初二数学期末考试试题及答案

合集下载

人教版初二下册《数学》期末考试卷及答案【可打印】

人教版初二下册《数学》期末考试卷及答案【可打印】

人教版初二下册《数学》期末考试卷及答案一、选择题(每题1分,共5分)1. 已知一组数据中有5个数,它们的平均数是10,那么这组数据的总和是()。

A. 50B. 60C. 70D. 802. 在平行四边形ABCD中,对角线AC和BD相交于点O,已知AB=6cm,BO=4cm,那么AO的长度是()。

A. 2cmB. 4cmC. 6cmD. 8cm3. 下列函数中,哪一个是一次函数()。

A. y=2x+1B. y=x^2+1C. y=√xD. y=1/x4. 已知等差数列{an}的前n项和为Sn,若a1=1,d=2,那么S5的值是()。

A. 15B. 25C. 35D. 455. 在直角坐标系中,点P(2,3)关于原点对称的点是()。

A. (2,3)B. (2,3)C. (2,3)D. (3,2)二、判断题(每题1分,共5分)1. 两个锐角互余。

()2. 任何两个全等三角形,它们的面积相等。

()3. 两个平行线的斜率相等。

()4. 一元二次方程ax^2+bx+c=0(a≠0)的判别式Δ=b^24ac,当Δ>0时,方程有两个不相等的实数根。

()5. 任何两个等边三角形,它们的周长相等。

()三、填空题(每题1分,共5分)1. 在等差数列{an}中,已知a1=3,d=2,那么a5=______。

2. 若|a|=3,那么a的值为______或______。

3. 已知函数y=2x+3,当y=7时,x的值为______。

4. 在直角三角形ABC中,∠C=90°,AC=3cm,BC=4cm,根据勾股定理,AB的长度为______cm。

5. 若一组数据的方差是4,那么这组数据的平均数是______。

四、简答题(每题2分,共10分)1. 请简述等差数列的定义。

2. 请解释平行线的性质。

3. 请给出勾股定理的表述。

4. 请简述一元二次方程的解法。

5. 请解释概率的意义。

五、应用题(每题2分,共10分)1. 已知等差数列{an}的前n项和为Sn,a1=1,d=3,求S10。

山东初二初中数学期末考试带答案解析

山东初二初中数学期末考试带答案解析

山东初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列实数中,无理数是A.B.C.D.0.10100100012.-64的立方根是A.-8B.±8C.±4D.-43.下列图形:其中是轴对称图形的共有A.1个B.2个C.3个D.4个4.向如图所示的等边三角形区域扔沙包(区域中每一个小等边三角形除颜色外完全相同),假设沙包击中每一个小等边三角形是等可能的,扔沙包一次,击中阴影区域的概率等于A.B.C.D.5.下列各组数中,是勾股数的一组为A.3,4,25B.6,8,10C.5,12,17D.8,7,66.下列各式成立的是A.=9B.="2"C.=±5D.=67.若等腰三角形的一角为100°,则它的底角是A.20°B.40°C.60°D.80°8.一次函数y=-2x+4的图象与x轴的交点坐标是A.(2,0)B.(0,2)C.(0,4)D.(4,0)9.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=12,BD=8,则点D到AB的距离是A.6B.4C.3D.210.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y=2的解的是A B C D11.如图,在Rt△ABC中,∠B=90°,AB=8,BC=4,斜边AC的垂直平分线分别交AB、AC于点E、O,连接CE,则CE的长为A. 5B. 6C. 7D. 4.512.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路,若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是A.汽车在高速公路上行驶速度为100km/hB.乡村公路总长为90kmC.汽车在乡村公路上行驶速度为60km/hD.该记者在出发后4.5h到达采访地二、填空题1.49的算术平方根是_______。

黑龙江初二初中数学期末考试带答案解析

黑龙江初二初中数学期末考试带答案解析

黑龙江初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列图案中,不是轴对称图形的是()2.如图所示,下列条件中,不能判断的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC3.若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°4.如图,△ABC中,AB=AC=12,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长是()A.20B.12C.16D.135.如果把分式中的x、y都扩大到原来的10倍,则分式的值()A.扩大100倍B.扩大10倍C.不变D.缩小到原来的6.下列三条线段,能组成三角形的是()A.3,3,3B.3,3,6C.3,2,5D.3,2,67.若关于x的方程=+1无解,则a的值为()A.1B.2C.1或2D.0或28.下列因式分解正确的是()A.B.C.D.9.已知是一个完全式,则k的值是()A.8B.±8C.16D.±1610.如图,等腰,,,于点,点是延长线上一点,点是线段上一点,,下面结论:①;②是等边三角形;③;④.其中正确的是().A.②③B.①②④C.③④D.①②③④二、填空题1.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为.2.若分式有意义,则x的取值范围是.3.在平面镜里看到背后墙上,电子钟示数如图所示,这时的实际时间应该是__ ___.4.如图,△ABC中,AB=AC,AD⊥AB,交BC于点D,且∠CAD=30°,CD=3,则BD= .5.点p(2,-5)关于x轴对称的点的坐标为.6.如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC="8" cm,BD="5" cm,那么点D到直线AB的距离是 cm.7.如图,∠1=∠2,要使△ABE ≌△ACE,则还需添加一个条件是.8.某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.9.若,,则的值是.10.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),由两个图形中阴影部分的面积相等,可以验证(填写序号).①②③④三、解答题1.(1)计算:(x+y )2-y (2x+y )(2)先计算,再把计算所得的多项式分解因式:(12a 3-12a 2+3a )÷3a .2.先化简,再求值:,其中x =33.△ABC 在平面直角坐标系中的位置如图所示.A 、B 、C 三点在格点上.作出△ABC 关于y 对称的△A 1B 1C 1,并写出点△A 1B 1C 1的坐标.4.如图所示,已知点A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE=∠CDF ,AF=CE .(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.5.如图,△ABC 为等边三角形,AE=CD ,AD 、BE 相交于点P ,BQ ⊥AD 于Q ,PQ=4,PE=1.(1)求证:∠BPQ=60°(提示:利用三角形全等、外角的性质)(2)求BE 的长.6.如图1,在△ABC 中,∠BAC=90°,AB=AC ,AE 是过A 的一条直线,且B ,C 在AE 的异侧,BD ⊥AE 于点D ,CE ⊥AE 于点E .(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE的关系如何,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.四、计算题1.解方程:.2.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定日期是多少天?黑龙江初二初中数学期末考试答案及解析一、选择题1.下列图案中,不是轴对称图形的是()【答案】C.【解析】根据轴对称图形的定义可得A、B、D都是轴对称图形,C不是轴对称图形.故选C.【考点】轴对称图形的定义.2.如图所示,下列条件中,不能判断的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【答案】C.【解析】选项A,由可得在△ABC和△DEF中,AC=DF,∠A=∠D ,AB=DE,利用SAS可判定△ABC≌△DEF;选项B,在△ABC和△DEF中,∠B=∠E,∠A=∠D ,AB=DE,利用ASA可判定△ABC≌△DEF;选项C,EF=BC,ASS无法证明△ABC≌△DEF;选项D,由EF∥BC,AB∥DE,可得∠B=∠E,在△ABC和△DEF中,∠A=∠D,∠B=∠E ,AC=DF,利用AAS可判定△ABC≌△DEF;故选C.【考点】全等三角形的判定.3.若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°【答案】D.【解析】根据三角形内角和定理和等腰三角形的性质,可得顶角=180°-(72°×2)=36°.故选D.【考点】1.三角形内角和定理;2.等腰三角形的性质.4.如图,△ABC中,AB=AC=12,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长是()A.20B.12C.16D.13【答案】C【解析】根据AB=AC,AD平分∠BAC,则点D为BC的中点,AD⊥BC,则CD=4,根据直角三角形斜边上的中线的性质可得:DE=AE,则△CDE的周长=DE+EC+CD=AE+EC+CD=AC+CD=12+4=16.故选C.【考点】1.等腰三角形的性质;2.直角三角形的性质.5.如果把分式中的x、y都扩大到原来的10倍,则分式的值()A.扩大100倍B.扩大10倍C.不变D.缩小到原来的【答案】C.【解析】把分式中的x、y都扩大到原来的10倍,可得=,故选C.【考点】分式的基本性质.6.下列三条线段,能组成三角形的是()A.3,3,3B.3,3,6C.3,2,5D.3,2,6【答案】A.【解析】选项B, 3+3=6;选项C, 3+2=5;选项D, 3+2<6.根据三角形的三边关系可得选项B、C、D不能构成三角形,故选A.【考点】三角形的三边关系.7.若关于x的方程=+1无解,则a的值为()A.1B.2C.1或2D.0或2【答案】C【解析】根据分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.因此把方程去分母得:ax=4+x﹣2,解得(a﹣1)x=2,因此可以分情况知:当a﹣1=0即a=1时,整式方程无解,分式方程无解;当a≠1时,x= x=2时分母为0,方程无解,即=2,因此a=2时方程无解.故选C.【考点】分式方程的解8.下列因式分解正确的是()A.B.C.D.【答案】C【解析】因式分解是把一个多项式化为几个因式积的形式.由此可知,故错误;,故错误;,故错误.故选C【考点】因式分解9.已知是一个完全式,则k的值是()A.8B.±8C.16D.±16【答案】D.【解析】由题意,原式是一个完全平方式,∵=,∴原式可化成=,展开可得,∴kxy=±16xy,∴k=±16.故选D.【考点】完全平方式.10.如图,等腰,,,于点,点是延长线上一点,点是线段上一点,,下面结论:①;②是等边三角形;③;④.其中正确的是().A.②③B.①②④C.③④D.①②③④【答案】D【解析】连接OB,∵AB=AC,AD⊥BC,∴OB=OC, BD=CD,∠BAD=∠BAC=×120°=60°,∴∠ABC=90°-∠BAD=30°,∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故①正确;∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°-(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故②正确;在AC上截取AE=PA ,∵∠PAE=180°-∠BAC=60°,∴△APE 是等边三角形,∴∠PEA=∠APE=60°,PE=PA ,∴∠APO+∠OPE=60°, ∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE ,∵OP=CP ,在△OPA 和△CPE 中,,∴△OPA ≌△CPE (SAS ),∴AO=CE ,∴AC=AE+CE=AO+AP ;故③正确; 过点C 作CH ⊥AB 于H ,∵∠PAC=∠DAC=60°,AD ⊥BC ,∴CH=CD ,∴S △ABC =AB·CH ,S 四边形AOCP =S △ACP +S △AOC =AP·CH+OA·CD =AP·CH+OA·CH=CH·(AP+OA )=CH=·AC ,∴S △ABC =S 四边形AOCP ;故④正确.所以①②③④都正确,故选:D .【考点】1.等腰三角形的性质;2.等边三角形的判定与性质;3.全等三角形的判定与性质.二、填空题1.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为 .【答案】2.5×10﹣6.【解析】用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.这里a=2.5,n=-6,所以0.0000025=2.5×10﹣6.【考点】科学记数法.2.若分式有意义,则x 的取值范围是 .【答案】x≠-3.【解析】根据分式有意义的条件可知,x+3≠0,所以x≠-3.故答案为:x≠-3.【考点】分式有意义的条件.3.在平面镜里看到背后墙上,电子钟示数如图所示,这时的实际时间应该是__ ___.【答案】21:05.【解析】试题解析:由图分析可得题中所给的“20:15”与“21:05”成轴对称,这时的时间应是21:05.【考点】镜面对称4.如图,△ABC 中,AB=AC ,AD ⊥AB ,交BC 于点D ,且∠CAD=30°,CD=3,则BD= .【答案】6.【解析】由∠CAD=30°,AD⊥AB,、可得∠CAB=120°;根据等腰三角形的性质和三角形的内角和定理可得∠B=∠C=30°,所以∠CAD==∠C=30°.再根据等腰三角形的判定可得CD=AD=3,在Rt△ACD中,根据30°的锐角所对的直角边等于斜边的一半可得BD=2AD=6.【考点】1.等腰三角形的性质及判定;2.30°的锐角所对的直角边等于斜边的一半.5.点p(2,-5)关于x轴对称的点的坐标为.【答案】(2,5)【解析】根据平面直角坐标系的对称性,横坐标不变,纵坐标互为相反数,因此P(3,-5)关于X轴对称的点的坐标为(3,5).【考点】轴对称6.如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC="8" cm,BD="5" cm,那么点D到直线AB的距离是 cm.【答案】3cm.【解析】如图,过点D作DE⊥AB于点E,由BC=8cm,BD=5cm,可得CD=BC-BD=8-5=3cm,又因∠C=90°,AD平分∠CAB,根据角平分线的性质可得DE=CD=3cm,即点D到直线AB的距离是3cm.【考点】角平分线的性质.7.如图,∠1=∠2,要使△ABE ≌△ACE,则还需添加一个条件是.【答案】∠B=∠C等【解析】根据题意,易得∠AEB=∠AEC,又由AE公共边,所以根据全等三角形的判定方法容易寻找添加条件为:当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).【考点】全等三角形的判定8.某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.【答案】【解析】设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.【考点】由实际问题抽象出分式方程9.若,,则的值是.【答案】54.【解析】原式=3ab(a+b),当a+b=6,ab=3时,原式=3×3×6=54,故答案为:54.【考点】因式分解-提公因式法.10.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),由两个图形中阴影部分的面积相等,可以验证 (填写序号). ① ② ③ ④ 【答案】③. 【解析】∵图甲中阴影部分的面积=,图乙中阴影部分的面积=,而两个图形中阴影部分的面积相等,∴=.故可以验证③.故答案为:③.【考点】平方差公式的几何背景.三、解答题1.(1)计算:(x+y )2-y (2x+y )(2)先计算,再把计算所得的多项式分解因式:(12a 3-12a 2+3a )÷3a .【答案】(1)x 2;(2)(2a-1)2.【解析】(1)利用完全平方公式,单项式乘多项式的法则计算,再合并同类项.(2)先根据多项式除单项式的法则,先用多项式的每一项除以单项式,再把所得的商相加进行计算,再根据完全平方公式分解即可.试题解析:(1)(x+y )2-y (2x+y )=x 2+2xy+y 2-2xy-y 2=x 2;(2)(12a 3-12a 2+3a )÷3a=4a 2-4a+1=(2a-1)2.【考点】1.因式分解-运用公式法;2.整式的混合运算.2.先化简,再求值:,其中x =3 【答案】,【解析】先将所给的分式化成最简分式,然后把x =3代入计算即可.试题解析:===, 当x =3时,原式=【考点】分式的化简求值.3.△ABC 在平面直角坐标系中的位置如图所示.A 、B 、C 三点在格点上.作出△ABC 关于y 对称的△A 1B 1C 1,并写出点△A 1B 1C 1的坐标.【答案】图形见解析【解析】根据网格结构找出点A 、B 、C 关于y 轴的对称的A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出点C 1的坐标;试题解析:作图,作出△ABC 关于y 轴的对称图形△A 1B 1C 1.点A 1(-2,4),B 1(-1,1),C 1的坐标 (﹣3,2).【考点】关于y 轴对称4.如图所示,已知点A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE=∠CDF ,AF=CE .(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【答案】(1)△ABE ≌△CDF ,△AFD ≌△CEB .(2)选△ABE ≌△CDF 进行证明,证明见解析.【解析】(1)根据题目所给条件可分析出△ABE ≌△CDF ,△AFD ≌△CEB ;(2)根据全等三角形判定定理AAS 证明△ABE ≌△CDF .试题解析:(1)△ABE ≌△CDF ,△AFD ≌△CEB .(2)选△ABE ≌△CDF 进行证明.∵ AB ∥CD ,∴ ∠1=∠2.∵ AF=CE ,∴ AF+EF="CE+EF," 即AE=FC ,在△ABE 和△CDF 中,∴ △ABE ≌△CDF (AAS ).【考点】全等三角形判定.5.如图,△ABC 为等边三角形,AE=CD ,AD 、BE 相交于点P ,BQ ⊥AD 于Q ,PQ=4,PE=1.(1)求证:∠BPQ=60°(提示:利用三角形全等、外角的性质)(2)求BE 的长.【答案】(1)证明见解析;(2)9.【解析】(1)由于△ABC 是等边三角形,那么有AB=AC ,∠BAE=∠ACD=60°,而AE=CD ,利用SAS 可证△BAE ≌△ACD ,从而有∠1=∠2,由∠BAE=∠1+∠BAD=60°,等量代换则有∠2+∠BAD=60°,再利用三角形外角性质可得∠BPQ=60°;(2)在Rt △BPQ ,易求∠PBQ=30°,于是可求BP ,进而可求BE ,而△BAE ≌△ACD ,那么有AD=BE=9. 试题解析:(1)∵△ABC 是等边三角形,∴AB=AC ,∠BAE=∠ACD=60°,又∵AE=CD ,∴△BAE ≌△ACD ,∴∠1=∠2,∵∠BAE=∠1+∠BAD=60°,∴∠BAE=∠2+∠BAD=60°,∴∠BPQ=60°;(2)∵BQ ⊥AD ,∴∠BQP=90°,又∵∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=2×4=8,∴BE=BP+PE=8+1=9.【考点】1.等边三角形的性质;2.全等三角形的判定与性质.6.如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE的关系如何,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.【答案】(1)证明见解析;(2)BD=DE+CE;(3)BD=DE+CE.【解析】本题考查了全等三角形的判定和性质,涉及到直角三角形的性质、余角和补角的性质等知识点,熟练掌握全等三角形的判定方法是解题的关键.(1)根据已知条件易证得∠BAD=∠ACE,且根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论.(2)BD=DE+CE.根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论.(3)同上理,BD=DE+CE仍成立.试题解析:(1)在△ABD和△CAE中,∵∠CAD+∠BAD=90°,∠BAD+∠ABD=90°,∴∠CAD=∠ABD.又∠ADB=∠AEC=90°,AB=AC,∴△ABD≌△CAE.(AAS),∴BD=AE,AD=CE.又AE=AD+DE,∴AE=DE+CE,即BD=DE+CE.(2)BD=DE﹣CE.∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥DE,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.又AB=AC,∠ADB=∠CEA=90°,∴△ADB≌△CEA.∴BD=AE,AD=CE.∵DE=AD+AE,∴DE=CE+BD,即 BD=DE﹣CE(3)同理:BD=DE﹣CE.【考点】全等三角形的判定和性质.四、计算题1.解方程:.【答案】原方程无解.【解析】观察可得最简公分母是(x+2)(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:方程的两边同乘(x+2)(x-2),得x+2=4,解得x=2.检验:把x=2代入(x2-4)=0.∴原方程无解.【考点】解分式方程.2.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定日期是多少天?【答案】6.【解析】首先设工作总量为1,未知的规定日期为x.则甲单独做需x天,乙队需x+3天.由工作总量=工作时间×工作效率这个公式列方程易求解.试题解析:设规定日期是x天.则甲单独做需要x天,乙单独做需要(x+3)天,根据题意得:(+)×2+=1,解得:x=6,经检验,x=6是原方程的根.答:规定的日期是6天.【考点】分式方程的应用.。

