大学物理章节习题9原子结构固体能带理论(可编辑修改word版)
大学物理答案第9章
第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).9-3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律 ()r r r re r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1Lr Q εE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2204π21Lr r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L rq E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图 分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为 ()i E 2/3220d π41d r x q x +=ε 由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R RR r x q x E积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x p εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2xεe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x e E θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得 300cos π1x θe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图 分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有 ()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ (2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理 ∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++= r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ 9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有 ⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为r e rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 . 题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变00π2π2ΔεσrL εL λr ελE === 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-= 由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为 R q εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a -a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b )所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势 R εQ V 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布 ()()()22021********* π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有 20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E当R 1 ≤r ≤R 2 时,有 202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则 rεQ Q V 0213π4+= (2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理 ⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时02/ππ2ερl R rl E =⋅得 ()r εR ρr E 022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d x r r r σεV += 由电势叠加,轴线上任一点P 的电势的 ()x x R εσx r rr εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有 V 1695π40==xεq V 1-20m V 5649π4⋅==x εq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=根据电势差的定义有 120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m ) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k 021v m E =可估算出质子初始速率 17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k 0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =6.17×10-30 C· m .这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度m/s 1037.927⨯==m E v k题 9-27。
固体物理题库-zzk-第一至第五章
第一章 晶体结构和X 射线1、试证体心立方和面心立方各自互为正、倒格子2、如果基矢a,b,c 构成正交关系,证明晶面族(h k l )的面间距满足:222)()()(1c l b k a hd hkl ++=3、证明以下结构晶面族的面间距:(1) 立方晶系:d hkl =a [h 2+k 2+l 2]-1/2(2) 六角晶系:2/12222])()(34[-+++=c l ahk k h d hkl 4、等体积的硬球堆积成体心立方结构和面心立方结构,试求他们在这两种结构中的致密度分别为0.68和0.74。
5、试证密积六方结构中,c/a=1.633。
6、在立方晶胞中,画出(1 0 1),(0 2 1),(221)和(012)晶面。
7、如下图,B 和C 是面心立方晶胞上的两面心。
(1) 求ABC 面的密勒指数;(2) 求AC 晶列的指数,并求相应原胞坐标系中的指数。
8、六角晶胞的基矢为.,223,223k c c j a i a b j a i a a =+-=+=求其倒格子基矢。
9、求晶格常数为a 的面心立方和体心立方晶体晶面族(h 1 h 2 h 3)之间的面间距(指导p30,10)。
10、讨论六角密积结构,X 光衍射的消光条件。
11、求出体心立方、面心立方的几何因子和消光条件。
12、原胞和晶胞的区别?13、倒空间的物理意义?14、布拉格衍射方程,原子和几何结构因子在确定晶格结构上分别起何作用?15、什么是布拉格简单格子,什么是复式格子?第二章 自由电子气1、设有一个长度为L 的一维金属线,它有N 个导电电子,若把这些导电电子看成自由电子气,试求:(1) 电子的状态密度(2) 绝对零度下的电子费米能级,以及费米能级随温度的变化关系。
(3) 电子的平均能量。
(4) 电子的比热。
2、二维电子气的能态密度2)( πm E N =,证明费米能 ]1ln[/2-=T mk n B F b eT k E π 3、求出一维金属中自由电子的能态密度、费米能级、电子的平均动能以及一个电子对于比热的贡献。
固体物理习题解答
第一章 思考题
5、试画出体心立方和面心立方(100)、(110)、(111)面上格点的 分布图。
(100)
(110)
(111)
体心立方
面心立方
第一章 思考题
6、怎样判断一个体系对称性的高低?讨论对称性有何物理意义。
答: 不一定相同。
密勒指数和晶面指数都定义为晶面在给定坐标轴上的截距倒 数互质整数比。但是,密勒指数是在晶胞基矢为坐标轴 上定义的,而晶面指数是在原胞基矢为坐标轴上定义的。 因此,只当晶胞基矢和原胞基矢一致时,同一晶面的密 勒指数和晶面指数才能相同。一般情况下,同一晶面密 勒指数 (hkl)与晶面指数 (h1h2h3) 不相同。
1、能带理论作了哪些近似和假定?得到哪些结果? 答: 能带理论是近似理论。它作了绝热近似、平均场近似和周期势
场假定。 绝热近似视固体中原子核(离子实)静止不动,价电子在固定不变
的离子实势场中运动。通过绝势近似将电子系统和原子核 (离子实)系统分开考虑。 平均场近似视固体中每个电子所处的势场都相同,使每个电子 所受势场只与该电子位置有关,而与其它电子位置无关。 通过平均场近似使所有电子都满足同样的薛定鄂方程。 通过绝热近似和平均场近似,将一个多粒子体系问题简化为单 电子问题。绝热近似和平均场近似也称为单电子近似。 周期势场假定则认为电子所受势场具有晶格平移周期性。 通过以上近似和假定,最终将一个多粒子体系问题变成在晶格 周期势场中的单电子的薛定鄂方程定态问题。
密勒指数: a ,b ,c ,晶面指数: a1 ,a2 ,a3 。
h k l
h1 h2 h3
大学物理 原子结构 激光 固体 试题(附答案)
一、选择题
1. 氢原子中处于 3d 量子态的电子,描述其量子态的四个量子数(n, l, ml , ms)可能取的值为
[ D ] (A) (3,1,1,-1/2)
(B) (1,0,1,-1/2)
m (C) (2,1,2,1/2)
(D) (3,2,0,1/2)
(B) (3)和(4)。
ww(C) (1)(2)和(3)。
(D) (1)(2)和(4)。
6. 硫化镉(CdS)晶体的禁带宽度为 2.42eV,要使这种晶体产生本征光电导,则入射到晶体
上的光的波长不能大于(普朗克常量 h = 6.63 ×10−34 J ⋅ s ,基本电荷 e = 1.60 ×10 −19 C )
解:3d 量子态的量子数取值为
co n=3,l=2, ml = 0 , ±1,±2
, ms
=
±
1 2
。
. 2. 在氢原子的 K 壳层中,电子可能具备的量子数(n, l, ml , ms )是
e [ A ] (A) (1,0,0,1/2)
(C) (1,1,0,-1/2)
(B) (1,0,-1,1/2) (D) (2,1,0,-1/2)
m 半导体好。 o (B) n 型半导体的导电性能优于 p 型半导体,因为 n 型半导体是负电子导电,p c 型半导体是正离子导电。 . (C) n 型半导体中杂质原子所形成的局部能级靠近导带的底部,使局部能级中多 e 余的电子容易被激发跃迁到导带中去,大大提高了半导体导电性能。
(D) p 型半导体的导电机构完全决定于满带中空穴的运动。
. 二、填空题 w1. 根据量子力学理论,氢原子中电子的角动量在外磁场方向上的投影为 Lz = mlℏ,当角 ww量子数 l=2 时, Lz的可能取值为 0, ℏ, - ℏ, 2ℏ, - 2ℏ 。
(完整版)大学物理章节习题9原子结构固体能带理论
©物理系_2015_09《大学物理AII 》作业 No.9 原子结构 固体能带理论班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“T ”表示正确和“F ”表示错误)[ F ] 1.根据量子力学理论,氢原子中的电子是作确定的轨道运动,轨道是量子化的。
