用平行四边形定则进行分解。
பைடு நூலகம் 实际对力进行分解时,为便于 计算,常常采用正交分解法
四、力的正交分解
定义:把一个已知力沿着两个互相垂直的方向进行分解 正交分解步骤: ①建立xoy直角坐标系
②沿ox、oy轴将各力分解
③求x轴上的合力Fx和y轴上的合力Fy的大小
作法:把已知力F作为平行四边形
的对角线,那么,与力F共 点的平行四边形的两个邻 边也就表示力F的两个分力。
F2
F
F1
如果没有其它限制,对于同一条对角线,可以 作出无数个不同的平行四边形.
F
通常按力的实际作用效果进行分解
二、确定分力原则
按力所产生的实际作用效果进行分解
效果一:使物体沿斜面下滑
效果二:使物体紧压斜面
A BD C
例4.有四个力:F1=5N,方向向正东;F2 =6N,方向东偏北60°;F3=4N,方向南偏 西45°;F4=3N,方向向正南;求这四个力 的合力F。
F2
Fy2 Fx1 x F1 F3
2 y
Fx2
O Fy1

力的合成与分解 知识点总结与典例

力的合成与分解 知识点总结与典例

力的合成与分解知识要点一、力的合成1.合力与分力(1)定义:如果一个力的作用效果跟几个力共同作用的效果相同,这一个力就叫那几个力的合力,那几个力就叫这个力的分力。

(2)逻辑关系:合力和分力是一种等效替代关系。

2.共点力:作用在物体上的力的作用线或作用线的反向延长线交于一点的力。

3.力的合成的运算法则(1)平行四边形定则:求两个互成角度的共点力F1、F2的合力,可以用表示F1、F2的有向线段为邻边作平行四边形,平行四边形的对角线(在两个有向线段F1、F2之间)就表示合力的大小和方向,如图甲所示。

(2)三角形定则:求两个互成角度的共点力F1、F2的合力,可以把表示F1、F2的线段首尾顺次相接地画出,把F1、F2的另外两端连接起来,则此连线就表示合力的大小和方向,如图乙所示。

4.力的合成方法及合力范围的确定(1)共点力合成的方法①作图法②计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力。

(2)合力范围的确定①两个共点力的合力范围:|F1–F2|≤F≤F1+F2,即两个力的大小不变时,其合力随夹角的增大而减小。

当两个力反向时,合力最小,为|F1–F2|;当两个力同向时,合力最大,为F1+F2。

②三个共点力的合成范围A.最大值:三个力同向时,其合力最大,为F max=F1+F2+F3。

B.最小值:以这三个力的大小为边,如果能组成封闭的三角形,则其合力的最小值为零,即F min=0;如果不能,则合力的最小值的大小等于最大的一个力减去另外两个力和的绝对值,即F min=F1–|F2+F3|(F1为三个力中最大的力)。