江西初二初中数学期末考试带答案解析

江西初二初中数学期末考试带答案解析

江西初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.不等式的解集是()A.B.C.D.2.化简的结果是()A.B.C.D.3.如图,将△ABC沿直线DE折叠后,使得点B与A重合。

已知AC=5cm,△ADC的周长为17cm,则BC的长为()4.若多项式是完全平方式,则m的值是()A.10B.20C.-20D.±205.如图所示,直线与的交点坐标为(1,2)则使成立的x的取值范围为()A.B.C.D.6.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下结论不成立的是()A.AD=BEB.AP=BQC.DE=DPD.PQ∥AE二、填空题1.因式分解:=_____________。

2.一个多边形的内角和为540°,则这个多边形的边数是_____________。

3. x=_____________时,分式的值为零。

4.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D。

若BD=10cm,BC=8cm,则点D到直线AB 的距离是_____________cm 。

5. 已知关于x 的分式方程无解,则m =_____________。

6.如图,绕着中心最小旋转_____________能与自身重合。

7.命题:直角三角形两条直角边的平方和等于斜边的平方,其逆命题是_____________。

8.等腰三角形的周长18cm ,其中一边长为8cm ,则底边长为 cm .三、解答题1.求不等式组的整数解。

2.解方程:3.化简求值,其中4.如图,△ABC 中(1)画出△ABC 关于x 轴对称的△(2)将△ABC 绕原点O 旋转180°,画出旋转后的△。

5.如图,△ABC 的中线BD 、CE 交于点O ,F 、G 分别是BO 、CO 的中点。

黑龙江初二初中数学期末考试带答案解析

黑龙江初二初中数学期末考试带答案解析

黑龙江初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个2.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16B.18C.20D.16或203.当分式有意义时,的取值范围是()A.B.C.D.4.当a≠0时,下列式子一定成立的是()A.B.C.D.5.若x2-y2=30,且x-y=-5,则x+y的值是()A.-6B.-5C.6D.56.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为()A.4B.2C.-2D.±27.在下列多项式的乘法中,可以用平方差公式计算的是()A.(x+1)(1+x)B.(a+b)(b-a)C.(-a+b)(a-b)D.(x2-y)(x+y2)8.点M(-2,1)关于y轴对称的点的坐标是()A.(-2,-1)B.(2.1)C.(2,-1)D.(1.-2)9.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BF⊥AD,AD的延长线交BF于E,且E为垂足,则结论①AD=BF,②CF=CD,③AC+CD=AB,④BE=CF,⑤BF=2BE,其中正确的结论的个数是()A.4B.3C.2D.110.如图,把一个等边三角形纸片,剪掉一个角后,所得到一个四边形;则图形中∠1+∠2的度数是.二、填空题1.一个等腰三角形有两条边长分别为5和8,则它的周长是.2.分解因式:= .3.如图,AB比AC长2,DE垂直平分BC,△ACD周长为14,则= ____.4.如图,已知,且,要使,你添加的条件是.5.若a-b=1,则代数式a2-b2-2b的值为.6.如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC="8" cm,BD="5" cm,那么点D到直线AB的距离 cm.7.如图,边长为()的正方形纸片剪出一个边长为的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为4,则另一边长是.8.若关于x的方程无解,则m=__________.9.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E,若AB=6,AC=5,则△ADE的周长是_________.三、计算题计算:;四、解答题1.解方程:2.如图,已知,(1)画出与关于轴对称的图形;(2)写出各顶点坐标.3.如图所示,D、E在BC上,且BD=CE,AD=AE,求证:AB=AC.4.购进某种干果,由于销售状况良好,超市又用9000元第二次购进该干果,但第二次的进价比第一次的提髙了20%,第二次购进干果数量是第一次的2倍还多300千克.(1)求该干果的第一次进价是每千克多少元?(2)百姓超市按每千克9元的价格出售,当大部分干果售出后,余下的按售价的8折售完,若两次销售这种干果的利润不少于5820元,则最多余下多少千克干果按售价的8折销售.5.已知:Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连结CD、EB.(1)请找出图中其他的全等三角形;(2)求证:CD=EB;(3)求证:CF=EF.6.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.黑龙江初二初中数学期末考试答案及解析一、选择题1.下列图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个【答案】C.【解析】轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴.根据轴对称图形的定义可得第一个图形不是轴对称图形,第二、三、四个图形是轴对称图形,故选C.【考点】轴对称图形的定义.2.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16B.18C.20D.16或20【答案】C.【解析】分两种情况:①若4是腰,则另一腰也是4,底是8,但是4+4=8,故不构成三角形,舍去.②若4是底,则腰是8,8.4+8>8,符合条件.成立.所以三角形的周长为:4+8+8=20.故选C.【考点】1.等腰三角形的性质;2.三角形的三边关系.3.当分式有意义时,的取值范围是()A.B.C.D.【答案】D.【解析】试题解析:当分母x﹣2≠0,即x≠2时,分式有意义.故选D.【考点】分式有意义的条件.4.当a≠0时,下列式子一定成立的是()A.B.C.D.【答案】C.【解析】试题解析:A、不是同类项,不能合并,故A选项错误;B、a2•a3=a5,故B选项错误;C、(a3)2=a6,故C选项正确;D、a6÷a2=a4,故D选项错误;故选C.【考点】1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.5.若x2-y2=30,且x-y=-5,则x+y的值是()A.-6B.-5C.6D.5【答案】A【解析】根据平方差公式可得:x2-y2=(x+y)(x-y)=30,则-5(x+y)=30,则x+y=-6.故选A.【考点】平方差公式的应用.6.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为()A.4B.2C.-2D.±2【答案】D【解析】根据完全平方公式可得:k2=4,则k=±2.故选D【考点】完全平方公式.7.在下列多项式的乘法中,可以用平方差公式计算的是()A.(x+1)(1+x)B.(a+b)(b-a)C.(-a+b)(a-b)D.(x2-y)(x+y2)【答案】B【解析】平方差公式是指:(a+b)(a-b)=a2-b2.故选B.【考点】平方差公式8.点M(-2,1)关于y轴对称的点的坐标是()A.(-2,-1)B.(2.1)C.(2,-1)D.(1.-2)【答案】B.【解析】试题解析:点M(-2,1)关于x轴对称的点的坐标是(2,1),故选B.【考点】关于x轴、y轴对称的点的坐标.9.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BF⊥AD,AD的延长线交BF于E,且E为垂足,则结论①AD=BF,②CF=CD,③AC+CD=AB,④BE=CF,⑤BF=2BE,其中正确的结论的个数是()A.4B.3C.2D.1【答案】A.【解析】①∵BC=AC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AD平分∠BAC,∴∠BAE=∠EAF=22.5°,∵在Rt△ACD与Rt△BFC中,∠EAF+∠F=90°,∠FBC+∠F=90°,∴∠EAF=∠FBC,∵BC=AC,∠EAF=∠FBC,∠BCF=∠AEF,∴Rt△ADC≌Rt△BFC,∴AD=BF;故①正确;②∵①中Rt△ADC≌Rt△BFC,∴CF=CD,故②正确;③∵①中Rt△ADC≌Rt△BFC,∴CF=CD,AC+CD=AC+CF=AF,∵∠CBF=∠EAF=22.5°,∴在Rt△AEF中,∠F=90°﹣∠EAF=67.5°,∵∠CAB=45°,∴∠ABF=180°﹣∠F﹣∠CAB=180°﹣67.5°﹣45°=67.5°,∴AF=AB,即AC+CD=AB,故③正确;④由③可知,△ABF是等腰三角形,∵BE⊥AD,∴BE=BF,∵在Rt△BCF中,若BE=CF,则∠CBF=30°,与②中∠CBF=22.5°相矛盾,故BE≠CF,故④错误;⑤由③可知,△ABF是等腰三角形,∵BE⊥AD,∴BF=2BE,故⑤正确.所以①②③⑤四项正确.故选A.【考点】1.全等三角形的判定与性质;2.角平分线的性质;3.等腰直角三角形;4.综合题.10.如图,把一个等边三角形纸片,剪掉一个角后,所得到一个四边形;则图形中∠1+∠2的度数是.【答案】240°.【解析】试题解析:∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠1+∠2=360°-120°=240°.【考点】1.多边形内角与外角;2.等边三角形的性质.二、填空题1.一个等腰三角形有两条边长分别为5和8,则它的周长是.【答案】18或21.【解析】试题解析:若腰长为5,底边长为8,则周长为:5+5+8=18;若腰长为8,底边长为5,则周长为:5+8+8=21;则它的周长是:18或21.【考点】1.等腰三角形的性质;2.三角形三边关系.2.分解因式:= .【答案】(2x+3y)(2x﹣3y).【解析】试题解析:原式=(2x+3y)(2x﹣3y).【考点】因式分解-运用公式法.3.如图,AB比AC长2,DE垂直平分BC,△ACD周长为14,则= ____.【答案】28.【解析】∵DE垂直平分BC,∴BD=DC,∵△ACD周长为14,∴AC+AD+DC=AC+AD+BD=AC+AB=14,∵AB-AC=2,∴AB2-AC2=(AB+AC)(AB-AC)=14×2=28.【考点】线段垂直平分线的性质.4.如图,已知,且,要使,你添加的条件是.【答案】AC=DF.【解析】试题解析:添加的条件是AC=DF.∵AC∥DF,∴∠ACB=∠F ∵BE=CF,∴BC="EF" ,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)【考点】全等三角形的判定.5.若a-b=1,则代数式a2-b2-2b的值为.【答案】1.【解析】试题解析:∵a-b=1,∴a2-b2-2b=(a+b)(a-b)-2b=a+b-2b=a-b=1.【考点】平方差公式.6.如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC="8" cm,BD="5" cm,那么点D到直线AB的距离 cm.【答案】3cm.【解析】试题解析:过点D作DE⊥AB于点E.∵BC=8cm,BD=5cm,CD=BC-BD=3cm;又∵∠C=90°,AD平分∠CAB,∴DE=CD=3cm,即D点到直线AB的距离是3cm.【考点】角平分线的性质.7.如图,边长为()的正方形纸片剪出一个边长为的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为4,则另一边长是.【答案】2m+4.【解析】试题解析:设拼成的矩形的另一边长为x,则4x=(m+4)2-m2=(m+4+m)(m+4-m),解得x=2m+4.【考点】平方差公式的几何背景.8.若关于x的方程无解,则m=__________.【答案】1.【解析】试题解析:原方程可化为x-3=-m,∴x=3-m,由已知得:3-m=2,∴m=1.【考点】分式方程的解.9.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E,若AB=6,AC=5,则△ADE的周长是_________.【答案】11【解析】由题意可得:△BDO和△COE是等腰三角形,OD=BD,OE=EC,则△ADE的周长=AD+DE+AE=AD+DO+OE+AE=AD+BD+AE+CE=AB+AC=6+5=11.【考点】1.角平分线的性质;2.等腰三角形的性质.三、计算题计算:;【答案】3.【解析】先把整数指数幂算出来,然后按照有理数混合计算法则计算即可;试题解析:原式=1+4+(-2)="5-2=3" ;【考点】1.零指数幂的计算;2.实数的计算.四、解答题1.解方程:【答案】x=3.【解析】观察方程可得最简公分母是:(x﹣2)(x+2),两边同时乘最简公分母可把分式方程化为整式方程来解答.试题解析:方程两边同乘以(x﹣2)(x+2),得(x﹣2)2+4=(x﹣2)(x+2),解得x=3.经检验:x=3是原方程的解. 【考点】解分式方程.2.如图,已知,(1)画出与关于轴对称的图形;(2)写出各顶点坐标.【答案】(1)作图见解析;(2)A 1(0,2),B 1(2,4),C 1(4,1). 【解析】(1)分别作出点A 、B 、C 关于y 轴对称的点,然后顺次连接; (2)根据图示以及直角坐标系的特点写出个顶点的坐标;试题解析:(1)如图所示:(2)由图可知,A 1(0,2 ),B 1( 2,4),C 1( 4,1 ). 【考点】作图-轴对称变换.3.如图所示,D 、E 在BC 上,且BD=CE ,AD=AE ,求证:AB=AC .【答案】证明见解析.【解析】可由SAS 证得△ABE ≌△ACD ,即可得出结论.试题解析:∵AD=AE ,∴∠ADE=∠AED , ∵BD=CE , ∴BE=CD , ∴△ABE ≌△ACD (SAS ),∴AB=AC . 【考点】全等三角形的判定与性质.4.购进某种干果,由于销售状况良好,超市又用9000元第二次购进该干果,但第二次的进价比第一次的提髙了20%,第二次购进干果数量是第一次的2倍还多300千克. (1)求该干果的第一次进价是每千克多少元?(2)百姓超市按每千克9元的价格出售,当大部分干果售出后,余下的按售价的8折售完,若两次销售这种干果的利润不少于5820元,则最多余下多少千克干果按售价的8折销售.【答案】(1)该种干果的第一次进价是每千克5元.(2)最多余下600千克干果按售价的8折销售.【解析】(1)设该种干果的第一次进价是每千克x 元,则第二次进价是每千克(1+20%)x 元.根据第二次购进干果数量是第一次的2倍还多300千克,列出方程,解方程即可求解.(2)根据利润=售价-进价列出不等式并解答.试题解析:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元.(2)设当大部分干果售出后,余下a千克按售价的8折售完,由题意得:解得a≤600.答:当大部分干果售出后,余下的按售价的8折售完,若两次销售这种干果的利润不少于5820元,则最多余下600千克干果按售价的8折销售.【考点】1.分式方程的应用;2.一元一次不等式的应用.5.已知:Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连结CD、EB.(1)请找出图中其他的全等三角形;(2)求证:CD=EB;(3)求证:CF=EF.【答案】(1)△ADC≌△ABE,△CDF≌△EBF;(2)证明见解析;(3)证明见解析.【解析】(1)根据Rt△ABC≌Rt△ADE,得出AC=AE,BC=DE,AB=AD,∠ACB=∠AED,∠BAC=∠DAE,从而推出∠CAD=∠EAB,△ACD≌△AEB,△CDF≌△EBF,(2)由△ADC≌△ABE,得到CD=EB.(3)由△CDF≌△EBF,得到CF=EF.试题解析:(1)△ADC≌△ABE,△CDF≌△EBF;(2)∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠BAC=∠DAE,∴∠BAC-∠DAB=∠DAE-∠DAB,∴∠DAC=∠BAE,∴△ADC≌△ABE(SAS),∴CD=BE.(3)∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD,∴∠CAB-∠DAB=∠EAD-∠DAB.即∠CAD=∠EAB.∴△CAD≌△EAB,∴CD=EB,∠ADC=∠ABE.又∵∠ADE=∠ABC,∴∠CDF=∠EBF.又∵∠DFC=∠BFE,∴△CDF≌△EBF(AAS)∴CF=EF.【考点】全等三角形的判定与性质.6.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.【答案】(1)证明见解析;(2)BE=CM.证明见解析.【解析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG,(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.试题解析:(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,,∴△AEC≌△CGB(ASA),∴AE=CG,(2)BE=CM.∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.【考点】1.全等三角形的判定与性质;2.等腰直角三角形.。