解:教材227.电子在核外不是按一定的轨道运动的,量子力学不能断言电子一定 出现在核外某个确定的位置,而只能给出电子在核外各处出现的概率。
[ F ] 2.本征半导体是电子与空穴两种载流子同时参与导电,N 型半导体只有电子导 电,P 型半导体只有空穴导电。
解:N 型半导体中依然是两种载流子参与导电,不过其中电子是主要载流子;P 型半导体也是两种载流子参与导电,其中的主要载流子是空穴。
[ T ] 3.固体中能带的形成是由于固体中的电子仍然满足泡利不相容原理。
解:只要是费米子都要遵从泡利不相容原理,电子是费米子。
[ T ] 4.由于P 型和N 型半导体材料接触时载流子扩散形成的PN 结具有单向导电性。
解:教材244.[ F ] 5.施特恩-盖拉赫实验证实了原子定态能级的存在。
解:施特恩-盖拉赫实验验证了电子自旋的存在,弗兰克—赫兹实验证实了原子定态能级的存在.二、选择题:1.下列各组量子数中,哪一组可以描述原子中电子的状态? [ D ] (A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-2,21-=s m(C) n = 1,l = 2,m l = 1,21=s m (D) n = 3,l = 2,m l = 0,21-=s m解:根据原子中电子四个量子数取值规则和泡利不相容原理知D 对。
故选 D2.与绝缘体相比较,半导体能带结构的特点是 [ D ] (A) 导带也是空带 (B) 满带与导带重合(C) 满带中总是有空穴,导带中总是有电 子 (D) 禁带宽度较窄解:教材241-242.3. 在原子的L 壳层中,电子可能具有的四个量子数(n ,l ,m l ,m s )是(1) (2,0,1,21)(2) (2,1,0,21-)(3) (2,1,1,21)(4) (2,1,-1,21-) 以上四种取值中,哪些是正确的? [ ] (A) 只有(1)、(2)是正确的 (B) 只有(2)、(3)是正确的 (C) 只有(2)、(3)、(4)是正确的 (D) 全部是正确的解:原子的L 壳层对应主量子数2=n ,角量子数可为2,1,0=l ,磁量子数可为2,1,0±±=l m ,自旋量子数可为21,21-=s m ,根据原子中电子四个量子数取值规则和泡利不相容原理知只有(2)、(3)、(4)正确。
(完整版)大学化学原子结构习题及答案.doc
1. 评 述 下 列 叙 述 是 否 正 确, 如 有 错 误, 试 予 以 改 正。
(1) 主 量 子 数 n = 3 时, 有 3 s 、 3p 、3d 三 个 原 子 轨道; (2)四 个 量 子 数 n 、 l、 、m s 都 是 用 来 描 述 原 子 轨 道 的。
m 1. 解:(1) 错 误。
应 有 3 s 、3 3 三 个 亚 层 和 3 ,3 p x ,3p ,3 p z ,3 d 2 2 ,3 d xy , 3 d xz , 3 d yz 和 3 d 2 ,p 、 dsyyx z共 九 个 轨 道。
(2)错 误。
量 子 数 n 、l 、m 是 用 来 描 述 原 子 轨 道 的,而 m s只 描 述 电 子 自 旋 方 向。
、 2.下 列 关 于 原 子 轨 道 的 叙 述 是 否 正 确? 如 不 正 确 试 予 以 改 正:(1)主 量 子 数 n = 1 时, 有 自 旋 相 反 的 两 个 原 子 轨 道; (2)主 量 子 数 n = 4 时, 有 4s ,4 ,4 ,4 四 个 原 子pdf轨 道; (3) 磁 量 子 数 = 0 , 对 应 的 都 是s 原 子 轨 道。
m2. 解:(1)不 正 确。
n = 1 时, 只 有 1 s 亚 层, 也 只 有 一个 1 s 原 子 轨 道, 其 中 最 多 可 容 纳 自 旋 方 式 相 反 的 两电 子。
(2)不 正 确。
n = 4 时 可 能 有 4s 、4 、4 、4亚 层, 原 子 轨 道 数 目 分 别 为 1 、3、5、7, 所 以 可 以 有 16p d f个原 子 轨 道。
(3) 不 正 确。
原 子 轨 道 空 间 图 象 取 决 于 角 量 子 数 l ,只 有 l = 0 , = 0 时 为 s 原 子 轨 道, 而ml ≠ 0 , = 0 时 都 不 是 s 原 子 轨 道。
m3. 对 某 一 多 电 子 原 子 来 说 ,(1)下 列 原 子 轨 道 3s、3 、3 、3 p z 、3 、3 d xz 、3 、3 d z 2、3d x 2y 2中, 哪 些 是 等p x p y d xy d yz价(简 并) 轨 道? (2) 具 有 下 列 量 子 数 的 电 子, 按 其 能 量 由 低 到 高 排 序, 如 能 量 相 同 则 排 在 一 起( 可 用“ <”、“ =” 符 号 表 示):(A) 3 、 2、 1、 + 21; (B) 4 、 3、 2、 - 21;(C) 2 、 0、 0、 + 21;(D) 3 、 2、 0、 + 21;(E) 1 、 0、 0、 -21;(F) 3 、 1、 1、 +21。
固体物理学基础晶体的电子结构与能带理论
固体物理学基础晶体的电子结构与能带理论在固体物理学中,研究晶体的电子结构是一项重要的课题。
晶体是由周期性排列的原子或分子组成的固体,而其电子行为对于晶体的性质以及各种物理现象的理解至关重要。
能带理论是描述晶体中电子行为的一种重要模型,通过能带理论,我们可以更好地理解晶体材料的导电、绝缘和半导体特性等基本特性。
首先,让我们来了解晶体的电子结构。
晶体中的原子或分子排列成一定的周期性结构,这种结构会对电子的行为产生重要影响。
在晶体中,电子的行为可以近似地看作是存在于一系列能级中,称为能带。
能带可以被分为价带和导带,其中价带中的电子被束缚在原子核附近,而导带则存在着自由电子。
晶体的周期性结构使得电子在其中受到布里渊区的限制。
布里渊区是倒格子中一个基本单元,它是晶体中全部电子状态所覆盖的空间。
当电子在布里渊区内运动时,具有周期性的波动特性,其波矢量(k)和波函数(Ψ)可以描述电子在晶体中的运动。
能带理论则进一步解释了电子如何填充在能级中。