(3)解答共点力的合成问题时的两点注意①合成力时,要正确理解合力与分力的大小关系。

合力与分力的大小关系要视情况而定,不能形成合力总大于分力的思维定势。

②三个共点力合成时,其合力的最小值不一定等于两个较小力的和与第三个较大的力之差。

二、力的分解1.概念:求一个力的分力的过程。

2.遵循的原则:平行四边形定则或三角形定则。

力的分解常用的方法

力的分解常用的方法

力的分解常用的方法剖析:1.正交分解法(1)定义:把一个力分解为互相垂直的分力的方法.(2)优点:把物体所受的不同方向的各个力都分解到相互垂直的两个方向上去,然后再求每个方向的分力的代数和,这样就把复杂的矢量运算转化成了简单的代数运算,最后再求两个互成90o的力的合力就简单多了.(3)运用正交分解法解题的步骤:1正确选择直角坐标系,通常选择共点力的作用点为坐标原点,直角坐标x、y的选择可按以下原则去确定:a.尽可能使更多的力落在坐标轴上.b.沿物体运动方向或加速度方向设置一个坐标轴.c.若各种设置效果一样,则沿水平方向和竖直方向设置两坐标轴.2正交分解各力,即分别将各力投影到坐标轴上,分别求x轴和y轴各力投影的合力Fx和Fy,其中,;3求Fx和Fy的合力即为共点力的合力合力大小:,合力的方向与x轴夹角:.2.按问题的需要进行分解(1)已知合力和两个分力的方向,求分力的大小.如图2-2-5甲已知力F和α、β,显然所做出的平行四边形是唯一确定的,即两个分力的大小也唯一确定.(2)已知合力、一个分力的大小和方向,求令一个分力的大小和方向.如图2-2-5乙,已知F、F1和α,显然此平行四边形也被唯一确定,即F2的大小和方向(角度β)也被唯一确定了.(3)已知合力、一个分力的方向和另一个分力的大小,即已知F、α(F与F1的夹角)和F2的大小,求F1的大小和F2的方向,有如下几种情况:F>F2>Fsinα时,有两个解;F2=Fsinα时,有唯一解;F2<Fsinα时,无解,因为此时无法组成力的平行四边形;F2≥F时,有唯一解.【例题3】如图2-2-7甲所示,电灯的重力,绳与顶板间的夹角为绳水平,则绳所受的拉力;绳所受的拉力.解析: 查力的平衡、力的合成与分解.先分析物理现象:为什么绳AO,BO受到拉力呢?原因是由于OC绳受到电灯的拉力才使AO,BO绳张紧产生拉力,因此OC绳的拉力产生了两个效果,一是沿OA向下的拉紧AO的分力F1,二是沿BO向左的拉紧BO绳的分力F2,画出平行四边形如图2-2-7乙所示,因为OC拉力等于电灯重力,因此,由几何关系得:答案:【变式训练3】如图2-2-8所示,用轻质三角支架悬挂重物,已知AB杆所受的最大压力为2000N,AC 绳所受的最大拉力为1000N,α 角为30o.为了不使支架断裂,则所悬的重物应当满足。