安徽初二初中数学期末考试带答案解析

安徽初二初中数学期末考试带答案解析

安徽初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.点(﹣2,3)在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.函数y=的自变量x 的取值范围是( )A .x≠﹣2B .x≥﹣2C .x >﹣2D .x <﹣24.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .等边三角形5.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .6.下列各图中,能表示y 是x 的函数的是( )A .B .C .D .7.下列命题中真命题是( )A .三角形按边可分为不等边三角形,等腰三角形和等边三角形B .等腰三角形任一个内角都有可能是钝角或直角C .三角形的一个外角大于任何一个内角D .三角形三条内角平分线相交于一点,这点到三角形三边的距离相等8.若一次函数y=(m ﹣1)x+m 2﹣1的图象通过原点,则m 的值为( )A .m=﹣1B .m=1C .m=±1D .m≠19.设三角形三边之长分别为3,8,1﹣2a ,则a 的取值范围为( )A .3<a <6B .﹣5<a <﹣2C .﹣2<a <5D .a <﹣5或a >210.如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A.6B.12C.32D.64二、填空题1.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B度数为.2.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.3.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB 为.4.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.5.为了推动校园足球发展,某市教体局准备向全市中小学免费赠送一批足球,这批足球的生产任务由甲、乙两家足球制造企业平均承担,甲企业库存0.2万个,乙企业库存0.4万个,两企业同时开始生产,且每天生产速度不变,甲、乙两家企业生产的足球数量y万个与生产时间x天之间的函数关系如图所示,则每家企业供应的足球数量a等于万个.三、解答题1.夏令营组织学员到某一景区游玩,老师交给同学一张画有A、B、C、D四个景点位置的地图,景点A、C和景点B、D之间有公路连接,老师指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与公路AC和公路BD所在的两条直线等距离;②到B、C两景点等距离.请你用尺规作图画出景点E 的位置(先用铅笔画图,然后用钢笔描清楚作图痕迹)2.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B 点关于y 轴的对称点坐标为 ; (2)将△AOB 向左平移3个单位长度,再向上平移2个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;(3)在(2)的条件下,△AOB 边AB 上有一点P 的坐标为(a ,b ),则平移后对应点P 1的坐标为 .3.如图,点F 、C 在BE 上,BF=CE ,∠A=∠D ,∠B=∠E .求证:AB=DE .4.小明家与学校在同一直线上且相距720m ,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x (分),兄弟两人之间的距离为ym ,图中的折线是y 与x 的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是 m/分,点B 的坐标是 ;(2)线段AB 所表示的y 与x 的函数关系式是 ;(3)试在图中补全点B 以后的图象.5.如图,直线l 1:y 1=x 和直线l 2:y 2=﹣2x+6相交于点A ,直线l 2与x 轴交于点B ,动点P 沿路线O→A→B 运动.(1)求点A 的坐标,并回答当x 取何值时y 1>y 2?(2)求△AOB 的面积;(3)当△POB 的面积是△AOB 的面积的一半时,求出这时点P 的坐标.安徽初二初中数学期末考试答案及解析一、选择题1.下列图形中,不是轴对称图形的是( )A .B .C .D .【答案】A【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.点评:此题主要考查了轴对称图形,关键是掌握轴对称的定义.2.点(﹣2,3)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据各象限内点的坐标特征解答即可.解:点(﹣2,3)所在的象限是第二象限,故选B.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.函数y=的自变量x的取值范围是()A.x≠﹣2B.x≥﹣2C.x>﹣2D.x<﹣2【答案】B【解析】根据被开方数大于等于0列式计算即可得解.解:由题意得:x+2≥0,解得x≥﹣2.故选:B.点评:本题考查的知识点为:二次根式的被开方数是非负数,熟记二次根式的被开方数是非负数是解决本题的关键.4.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【答案】B【解析】根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.解:∵三角形三个内角度数的比为2:3:4,∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.所以该三角形是锐角三角形.故选B.点评:三角形按边分类:不等边三角形和等腰三角形(等边三角形);三角形按角分类:锐角三角形,钝角三角形,直角三角形.5.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【答案】D【解析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.解:线段BE是△ABC的高的图是选项D.故选D.点评:本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.6.下列各图中,能表示y 是x 的函数的是( )A .B .C .D .【答案】B【解析】在坐标系中,对于x 的取值范围内的任意一点,通过这点作x 轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.解:根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,所以B 正确.故选:B .点评:本题主要考查了函数的定义,函数的意义反映在图象上简单的判断方法是:x 的取值范围内做垂直x 轴的直线与函数图象只会有一个交点.7.下列命题中真命题是( )A .三角形按边可分为不等边三角形,等腰三角形和等边三角形B .等腰三角形任一个内角都有可能是钝角或直角C .三角形的一个外角大于任何一个内角D .三角形三条内角平分线相交于一点,这点到三角形三边的距离相等【答案】D【解析】利用三角形的分类、等腰三角形的性质、三角形的外角的性质及三角形的内心的性质分别判断后即可确定正确的选项.解:A 、三角形按边可分为不等边三角形,等腰三角形,故错误,是假命题;B 、等腰三角形任一个内角都有可能是钝角或直角,错误,是假命题;C 、三角形的一个外角大于任何一个不相邻的内角,故错误,是假命题;D 、三角形三条内角平分线相交于一点,这点到三角形三边的距离相等,正确,是真命题,故选D .点评:本题考查了命题与定理的知识,解题的关键是了解三角形的分类、等腰三角形的性质、三角形的外角的性质及三角形的内心的性质,难度不大.8.若一次函数y=(m ﹣1)x+m 2﹣1的图象通过原点,则m 的值为( )A .m=﹣1B .m=1C .m=±1D .m≠1【答案】A【解析】根据一次函数的定义及函数图象经过原点的特点列出关于m 的不等式组,求出m 的值即可.解:∵一次函数y=(m ﹣1)x+m 2﹣1的图象经过原点,∴0=0+m 2﹣1,m ﹣1≠0,即m 2=1,m≠1解得,m=﹣1.故选A .点评:本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b (k≠0)中,当b=0时函数图象经过原点..9.设三角形三边之长分别为3,8,1﹣2a ,则a 的取值范围为( )A .3<a <6B .﹣5<a <﹣2C .﹣2<a <5D .a <﹣5或a >2【答案】B【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:由题意得:8﹣3<1﹣2a <8+3,解得:﹣5<a <﹣2,故选:B .点评:此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.10.如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A .6B .12C .32D .64【答案】C【解析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…进而得出答案.解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°, ∵∠MON=30°, ∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°, ∵∠MON=∠1=30°, ∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°, ∵∠4=∠12=60°, ∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°, ∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,以此类推:A 6B 6=32B 1A 2=32.故选:C .点评:此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.二、填空题1.如图,在Rt △ABC 中,∠C=90°,边AB 的垂直平分线交BC 点D ,AD 平分∠BAC ,则∠B 度数为 .【答案】30°【解析】根据线段垂直平分线的性质得到DA=DB ,得到∠B=∠DAB ,根据角平分线的定义得到∠DAB=∠DAC ,根据三角形内角和定理计算即可.解:∵DE 是△ABC 的AB 边的垂直平分线,∴AD=BD , ∴∠B=∠DAB , ∵AD 平分∠BAC , ∴∠DAB=∠DAC ,∴∠B=∠DAB=∠DAC,又∠C=90°,∴∠B=30°,故答案为:30°点评:本题考查了线段垂直平分线性质的应用,能求出∠B=∠DAB=∠DAC是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.2.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.【答案】y=﹣2x+2.【解析】注意平移时k的值不变,只有b发生变化.向上平移3个单位,b加上3即可.解:原直线的k=﹣2,b=﹣1;向上平移3个单位长度得到了新直线,那么新直线的k=﹣2,b=﹣1+3=2.因此新直线的解析式为y=﹣2x+2.故答案为:y=﹣2x+2.点评:本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.3.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB 为.【答案】10°【解析】根据轴对称的性质可知∠CA′D=∠A=50°,然后根据外角定理可得出∠A′DB.解:由题意得:∠CA′D=∠A=50°,∠B=40°,由外角定理可得:∠CA′D=∠B+∠A′DB,∴可得:∠A′DB=10°.故答案为:10°.点评:本题考查轴对称的性质,属于基础题,注意外角定理的运用是解决本题的关键.4.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.【答案】4.【解析】由AB=AC,D是BC的中点,易得AD是BC的垂直平分线,则可证得△ACD≌△ABD,△OCD≌△OBD,△AOC≌△AOB,又由EF是AC的垂直平分线,证得△OCE≌△OAE.解:∵AB=AC,D是BC的中点,∴∠CAD=∠BAD,AD⊥BC,∴OC=OB,在△ACD和△ABD中,,∴△ACD≌△ABD(SAS);同理:△COD≌△BOD,在△AOC和△AOB中,,∴△OAC≌△OAB(SSS);∵EF是AC的垂直平分线,∴OA=OC,∠OEA=∠OEC=90°,在Rt△OAE和Rt△OCE中,,∴Rt△OAE≌Rt△OCE(HL).故答案为:4.点评:此题考查了线段垂直平分线的性质、等腰三角形的性质以及全等三角形的判定与性质.注意垂直平分线上任意一点,到线段两端点的距离相等.5.为了推动校园足球发展,某市教体局准备向全市中小学免费赠送一批足球,这批足球的生产任务由甲、乙两家足球制造企业平均承担,甲企业库存0.2万个,乙企业库存0.4万个,两企业同时开始生产,且每天生产速度不变,甲、乙两家企业生产的足球数量y万个与生产时间x天之间的函数关系如图所示,则每家企业供应的足球数量a等于万个.【答案】1【解析】结合函数图象,设乙企业每天生产足球x万个,则甲企业每天生产足球2x万个,根据企业供应的足球数=库存+每日产量×生产天数,得出关于x、a的二元一次方程组,解方程组即可得出结论.解:∵(6﹣2)÷(4﹣2)=2,∴设乙企业每天生产足球x万个,则甲企业每天生产足球2x万个,根据题意可得:,解得:.∴每家企业供应的足球数量a=1万个.故答案为:1.点评:本题考查了二元一次方程组的应用,解题的关键是得出关于x、a的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.三、解答题1.夏令营组织学员到某一景区游玩,老师交给同学一张画有A、B、C、D四个景点位置的地图,景点A、C和景点B、D之间有公路连接,老师指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与公路AC和公路BD所在的两条直线等距离;②到B、C两景点等距离.请你用尺规作图画出景点E 的位置(先用铅笔画图,然后用钢笔描清楚作图痕迹)【答案】【解析】延长DB、CA交于点O,作∠DOC或∠DOC的外角的平分线,再作线段BC的垂直平分线,两线的交点就是所求的点.解:如图所示,点E或E′就是所求的点.点评:本题考查作图应用设计、角平分线的作法、线段的垂直平分线的作法等知识,解题的关键是熟练掌握这些知识的应用,属于中考常考题型.2.在边长为1的小正方形网格中,△AOB 的顶点均在格点上.(1)B 点关于y 轴的对称点坐标为 ; (2)将△AOB 向左平移3个单位长度,再向上平移2个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;(3)在(2)的条件下,△AOB 边AB 上有一点P 的坐标为(a ,b ),则平移后对应点P 1的坐标为 .【答案】(1)(﹣3,2)(2)见解析(3)(a ﹣3,b+2)【解析】(1)根据坐标系可得B 点坐标,再根据关于y 轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(2)首先确定A 、B 、C 三点平移后的对应点位置,然后再连接即可;(3)根据△AOB 的平移可得P 的坐标为(a ,b ),平移后横坐标﹣3,纵坐标+2.解:(1)B 点关于y 轴的对称点坐标为(﹣3,2),故答案为:(﹣3,2);(2)如图所示:(3)P 的坐标为(a ,b )平移后对应点P 1的坐标为(a ﹣3,b+2).故答案为:(a ﹣3,b+2).点评:此题主要考查了作图﹣﹣平移变换,关键是几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点.3.如图,点F 、C 在BE 上,BF=CE ,∠A=∠D ,∠B=∠E .求证:AB=DE .【答案】见解析【解析】欲证明AB=DE ,只要证明△ABC ≌△DEF 即可.证明:∵BF=CE ,∴BF+CF=CE+CF 即BC=EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (AAS ),∴AB=DE .点评:本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键,记住一般三角形全等的四种判定方法,属于中考常考题型.4.小明家与学校在同一直线上且相距720m ,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x (分),兄弟两人之间的距离为ym ,图中的折线是y 与x 的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是 m/分,点B 的坐标是 ;(2)线段AB 所表示的y 与x 的函数关系式是 ;(3)试在图中补全点B 以后的图象.【答案】(1)60,120;(2)y=kx+b ,(3)【解析】(1)由图象可知,当x=0时,y=60,即可得到弟弟1分钟走了60m ;分别求出x=9时,哥哥走的路程,弟弟走的路程,即可得到兄弟两人之间的距离,即可解答;(2)利用待定系数法求出解析式,即可解答;(3)根据点B 的坐标为(9,120),此时小明到达终点,弟弟离小明的距离为120米,弟弟到终点的时间为:120÷60=2(分),画出图形即可.解:(1)由图象可知,当x=0时,y=60,∵弟弟走得慢,先走1分钟后,小明才出发, ∴弟弟1分钟走了60m , ∴弟弟步行的速度是60米/分,当x=9时,哥哥走的路程为:80×9=720(米),弟弟走的路程为:60+60×9=600(米),兄弟两人之间的距离为:720﹣600=120(米),∴点B 的坐标为:(9,120),故答案为:60,120;(2)设线段AB 所表示的y 与x 的函数关系式是:y=kx+b ,把A (3,0),B (9,120)代入y=kx+b 得:解得: ∴y=20x ﹣60,故答案为:y=20x ﹣60.(3)如图所示;点评:本题考查了一次函数的应用,解决本题的关键是看懂函数图象,利用待定系数法求一次函数的解析式.5.如图,直线l 1:y 1=x 和直线l 2:y 2=﹣2x+6相交于点A ,直线l 2与x 轴交于点B ,动点P 沿路线O→A→B 运动.(1)求点A 的坐标,并回答当x 取何值时y 1>y 2?(2)求△AOB 的面积;(3)当△POB 的面积是△AOB 的面积的一半时,求出这时点P 的坐标.【答案】(1)当x >2时,y 1>y 2;(2)3;(3)P (1,1)或(,1).【解析】(1)当函数图象相交时,y 1=y 2,即﹣2x+6=x ,再解即可得到x 的值,再求出y 的值,进而可得点A 的坐标;当y 1>y 2时,图象在直线AB 的右侧,进而可得答案;(2)由直线l 2:y 2=﹣2x+6求得B 的坐标,然后根据三角形面积即可求得;(3)根据题意求得P 的纵坐标,代入两直线解析式求得横坐标,即为符合题意的P 点的坐标.解:(1)∵直线l 1与直线l 2相交于点A ,∴y 1=y 2,即﹣2x+6=x ,解得x=2,∴y 1=y 2=2,∴点A 的坐标为(2,2);观察图象可得,当x >2时,y 1>y 2;(2)由直线l 2:y 2=﹣2x+6可知,当y=0时,x=3,∴B (3,0),∴S △AOB =×3×2=3;(3)∵△POB 的面积是△AOB 的面积的一半,∴P 的纵坐标为1, ∵点P 沿路线O→A→B 运动,∴P (1,1)或(,1).点评:此题主要考查了两直线相交,一次函数与不等式的关系以及三角形面积等,关键是掌握凡是函数图象经过的点必能满足解析式.。

初中二年级数学期末考试试题及答案

初中二年级数学期末考试试题及答案

yxOyx o yxo yx ooyx3-2初二数学期末考试试题及答案本试卷1-6页,满分120分,考试时间90分钟一、选择题(本题共7个小题,每小题3分,共21分)说明:下列各题都给出A 、B 、C 、D 四个结论,把唯一正确结论的代号填在下面的表格中题 号 1 2 3 4 5 6 7 答 案1、 在下列式子中,正确的是(A 3355-=- (B ) 3.60.6= (C 2(13)13-=- (D 366=±2、在△ABC 中,∠C=90°,A B C ∠∠∠、、的对边分别是a b c 、、,且5a =,12b =,则下列结论成立的是(A ) 12sin 5A = (B )5tan 12A = (C )5cos 13A = (D )12cos 13B = 3、反比例函数0ky k x=≠()和一次函数y kx k =-在同一直角坐标系中的图象可能是(A ) (B ) (C ) (D )4、有一个多边形的边长分别是45645cm cm cm cm cm ,,,,,和它相似的一个多边形最大边为8cm ,那么这个多边形的周长是(A )12cm (B )18cm (C )24cm (D )32cm5、某校有500名九年级学生,要知道他们在学业水平考试中成绩为A 等、B 等、C 等、D 等的人数是多少,需要做的工作是(A )求平均成绩 (B )进行频数分布 (C )求极差 (D )计算方差6、一个物体从点A 出发,在坡度1∶7的斜坡上直线向上运动到B ,当30AB =米时,物体升高(A )307米 (B )308米 (C )32 (D )202 7、如图是一次函数y 1=kx+b 和反比例函数y 2=mx的图象,由图象y 1>y 2时,x 的取值范围是G FEDCB A DC B A(A)2x <- (B)23x -<< (C)3x > (D)20x -<<或3x >二、填空题(本题共7个小题,每小题3分,共21分) 8、函数y 2x -x 的取值范围是9、在△ABC 中,点D 在AC 上(点D 不与A C 、重合),若再增加一个条件就能使△ABD ∽△ACB ,则这个条件是 .10、一个正多边形放大后的面积是原来的5倍,则原图形与新图形的相似比为 . 11、若一直角三角形两边长分别为3和5,则第三边长为 .12、已知关于x 的一次函数(2)3y m x n =-++,当 时,y 随x 的增大而减小;当 时,它的图象过原点;当 时,它与y 轴交点的纵坐标大于4.13、小华和小晶用扑克牌做游戏,小华手中有两张“王”,小晶从小华手中抽得“王”的机会是17,则小华手中有 张扑克牌.14、如图,矩形ABCD 中,12,10AB AD ==,将矩形折叠,使点B 落在AD 的中点E 处,则折痕FG 的长为 .三、解答题(本题共5小题,15题各6分, 16、18题各9分,17题10分,19题8分,共48分) 15、计算与化简:27234575. ② 7523⨯16、如图,已知一块四边形的草地ABCD ,其中∠A =60°,∠B =∠D =90°,AB =20米,CD =10米,求这块草地的面积.O17、已知:一次函数m x y +=23和n x y +-=21的图象都经过点A (-2,0),且与y 轴分别交于B 、C 两点.求:△ABC 的面积.18、小明去商店准备买一只铅笔和一个笔记本,恰好商店仅剩4只铅笔且颜色分别是白、黄、蓝、粉和2个笔记本且颜色分别是蓝和粉.小明对营业员说:“我想买一只铅笔和一个笔记本”,如果营业员随机抽取铅笔和笔记本(1) 利用“树状图”画出所有可能出现的情况;(2) 抽取到同样颜色的铅笔和笔记本与抽取到不同颜色的铅笔和笔记本的机会相同吗?哪个机会更大一些?19、如图,下列方格图是由边长为1的小正方形组成的,其中O 为一已知定点.① 画一个斜边长为AB 5AOB ,两直角边在方格的横线和竖线上,且两直角边的长都是整数.② 画出△AOB 以直角边OA 的中点M 为位似中心,位似比为2(即放大为原来的2倍)的一个位似图形△A 1O 1B 1.⑶一根竹子OAB2B1BnPAnYAC1A1C2A2Cny x O F E D CB A s(千米)t(时)5040302010321OED C BA四、解答题(本题共2小题,20题6分,21题7分,共13分)20、如图,在直角坐标系中有△ABC ,各个顶点的坐标分别为A (0,6),B (-3,0),C (30).⑴请确定△ABC 是一个什么样的三角形. .⑵若将△ABC 绕点O 顺时针旋转90°得到△DEF ,则D 点坐标 ,E 点坐标 ,F 点坐标 .21、在旅顺通往大连的公路上,甲、乙二人同时向距旅顺45千米的大连进发,甲从距旅顺10千米处以15千米/时的速度骑自行车,乙从距旅顺30千米处以5千米/时的速度步行.(1) 分别求甲、乙二人与旅顺距离1S (千米)、S 2(千米)和所用时间t (时)的函数关系式. (2) 在同一坐标系下画出这两个函数的图象,这两个函数的图象如果相交,说明了什么?五、解答题(本题共2小题,22题7分,23题10分,共17分)22、在矩形ABCD 中,4AD =,∠DAC =60°, DE ⊥AC ,点E 为垂足,求∠ABE的正弦值.23、如图,直线2kx =和双曲线 xky =(0x >)相交点P ,过P 作P A ⊥y轴于A ,y 轴上的点A 、A 1、A 2…A n 的纵坐标都是连续的整数,过A 、A 1、A 2…A n 分别作y 轴的垂线与双曲线xky =(x >0) 及直线2kx =分别交于B 、B 1、B 2…B n 和 C 、C 1、C 2…C n . (1)求A 点的坐标; (2)求1111B C B A 和2222B C B A 的值;(3) 试猜想nn n n B C B A 的值(直接写出答案). 参考答案一、选择题(3分×7=24分) 题号 1 2 3 4 5 6 7 答案ABCDBCD二、填空题(3分×7=21分)8、x ≥2;9、∠ABD=∠C 或∠ABD=∠ABC ;10、5:1或5:5;11、4或34;12、m <2,n=-3,n >1;13、14;14、665. 三、解答题(共5小题,15题各6分,16、18题各9分,17题10分,19题8分共48分) 15、①解:75453227-+-=35533233-+- =3453-②解:7523⨯=35237523⨯=⨯=52 16、解:延长AD 、BC 交于点E∵∠B=90°,∠A=60°∴∠E=30°∴BE=ABcot30°=320 又∵∠ADC=90°,∠E=30° ∴DE=CDcot30°=310 ∴S ABCD =S △ABE -S △CDE=CD DE BE AB •-•2121 =10310213202021⨯⨯-⨯⨯=315017、解:∵直线m x y +=23和n x y +-=21过点A(-2,0) ∴m +-⨯=)2(230,n +-⨯-=)2(21∴m=3 ,n=-1∴直线323+=x y 和121--=x y 与y 轴的交点B 、C 的坐标分别为:B(0,3),C(0,-1) ∴S △ABC =4242121=⨯⨯=•AO BC18、解:(1)笔记本 蓝 粉笔 白黄蓝粉 白黄蓝粉(2)不相同抽到不同颜色的机会更大些19、略 四、解答题(20题6分,21题7分,共13分) 20、解: (1)等腰三角形(2)D(6,0);E(0,3);F(0,-3) 21、解:(1).s 1=10+15t (0≤t ≤37) s 2=30+5t(0≤t ≤3) t 的范围可以不写(2)图形正确各2分,相交说明途中甲追上过乙(或者甲比乙先到) 22、解:过点E 作EF ⊥AB 于F∵四边形ABCD 是矩形,DE ⊥AC ∴∠DAF=∠ADC=∠DEA=90° ∵∠DAC=60°∴∠EAF=∠ADE=∠ACD=30° ∵AD=4∴AE=ADsin ∠ADE=4sin30°=2AF=AEcos ∠EAF=2cos30°=3 AB=CD=ADtan ∠DAC=4tan60°=34 ∴BF=AB-AF=34-3=33 EF=AEsin ∠EAF=2sin30°=1 BE=7227122=+=+BF GF ∴sin ∠ABE=147721==BE EF 23、解:解: (1)⎪⎪⎩⎪⎪⎨⎧==x k y k x 2解得y =2,∴点A 坐标为(0,2)(2)由于A 、A 1、A 2……A n 为连续整数,∴A 1、A 2点的坐标为(0,3)、(0,4)∴311k B A =,422k B A =. ∴ 23231111=-=kk kB C BA14242222=-=kk kB C B A (3) nB C B A n n n n 2=。