根据泡利不相容原理,每个能级只能容纳一个电子,因此能带在填充时会出现能级填充顺序的规律。
根据能带的填充情况,我们将晶体分为导体、绝缘体和半导体三类。
对于金属晶体,由于其导带和价带之间存在较小的能隙,几乎所有能级都可以被电子填充,因此金属具有良好的导电性能。
对于绝缘体晶体,导带和价带之间存在较大的能隙,这意味着电子必须获取足够的能量才能从价带跃迁到导带。
由于常温下绝缘体的电子很难获得足够的能量,因此导带中很少有电子,绝缘体表现出非常低的导电性能。
而在半导体晶体中,导带和价带之间的能隙处于介于绝缘体和金属之间的状态。
半导体的电导率可以通过控制掺杂或加热等方式进行调节。
除了以上三类基本晶体材料,还有一类特殊的材料,称为拓扑绝缘体。
拓扑绝缘体是一种新兴的研究领域,它们具有特殊的能带结构和边界态,可以展现出一些非常有趣的现象和性质。
总结起来,固体物理学中研究晶体的电子结构和能带理论是了解晶体导电、绝缘和半导体等基本特性的重要途径。
固体物理学课后题答案
固体物理学课后题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 晶体结构1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明:结构 X简单立方52.06=π体心立方68.083≈π 面心立方74.062≈π 六角密排74.062≈π 金刚石34.063≈π解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06834343333====πππrra r x(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)334(3423423333≈=⨯=⨯=πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)22(3443443333≈=⨯=⨯=πππr r a r x(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062)22(3443443333≈=⨯=⨯=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.06333834834833333≈=⨯=⨯=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
基础化学第九章原子结构习题答案
基础化学第九章原子结构习题答案基础化学第九章原子结构习题答案1.原子核外电子运动有什么特征?答:原子核外电子运动遵守量子力学规律,具有波粒二象性,不能同时准确测定电子的位置和动量,在核外空间出现的概率遵从统计规律。
2.什么是波函数和原子轨道?答:波函数是人为定义的一个用来描述电子在原子核外空间运动的波动性质的直角坐标系函数ψ(x,y,z)或球极坐标系函数ψ(r,θ,φ)。
为了表述方便,习惯上把波函数称为原子轨道,二者含义相同。
“原子轨道”只是借用了经典力学描述宏观物体运动状态时所用的“轨道”的说法,并无电子沿固定路径运动的含义。
3.概率、概率密度和电子云有何关系?答:概率密度|ψ|2指波函数ψ(r,θ,φ)表示的特定核外电子在核外空间(r,θ,φ)这一点周围单位体积内电子出现的概率,电子在核外空间某一区域出现的概率等于概率密度与该区域体积的乘积。
电子云是用统计的方法对电子出现的概率密度ψ2的形象化表示,可认为是电子运动行为的统计结果,就是用小黑点分布的疏密程度形象化地表现电子在核外空间出现的概率密度相对大小的图形。
4.4个量子数的物理意义是什么?它们的合理组合方式有什么规律?答:主量子数n表示电子在核外空间出现概率最大的区域离核的远近,是决定电子能量的主要因素。
n可取任意正整数,即n=1、2、3、……,角量子数l决定原子轨道(或电子云)的形状,并在多电子原子中,配合主量子数n一起决定电子的能量,l的每一个取值对应一个亚层。
l取值受主量子数n的限制,可取小于n 的正整数和零,即l=0、1、2、3……(n-1) ,共n个数值。
磁量子数m决定原子轨道和电子云在空间的伸展方向,其取值受角量子数l的限制,可取包括0、±1、±2、±3……直至±l,每一个l对应有2l+1个不同的m取值。
自旋量子数m s描述核外电子“自旋”运动的方向,自旋量子数取值只有+1/2和-1/2。
第二节 固体的能带理论
能级差较 大,电子难发 生跃迁。
隔较远,在一般条件下,满带中的电子不
能跃迁到空带中而形成导带,则不可能为 形成净的电子流而导电。
Eg ≥ 5eV
绝缘体的能带结构特征
⑶金属光泽
由于金属中的电子可在导带或重带中跃 迁,其能量变化覆盖范围相当广泛,并放出 各种波长的光,故大多数金属呈银白色。
果能带中的电子可以有多种分布状况。那么,在外电场的作用下,可以得到
净的电子流——导电。 例1 3s 2p 2s 1s 金属钠 N 6N 2N 2N 满带中电子在各能级上的排布方式只有 1 种,电
子的速度和能量分布固定,无论有无外电场,均不可
能产生净的电子流——对导电无贡献。 导带(未充满带)中的电子,有可能在该能带中 不同能级间改变其分布状况,在外电场作用下,可以 得到净的电子流——导电。
晶体管时代—1958年,贝尔实验室研制的硅
电晶体,很快就取代了锗电晶体。从此,电视机、 计算机业到了蓬勃发展。
次加法运算 20世纪50年代 中,贝尔实验室 组装的世界上第 一台晶体管计算 机TRADIC
集成电路时代—1970年,
集成电路技术的发展,促进了 计算机时代的到来。
1983年我国研制的银 河-Ⅰ亿次巨型机
E *2 E *1 E(3s) E3 E2 E1
N = 2
E*1 E*2
E(3s) E2 E1
N = 4 空带
E(3s)
满带 N →∞
N = 6
例2:金属镁
2 3p0 Mg:1s2 2s2 2p6 3s2
价电子
E*1
E(3s) N = 2 E1
能带理论(5)
空带
带隙
非导体
价带:由价电子能级分裂而形成的能带。