力的分解概念

力的分解概念

力的分解概念力的分解是指将一个力分解成若干个分力,使得这些分力的合力等于原来的力。

力的分解是研究力的合成和分解问题的重要方法之一,具有广泛的应用。

力的分解可以分为平行分解和不平行分解两种情况。

平行分解是指将一个力分解成与其方向平行的两个力。

当一个力沿着一条直线方向作用时,我们可以将这个力分解成两个力,一个是沿着这条直线方向的分力,另一个是垂直于这条直线方向的分力。

根据力的三角法则,这两个分力的合力等于原力。

平行分解可以用于解决斜面上物体的滑动问题、斜面问题、绳索问题等。

不平行分解是指将一个力分解成与其方向不平行的两个力。

当一个力不沿着一条直线方向作用时,我们可以将这个力分解成两个力,一个是沿着x轴方向的分力,另一个是沿着y轴方向的分力。

根据力的三角法则,这两个分力的合力等于原力。

不平行分解可以用于解决斜面上滑动物体的问题、平面运动问题等。

力的分解可以通过几何方法和代数方法进行求解。

几何方法是通过力的三角法则进行求解。

对于平行分解,我们可以通过画图将举例分解成两个方向的力,然后根据图像测量得到分力的大小,并求出其合力。

对于不平行分解,我们可以根据力的分解要求,画出力的分解图,然后根据几何关系求解分力的大小,并求出其合力。

代数方法是通过向量的平行分量和垂直分量进行分解以及合成问题的解答。

对于平行分解,我们可以根据力的分类,将力的大小和方向用数值表示,然后根据力的三角关系求解分力的大小,并求出其合力。

对于不平行分解,我们可以通过将力用分解方向上的单位向量表示,并根据单位向量的线性组合求解分力的大小,并求出其合力。

力的分解在物理学中有着广泛的应用。

例如,力的分解可以用于解决斜面上物体的问题。

当物体在斜面上滑动时,我们可以将重力分解成垂直于斜面的分力和沿着斜面的分力,并根据分力的性质求解物体的加速度和摩擦力。

力的分解也可以用于解决平面运动问题。

当物体在平面上做运动时,我们可以将作用在物体上的力分解成分别沿着x轴和y轴方向的分力,并根据分力的性质求解物体的速度和加速度。

受力分析、力的合成与分解

受力分析、力的合成与分解

力的合成与分解一、力的合成1、合力、分力:一个力产生的效果跟另外几个力共同作用的效果相同,则这个力叫做另外几个力的合力,另外几个力叫做这个力的分力明确:①合力和分力是一种等效替代关系.②在力的合成中分力是客观存在的,合力是假想力,用于替代分力2、力的合成的方(1)平行四边形定则①↑ F( ) 合力与分力大小关系②③合力F的取值范围__________________________________若共点力为三个或三个以上则采用化多为少的办法:先求任意两个力的合力,然后再求这个合力与第三个力的合力,依此类推直到求出所有力的合力练习1、关于合力,下列说法正确的是(AD )A.一个力的作用效果如果与几个力共同作用产生的效果相同,这个力就叫那几个力的合力B.合力一定大于任何一个分力C.合力就是几个力的代数和D.合力小于任何一个分力是可能的2.作用于一个点的三个力,F1=3N、F2=5N、F3=7N,它们的合力大小不可能的是( D )A.0B.2NC.15ND.18N3、一物体同时受到同一平面内的三个共点力作用,下列几组力的合力不可能为0的是( C )A 、 5N ,8N ,9NB 、 5N ,2N ,3NC 、 2N ,7N ,10ND 、 1N ,10N ,10N 4、若一个物体受六个力的作用,如图所示,六个共面共点力,大小分别为1N 、2N 、3N 、4N 、5N 、6N ,相互之间的夹角均为60°,它们合力大小为_____________N ,若将大小为2N 的力逆时针转900而其它力不变则合力大小为___________N5如图所示水平横梁的一端A 插在墙壁内,另一端装有一小滑轮B 。

一轻绳的一端C 固定于墙壁上,另一端跨过滑轮后悬挂一质量m=10kg 的重物,∠ABC=30°,若不计绳子与滑轮间的摩擦,g 取10m/s 2,则滑轮受到绳子的作用力为(B )A .NB .100NC .ND .50N5、如图装置,两物体质量分别为m 1、m 2,悬点a和b 之间的距离大于滑轮的直径,不计一切摩擦,若装置处于静止状态,则 (ABD )A .m 1可以大于m 2B .m 2一定大于m 1/2C .m 2可能等于m 1/2D .θ1一定等于θ2 (2)三角形法则明确:三角形法则中分力首尾相接,合力从一个分力箭尾指向另一个分力箭首练习6、设有五个力作用于同一点A,表示这五个力的有向线段恰好构成一个正六边形的两条邻边和三条对角=10N,则这五个力的合力大小线,如图1所示,F3为_________N,方向_____.二、力的分解1、力的分解方法:平行四边形定则或三角形法则2、原则:根据力的实际作用效果进行分解练习7、画出下列各图中A球重力的分力8、画出绳的拉力的分力3、力的分解的几种常见情况(1).已知合力和两个分力的方向;有组解;(2)已知合力和一个分力的大小和方向;有组解;(3)、已知合力,一个分力F1的大小和另一个分力F2的方向;①当F1=Fsinθ或F1≥F时;有组解;②F>F1>Fsinθ;有组解;③F1<Fsinθ时;有组解练习:9.将一个力F=10 N分解为两个分力,已知一个分力的方向与F成30°角,另一个分力的大小为6 N,则在分解中( B )A.有无数组解B.有两解C.有惟一解D.无解10、一个10N的力可以分解为下面哪两个力( CD )A.30N和5NB.20N 和5NC.10N和5ND.10N和10N11、把一个力分解为两个力F1和F2,已知合力F=40 N,F1与合力的夹角为30 °,如图1—2—9所示,若F2取某一数值,可使F1有两个大小不同的数值,则F2大小的取值范围是__________________________________12、用细绳AC和BC吊一重物,绳与竖直方向的夹角分别为30°和60°,如图所示,已知绳AC能承受的最大拉力为150N,绳BC能承受的最大拉力为100N,求物体的最大重力不应超过多少?三、动态分析问题处理方法1、特点:(1)物体受三个力,其中一个力为恒力,另一个力方向不变,第三个力大小、方向都变(2)物体受三个力,其中一个力为恒力,另两个力方向都变2、处理方法若是(1)的情况采用图解法:将不变的力沿另两个力的反向分解,做出动态变化过程中几个力的分解图,通过有向线段的长短变化判断力的大小变化练习13、如图6所示,一定质量的物块用两根轻绳悬在空中,其中绳OA固定不动,绳OB在竖直平面内由水平方向向上转动,则在绳OB由水平转至竖直的过程中,绳OB的张力大小将(D)A.一直变大B.一直变小C.先变大后变D.先变小后变大14、重G的光滑小球静止在固定斜面和竖直挡板之间。

高中物理第三章相互作用力的分解导

高中物理第三章相互作用力的分解导

3.5力的分解学习目标1.回顾力的合成来认知力的分解的概念,建立力的合成与分解互为逆过程的思想;2.知道力的分解遵循平行四边形定则,初步掌握根据力的实际作用效果确定分力方向的原则,能用平行四边形定则作出分力和用数学关系求出分力大小;3.认识分力和合力大小关系,并能用来解释生活中的相关现象。