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列文字中,是轴对称图形的是()A .我B .爱C .中D .国2.用科学记数法表示0.0000003是()A .60.310-⨯B .70.310-⨯C .6310-⨯D .7310-⨯3.等腰三角形的两边长为2cm ,5cm ,则该等腰三角形的周长为()A .9cmB .12cmC .9cm 或12cmD .6cm 或12cm4.下列各式运算正确的是()A .326a a a ⨯=B .()428=a aC .()220a a -+=D .()23622a a =5.点A (-2,3)向右平移3个单位后得到点B ,那么点B 关于x 轴对称的点的坐标是A .(1,-3)B .(1,3)C .(-1,3)D .(-1,-3)6.如图,在△ABC 与△ADC 中,若BAC DAC ∠=∠,则下列条件不能判定△ABC 与△ADC 全等的是()A .B D∠=∠B .BCA DCA ∠=∠C .BC DC =D .AB AD =7.已知()()222x m x x x +-=--,那么m 的值是()A .1B .-1C .2D .-28.如图,在Rt △ABC 中,90C = ∠,AD 平分∠BAC ,交BC 于点D ,若20AB =,△ABD 的面积为60,则CD 长()A .12B .10C .6D .49.如图,在△ABC 中,AB AC =,BD CD =,边AB 的垂直平分线交AC 于点E ,连接BE ,交AD 于点F ,若66C ∠=︒,则∠AFE 的度数为()A .60B .62°C .66D .7210.如图,数轴上点A 、B 、C 、D 分别表示数0、1、2、3,若x 为整数(0x ≠),则分式21x x -表示的点落在哪条线段上?()A .ACB .BC C .BD D .CD11.如图,把一块等腰直角三角尺放在直角坐标系中,直角顶点A 落在第二象限,锐角顶点B 、C 分别落在x 轴、y 轴上,已知点A (-2,2)、C (0,-3),则点B 的坐标为()A .(-4,0)B .(-5,0)C .(-7,0)D .(-8,0)12.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为21,长方形③中的阴影部分面积为93,那么一个小长方形①的面积为()A .5B .6C .9D .10二、填空题13.分解因式26m m +=_________.14.计算:3242a b ab ÷=______.15.已知:26910a a b -+++=,那么22a b +=______.16.当=a ___________时,关于x 的方程12325x a x a +-=-+的解为零.17.如图,点D 、A 、B 、C 是正十边形依次相邻的顶点,分别连接AC 、BD 相交于点P ,则∠DPC =______度.18.等腰直角三角形ABC 中,AB AC =,90BAC ∠= ,且△ABC 的面积为16,过点B 作直线EF AC ∥,点G 是直线EF 上的一个动点,连接AG ,将AG 绕点A 顺时针旋转90 ,得到线段AH ,连接BH ,则线段BH 的最小值为______.19.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =11cm ,CF =3cm ,则AC =_______.20.如图,在等腰△ABC 中,AB=AC=13,BC=10,D 是BC 边上的中点,M 、N 分别是AD 和AB 上的动点.则BM+MN 的最小值是_________________.三、解答题21.计算:(1)02312020222--++⨯(2)()()()22a b a b a b +--+22.化简求值:2222m n mn n m m m ⎛⎫--÷- ⎪⎝⎭,其中3,1m n ==-.23.解分式方程:2231022x x x x-=+-24.如图,四边形ABED 中,90B E ACD ∠=∠=∠= ,BC DE =.(1)求证:ABC CED ∆=∆.(2)发现:若AB a =,BC b =,AC c =,请用两种方法计算四边形ABCD 的面积,并探究a 、b 、c 之间有什么数量关系?(3)应用:①根据(2)中的发现,当8AB =,6BC =时,AC 的长为___;②如图,若30P ∠= ,4PM =,7PN =,点F 在PN 上,点G 在射线PM 上连接FM 、FG 、NG ,求MF FG GN ++的最小值.25.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多20元,用1800元购进篮球的数量是用700元购进足球的数量的2倍,求每个篮球和足球的进价各是多少元?26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,Rt △ABC 与Rt △DEF 中,点B 、E 、C 、F 在一条直线上,AC 与DE 相交于点O ,90BAC EDF ∠=∠=︒,AB DE =,BE CF =,则:(1)求证:AC DE ⊥;(2)连接AD 、AE 、DC ,若12,5AC AB ==,求四边形AECD 的面积.28.如图是33⨯的网格,网格中每个小正方形的顶点叫做格点,当三角形的三个顶点是格点时,这个三角形叫做格点三角形,图中阴影部分的三角形就是格点三角形.(1)请在图一、图二中分别作出与阴影部分成轴对称的格点三角形,要求所作格点三角形在33⨯的网格内且位置不同;(2)思考:在33⨯的网格内一共可以作___个符合(1)中要求的格点三角形.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D10.C11.C12.Am m+13.(6)14.22a b15.1016.1517.144【详解】解:∵DAB ∠和ABC ∠是正十边形的两个内角,∴(102)18014410DAB ABC -⨯︒∠=∠==︒,DA AB BC ==,∴180********,22DAB ABD ︒-∠︒-︒∠===︒1801801441822ABC BCA ︒-∠︒-︒∠===︒,∴14418126PBC ABC ABD ∠=∠-∠=︒-︒=︒,∴12618144DPC PBC PCB ∠=∠+∠=︒+︒=︒,故答案为:144【点睛】可不是主要考查了正多边形内角和问题,解题的关键是熟练掌握基本知识.18.【分析】如图所示:连接CG .由旋转的性质可知AG AH =,90GAH ∠=︒,再由90BAC ∠=︒,可知HAB CAG ∠=∠.可证ABH ACG ≅ .可得BH CG =.BH 最小转化成求CG 最小.只需CG BG ⊥就可以了.由此可得四边形ABGC 是正方形.由ABC 的面积是16,可求BH 的值为【详解】如图所示:连接CG .由旋转的性质可知:AG AH =,90GAH ∠=︒.∵90BAC ∠=︒∴BAC BAG GAH BAG ∠-∠=∠-∠,即HAB CAH ∠=∠.在ABH 和ACG 中,AB AC HAB CAH AH AG =⎧⎪∠=∠⎨⎪=⎩ABH ACG≅ ∴BH CG=要让BH 最小,也就是要CG 最小,∴CG BG ⊥时,CG 最小.∵EF AC ∥,90BAC ∠=︒,∴90ABG BAC ∠=∠=︒∵CG BG⊥∴四边形ABGC 时矩形,∵AB AC=∴矩形ABGC 是正方形.∴AB BG CG AC ===.∵△ABC 的面积为16,∴•162AB AC =,解得:AB AC ==.∴AB AC CG BH ====故答案为:【点睛】本题考查了全等三角形的性质和判定定理、矩形的性质和判定定理、正方形的性质和判定定理、等腰直角三角形的性质等知识.证得三角形全等,由求BH 转化成求CG ,和让CG BG ⊥时,CG 最短是解决本题的关键.19.14cm【分析】由AE =BE ,DE 是AB 的垂线得出DE 是AB 的中线,进而可得DE 是AB 的垂直平分线,由此即可得到AF =BF ,再根据线段的和差即可得解.【详解】解:∵AE =BE ,DE 是AB 的垂线,∴DE 是AB 的中线,∴DE是AB的垂直平分线,∵F为DE上一点,∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=11cm,CF=3cm,∴AC=14cm,故答案为:14cm.【点睛】此题考查了等腰三角形的三线合一以及垂直平分线的性质,熟练掌握等腰三角形的三线合一以及垂直平分线的性质是解此题的关键.20.120 13【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,然后根据轴对称的性质可知BM′+M′N′为所求的最小值.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,D是BC边上的中点,∴AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=AC=13,BC=10,D是BC边上的中点,∴AD⊥BC,∴AD=12,∵S△ABC=12AC×BH=12BC×AD,∴13×BH=10×12,解得:BH=120 13;故答案为12013.21.(1)2(2)233ab b --【分析】(1)根据零次幂、负指数幂可进行求解;(2)根据完全平方公式及多项式乘以多项式可进行求解.(1)解:原式=111428++⨯11122=++=2;(2)解:原式=()222222a ab b a ab b ---++=222222a ab b a ab b -----=233ab b --.22.2m n -;12【分析】先根据分式混合运算法则进行化简,然后再代入求值即可.【详解】解:原式22222m n m mn n m m m ⎛⎫--=÷- ⎝⎭22222m n m mn n m m--+=÷()()22m n mm m n -=⋅-2m n=-把m=3,n=−1代入得:原式()231=--231=+24=12=23.4x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】2231022x x x x-=+-解:方程可变为:()()31022x x x x -=+-,方程两边同乘以x (x+2)(x ﹣2)得:3(x ﹣2)﹣(x+2)=0,解得,x =4,检验:当x =4时,x (x+2)(x ﹣2)≠0,所以,原分式方程的解为x =4.24.(1)见解析;(2)第一种方法:S 四边形ABCD=2ab +22c ,第二种方法:22222a b ab ++;a 、b 、c 之间的数量关系是222+=a b c ;(3)①10【分析】(1)根据BAC ECD ∠=∠,B E ∠=∠,BC ED =即可证明两个三角形全等;(2)第一种面积求法直接是S △ABC+S △ACD ,代入表示即可;第二种面积表示用S 梯形ABED-S △CED 来表示,就可以得到a 、b 、c 之间的数量关系;(3)①根据(2)中的结论,代入数值即可计算;②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小,代入(2)中的结论,即可算出这个最小值;【详解】(1)∵∠B=∠E=∠ACD=90°,∴∠DCE+∠ACB=90°,∠ACB+∠BAC=90°,∴∠BAC=∠DCE ,在△ABC 和△CED 中,BAC ECD B E BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CED ;(2)第一种方法:S 四边形ABCD=S △ABC+S △ACD=2ab +22c ,第二种方法:由(1)可知,△ABC ≌△CED ,∴CD=c ,DE=b ,CE=a ,S 四边形ABCD =S 梯形ABED-S △CED=22a b a b ab ++-()(),=22222a b ab ++,∴2ab +22c =22222a b ab ++,∴222+=a b c ,即a 、b 、c 之间的数量关系是222+=a b c ;(3)①∵AB=8,BC=6,∴22268AC =+=100,∴AC=10,②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小;如图所示:∵点M 与1M 关于PN 对称,点N 与1N 关于PM 对称,∴1M F=MF ,PM=P 1M =4,∴GN=G 1N ,PN=P 1N =7,∠1M PF=∠FPM=∠MP 1N =30°,∴∠11M PN =3×30°=90°∴MF+FG+GN=M 1F+FG+N 1G≥M 1N 1,当点M 1、F 、G 、N 1四点共线时最短,在△11M PN 中,∠11M PN =90°,PM=4,P 1N =7,∴由(2)可知,211M N =2247+=65,∴11M N∴MF FG GN ++25.每个足球的进价是70元,每个篮球的进价是90元【详解】解:设每个足球的进价是x 元,则每个篮球的进价是()20x +元.由题意得:1800700220x x=⨯+.解得:70x =.检验:当70x =时,()200x x +≠,所以,原方程的解为70x =.∴2090x +=.答:每个足球的进价是70元,每个篮球的进价是90元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.【详解】(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD 和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.27.(1)见详解(2)四边形AECD 的面积为30【分析】(1)由题意易得BC EF =,然后根据“HL”可证ABC DEF ≌△△,则有//AB DE ,进而问题可求证;(2)由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,然后根据勾股定理可得BC=13,进而问题可求解.(1)证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,∵90BAC EDF ∠=∠=︒,AB DE =,∴ABC DEF ≌△△(HL ),∴B DEF ∠=∠,∴//AB DE ,∴90EOC A ∠=∠=︒,∴AC DE ⊥;(2)解:由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,//AD EC ,∴四边形AECD 是梯形,∵12,5AC AB ==,90BAC ∠=︒,∴13BC ==,设△ABC 边BC 上的高为h ,∴6013AB AC h BC ⋅==,∴()()1111601330222213AECD S AD EC h BE EC h BC h =+=+=⋅=⨯⨯=四边形.【点睛】本题主要考查勾股定理、平移的性质及全等三角形的性质与判定,勾股定理、平移的性质及全等三角形的性质与判定是解题的关键.28.(1)见解析(2)3【分析】(1)根据轴对称图形的性质作出轴对称图形即可;(2)作出所有轴对称图形即可得到答案.(1)如图一、二,即为所作图形,(虚线为对称轴)(2)可以作出3个符合(1)中要求的格点三角形.第3个如图所示,故答案为:3。