★通常情况下,价带为能量最高的 能带; ★价带可能被电子填满,成为满带; ★也可能未被电子填满,形成不满 带或半满带。
空带
带隙
价 带
在绝缘体中,价电子刚好填满 最低的一系列能带,最上边的 满带 —— 价带
绝缘体
再高的各能带全部都是空的 —— 空带
导体中,一部分价电子存在于不满带中,这种能 带称为导带
V 2m 1 V m 1 2 3 2 4 k E 2 CE 2 4 k 2 23
3 2
在近自由电子情况下,周期场的影响主要表现在布 里渊区边界附近,而离布里渊区边界较远处,周期场对
电子运动的影响很小。
二、费米面
1)自由电子 如果固体中有N个自由电子,按照泡利原理它们基态是由
(1)导体:能带结构有三种形式 形式1:价带中只填充了部分电子,在外加电场作用 下,这些电子很容易在该能带中从低能级跃迁到较 高能级 —— 从而形成电流
导带中电子的转移
例如:
金属Li
电子排布1s22s1
每个原子只有一个价电子,整个晶体中的价电子只 能添满半个价带 —— 实际参与导电的是不满带 中的电子 —— 电子导电型导体
导带
满带
导体
空带:若一个能带中所有的能级都没有被电子填入,
这样的能带称为空带。
空带:每一个能级上都没有 电子的能带
★与各原子的激发态能级相对应 的能带,在未被激发的正常情况 下就发的电子进入,
则空带就变成了导带。 非导体
禁带:两个相邻能带间的间隔
★禁带中不存在电子的定态; ★禁带的宽度对晶体的导电性起着 重要的作用。
带宽度比较大,不能导电。
固体物理简答题
第一章1.何为布拉伐格子,简单晶格、复式格子?并举例说明哪种晶体是简单格子,哪种晶体是复式格子?了解常见的几种晶体结构。
布拉伐格子:由332211a l a l a l ++确定的空间格子。
简单晶格:每一个原胞有一个原子。
复式格子:每一个原胞含有两个或更多的原子。
举例:(1)简单晶格:具有体心立方晶格结构的碱金属和具有面心立方晶格结构的Au,Ag,Cu 晶体都是简单晶格。
(2)复式格子:NaCl 晶格,CsCl 晶格,金刚石,ZnS,Si,Ge 等晶体结构:面心立方单胞原子数4,配位数12体心立方单胞原子数2,配位数8CsCl 单胞原子数2,配位数8金刚石单胞原子数8,配位数4NaCl 单胞原子数na4cl4共8个,配位数62简述晶体、非晶体和准晶体的特点。
晶体:原子排列是十分有规律的,主要体现是原子排列具有周期性,或称为是长程有序的。
非晶体:不具有长程有序的特点,短程有序。
准晶体:有长程取向性,而没有长程的平移对称性。
3晶格点阵与实际晶体结构有何区别和联系?晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=实际晶体结构4结晶学原胞和固体学原胞有何不同?(何为单胞和原胞?二者有何不同?)结晶学原胞(单胞):为了同时反映晶格的对称性,常取最小重复单元(原胞)的一倍或几倍作为重复单元。
固体学原胞(原胞):一个晶格中最小重复单元,反映晶格的周期性。
不同:结晶学原胞除了要考虑晶体结构的周期性外,还要反映晶体的对称性。
它的结点既可以在顶角上也可以在体心或者面心处。
固体物理学原胞只要求反映晶格周期性的特征,结点只在顶点上,内部和面上皆不含其他结点。
而且,固体物理学原胞只含一种原子。
5根据晶体的对称性进行分类,有多少种点群、空间群、布拉伐格子?32种点群,230个空间群,14种布拉伐格子,7大晶系321,,b b b 6倒格子定义,倒格子与正格子的关系有哪些?倒格子定义:以关系:是正格基矢123()a a a Ω=⋅⨯ 7布里渊区的定义及特点,举例说明常见的布拉伐格子的布里渊区形状?定义:在倒易点阵中,以某一格点为坐标原点,做所有倒格矢的垂直平分面,倒易空间被这些平面分成许多包围原点的多面体区域,这些区域称作布里渊区。
固体物理第5章-能带理论-习题参考答案
第六章 能带理论 (习题参考答案)1. 一矩形晶格,原胞长10a 210m -=⨯,10b 410m -=⨯ (1)画出倒格子图(2)以广延图和简约图两种形式,画出第一布里渊区和第二布里渊区(3)画出自由电子的费米面(设每个原胞有2个电子) 解:(1)因为a =a i=20A i b =b j=40A j倒格子基矢为12a i A*=, 014b j A*=以a * b *为基矢构成的倒格子如图。
由图可见,矩形晶格的倒格子也是矩形格子。
(2)取任一倒格子点O 作为原点,由原点以及最近邻点A i ,次近邻点B i 的连线的中垂线可以围成第一,第二布里渊区,上图这就是布里渊区的广延图。
如采用简约形式,将第二区移入第一区,我们得到下图。
(3) 设晶体中共有N 个原胞,计及自旋后,在简约布里渊区中便有2N 个状态。
简约布里渊区的面积021()8A a b A ***-=⨯=而状态密度022()16()Ng K N A A *==当每个原胞中有2个电子时,晶体电子总数为202()216Fk F N g k kdk N k ππ=⨯=⎰所以01/211111()0.2()210()8F k A m π---=≈=⨯这就是费米圆的半径。
费米圆如下图所示2. 已知一维晶体的电子能带可写成()2271cos cos 2,88E k ka ka ma ⎛⎫=-+ ⎪⎝⎭式中a 是晶格常数。
试求: (i )能带的宽度;(ii )电子在波矢k 状态时的速度; (iii )能带底部和顶部电子的有效质量。
()()()()()()()()22222min 2max 22max min 22222min 71cos cos 2,8811cos 24400,2;221sin 24sin 404k i E k ka ka ma ka ma k E k E a maE E E ma maii v E kv ka ka maiiiE k k kE E m π⎛⎫=-+ ⎪⎝⎭⎡⎤=--⎢⎥⎣⎦====∆=-=∴=∇∴=--==+解:当时,当时,能带的宽度为:在能带底部,将在附近用泰勒级数展开,可得:()()()22min 22max 22max 22034223kE m m m E k k E E k mk E m m mππδδδ****=+∴===-=+∴=-在能带顶部,将在附近用泰勒级数展开,令k=+k 可得:aa3. 试证明:如果只计及最近邻的相互作用,用紧束缚方法导出的简单立方晶体中S 态电子的能带为word 格式-可编辑-感谢下载支持()2cos 2cos 2cos 2s x y z E k E A J ak ak ak πππ⎡⎤=--++⎣⎦并求能带的宽度。