重点难点重点:1.在具体问题中正确确定力的作用效果,进行力的分解。

2.会用平行四边形定则作出分力,会用直角三角形知识计算分力。

难点:1.分力与合力的等效替代关系。

2.根据力的实际作用效果进行力的分解。

探究学习一、力的分解:1、几个力,如果它们共同产生的效果跟作用在物体上的一个力产生的效果相同,则这几个力就叫做那个力的,那个力就叫做这几个力的合力。

2、求一个力的叫做力的分解。

3、力的分解是力的合成的,同样遵守。

二、力的分解的一般原则按照力的作用效果分解。

三、实例探究演示探究1、斜向上的拉力F探究内容:①拉力F的作用效果②拉力F的分解情况(如图)合作探究2:斜面上物体的重力G探究内容:①重力G的作用效果②重力G的分解情况(如图)③用G和 表示分力合作探究3:合力和分力的大小关系四、课堂小结【课后练习】 1.重力为G 的光滑球放在倾角为θ的斜面和挡板之间,在挡板与斜面垂直和挡板与水平面垂直两种情况下,将两图中光滑球所受重力按效果进行分解。

2.一个重力为G 的小球用两根细绳OA 、OB 拴住处于静止状态,绳OA 是水平的,求两根绳对小球的拉力.θθ探究内容:①重力G 的分解情况(如图) ②合力和分力的大小关系③解释“四两拨千斤”2019-2020学年高考物理模拟试卷一、单项选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.在冬季,剩有半瓶热水的老式暖水瓶经过一个夜晚后,第二天拔瓶口的软木塞时觉得很紧,不易拔出来.其中主要原因是A.软木塞受潮膨胀B.瓶口因温度降低而收缩变小C.白天气温升高,大气压强变大D.瓶内气体因温度降低而压强减小2.如图所示,直线1和曲线2分别是汽车a和b在同一平直公路上行驶的位置-时间(x-t)图像,由图像可知()A.在t1时刻,a、b两车的运动方向相同B.在t2时刻,a、b两车的运动方向相反C.在t1到t3这段时间内,a、b两车的平均速率相等D.在t1到t3这段时间内,a、b两车的平均速度相等3.如图所示,一个质量为m,带电量为+q的粒子在匀强电场中运动,依次通过等腰直角三角形的三个顶点A、B、C,粒子在A、B两点的速率均为2v0,在C点的速率为v0,已知AB=d,匀强电场在ABC平面内,粒子仅受电场力作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同问 力的分解方法,原则
2012-01-28 22:00 提问者: 烟雨蒙蒙1995 |浏览次数:787次
我来他解答
满意回答2012-01-28 22:031.正交分解法(1)定义:把一个力分解为互相垂直的分力的方法.(2)优点:把物体所受的不同方向的各个力都分解到相互垂直的两个方向上去,然后再求每个方向的分力的代数和,这样就把复杂的矢量运算转化成了简单的代数运算,最后再求两个互成90o的力的合力就简单多了.(3)运用正交分解法解题的步骤:1正确选择直角坐标系,通常选择共点力的作用点为坐标原点,直角坐标x、y的选择可按以下原则去确定: a.尽可能使更多的力落在坐标轴上. b.沿物体运动方向或加速度方向设置一个坐标轴. c.若各种设置效果一样,则沿水平方向和竖直方向设置两坐标轴.2正交分解各力,即分别将各力投影到坐标轴上,分别求x轴和y轴各力投影的合力Fx和Fy,其中,;3求Fx和Fy的合力即为共点力的合力 合力大小:, 合力的方向与x轴夹角:.2.按问题的需要进行分解(1)已知合力和两个分力的方向,求分力的大小. 如图2-2-5甲已知力F和α、β,显然所做出的平行四边形是唯一确定的,即两个分力的大小也唯一确定. (2)已知合力、一个分力的大小和方向,求令一个分力的大小和方向.如图2-2-5乙,已知F、F1和α,显然此平行四边形也被唯一确定,即F2的大小和方向(角度β)也被唯一确定了.(3)已知合力、一个分力的方向和另一个分力的大小,即已知F、α(F与F1的夹角)和F2的大小,求F1的大小和F2的方向,有如下几种情况:
相关文档
最新文档