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列计算正确的是()A .a 2•a 3=a 6B .2ab+3ab =5a 2b 2C .a 8÷a 4=a 2D .(a 3)2=a 62.到三角形三条边距离相等的点是此三角形()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A .140°B .160°C .170°D .150°4.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,AE 的中点,且S △ABC =12cm 2,则阴影部分面积S =()cm 2.A .1B .2C .3D .45.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是()A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(2)()2a b a b a ab b +-=+-6.202020214(0.25)-⨯的值为()A .4B .4-C .0.25D .0.25-7.若2x y +=,1xy =-,则()()1212x y --的值是()A .7-B .3-C .1D .98.如图,在△ABC 中,BC=10,CD 是∠ACB 的平分线.若P ,Q 分别是CD 和AC 上的动点,且△ABC 的面积为24,则PA+PQ 的最小值是()A .125B .4C .245D .59.已知,,a b c 满足22227,-21,617a b b c c a +==--=-,则a b c +-的值为()A .1B .-5C .-6D .-710.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ=PQ ,PR=PS ,下面四个结论:①AS=AR ;②QP ∥AR ;③△BRP ≌△QSP ;④AP 垂直平分RS ,其中正确结论的序号是()A .①②B .①②③C .①②④D .①②③④二、填空题11.因式分解:225x y y -=______.12.am =6,an =3,则am﹣2n =__.13.如图,△ABC ≌△DBC ,∠A =45°,∠DCB =43°,则∠ABC =______.14.如图,ABC 的三边AB BC CA 、、的长分别为405060、、,其三条角平分线交于点O ,则::ABOBCO CAOS S S =______.15.一位工人师傅加工1500个零件后,把工作效率提高到原来的2.5倍,因此再加工1500个零件时,较前提早了18个小时完工,问这位工人师傅提高工作效率的前后每小时各加工多少个零件?设提高工作效率前每小时加工x 个零件,则根据题意可列方程为________.16.若x 4y 1+=,则xy 的最大值为_____.17.如图,已知△ABC 的面积为1,分别倍长(延长一倍)边AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长边A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2…按此规律,倍长2021次后得到的△A 2021B 2021C 2021的面积为_________.18.如图,△ABC ≌△ADE ,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC 的度数为______.19.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题20.解分式方程:21133x x+=--21.化简求值:2(2)(1)(1)a a a +-+-,其中3=2a 22.先化简,再求值:22241---÷+a a a a a请从-2,-1,0,1,2中选择一个合适的数,求此分式的值.23.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y )2+2(x+y )+1.解:将“x+y”看成整体,令x+y=A ,则原式=A 2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y )+(2x-3y )2.(2)因式分解:(a+b )(a+b-4)+4;25.在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a 天完成,乙做另一部分用了y 天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?26.如图,在ABC 中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.27.已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD ≌△ACE ;②直接判断结论BC=DC+CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.28.如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.易得:AD=BD.(1)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD;(2)如图3,在四边形ABDE中,AB=10,DE=2,BD=6,C为BD边中点.若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.参考答案1.D【分析】利用合并同类项的法则,幂的乘方的法则,同底数幂的乘法的法则,同底数幂的除法的法则对各项进行运算即可.【详解】解:A、a2•a3=a5,故该选项不符合题意;B、2ab+3ab=5ab,故该选项不符合题意;C、a8÷a4=a4,故该选项不符合题意;D、(a3)2=a6,故该选项符合题意;故选:D.【点睛】本题主要考查了合并同类项,幂的乘方,同底数幂的乘法,同底数幂的除法,解答的关键对相应的运算法则的掌握.2.A【分析】根据角平分线的性质进行解答即可.【详解】解: 角平分线上任意一点,到角两边的距离相等,到三角形三条边距离相等的点是三角形三个内角的平分线的交点,故选:A.3.B【详解】解:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.故选B.4.C【分析】根据三角形面积公式由点D为BC的中点得到S△ABD=S△ADC=12S△ABC=6,同理得到S△EBD=S△EDC=12S△ABD=3,则S△BEC=6,然后再由点F为EC的中点得到S△BEF=12S△BEC=3.【详解】解:∵点D为BC的中点,∴S△ABD=S△ADC=12S△ABC=6,∵点E为AD的中点,∴S△EBD =S△EDC=12S△ABD=3,∴S△EBC=S△EBD+S△EDC=6,∵点F为EC的中点,∴S△BEF =12S△BEC=3,即阴影部分的面积为3cm2.故选:C.【点睛】本题考查三角形的中线有关的面积计算问题.三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题.5.A【分析】左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.【详解】解:由题意可得:a2−b2=(a−b)(a+b).故选:A.【点睛】此题主要考查了乘法的平方差公式,属于基础题型.6.D【分析】直接利用积的乘方把式子变形计算即可.【详解】202020214(0.25)-⨯=202020204(0.25)(0.25)⨯⨯--=20202020[4(0.25)2)](0.5--⨯⨯=2020[4(0.25)(0.25)]⨯⨯--=2020(1)(0.25)⨯--=1(0.25)-⨯=0.25-故选:D 7.A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.C【分析】过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,当A 、P 、G 三点共线时,AP+PQ 的值最小,求出AG 的长即为所求.【详解】解:过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,∵CD 是∠ACB 的平分线,∴PG=PQ ,∴PA+PQ=AP+PG≥AG ,∴当A 、P 、G 三点共线时,AP+PQ 的值最小,∵BC=10,△ABC 的面积为24,∴AG=245,∴AP+PQ 的最小值为245,故选:C .9.A【详解】解:∵22227,-21,617a b b c c a +==--=-,∴(a 2+2b )+(b 2-2c )+(c 2-6a )=7+(-1)+(-17),∴a 2+2b+b 2-2c+c 2-6a=-11∴(a 2-6a+9)+(b 2+2b+1)+(c 2-2c+1)=0,∴(a-3)2+(b+1)2+(c-1)2=0∴a-3=0,b+1=0,c-1=0,∴a+b-c=3-1-1=1.故选:A .10.C【分析】连接AP ,RS ,证明Rt APR ≌Rt APS ,即可判断①,根据等边对等角可得QAP QPA ∠=∠,根据角平分线的性质可得BAP CAP ∠=∠,等量代换可得QPA BAP ∠=∠,进而即可判定QP ∥AR ,即可判断②,假设③成立,可得到BC AC =,与已知矛盾,进而可判断③,根据垂直平分线的判定定理即可判断④.【详解】连接AP ,RS ,如图,PR ⊥AB ,PS ⊥AC ,PR=PS ,AP ∴是BAC ∠的角平分线,BAP CAP∴∠=∠在Rt APR 与Rt APSPS PR PA PA=⎧⎨=⎩∴Rt APR ≌Rt APSAS AR∴=故①正确;AQ PQ= QAP QPA ∴∠=∠QPA BAP ∴∠=∠AR QP∴∥故②正确;假设△BRP ≌△QSP ;则SQ RB =,PBR PQS∠=∠ AR QP∥PQS BAC∠∠∴=BC AC∴=而题中没有说明BC AC =,故③不正确;,AR AS PR PS== ∴AP 是RS 是垂直平分线,故④正确故正确的有①②④故选C11.()()55y x x -+【详解】先提取公因式y ,再利用平方差公式,可得()()22555x y y y x x -=-+.故答案是()()55y x x -+.12.23【分析】直接利用同底数幂的除法运算法则结合幂的乘方运算法则进而将原式变形得出答案.【详解】∵am =6,an =3,∴am﹣2n=am÷(an)2=6÷32=23.故答案为:2 3.13.92°【分析】根据全等三角形的性质和三角形的内角和定理即可得到结论.【详解】解:∵△ABC≌△DBC,∴∠ACB=∠DCB=43°,∵∠A=45°,∴∠ABC=180°﹣∠A﹣∠ACB=92°,故答案为:92°.14.4:5:6【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC 的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO :S△BCO:S△CAO=(12AB•OD):(12BC•OF):(12AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.15.1500x−18=15002.5x【分析】关键描述语为:“较前提早了18个小时完工”;本题的等量关系为:原来加工1500个零件所用时间-18=现在加工1500个零件所用时间,把相应数值代入即可求解.【详解】解:原来加工1500个零件所用时间为:1500x,现在加工1500个零件所用时间为:15002.5x ,∴根据题意可列方程为1500x −18=15002.5x 故答案为:1500x −18=15002.5x .16.116【分析】利用完全平方公式列出关于xy 的不等式.求不等式的解,根据不等式的解,即可求得xy 的最大值.【详解】解:22(4)(4)160x y x y xy -=+-≥.41x y += ,1160xy ∴-≥,116xy ∴≤.故答案为:116.17.20217【分析】根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此规律可得结论.【详解】解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,1117A B C ABC S S = ,同理222111277A B C A B C ABC S S S == ,依此类推,△A 2021B 2021C 2021的面积为=72021S △ABC ,∵△ABC 的面积为1,∴△A 2021B 2021C 2021的面积=72021.故答案为:72021.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.18.60°【分析】根据三角形内角和定理求出∠BAC ,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.19.7【分析】由AB 的垂直平分线交AB 于E ,交BC 于D ,根据线段垂直平分线的性质,可得AD=BD ,又由△ADC 的周长为11cm ,即可求得AC +BC=11cm ,然后由AC=4cm ,即可求得BC 的长.【详解】解:∵AB 的垂直平分线交AB 于E ,交BC 于D ,∴AD=BD ,∵△ADC 的周长为11cm ,∴AC +CD +AD=AC +CD +BD=AC +BC=11cm ,∵AC=4cm ,∴BC=7cm .故答案为:7.20.x=4【分析】两边都乘以x-3化为整式方程求解,然后验根即可.【详解】解:两边都乘以x-3,得2-1=x-3,解得x=4,检验:当x=4时,x-3≠0,∴x=4是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.45a +,11【分析】先利用完全平方公式和平方差公式进行化简,再代值运算即可.【详解】解:2(2)(1)(1)a a a +-+-22441a a a =++-+45a =+把3=2a 代入得:345112⨯+=【点睛】本题主要考查了整式的化简求值,熟悉掌握完全平方公式和平方差公式是解题的关键.22.12a +,13【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a 的值代入计算可得.【详解】解:22241---÷+a a a a a2(1)1(2)(2)a a a a a a -+=-⨯+-112a a +=-+12a =+,∵a≠0且a≠±2,a≠-1,∴a=1,则原式=11123=+.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.(1)证明见解析;(2)3.【分析】(1)利用ASA ,可证△ABD ≌△CFD ;(2)由△ABD ≌△CFD ,得BD=DF ,所以BD=BC ﹣CD=2,所以AF=AD ﹣DF=5﹣2.【详解】(1)证明:∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠ECD ,在△ABD 和CFD 中,ADB CDF BAD DCF AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CFD (AAS ),(2)∵△ABD ≌△CFD ,∴BD=DF ,∵BC=7,AD=DC=5,∴BD=BC ﹣CD=2,∴AF=AD ﹣DF=5﹣2=3.24.(1)(1+2x-3y )2;(2)(a+b-2)2.【分析】(1)将(2x-3y )看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b ,代入后因式分解,再代入即可将原式因式分解.【详解】解:(1)原式=(1+2x-3y )2.(2)令A=a+b ,则原式变为A (A-4)+4=A 2-4A+4=(A-2)2,故:(a+b )(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y )2;(2)(a+b-2)2.25.(1)乙工程队单独做需要80天完成(2)甲工程队至少应做42天.【分析】(1)设乙工程队单独完成这项工作需要x 天,由题意列出分式方程,求出x 的值即可;(2)首先根据题意列出a 和y 的关系式,进而求出a 的取值范围,结合a 和y 都是正整数,即可求出a 的值.【详解】(1)设乙工程队单独完成这项工作需要x 天,由题意得:3011361120120x ⎛⎫++⨯= ⎪⎝⎭解得:x=80,经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.(2)因为甲工程队做其中一部分用了a 天,乙工程队做另一部分用了y 天,依题意得:112080a y +=,∴2803y a =-.∵52y ≤,∴280523a -≤,解得:42a ≥.答:甲工程队至少应做42天.26.∠B =77°,∠C =38.5︒【分析】根据等腰三角形的性质及三角形内角和定理可求出∠B 和∠ADB 的度数,利用三角形外角性质即可求出∠C 的度数.【详解】解:∵AB =AD ,26BAD ∠=︒∴∠B =∠ADB =12×(180°﹣26°)=77°,∵AD =DC ,∴∠C=∠DAC ,∴∠C =12∠ADB =12×77°=38.5︒.27.(1)①见解析;②成立;(2)BC+CD=CE【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ;②由△ABD ≌△ACE 就可以得出BC=DC+CE ;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ,就可以得出BC+CD=CE .【详解】解:(1)①证明:∵△ABC 是等边三角形∴AB=AC ∠BAC=60°∵△ADE 是等边三角形∴AD=AE ∠DAE=60°∴∠BAC -∠DAC=∠DAE -∠DAC ∴∠BAD=∠CAE ∴△ABD ≌△ACE②成立∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC是等边三角形∴AB=AC∠BAC=60°∵△ADE是等边三角形∴AD=AE∠DAE=60°∴∠BAC+∠DAC=∠DAE+∠DAC∴∠BAD=∠CAE∴△ABD≌△ACE∴BD=CE∵BC=BD-CD∴BC=CE-CD.28.(1)见解析;(2)15.【分析】(1)证△ECD≌△ACD(SAS),得EC=AC,DE=AD,∠CED=∠A=60°,再证BE=DE,则BE=AD,即可得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,证△ACB≌△ACF(SAS),得CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证△CGE≌△CDE (SAS),得CG=CD=3,GE=DE=2,∠DCE=∠GCE,再证△CFG是等边三角形,得FG=CG=3,即可求解.【详解】(1)证明:在CB上截取CE=AE,连接DE,如图所示:∵CD平分∠ACB,∴∠BCD=∠ACD,又∵CD=CD,∴△ECD≌△ACD(SAS),∴EC=AC,DE=AD,∠CED=∠A=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,又∵∠CED=∠EDB+∠B,∴∠EDB=60°-30°=30°,∴∠EDB=∠B,∴BE=DE,∴BE=AD,∵BC=EC+BE,∴BC=AC+AD;(2)解:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,如图所示:∵C是BD边的中点,BD=6,∴CB=CD=12BD=3,∵AC平分∠BAE,∴∠BAC=∠FAC,又∵AC=AC,∴△ACB≌△ACF(SAS),∴CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证:△CGE≌△CDE(SAS),∴CG=CD=3,GE=DE=2,∠DCE=∠GCE,∵CB=CD,∴CG=CF,∵∠ACE=120°,∴∠BCA+∠DCE=180°-120°=60°,∴∠FCA+∠GCE=60°,∴∠FCG=180°-60°-60°=60°,∴△FGC是等边三角形,∴FG=FC=3,∴AE=AF+GE+FG=10+2+3=15.。