固体物理总结能带理论、固体物理知识点总结
一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序(短程有序)多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体和非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。
原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。
每个原胞含1个格点,原胞选择不是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴)为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。
晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。
WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。
4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。
六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数。
能带理论
能带理论是研究固体中电子运动规律的一种近似理论。
固体由原子组成,原子又包括原子实和最外层电子,它们均处于不断的运动状态。
为使问题简化,首先假定固体中的原子实固定不动,并按一定规律作周期性排列,然后进一步认为每个电子都是在固定的原子实周期势场及其他电子的平均势场中运动,这就把整个问题简化成单电子问题。
能带理论就属这种单电子近似理论,它首先由F.布洛赫和L.-N.布里渊在解决金属的导电性问题时提出.能带和能带隙具体的计算方法有自由电子近似法、紧束缚近似法、正交化平面波法和原胞法等。
前两种方法以量子力学的微扰理论作为基础,只分别适用于原子实对电子的束缚很弱和很强的两种极端情形;后两种方法则适用于较一般的情形,应用较广。
能级(Enegy Level):在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。
每个壳层上的电子具有分立的能量值,也就是电子按能级分布。
为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。
能带(Enegy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。
致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。
从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。
禁带(Forbidden Band):允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。
原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。
被电子占满的允许带称为满带,每一个能级上都没有电子的能带称为空带。
价带(Valence Band):原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。
固体物理考题 第四章 能带理论
第四章 能带理论1设电子在一维弱周期势场V(x)中运动,其中V(x)= V(x+a),按微扰论求出k=±π/a 处的能隙2怎样用能带论来理解导体、绝缘体、及半导体之间的区别?(可以画图说明)3简单推导布洛赫(Bloch )定理4对于一个二维正方格子,晶格常数为a,λ 在其倒空间画图标出第一、第二和第三布里渊区;λ 画出第一布里渊区中各种不同能量处的等能面曲线;λ 画出其态密度随能量变化的示意图。
5 在一维周期场近自由电子模型近似下,格点间距为a,请画出能带E(k)示意图,并说明能隙与哪些物理量有关。
6推导bloch 定理;写出理想情况下表面态的波函数的表达式,并说明各项的特点。
7在紧束缚近似条件下,求解周期势场中的波函数和能量本征值。
设晶体中第m 个原子的位矢为:112233m m m m =++R a a a …………………………………………………………(5-4-1) 若将该原子看作一个孤立原子,则在其附近运动的电子将处于原子的某束缚态()i m ϕ-r R ,该波函数满足方程:22()()()2m i m i i m V m ϕεϕ⎡⎤-∇+--=-⎢⎥⎣⎦r R r R r R …………………………(5-4-2) 其中()m V -r R 为上述第m 个原子的原子势场,i ε是与束缚态i ϕ相对应的原子能级。
如果晶体为N 个相同的原子构成的布喇菲格子,则在各原子附近将有N 个相同能量i ε的束缚态波函数i ϕ。
因此不考虑原子之间相互作用的条件下,晶体中的这些电子构成一个N 个简并的系统:能量为i ε的N 度简并态()i m ϕ-r R ,m=1,2,…,N 。
实际晶体中的原子并不是真正孤立、完全不受其它原子影响的。
由于晶体中其它诸原子势场的微扰,系统的简并状态将消除,而形成由N 个能级构成的能带。
根据以上的分析和量子力学的微扰理论,我们可以取上述N 个简并态的线性组合(,)()()m i m ma ψϕ=-∑k r k r R …………………………………………………(5-4-3)作为晶体电子共有化运动的波函数,同时把原子间的相互影响当作周期势场的微扰项,于是晶体中电子的薛定谔方程为:22()()()2U E m ψψ⎡⎤-∇+=⎢⎥⎣⎦r r r ……………………………………………………(5-4-4) 其中晶体势场U (r )是由原子势场构成的,即()()()n l nU V U =-=+∑r r R r R ……………………………………………………(5-4-5)微扰计算(5-4-4)式可以转化为如下形式:()()22()()()2m m V U V E m ψψ⎡⎤-∇+-+--=⎢⎥⎣⎦r R r r R r r 代入(5-4-2)和(5-4-3)后,可得:[()()()]()0mi m i m m a E U V εϕ-+---=∑r r R r R ……………………………………(5-4-5)在紧束缚近似作用下,可认为原子间距较i ϕ态的轨道大得多,不同原子的i ϕ重叠很小,从而有:()()*i n i m nm d ϕϕδ--=⎰r R r R r ……………………………………………………(5-4-6) 现以()*i n ϕ-r R 左乘方程(5-4-5),并对整个晶体积分,可以得: *()()[()()]()n i m i m m i m ma E a U V d 0εϕϕ-+---⋅-∑⎰r R r r R r R r =……………(5-4-7)首先讨论(5-4-7)式中的积分。
《大学物理AII》作业 No.09 原子结构 参考解答
数 l) ,取值范围(l=0,1,2....n-1),电子轨道角动量公式 L ( l (l 1) ) ;电 子轨道角动量方向在空间取向数由(磁量子数 ml )决定,取值范围 ( ml 0,1, ,电子轨道角动量沿 z 轴方向的分量公式 Lz ( ml ) ;电 2, ..., l ) 子除了轨道运动之外,还有自旋运动,与自旋运动有关的两个量子数分别是(自 旋量子数 s , s
于禁带宽度,因此光子能量将被吸收,对于 140nm 光来说此晶体将是不透明的。
遵循(泡利不相容)原理和(能量最小)原理,前者指的是(同一个原子中不可 能有两个或两个以上的电子具有完全相同的四个量子数) ,后者指的是(当原子 处于基态时, 每个电子总是尽可能占有最低的能量状态,从而使整个原子系统的 能量最低,原子系统也最稳定) 。 4、N个原子聚成晶体时,单个原子的每一能态都分裂成(N 个与原能级相近的 子能级) ,由于它们的间距很小,形象的称之为能带。每个能带最多能容纳的电 子数为(2(2l+1)N) ,若能带已被电子填满,称之为(满)带;若未被填满,称 之为(导)带;原子外层价电子所处的能带称为(价)带;能带之间没有可能量 子态的区域称为(禁)带。 5、导体的能带结构特征是存在(导)带;绝缘体的能带特征是价带是(满带) 并且与相邻空带间的 (禁带) 较宽。 本征半导体的能带结构特征是 (价带是满带, 并且与相邻空带间的禁带较窄) ;本征半导体的载流子包括(电子)和(空穴) ; 6、在四价元素硅或锗中掺入(五)价元素,可形成N型半导体,其能带结构特 征是(杂质能能处于四价元素能级的禁带中,且靠近导带底) ,N型半导体中的 主要载流子是(电子) ;在四价元素硅或锗中掺入(三)价元素,可形成 P 型半 导体, 其能带结构特征是 (杂质能级处于三价元素能级的禁带中, 且靠近满带顶) , P 型半导体中的主要载流子是(空穴) 。 7、 一块半导体中, 如果一部分是 P 区, 另一部分是 N 区, 则在交界面将形成 (P-N 结)结构;该结构具有(单向导电)作用。 8、根据量子力学理论,当主量子数 n = 3 时,氢原子中电子的角动量的可能取值 为( 0,2,6 ) 。 解:n=3,则 l=0,1,2 由角动量公式 L l (l 1) 可得: L可能取值为0,2,6 。 9、根据泡利不相容原理, 在主量子数 n = 4 的电子壳层上最多可能有的电子数为 (32)个。 解:根据量子数为 n 的主壳层最多可容纳电子数 N=2n2,当 n=4 时,则为 32 个 电子。 10、在原子的 L 壳层中,电子可能具有的四个量子数(n,l,ml,ms)是( ) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
©物理系_2015_09
《大学物理 AII 》作业
No.9 原子结构 固体能带理论
班级
学号
姓名
成绩
一、判断题:(用“T ”表示正确和“F ”表示错误)
[ F ] 1.根据量子力学理论,氢原子中的电子是作确定的轨道运动,轨道是量子化的。
解:教材 227.电子在核外不是按一定的轨道运动的,量子力学不能断言电子一定 出现
在核外某个确定的位置,而只能给出电子在核外各处出现的概率。
[ F ] 2.本征半导体是电子与空穴两种载流子同时参与导电,N 型半导体只有电子导
电,P 型半导体只有空穴导电。
解:N 型半导体中依然是两种载流子参与导电,不过其中电子是主要载流子;P 型半导体也是两种载流子参与导电,其中的主要载流子是空穴。
[ T ] 3.固体中能带的形成是由于固体中的电子仍然满足泡利不相容原理。
解:只要是费米子都要遵从泡利不相容原理,电子是费米子。
[ T ] 4.由于 P 型和 N 型半导体材料接触时载流子扩散形成的 PN 结具有单向导电性。
解:教材 244.
[ F ] 5.施特恩-盖拉赫实验证实了原子定态能级的存在。
解:施特恩-盖拉赫实验验证了电子自旋的存在,弗兰克—赫兹实验证实了原子定态能 级的存在.
二、选择题:
1. 下列各组量子数中,哪一组可以描述原子中电子的状态? [
D ]
(A) n = 2,l = 2,m l = 0, m s = 2
1
(B) n = 3,l = 1,m l =-2, m s
= - 1 2 1
(C) n = 1,l = 2,m l = 1, m s =
2
(D) n = 3,l = 2,m l = 0, m s = - 2
解:根据原子中电子四个量子数取值规则和泡利不相容原理知 D 对。
故选 D
2. 与绝缘体相比较,半导体能带结构的特点是
[ D ]
(A) 导带也是空带
(B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电 子 (D) 禁带宽度较窄
解:教材 241-242.