福建初二初中数学期末考试带答案解析

福建初二初中数学期末考试带答案解析

福建初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.的值等于()A.0B.1C.2013D.﹣20132.在平面直角坐标系中,点(1,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.已知函数y=3x﹣1,当x=3时,y的值是()A.6B.7C.8D.94.已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是()A.9B.8C.7D.65.下列式子成立的是()A.B.C.D.6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD二、填空题1.= .2.用科学记数法表示:0.000004= .3.数据2,4,5,7,6的极差是.4.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.5.命题“同位角相等,两直线平行”的逆命题是:.6.甲、乙两同学近期4次数学单元测试的平均分相同,甲同学的方差=3.2,乙同学的方差=4.1,则成绩较稳定的同学是(填“甲”或“乙”).7.已知某个反比例函数,它在每个象限内,y随x增大而增大,则这个反比例函数可以是(写出一个即可).8.如图,正方形ABCD中,M是BC上的中点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,则AG= .9.如图,在直角坐标系中,已知点A(﹣4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,(1)△AOB的面积是;(2)三角形(2013)的直角顶点的坐标是.10.(8分)某学习小组10名学生的某次数学测验成绩统计表如下:成绩(分)60708090(1)填空:①x= ;②此学习小组10名学生成绩的众数是;(2)求此学习小组的数学平均成绩.11.(8分)某校举行英语演讲比赛,准备购买30本笔记本作为奖品,已知A、B两种笔记本的价格分别是12元和8元.设购买A种笔记本x本.(1)购买B种笔记本本(用含x的代数式表示);(2)设购买这两种笔记本共花费y元,求y元与x的函数关系式,并求出y的最大值和最小值.三、解答题1.(16分)①计算:②解方程:.2.(8分)如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)3.(8分)已知一次函数y=kx+b的图象经过点(1,3)和点(2,5),求k和b的值.4.(8分)已知正比例函数y=x和反比例函数的图象都经过点A(3,3).(1)直接写出反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求平移的距离.5.(12分)如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.(1)求正方形ABCD的周长;(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.①求证:BH ⊥DG ;②当AE=时,求线段BH 的长(精确到0.1).6.(13分)已知:直线l 1与直线l 2平行,且它们之间的距离为2,A 、B 是直线l 1上的两个定点,C 、D 是直线l 2上的两个动点(点C 在点D 的左侧),AB=CD=5,连接AC 、BD 、BC ,将△ABC 沿BC 折叠得到△A 1BC .(1)求四边形ABDC 的面积.(2)当A 1与D 重合时,四边形ABDC 是什么特殊四边形,为什么? (3)当A 1与D 不重合时①连接A 1、D ,求证:A 1D ∥BC ;②若以A 1,B ,C ,D 为顶点的四边形为矩形,且矩形的边长分别为a ,b ,求(a+b )2的值.四、计算题(8分)如图,在△ABC 中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:△ABE ≌△ACD .福建初二初中数学期末考试答案及解析一、选择题1.的值等于() A .0B .1C .2013D .﹣2013【答案】B【解析】本题根据任何非0数的0次幂都等于1进行计算. 【考点】零指数幂2.在平面直角坐标系中,点(1,2)所在的象限是() A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】A【解析】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 【考点】点的坐标3.已知函数y=3x ﹣1,当x=3时,y 的值是() A .6 B .7 C .8 D .9【答案】C【解析】本题只需要把x=3代入函数关系式就可以求出y 的值. 【考点】函数值4.已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是() A .9 B .8 C .7D .6【答案】B【解析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).9,9,8,8,7,6,5是从大到小排列的,处于最中间的数是8,则这组数据的中位数是8.点评:此题考查了中位数,.【考点】中位数5.下列式子成立的是()A.B.C.D.【答案】D【解析】利用分式的基本性质,以及分式的乘方法则即可判断.A、,选项错误;B、当m=1时,=4,故选项错误;C、,故选项错误;D、正确.【考点】分式的混合运算.6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【答案】B【解析】∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);【考点】全等三角形的判定二、填空题1.= .【答案】【解析】根据幂的负整数指数运算法则计算.原式==.【考点】负整数指数幂.2.用科学记数法表示:0.000004= .【答案】4×【解析】科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【考点】科学记数法—表示较小的数3.数据2,4,5,7,6的极差是.【答案】5【解析】极差就是用这组数据的最大值减去最小值.【考点】极差.4.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.【答案】(3,-4)【解析】关于原点对称的点,两点的横坐标与纵坐标都互为相反数.根据这个性质可以得出答案.【考点】关于原点对称的点的坐标5.命题“同位角相等,两直线平行”的逆命题是:.【答案】两直线平行,同位角相等.【解析】两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”【考点】命题与定理.6.甲、乙两同学近期4次数学单元测试的平均分相同,甲同学的方差=3.2,乙同学的方差=4.1,则成绩较稳定的同学是(填“甲”或“乙”).【答案】甲【解析】方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.本题4.1>3.2,则甲比较稳定.【考点】方差.7.已知某个反比例函数,它在每个象限内,y随x增大而增大,则这个反比例函数可以是(写出一个即可).【答案】y=-【解析】对于反比例函数y=,当k>0时,在每个象限内,y随着x的增大而减小;当k<0时,在每个象限内,y随着x的增大而增大.【考点】反比例函数的性质8.如图,正方形ABCD中,M是BC上的中点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,则AG= .【答案】2.5【解析】M为BC中点,CM=2,∴BC=4,BM=2,∵四边形ABCD是正方形,∴∠B=90°,AB=BC=4,在Rt△ABM中,由勾股定理得:AM==2,∵AM的垂直平分线GH,∴AO=OM=AM=,∠AOG=∠B=90°,∵∠GAO=∠MAB,∴△GAO∽△MAB,∴=,∴=,∴AG=2.5,【考点】正方形的性质;线段垂直平分线的性质;勾股定理.9.如图,在直角坐标系中,已知点A(﹣4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,(1)△AOB的面积是;(2)三角形(2013)的直角顶点的坐标是.【答案】6;(8052,0).【解析】根据点A、B的坐标求出OA、OB,再根据三角形的面积列式计算即可得解;观察不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商是671可知三角形是第671个循环组的最后一个三角形,直角顶点在x轴上,再根据一个循环组的距离为12,进行计算即可得解.【考点】坐标与图形变化-旋转;三角形的面积10.(8分)某学习小组10名学生的某次数学测验成绩统计表如下:(1)填空:①x= ;②此学习小组10名学生成绩的众数是;(2)求此学习小组的数学平均成绩.【答案】(1)①2;②90;(2)79分.【解析】用总人数减去得60分、70分、90分的人数,即可求出x的值;根据众数的定义即一组数据中出现次数最多的数,即可得出答案;根据平均数的计算公式分别进行计算即可.试题解析:(1)①∵共有10名学生,∴x=10﹣1﹣3﹣4=2;②∵90出现了4次,出现的次数最多,∴此学习小组10名学生成绩的众数是90;(2)此学习小组的数学平均成绩是:=(60+3×70+2×80+4×90)=79(分).【考点】众数;加权平均数11.(8分)某校举行英语演讲比赛,准备购买30本笔记本作为奖品,已知A、B两种笔记本的价格分别是12元和8元.设购买A种笔记本x本.(1)购买B种笔记本本(用含x的代数式表示);(2)设购买这两种笔记本共花费y元,求y元与x的函数关系式,并求出y的最大值和最小值.【答案】(1)30-x;(2)y=4x+240;最大值为360,最小值为240.【解析】根据一共准备购买30本笔记本作为奖品,可知购买B种笔记本的数量=30﹣购买A种笔记本的数量;先由购买这两种笔记本共花费的钱数=购买A种笔记本花费的钱数+购买B种笔记本花费的钱数,求出y元与x的函数关系式,再由自变量的取值范围,根据一次函数的增减性,即可求得答案.试题解析:(1)∵某校举行英语演讲比赛,准备购买30本笔记本作为奖品,其中购买A种笔记本x本,(2)y=12x+8(30﹣x)=4x+240,∵k=4>0,∴y随x的增大而增大,又∵0≤x≤30,∴当x=0时,y的最小值为240,当x=30时,y的最大值为360.【考点】一次函数的应用三、解答题1.(16分)①计算:②解方程:.【答案】2;x=-4【解析】利用同分母分式的减法法则计算,约分即可得到结果;分式方程首先进行去分母转化为整式方程,求出整式方程的解得到x的值,然后将解代入分式方程进行检验,得出分式方程的解.试题解析:①原式===2;②方程两边同乘以5x(x﹣6),得10x=4x﹣24,解得x=﹣4,经检验x=﹣4是分式方程的解.【考点】解分式方程;分式的加减法2.(8分)如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)【答案】见解析【解析】分别以B、C为圆心,大于BC的一半为半径画弧,两弧交于点M、N,MN就是所求的直线;以点C为圆心,任意长为半径画弧,交AC,BC于两点,以这两点为圆心,大于这两点的距离为半径画弧,交于一点E,作射线CE交AB于D即可.试题解析:如图所示:【考点】作图—复杂作图3.(8分)已知一次函数y=kx+b的图象经过点(1,3)和点(2,5),求k和b的值.【答案】k=2,b=1【解析】把已知点的坐标代入函数y=kx+b解析式,可以列出关于系数k、b的二元一次方程组,通过解该方程组可以求得它们的值.试题解析:设该一次函数解析式为y=kx+b(k≠0).由题意,得解得,即k和b的值分别是2和1.【考点】待定系数法求一次函数解析式4.(8分)已知正比例函数y=x和反比例函数的图象都经过点A(3,3).(1)直接写出反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求平移的距离.【答案】(1)y=;(2)4.5【解析】把A的坐标代入反比例函数的解析式求出即可;把B的坐标代入反比例函数的解析式求出B的坐标,设平移后的直线的解析式为y=x+b,把B的坐标代入求出即可.试题解析:(1)y=;(2)点B(6,m)在反比例函数的图象上,m=1.5,平移后的直线的解析式为y=x+b,y=x+b的图象过点B,把B的坐标代入得:1.5=6+b,解得:b=﹣4.5,∴平移的距离为4.5.【考点】反比例函数与一次函数的交点问题;一次函数图象与几何变换5.(12分)如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.(1)求正方形ABCD的周长;(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.①求证:BH⊥DG;②当AE=时,求线段BH的长(精确到0.1).【答案】(1)16;(2)见解析;(3)①见解析;②5.1【解析】根据正方形的周长定义求解;根据正方形的性质得AB=AD,AE=AG,在根据旋转的性质得∠BAE=∠DAG=θ,然后根据“SAS”判断△BAE≌△DAG,则BE=DG;①由BAE≌△DAG得到∠ABE=∠ADG,而∠AMB=∠DMH,根据三角形内角和定理即可得到∠DHM=∠BAM=90°,则BH⊥DG;②连结GE交AD于点N,连结DE,由于正方形AEFG绕点A逆时针旋转45°,AF与EG互相垂直平分,且AF在AD上,由AE=可得到AN=GN=1,所以DN=4﹣1=3,然后根据勾股定理可计算出DG=,则BE=,解着利用S=△DEG GE•ND=DG•HE可计算出HE=,所以BH=BE+HE=≈5.1.试题解析:(1)解:正方形ABCD 的周长=4×4=16;(2)证明:∵四边形ABCD ,AEFG 都是正方形, ∴AB=AD ,AE=AG , ∵将正方形AEFG 绕点A 逆时针旋转θ(0°<θ<90°),∴∠BAE=∠DAG=θ, 在△BAE 和△DAG ,, ∴△BAE ≌△DAG (SAS ), ∴BE=DG ;(3)①证明:∵△BAE ≌△DAG ,∴∠ABE=∠ADG ,又∵∠AMB=∠DMH ,∴∠DHM=∠BAM=90°,∴BH ⊥DG ;②解:连结GE 交AD 于点N ,连结DE ,如图,∵正方形AEFG 绕点A 逆时针旋转45°, ∴AF 与EG 互相垂直平分,且AF 在AD 上,∵AE=,∴AN=GN=1, ∴DN=4﹣1=3, 在Rt △DNG 中,DG==; ∴BE=, ∵S △DEG =GE•ND=DG•HE , ∴HE==,∴BH=BE+HE=+=≈5.1.【考点】四边形综合题6.(13分)已知:直线l 1与直线l 2平行,且它们之间的距离为2,A 、B 是直线l 1上的两个定点,C 、D 是直线l 2上的两个动点(点C 在点D 的左侧),AB=CD=5,连接AC 、BD 、BC ,将△ABC 沿BC 折叠得到△A 1BC .(1)求四边形ABDC 的面积.(2)当A 1与D 重合时,四边形ABDC 是什么特殊四边形,为什么? (3)当A 1与D 不重合时①连接A 1、D ,求证:A 1D ∥BC ;②若以A 1,B ,C ,D 为顶点的四边形为矩形,且矩形的边长分别为a ,b ,求(a+b )2的值. 【答案】(1)10;(2)菱形;(3)①见解析;②45或49.【解析】根据平行四边形的判定方法可得到四边形ABCD 为平行四边形,然后根据平行四边形的面积公式计算;根据折叠的性质得到AC=CD ,然后根据菱形的判定方法可判断四边形ABDC 是菱形;①连结A 1D ,根据折叠性质和平行四边形的性质得到CA 1=CA=BD ,AB=CD=A 1B ,∠1=∠CBA=∠2,可证明△A 1CD ≌△A 1BD ,则∠3=∠4,然后利用三角形内角和定理得到得到∠1=∠4,则根据平行线的判定得到A 1D ∥BC ;②讨论:当∠CBD=90°,则∠BCA=90°,由于S △A1CB =S △ABC =5,则S 矩形A1CBD =10,即ab=10,由BA 1=BA=5,根据勾股定理得到a 2+b 2=25,然后根据完全平方公式进行计算;当∠BCD=90°,则∠CBA=90°,易得BC=2,而CD=5,从而得出答案. 试题解析:(1)∵AB=CD=5,AB ∥CD ,∴四边形ABCD 为平行四边形,∴四边形ABDC 的面积=2×5=10; (2)∵四边形ABDC 是平行四边形,∵A 1与D 重合时,∴AC=CD ,∵四边形ABDC 是平行四边形, ∴四边形ABDC 是菱形;(3)①连结A 1D ,如图,∵△ABC 沿BC 折叠得到△A 1BC ,∴CA 1=CA=BD ,AB=CD=A 1B , 在△A 1CD 和△A 1BD 中∴△A 1CD ≌△A 1BD (SSS ),∴∠3=∠4,又∵∠1=∠CBA=∠2,∴∠1+∠2=∠3+∠4, ∴∠1=∠4, ∴A 1D ∥BC ;②当∠CBD=90°,∵四边形ABDC 是平行四边形,∴∠BCA=90°,∴S △A1CB =S △ABC =×2×5=5, ∴S 矩形A1CBD =10,即ab=10,而BA 1=BA=5,∴a 2+b 2=25,∴(a+b )2=a 2+b 2+2ab=45; 当∠BCD=90°时,∵四边形ABDC 是平行四边形,∴∠CBA=90°,∴BC=2,而CD=5,∴(a+b )2=(2+5)2=49,∴(a+b)2的值为45或49.【考点】四边形综合题四、计算题(8分)如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.【答案】见解析【解析】由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.试题解析:证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).【考点】全等三角形的判定.。

初二数学上册期末考试试题及答案6

初二数学上册期末考试试题及答案6

D CAB8 888yy y y 数学部分一、选择题(每小题有且只有一个答案正确,每小题5分,共50分) 1、如图,两直线a ∥b ,与∠1相等的角的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个 2、以下那组是直角三角形的三条边( )A 、4,5,6B 、7,8,9C 、6,,8,10D 、7,12,13 3、如果a>b ,那么下列各式中正确的是( ) A 、a 3<b 3-- B 、a b<33C 、a>b --D 、2a<2b -- 4、如图所示,由∠D=∠C,∠BAD=∠ABC 推得△ABD ≌△BAC ,所用的的判定定理的简称是( ) A 、AAS B 、ASA C 、SAS D 、SSS 5、△ABC 的三边为a 、b 、c ,且2(a+b)(a-b)=c ,则( ) A 、△ABC 是锐角三角形; B 、c 边的对角是直角; C 、△ABC 是钝角三角形; D 、a 边的对角是直角; 6、9的算术平方根是( )A .3±B .3C .3-D .3 7、下列图形中不是..中心对称图形的是( )A .B .C .D .8、如图,AOC ∆≌BOD ∆,∠C 与∠D 是对应角,AC 与BD 是对应边,AC=8㎝, AD=10㎝,OD=OC=2㎝,那么OB 的长是( ) A .8㎝ B .10㎝ C .2㎝ D .无法确定9.矩形具有而一般平行四边形不一定具有的性质是( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等10、为鼓励居民节约用水,北京市出台了新的居民用水收费标准:(1)若每月每户居民用水不超过4立方米,则按每立方米2米计算;(2)若每月每户居民用水超过4立方米,则超过部分按每立方米4.5米计算(不超过部分仍按每立方米2元计算)。

现假设该市某户居民某月用水x 立方米,水费为y 元,则y 与x 的函数关系用图象表示正确的是( )1abOD B AC 第8题A B C D E F AB OC D 二、填空题(每小题5分,共30分)11、不等式2x-1>3的解集是_________________;12、已知点A 在第四象限,且到x 轴,y 轴的距离分别为3,5,则A 点的坐标为________;13、一个正方体木块的体积是64㎝3,则它的棱长是 ㎝。

初二上册数学期末考试题及答案

初二上册数学期末考试题及答案

初二上册数学期末考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. √2B. 2√3C. √8D. √(-1)2. 一个数的平方根是它本身的数是?A. 0B. 1C. -1D. 23. 以下哪个选项是正比例函数?A. y = 2x + 3B. y = 3xC. y = x^2D. y = 1/x4. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是多少?A. 16B. 21C. 26D. 315. 一个数的立方根是它本身的数是?B. 1C. -1D. 86. 一个数的倒数是它本身的数是?A. 1B. -1C. 0D. 27. 一个直角三角形的两个直角边分别是3和4,那么这个三角形的斜边长是多少?A. 5B. 6C. 7D. 88. 以下哪个选项是反比例函数?A. y = 2xB. y = 1/xC. y = x^2D. y = x + 19. 一个数的平方是它本身的数是?A. 0B. 1C. -1D. 210. 一个等边三角形的边长为5,那么这个三角形的周长是多少?B. 15C. 20D. 25二、填空题(每题3分,共30分)1. 一个数的平方根是它本身的数有______和______。

2. 一个数的立方根是它本身的数有______、______和______。

3. 一个数的倒数是它本身的数有______和______。

4. 一个等腰三角形的底边长为8,腰长为5,那么这个三角形的周长是______。

5. 一个直角三角形的两个直角边分别是5和12,那么这个三角形的斜边长是______。

6. 一个数的平方是它本身的数有______和______。

7. 一个等边三角形的边长为6,那么这个三角形的周长是______。

8. 一个数的立方是它本身的数有______、______和______。

9. 一个直角三角形的两个直角边分别是6和8,那么这个三角形的斜边长是______。

广东深圳实验学校2023-2024学年八年级上学期期末数学试题(原卷版+解析)

广东深圳实验学校2023-2024学年八年级上学期期末数学试题(原卷版+解析)