3. 在原子的 L 壳层中,电子可能具有的四个量子数(n ,l ,m l ,m s )是
1 1 (1) (2,0,1, ) (2) (2,1,0, - 1
)
2 2
(3) (2,1,1, ) (4) (2,1,-1, - 1
)
2
2
以上四种取值中,哪些是正确的? [ ] (A) 只有(1)、(2)是正确的
(B) 只有(2)、(3)是正确的 (C) 只有(2)、(3)、(4)是正确的
(D) 全部是正确的
解: 原子的 L 壳层对应主量子数 n = 2 , 角量子数可为 l = 0, 1, 2 , 磁量子数可为
m = 0, ± 1, ± 2 ,自旋量子数可为 m = - 1 , 1
,根据原子中电子四个量子数取值规则 l s 2 2
和泡利不相容原理知只有(2)、(3)、(4)正确。
故选 C
4. 硫化镉(CdS)晶体的禁带宽度为 2.42eV, 要使这种晶体产生本征光电导,则入射到晶
体上的光的波长不能大于(普朗克常量 h =6.63×10-34J·s ,基本电荷 e = 1.6×10-19C): [
D
] (A) 650nm (1n m=10 -9 m) (B) 628 nm
(C) 550 nm (D) 514 nm
解:要使这种晶体产生本征光电导,则入射光子能量应大于等于晶体的禁带宽度,即有 hv =
hc
≥ 2.42 e V
≤ hc 2.42(eV)
= 6.63 ⨯10-34 ⨯ 3 ⨯188 2.42 ⨯1.6 ⨯10-19
= 514 ⨯10-9 (m) 故入射到晶体上的光的波长不能大于514(nm)
5. 下述说法中,正确的有:
[ C ] (A) 本征半导体是电子与空穴两种载流子同时参与导电,而杂质半导体(n
或 p 型)只有一种载流子(电子或空穴)参与导电,所以, 本征半导体导电性能比杂质半导体好
(B) n 型半导体的导电性能优于p 型半导体,因为 n 型半导体是负电子导电, p 型半导体是正离子导电
(C) n 型半导体中杂质原子所形成的局部能级靠近导带的底部,使局部能级中多余的电子容易被激发跃迁到导带中去,大大提高了半导体导电性能
(D) p 型半导体的导电机构完全决定于满带中空穴的运动
解: 由本征、P 型、N 型半导体能带特征( P 242) 知:(C) 正确
故选 C
三、填空题:
1. 根据量子力学理论,氢原子中电子的角动量在外磁场方向上的投影为 L z = m l ,当角 量子数 l =2 时, L z 的可能取值为 0, ,, , 2 ,, 2。
解: l =2, m l = 0, ± 1, ± 2
2. 多电子原子中,电子的排列遵循 泡利不相容
原理和 能量最小 原理。
•导带 导带
E • • 施主能级
禁带
满带
•
E
禁带
•
• 受主能级
满带
hc 3. 根据量子力学理论,氢原子中电子的角动量为 L = l (l + 1) 。
当主量子数 n = 4 时, 电子角动量的可能取值为 。
根据泡利不相容原理, 在角量子数 l =3 的电子支壳层上最多可能有的电子数为 14 个。
解:当主量子数 n = 4 时,角量子数 l 可能取的值为 0,1,2,3
电子动量矩的可能取值为: l =0 时,L = 0;
l =1 时,L = l =2 时,L = l =3 时,L =
2 ; 6 ; 12 。
角量子数 l =3 的电子支壳层上最多可能有的电子数为:
2(2l + 1) = 14个
4. 本征半导体掺 五价元素 杂质即可成为 n 型半导体, 它的多数载流子是
电
子
,如果掺 三价元素 杂质成为 p 型半导体,它的多数载流子是 空穴 。
请在所
附的两个能带图中分别定性画出施主能级或受主能级。
(a )
(b )
n 型半导体
p 型半导体
5. 太阳能电池中,本征半导体锗的禁带宽度是 0.67eV ,它能吸收的辐射的最大波长 是 1.85 ⨯103 nm。
(普朗克常量h = 6.63 ⨯10-34 J ⋅s ,1eV = 1.6 ⨯10-19 J ) 解: ≥ ∆E , ≤ hc ∆E
= 6.63 ⨯10-34 ⨯ 3 ⨯108 = 0.67 ⨯10-19 ⨯1.6 1.85 ⨯10 -6 (m )
= 四、计算题:
1
. 试作原子中 l = 4 的电子角动量 L
在磁场中空间量子化的图,
并写出 L z 的各种可能值。
(普朗克常量 h = 6.63 ⨯10-34 J ⋅s ,
1eV = 1.6 ⨯10-19 J )
解:当 l = 4 时,
则: m 0, 1, 2,
3, 4 ;
L z 的 可 能 值
为
:
4 h , 3 2 h , 2 h , 2 2 h , 0, 2 h , 2 2 h , 3
2 h , 4 h 2 2
共 9 种。
2
. 试由泡利不相容原理求出 p 分壳层最多能容纳的电子数,并写出这些电子的 m l 和 m s 值组合。
解:p 分壳层对应的角量子数 l =1,则由泡利不相容原理知
磁量子数 m l 可取 -1, 0, 1
1 1 自旋磁量子数 m s 可取 - ,
2 2
故 p 分壳层最多能容纳的电子数为2 ⨯ (2 ⨯1 + 1) = 6 个
这 6 个电子的 m l 和 m s 值组合为 (-1, - 1 ) , (0, - 2 1 ) , (1, - 1 ) 2 2 (-1,
1 ) , (0,
2 1 ) , (1, 1 ) 2 2
3
. 纯净硅吸收辐射的最大波长为=1.09 μm ,求硅的禁带宽度为多少 eV ?
(已知:普朗克常量 h = 6.63×10-34J.s , 1eV=1.60×10 -19 J)
hc 解:由 hv
m
= ∆E g ,得 ∆E g = hc
m
= 6.63⨯10-34 ⨯ 3.0 ⨯108 1.09 ⨯10-6
= 1.825 ⨯10 -19 J = 1.825 ⨯10-19 ⨯ 1
1.6 ⨯10-19
eV = 1.14eV。