深圳实验学校2023-2024第一学期期末考试初二年级数学试卷考试时间:90分钟 试卷满分:100分一.选择题(每题3分,共30分)1. 下列几个数中,属于无理数的数是( ) A. 0.4583B.37C. 3.97D.π−2. 下列二次根式中,最简二次根式是( )A.B.C.D.3. 如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(cm ) 185 180 185180 方差 3.63.67.481根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A. 甲B. 乙C. 丙D. 丁4. 下列命题中,假命题的是( ) A. 面积相等的两个三角形全等 B. 等腰三角形的顶角平分线垂直于底边C. 在同一平面内,垂直于同一条直线的两条直线平行D. 三角形的一个外角大于任何一个与它不相邻的内角5. 如图,用10块形状、大小完全相同的小长方形墙砖拼成一个大长方形,设每个小长方形墙砖的长和宽分别为cm x 和cm y ,则依题意可列方程组为( ).A. 22253x y y x +==B. 2253x y x y +==C. 2253x y x y +==D. 2253x y y x +==6. 如图,台风过境后,一根垂直于地面的大树在离地面6m 处撕裂折断,大树顶部落在离大树底部8m 处,则大树折断之前的高度是( ).A 10mB. 14mC. 16mD. 18m7. 对于一次函数132y x =−+,下列结论正确的是( ) A. 函数图象不经过第四象限B. 函数图象与x 轴的交点坐标是()0,3C. 函数的图象向下平移3个单位长度得12y x =−的图象 D. 若1(A x ,1)y ,2(B x ,2)y 两点在该函数图象上,且12x x <,则12y y < 8. 若关于x 的不等式组21521x x a −≥ <−的整数解共有四个,则a 的取值范围是( )A. 3.54a <≤B. 3.54a ≤<C. 3.54a <<D. 3.54a ≤≤9. 如图,P 为ABC 内一点,过点P 线段MN 分别交AB 、BC 于点M 、N ,且M 、N 分别在PA 、PC 的中垂线上.若80ABC ∠=°,则APC ∠的度数为( )A. 120°B. 125°C. 130°D. 135°10. 如图,在ABC 中,90ACB ∠=°,30CAB ∠=°,=AC D 为AB 上一动点(不与点A 重合),AED △为等边三角形,过D 点作DE 的垂线,F 为垂线上任意一点,G 为EF 的中点,则线段BG 长的最小值是( ).的的的A. B. 6C. D. 9二.填空题(每题3分,共15分)11. 比较大小:3(填“>”“<”或“=”)12. 已知()115P a −,和()221P b −,关于x 轴对称,则()2022a b +的值为______.13. 如图,直线1l :1y x =+与直线2l :y kx b =+相交于点()1,P m ,则关于x ,y 的方程组1y x y kx b =+ =+的解为______.14. 如图,在ABC 中,ED BC ∥,ABC ∠和ACB ∠的平分线分别交ED 于点G 、F ,若4FG =,8ED =,求EB DC +=______.15. 如图所示,点A 、B 分别是坐标轴上的点,且OA OB =,AC x ⊥轴,点D 在x 轴负半轴上,AC OD =,连接OC 、BD 相交于点E ,若四边形ACED 的面积为56,OE 长为1,则点A 的坐标为_______.三.解答题(共7大题,共55分)16. 计算: (1− (2)(25×−17. 解方程组和不等式组,并把不等式组的解集在数轴上表示出来: (1)321022x y x y −=+=(2)解不等式组()2142115x x x −≤−<+18. 如图,已知ABC 的顶点分别为()2,2A −,()4,5B −,()5,1C −.(1)作出ABC 关于x 轴对称的图形111A B C △.(2)点P 在x 轴上运动,当AP CP +的值最小时,直接写出点P 的坐标. (3)求ABC 的面积.19. 某校为了解八年级学生参加社会实践活动情况,随机调查了本校部分八年级学生在第一学期参加社会实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(1)本次接受随机抽样调查的学生人数为________,图①中的m 的值为_________; (2)求本次抽样调查获取的样本数据的中位数;(3)若该校八年级学生有480人,估计参加社会实践活动时间大于7天的学生人数.20. 某公司决定为优秀员工购买A ,B 两种奖品,已知购买3个A 种奖品比购买2个B 种奖品多花140元,购买4个A 种奖品与购买5个B 种奖品所需钱数相同. (1)求A ,B 两种奖品每个的价格;(2)商家推出了促销活动,A 种奖品打九折.若该公司打算购买A ,B 两种奖品共30个,且B 种奖品的个数不多于A 种奖品个数的一半,则该公司最少花费多少钱?21. 如图是盼盼家新装修的房子,其中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA ,如果梯子的底端P 不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB .(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B 处,若 1.6MA =米, 1.2AP =米,则甲房间的宽度AB =______米.(2)当他在乙房间时,测得 2.4MA =米, 2.5MP =米,且90MPN ∠=°,求乙房间的宽AB ; (3)当他在丙房间时,测得 2.8MA =米,且75MPA ∠=°,45NPB ∠=°.求丙房间的宽AB . 22. 如图1,已知函数132yx =+与x 轴交于点A ,与y 轴交于点B ,点C 与点A 关于y 轴对称. (1)求直线BC 的函数解析式;(2)设点M 是x 轴上的一个动点,过点M 作y 轴的平行线,交直线AB 于点P ,交直线BC 于点Q .①若PQB ∆的面积为72,求点Q 的坐标; ②点M 在线段AC 上,连接BM ,如图2,若BMP BAC ∠=∠,直接写出P 的坐标.深圳实验学校2023-2024第一学期期末考试初二年级数学试卷考试时间:90分钟试卷满分:100分一.选择题(每题3分,共30分)1. 下列几个数中,属于无理数的数是()A. 0.4583B. 37C. 3.97D. π−【答案】D【解析】【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选项.【详解】解:A.0.4583是有限小数,属于有理数,故本选项不合题意;B.37是分数,属于有理数,故本选项不合题意;C.3.97 是循环小数,属于有理数,故本选项不合题意;D. π−是无理数,故本选项符合题意,故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002(…相邻两个2中间依次多1个0),等有这样规律的数.2. 下列二次根式中,最简二次根式是()A. B. C. D.【答案】A【解析】【分析】根据最简二次根式的两个条件逐项判定即可.【详解】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选:A.【点睛】本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3. 如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180 方差 3.6 3.6 7.4 8.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A. 甲B. 乙C. 丙D. 丁【答案】A【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵x甲=x丙>x乙=x丁,∴从甲和丙中选择一人参加比赛,∵2S甲=2S乙<2S丙<2S丁,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.4. 下列命题中,假命题的是()A. 面积相等的两个三角形全等B. 等腰三角形的顶角平分线垂直于底边C. 在同一平面内,垂直于同一条直线的两条直线平行D. 三角形的一个外角大于任何一个与它不相邻的内角【答案】A【解析】【分析】分别根据全等三角形判定,等腰三角形的定义,平行线的判定,三角形外角的定义判断即可.【详解】A.面积相等的两个三角形不一定全等,故原选项错误;B.等腰三角形的顶角平分线垂直于底边,故原选项正确;的C .在同一平面内,垂直于同一条直线的两条直线平行,故原选项正确;D .三角形的一个外角大于任何一个与它不相邻的内角,故原选项正确; 故选A .【点睛】本题考查了全等三角形的判定,等腰三角形的定义,平行线的判定,三角形外角的定义,熟练掌握各知识点是解题的关键.5. 如图,用10块形状、大小完全相同小长方形墙砖拼成一个大长方形,设每个小长方形墙砖的长和宽分别为cm x 和cm y ,则依题意可列方程组为( )A. 22253x y y x +==B. 2253x y x y +==C. 2253x y x y +==D. 2253x y y x +==【答案】B 【解析】【分析】本题主要考查了由实际问题抽象出二元一次方程组,解题的关键是看懂图示,分别表示出长方形的长和宽.根据图示可得:长方形的左右的边可以表示为2x y +或25,故225x y +=,长方形的上下边可以表示为2x ,或3x y +,故23x y x =+,整理得3x y =,联立两个方程即可. 【详解】解:根据图示可得:2253x y x y+==故选:B .6. 如图,台风过境后,一根垂直于地面的大树在离地面6m 处撕裂折断,大树顶部落在离大树底部8m 处,则大树折断之前的高度是( ).A. 10mB. 14mC. 16mD. 18m【答案】C 【解析】的【分析】大树未折断部分,折断部分,和地面正好构成直角三角形,应用勾股定理求出线段AC 的长度,再加上未折断的AB 即可求出树的高度.【详解】解:如图:树的总高度为:+AB AC ,在Rt ABC ∆中,根据勾股定理得:222AB BC AC +=,∴22268AC +=,∴10AC =,∴61016AB AC +=+=.故选:C .【点睛】本题考查勾股定理的应用,解题的关键是求出折断部分的长度,注意一定要加上未折断部分的长度,这是易错点.7. 对于一次函数132y x =−+,下列结论正确的是( ) A. 函数的图象不经过第四象限B. 函数的图象与x 轴的交点坐标是()0,3C. 函数的图象向下平移3个单位长度得12y x =−的图象 D. 若1(A x ,1)y ,2(B x ,2)y 两点在该函数图象上,且12x x <,则12y y < 【答案】C 【解析】【分析】根据一次函数的性质,一次函数图象上点的坐标特征,平移的规律来判断即可.【详解】解:A 、由132y x =−+可知102k =−<,30=>b , ∴直线过一,二,四象限,故不合题意;B 、当0x =时,1332y x =−+=, ∴函数的图象与y 轴的交点坐标是(0,3),故不合题意;C 、直线132y x =−+向下平移3个单位长度得113322y x x =−+−=−,故符合题意; D 、102k =−< , y ∴随x 的增大而减小,∴若12x x <,则12y y >,故不合题意.故选:C .【点睛】本题考查的是一次函数的图象与性质,解题的关键是根据k 、b 的符号判断直线过第几象限,会求直线与坐标轴的交点.8. 若关于x 的不等式组21521x x a −≥ <−的整数解共有四个,则a 的取值范围是( ) A. 3.54a <≤B. 3.54a ≤<C. 3.54a <<D. 3.54a ≤≤ 【答案】A【解析】【分析】先求出不等式组的解集321x a ≤<−,再由不等式组的整数解共有四个,可得6217a <−≤,即可求解.熟练掌握一元一次不等式组的解法是解题的关键.【详解】解:21521x x a −≥ <− ①②,解不等式①得:3x ≥,∴不等式组的解集为321x a ≤<−,∵不等式组的整数解共有四个,∴6217a <−≤,解得:3.54a <≤.故选:A9. 如图,P 为ABC 内一点,过点P 的线段MN 分别交AB 、BC 于点M 、N ,且M 、N 分别在PA 、PC的中垂线上.若80ABC ∠=°,则APC ∠的度数为( )A. 120°B. 125°C. 130°D. 135°【答案】C【解析】 【分析】根据线段的垂直平分线的性质得到,MA MP NP NC ==,根据等腰三角形的性质、三角形内角和定理计算,得到答案.【详解】解:∵80ABC ∠=°, ∴100BMN BNM ∠∠=°+,∵M 、N 分别在PA 、PC 的中垂线上,∴,MA MPNP NC ==, ∴12MPA MAP BMN ∠=∠=∠,12NPC NCP BNM ∠=∠=∠, ∴1100502MPA NPC ∠+∠°=×=°, ∴18050130APC ∠=−=°°°,故选C . 【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10. 如图,在ABC 中,90ACB ∠=°,30CAB ∠=°,=AC D 为AB 上一动点(不与点A 重合),AED △为等边三角形,过D 点作DE 的垂线,F 为垂线上任意一点,G 为EF 的中点,则线段BG 长的最小值是( )A. B. 6C. D. 9【答案】B【解析】 【分析】连接DG ,AG ,设AG 交DE 于点H ,先判定AG 为线段DE 的垂直平分线,再判定()BAC BAG AAS ′≅ ,然后由全等三角形的性质可得答案.【详解】:如图,连接DG ,AG ,设AG 交DE 于点H ,DE DF ⊥ ,G 为EF 的中点,DG GE ∴=,∴点G 在线段DE 的垂直平分线上,AED 为等边三角形,AD AE ∴=,∴点A 在线段DEAG ∴为线段DE 的垂直平分线,AG DE ∴⊥,1302DAG DAE ∠=∠=°, ∴点G 在射线AH 上,当BG AH ⊥时,BG 的值最小,如图所示,设点G ′为垂足,90ACB ∠=° ,30CAB ∠=°,ACB AG B ′∴∠=∠,CAB BAG ′∠=∠,则在BAC 和BAG ′△中,ACB AG B CAB BAG AB AB ∠=∠ ∠=∠=′ ′, ()BAC BAG AAS ′∴≅ .BG BC ′∴=,∵90ACB ∠=°,30CAB ∠=°,=AC ,∴12BC AB =,222BC AB +=,∴222(2)BC BC +=,解得:6BC =,∴6BGBC ′== 故选:B .【点睛】本题考查了全等三角形的判定与性质、线段垂直平分线的判定与性质,数形结合并明确相关性质及定理是解题的关键.二.填空题(每题3分,共15分)11. 比较大小:3(填“>”“<”或“=”)【答案】<【解析】【分析】此题主要考查了实数的大小比较,将3,然后比较被开方数即可比较大小.【详解】解:3=<故答案为:<. 12. 已知()115P a −,和()221P b −,关于x 轴对称,则()2022a b +的值为______.【答案】1【解析】 【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,求得,a b 的值,进而代入代数式即可求解.【详解】解:∵()115P a −,和()221P b −,关于x 轴对称, ∴12,510a b −=+−=, 解得3,4a b ==−,∴()2022a b +()2022341=−=,故答案为:1.【点睛】本题考查了关于x 轴对称的两个点的坐标特征,掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.13. 如图,直线1l :1y x =+与直线2l :y kx b =+相交于点()1,P m ,则关于x ,y 的方程组1y x y kx b =+ =+的解为______.【答案】12x y == 【解析】 【分析】本题考查了二元一次方程组与一次函数的关系,首先利用待定系数法求出b 的值,进而得到P 点坐标即可,解题的关键是掌握两函数图象的交点就是两函数组成的二元一次方程组的解.【详解】解:∵直线1y x =+经过点()1,P m ,∴11m =+,解得2m =,∴()1,2P ,∴关于x 的方程组1y x y kx b =+ =+ 的解为12x y = = , 故答案为:12x y = =. 14. 如图,在ABC 中,ED BC ∥,ABC ∠和ACB ∠的平分线分别交ED 于点G 、F ,若4FG =,8ED =,求EB DC +=______.【答案】12【解析】【分析】根据角平分线和平行线的性质可得EBG EGB ∠=∠,DFC DCF ∠=∠,根据等腰三角形的性质可得EG BE =,DF DC =,即可求解.【详解】解:由题意可得:BG 平分ABC ∠,CF 平分ACB ∠∴ABG CBG ∠=∠,DCF BCF ∠=∠又∵ED BC ∥∴EGB CBG ∠=∠,DFC BCF ∠=∠ ∴EBG EGB ∠=∠,DFC DCF ∠=∠ ∴EG BE =,DF DC =∴12EB DC EG DF ED FG +=+=+=故答案为:12【点睛】此题考查了等腰三角形的性质,平行线的性质,解题的关键是熟练掌握相关基本性质. 15. 如图所示,点A 、B 分别是坐标轴上的点,且OA OB =,AC x ⊥轴,点D 在x 轴负半轴上,AC OD =,连接OC 、BD 相交于点E ,若四边形ACED 的面积为56,OE 长为1,则点A 的坐标为_______.【答案】【解析】【分析】首先根据全等三角形的判定定理SAS ,即可证得OAC BOD △≌△,可得C ODB ∠=∠,OA BO =,OAC BOD S S =△△,可证得56BOE ACED S S ==△四边形,再根据直角三角形的性质可证得90DEO BEO ∠=∠=°,根据三角形的面积公式,即可求得53BE =,最后根据勾股定理可求得OB ,据此即可解答.【详解】解:AC x ⊥ ,90OAC BOD ∴∠=∠=°在OAC 与BOD 中,OA OB OAC BOD AC OD = ∠=∠ =()SAS OAC BOD ∴△≌△,C ODB ∴∠=∠,OA BO =,OAC BOD S S =△△,OAC ODE BOD ODE S S S S ∴−=−△△△△,56BOE ACED S S ∴==△四边形, 90AOC C ∠+∠=° ,90ODB AOC ∴∠+∠=°,90DEO BEO ∴∠=∠=°,1151226BOE S OE BE BE ∴=⋅=××=△, 53BE ∴=,BO ∴===OA ∴ ∴点A的坐标为,故答案为:.【点睛】本题考查了全等三角形的判定及性质,直角三角形的性质,勾股定理,证得90BEO ∠=°是解决本题的关键.三.解答题(共7大题,共55分)16. 计算:(1− (2)(25×− 【答案】(1)(2)1【解析】【分析】(1)本题考查的是实数的运算,先根据实数的乘除法则进行计算,再进行实数的加减即可;各种运算律的灵活应用是解决此题的关键;(2)先利用完全平方公式计算,然利用平方差计算即可.小问1详解】−=−=【小问2详解】(25×−(225++×−((55=+×−(225=−2524=−1=.17. 解方程组和不等式组,并把不等式组的解集在数轴上表示出来:(1)321022x yx y−=+=(2)解不等式组()2142115xxx−≤−<+【【答案】(1)22x y = =−(2)23x −<≤【解析】【分析】本题主要考查二元一次方程组及一元一次不等式组的解法,熟练掌握二元一次方程组及一元一次不等式组的解法是解题的关键;(1)根据加减消元可进行求解方程组;(2)根据一元一次不等式组的解法可进行求解.【小问1详解】解:321022x y x y −= +=①②, 2×②得:424x y +=③, ①+③得:714x =,解得:2x =,把2x =代入②得:42y +=, 解得:=2y −,∴原方程组的解为:22x y = =−; 【小问2详解】解:()2142115x x x −≤ −<+①② 解不等式①,得,3x ≤解不等式②,得2x >−把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为23x −<≤.18. 如图,已知ABC 的顶点分别为()2,2A −,()4,5B −,()5,1C −.(1)作出ABC 关于x 轴对称的图形111A B C △.(2)点P 在x 轴上运动,当AP CP +的值最小时,直接写出点P 的坐标. (3)求ABC 的面积.【答案】(1)见解析 (2)()4,0P −(3) 5.5ABC S =【解析】【分析】(1)根据题意,先画出点A 、B 、C 关于x 轴的对称点,再一次连接即可; (2)连接1CA ,与x 轴相交于点P ,点P 即为所求,再用待定系数法求解直线1CA 的函数表达式,最后即可求出点P 的坐标;(3)用割补法即可求解.【小问1详解】解:如图,111A B C △即为所求.【小问2详解】根据轴对称的性质及两点之间线段最短可知连接1CA ,与x 轴相交于点P ,点P 即为所求;设直线1CA 的函数解析式为:()0y kx b k =+≠, 把()5,1C −,()12,2A −−代入得:1522k b k b =−+ −=−+,解得: 14k b =− =− , ∴直线1CA 的函数解析式为:4y x =−−, 把0y =代入得:04x =−−,解得:4x =−,∴()4,0P −.【小问3详解】11134132314 5.5222ABC S =×−××−××−××= . 【点睛】本题主要考查作图—轴对称变换,解题的关键是掌握轴对称变换的定义与性质.19. 某校为了解八年级学生参加社会实践活动情况,随机调查了本校部分八年级学生在第一学期参加社会实践活动天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(1)本次接受随机抽样调查的学生人数为________,图①中的m 的值为_________;(2)求本次抽样调查获取的样本数据的中位数;(3)若该校八年级学生有480人,估计参加社会实践活动时间大于7天的学生人数.【答案】(1)40,20(2)6 (3)96人【解析】【分析】(1)根据5天的人数和所占的百分比求出抽样调查总人数,用6天的人数除以总人数即可求出m 的值;(2)根据中位数计算公式进行解答即可;(3)用八年级的人数乘以参加社会实践活动时间大于7天的学生人数所占的百分比即可.的【小问1详解】解:本次接受随机抽样调查学生人数为:14÷35%=40(人),m %=840×100%=20%,则m =20; 故答案为:40,20;【小问2详解】解:∵ 本次抽样调查了40个学生,∴ 中位数是第20、21个数的平均数,∴ 中位数是(6+6)÷2=6 ,【小问3详解】解:根据题意得:480×(10%+10%)=96(人).答:参加社会实践活动时间大于7天的学生人数约是96人.【点睛】本题考查了条形统计图的综合运用,用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20. 某公司决定为优秀员工购买A ,B 两种奖品,已知购买3个A 种奖品比购买2个B 种奖品多花140元,购买4个A 种奖品与购买5个B 种奖品所需钱数相同.(1)求A ,B 两种奖品每个的价格;(2)商家推出了促销活动,A .若该公司打算购买A ,B 两种奖品共30个,且B 种奖品的个数不多于A 种奖品个数的一半,则该公司最少花费多少钱?【答案】(1)每个A 种奖品的价格为100元,每个B 种奖品的价格为80元(2)2600元【解析】【分析】(1)设每个A 种奖品的价格为x 元,每个B 种奖品价格为y 元,根据购买3个A 种奖品比购买2个B 种奖品多花140元,购买4个A 种奖品与购买5个B 种奖品所需钱数相同列出方程组求解即可;(2)设购买A 种奖品a 个,则购买B 种奖品()30a −个,根据B 种奖品的个数不多于A 种奖品个数的一半,列出不等式求出a 的范围,设购买奖品的总花费为w 元,根据题意列出w 关于a 的一次函数,利用一次函数的性质求解即可.【小问1详解】解:设每个A 种奖品的价格为x 元,每个B 种奖品价格为y 元,的根据题意,得:3214045x y x y −= =, 解得:10080x y = =, 答:每个A 种奖品的价格为100元,每个B 种奖品的价格为80元;【小问2详解】解:设购买A 种奖品a 个,则购买B 种奖品()30a −个, 根据题意,得:1302a a −≤, 解得:20a ≥.设购买奖品的总花费为w 元,根据题意,得:()1000.98030102400w a a a ×+−+, 100> ,w ∴随着a 的增大而增大.∴当20a =时,w 取得最小值,102024002600min w =×+=.答:该公司最少花费2600元.【点睛】本题主要考查了一次函数的实际应用,二元一次方程组的实际应用,一元一次不等式的实际应21. 如图是盼盼家新装修的房子,其中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA ,如果梯子的底端P 不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB .(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B 处,若 1.6MA =米, 1.2AP =米,则甲房间的宽度AB =______米.(2)当他在乙房间时,测得 2.4MA =米, 2.5MP =米,且90MPN ∠=°,求乙房间的宽AB ; (3)当他在丙房间时,测得 2.8MA =米,且75MPA ∠=°,45NPB ∠=°.求丙房间的宽AB .【答案】(1)3.2;(2)3.1;(3)丙房间的宽AB 是2.8米.【解析】【分析】此题考查了勾股定理的应用,全等三角形的应用,解直角三角形的应用,根据PM PN =以及MPN ∠的度数得到PMN 为等边三角形是解题的关键.(1)根据勾股定理即可得到结论;(2)证明AMP BPN ≌ ,从而得到 2.4MA PB ==米,0.7PA NB ==米, 即可求出AB PA PB =+;(3) 根据PM PN =以及MPN ∠的度数得到PMN 为等边三角形利用相应的三角函数表示出MN ,MP 的长,可得到房间宽AB 和AM 长相等.【小问1详解】解:在Rt AMP 中,∵90A ∠=°, 1.6MA =米, 1.2AP =米,∴2PM ,∵2PB PM ==,∴甲房间的宽度 3.2AB AP PB =+=米,【小问2详解】解:∵90MPN ∠=°,∴90APM BPN ∠+∠=°,∵90APM AMP ∠+∠=°,∴AMP BPN ∠=∠,在 AMP 与BPN △中,90AMP BPN MAP PBN MP PN ∠=∠ ∠=∠=° =, ∴AMP BPN ≌ ,∴ 2.4MA PB ==,∴0.7PA ,∴.01.43.72AB PA PB =+=+=米.【小问3详解】解:过N 点作MA 垂线,垂足点D ,连接NM ,设AB x =,且AB ND x ==.∵梯子的倾斜角BPN ∠为45°,∴BNP △为等腰直角三角形,PNM △为等边三角形()180457560°−°−°=°,梯子长度相同,15MND ∠=°,∵75APM ∠=°,∴15AMP ∠=°,∴DNM AMP ∠=∠,∵PNM △为等边三角形,∴NM PM =,∴()AAS AMP DNM ≌,∴AM DN =,∴ 2.8AB DN AM ===AB 是2.8米.22. 如图1,已知函数132y x =+与x 轴交于点A ,与y 轴交于点B ,点C 与点A 关于y 轴对称. (1)求直线BC 的函数解析式;(2)设点M 是x 轴上的一个动点,过点M 作y 轴的平行线,交直线AB 于点P ,交直线BC 于点Q . ①若PQB ∆的面积为72,求点Q 的坐标; ②点M 在线段AC 上,连接BM ,如图2,若BMP BAC ∠=∠,直接写出P 的坐标.【答案】(1)直线BC 的函数解析式为132y x =−+;(2)①Q的坐标为3−或(,3+;②P 的坐标为3(2−,9)4或3(2,15)4 【解析】【分析】(1)先确定出点B 坐标和点A 坐标,进而求出点C 坐标,最后用待定系数法求出直线BC 解析式;(2)①先表示出PQ ,最后用三角形面积公式即可得出结论;②分点M 在y 轴左侧和右侧,由对称得出BAC ACB ∠=∠,90BMP BMC ∠+∠=°,所以,当90MBC ∠=°即可,利用勾股定理建立方程即可22945(6)x x ++=−,即可求解.【详解】解:(1)对于132y x =+, 由0x =得:3y =,∴B (0,3).由0y =得:1302x +=,解得6x =−, ∴A (-6,0),∵ 点C 与点A 关于y 轴对称.∴C (6,0),设直线BC 的函数解析式为y kx =+, ∴360b k b = += ,解得123k b =− = , ∴直线BC 的函数解析式为132y x =−+;(2)①设点(,0)M m ,则点1(3)2P m m +,,点1(3)2Q m m , , 过点B 作BD PQ ⊥与点D ,则113(3)22PQ m m m =−+−+=,||BD m =, 则PQB ∆的面积2117·222PQ BD m ==,解得m =,故点Q 的坐标为,3−或(,3; ②如图2,当点M 在y 轴的左侧时,点C 与点A 关于y 轴对称,AB BC ∴=,BAC BCA ∴∠=∠,BMP BAC ∠=∠ ,BMP BCA ∴∠=∠,90BMP BMC ∠+∠=° ,90BMC BCA ∴∠+∠=°,180()90MBC BMC BCA ∴∠=°−∠+∠=°, 222BM BC MC ∴+=,设(0)M x ,,则1(3)2P x x +,, 222223BM OM OB x =∴=++,MC 2=(6-x)2,222226345BC OC OB =+=+=, 22945(6)x x ∴++=−,解得32x =−, 3(2P ∴−,9)4, 当点M 在y 轴的右侧时, 同理可得3(2P ,15)4,综上,点P的坐标为3(2−,9)4或3(2,15)4.【点睛】本题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,直角三角形的判定,勾股定理,坐标轴上点的特点,分类讨论是解本题的关键.。

2021~2022学年度八年级第二学期期末数学考试试题【含答案】

2021~2022学年度八年级第二学期期末数学考试试题【含答案】

第6题图2021~2022学年度八年级第二学期期末数学考试试题请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.一、选择题(每小题3分,共18分) 1.化简2)4(-的结果是( ) A. -4 B. 4C. 4±D. 162.如果把分式yx y x ++22中x 、y 的值都扩大为原来的2倍,则分式的值( )A.扩大为原来的4 倍B. 扩大为原来的2倍C.不变D.缩小为原来的21 3.对于反比例函数y =﹣2x ,下列说法不正确的是()A .图象分布在第二、四象限B .y 随x 的增大而增大C .图象经过点(1,﹣2)D .若x >1,则﹣2<y <04.矩形不一定具有.....的性质是( ) A .对角线相等 B .四个角相等 C .对角线互相垂直 D .对角线互相平分 5. 下列说法中,正确的是( )A.对载人航天器零部件的检查适合采用抽样调查的方式.B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨.C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的.D.掷一枚骰子,点数为3的面朝上是确定事件. 6.如图,正方形ABCD 的顶点A 、B 在x 轴上,顶点D 在反比例函数xky =(0>k )的图像上,CA 的延长线交y 轴于点E ,连接BE .若2=ABE S △,则k 的值为( )A.1B. 2C.3D. 4 二、填空题(每小题3分,共30分)第16题图第15题图 第11题图第13题图 CDBAO HDCBABC MPNA7.当x 时,代数式2+x 有意义.8.若关于x 的方程4124--=+-x xx m 有增根,则增根为 . 9.已知反比例函数y=xk 1-,当x >0时,y 随x 的增大而增大,则k 的取值范围是 .10.已知关于x 的分式方程122x mx x -=--的解是非负数,则m 的取值范围是________.11.如图,在□ABCD 中,E 是边BC 上一点,且AB =BE ,AE 、DC 的延长线相交于点F , ∠F =62°,则∠D = °.12.已知m 是3的小数部分,则=++222m m .13.如图,在△A BC 中,已知BC =12,AC =14,点M 、N 、P 分别是AB 、BC 、AC 的中点,则四边形MNCP 的周长为 . 14.函数x y 1=与23-=x y 图象的交点坐标为()b a , ,则ab 311-的值为 . 15.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,DH ⊥AB 于点H ,连接OH ,若AH =DH ,则∠DHO= .16.如图,矩形纸片ABCD 中,AB =8,BC =12,将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值为 .三、解答题(本大题共102分)17.(本题满分10分)计算:(1)02-3624831)()(---+- (2))54)(54(152-+--)(18.(本题满分10分)解方程:(1)23193xx x +=-- (2)47278=-+--xx x19.(本题满分8分)先化简,再求值:234962222+-÷-+-+-a a a a a a ,其中23+=a .20.(本题满分8 (1)分别求出x 、y 的值;21.(本题满分10分)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了一部分学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:根据以上提供的信息,解答下列问题: (1)补全条形统计图. (2)a = ,n = ;(3)若该校共有学生1500名,根据抽样调查结果,估计该校最喜爱《朗读者》节目的学生有多少名?22.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,BE ∥AC ,CE ∥DB . (1)求证:四边形OBEC 是菱形;(2)若AD =4,AB =2,求菱形OBEC 的面积.23.(本题满分10分)如图,已知△ABC 的三个顶点坐标为A (﹣3,4)、B (﹣7,1)、学生最喜爱的节目人数扇形统计图学生最喜爱的节目人数条形统计图C (﹣2,1).(1)请画出△ABC 关于坐标原点O 的中心对称图形△A ′B ′C ′,并写出点A 的对应点A ′的坐标 ;(2)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标 .24.(本题满分10分)某风景区的旅游信息如下表:某公司组织一批员工到该风景区旅游,支付旅行费用29250元. (1)请求出参加这次旅游的人数;(2)若该公司又组织第二批员工50人到该风景区旅游并支付了这批员工的费用.如果这两批员工合并成一批去旅游,则该公司可节约旅游费用多少元?25.(本题满分12分)如图,点A 、B 为反比例函数图1 图2 图3)00(>,>x k xky =图像上的两个动点,其横坐标分别为3+a a 、,过点A 、B 分别作x 轴的垂线交x 轴于点C 、D ,过点B 作y 轴的垂线BE ,垂足为E ,BE 交AC 于点F ,矩形OEBD 的面积为4. (1)求k 的值;(2)若4=ABE S △,求a 的值;(3)若1>a ,试比较AF 、BF 的大小,并说明理由.26.(本题满分14分)已知在正方形ABCD 中,E 为BC 边上一点,F 为CD 边上一点. (1)若AE =BF .①如图1,AE 与BF 有怎样的位置关系?请说明理由.②如图2,连接AF 、EF ,如果 AB =6,那么△AEF 的面积有可能等于8吗?若有可能,请求出此时BE 的长;若不可能,请说明理由.(2)如图3,G 为AB 边上一点,满足FG ⊥AE ,垂足为H ,延长CD 至点M ,使DM =BE ,连接AM .①求证:四边形AMFG 是平行四边形.②当AG =4,DF =2,∠EAB =15°时,请直接写出正方形ABCD 的边长.答案一、选择题:(每题3分,共18分)1.B2.B3.D2.B3.D3.D4.C5.C4.C5.C6.D5.C6.D 6.D 二、填空题:(每题3分,共30分)7.2-≥x8. 4=x9. 1<k 10. 91011.56 12.4 13.26 14.3215.22.5° 16.10 三、解答题:(本大题共102分)17.(每题5分,共10分)(1) 8 (2)525-- 18.(每题5分,共10分)(1)3,2121=-=x x (2)6=x 19. (本题8分))3(333),5(21分分+--a a 20. (每题4分,共8分)(1)3,4==y x (2)425 21. (本题10分)(1)(2分)中国诗词大会人数20人,图略(2)(4分) 144,30==n a (3)(4分)450人22. (每题5分,共10分)(1)两个不相等的实数根(2)6或223. (本题10分)(1)(4分)图略 A ′(3,-4) (2)(6分) (2,4) (-8, 4) (-6,-2) 24.(每题5分,共10分)(1)45人 (2)7000元 25.(每题4分,本题12分)(1)4=k (2)23=a (3)AF <BF 26. (本题14分) (1)①(3分)垂直,证明略; ②(4分)不可能(2) ①(4分) 证明略②(3分) 324+.。

初二数学期末考试题及答案

初二数学期末考试题及答案

初二数学期末考试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 3.14159B. √2C. 0.1111...D. 22/72. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 7C. 8D. 93. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等边三角形4. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 45. 以下哪个表达式的结果是一个整数?A. √8B. √16C. √2D. √96. 一个数的立方是-27,这个数是:A. -3B. 3C. -9D. 97. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π8. 如果一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 109. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 010. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. 1D. 0二、填空题(每题2分,共20分)11. 一个数的平方是36,这个数是______。

12. 一个数的立方是-125,这个数是______。

13. 一个直角三角形的两条直角边分别是6和8,那么斜边的长度是______。

14. 一个数的绝对值是7,这个数可以是______。

15. 一个圆的直径是10,那么它的半径是______。

16. 如果一个数的相反数是2,那么这个数是______。

17. 一个数的倒数是2/3,那么这个数是______。

18. 一个数的平方根是4,这个数是______。

19. 一个数的立方根是-2,这个数是______。

20. 如果a和b互为倒数,那么ab=______。

三、解答题(每题10分,共60分)21. 解方程:2x + 5 = 13。

初二期末数学考试卷附答案

初二期末数学考试卷附答案

初二期末数学考试卷附答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.25的平方根是A.5B.-5C.±5D.±52.下列图形中,是中心对称图形的是3.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是A.7,7B.8,7.5C.7,7.5D.8,6.54.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为A.4B.8C.16D.645.化简2x2-1÷1x-1的结果是A.2x-1B.2xC.2x+1D.2(x+1)6.不等式组x-1≤02x+4>0的解集在数轴上表示为7.如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是A.a<0B.a<-1C.a>1D.a>-18.实数a在数轴上的位置如图所示,则(a-4)2+(a-11)2化简后为A.7B.-7C.2a-15D.无法确定9.若方程Ax-3+Bx+4=2x+1(x-3)(x+4)那么A、B的值A.2,1B.1,2C.1,1D.-1,-110.已知长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A.6B.8C.10D.1211.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于A.2-2B.1C.2D.2-l12.如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB、BC、CA为一边内△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是A.Sl=S2=S3B.S1=S2<S3C.Sl=S3<S2D.S2=S3<Sl第II卷(非选择题共102分)二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.计算:8一2=______________.14.分解因式:a2-6a+9=______________.15.当x=______时,分式x2-9(x-1)(x-3)的值为0.16.已知a+b=3,a2b+ab2=1,则ab=____________?17.如图,一只蚂蚁沿着边长为2的正方体表面从点4出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短路径的是长为__________________.18.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为______________.三、解答题(本大题共9个小厦,共78分,解答应写出文字说明,证明过程或演算步骤.)19.(本小题满分6分)计算:(1)18+22-3(2)a+2a-2÷1a2—2a20.(本小题满分6分)(1)因式分解:m3n―9mn.(2)求不等式x-22≤7-x3的正整数解21.(本小题满分8分)(1)解方程:1-2__-2=2+32-x(2)解不等式组4x―3>__+4<2x一1,并把解集在数轴上表示出来22.(本小题满分10分)(1)如图1,△ABC是边长为2的等边三角形,将△ABC沿直线BC向右平移,使点B与点C重合,得到△DCE,连接BD,交AC于点F.求线段BD的长.(2)一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?23.(本小题满分8分)济南与北京两地相距480千米,乘坐高铁列车比乘坐普通快车能提前4小时到达.已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.24.(本小题满分6分)标签:先化简再求值:(x+1一3x-1)__-1x-2,其中x=-22+225.(本小题满分10分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试面试体能甲__乙__丙__(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分,根据规定,请你说明谁将被录用.26.(本小题满分12分)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=2,BE=22.(1)求CD的长:(2)求四边形ABCD的面积27.(本小题满分12分)已知,点D是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,己知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是_______________②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.一、选择题题号____答案__ACADA二、填空题13.14.(a-3)215.-316.17.18.三.解答题:19.解:(1)=1分=2分=13分(2)=5分=6分20.解:(1)m3n-9mn.=1分=2分=3分(2)解:3(x-2)≤2(7-x)4分3x-6≤14-2x5x≤20x≤45分∴这个不等式的正整数解为1、2、3、4.6分21.(1)1分2分3分经检验是增根,原方程无解4分(2),解:解不等式①得:x>1,5分解不等式②得:x>5,6分∴不等式组的解集为x>5,7分在数轴上表示不等式组的解集为:.8分22.(1)解:∵正△ABC沿直线BC向右平移得到正△DCE∴BE=2BC=4,BC=CD,DE=AC=2,∠E=∠ACB=∠DCE=∠ABC=60°2分∴∠DBE=∠DCE=30°3分∴∠BDE=90°4分在Rt△BDE中,由勾股定理得5分(2)解:设小明答对了x道题,6分4x-(25-x)≥858分x≥229分所以,小明至少答对了22道题.10分23.解:设普通快车的速度为xkm/h,由题意得:1分3分=44分x=805分经检验x=80是原分式方程的解6分3x=3×80=2407分答:高铁列车的平均行驶速度是240km/h.8分24.解:=1分=2分=3分=4分当=时5分原式==6分25.解:(1)=(83+79+90)÷3=84,=(85+80+75)÷3=80,=(80+90+73)÷3=81.3分从高到低确定三名应聘者的排名顺序为:甲,丙,乙;4分(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰,5分乙成绩=85×60%+80×30%+75×10%=82.5,7分丙成绩=80×60%+90×30%+73×10%=82.3,9分标签:∴乙将被录取.10分26解:(1)过点D作DH⊥AC,1分∵∠CED=45°,∴∠EDH=45°,∴∠HED=∠EDH,∴EH=DH,3分∵EH2+DH2=DE2,DE=,∴EH2=1,∴EH=DH=1,5分又∵∠DCE=30°,∠DHC=90°,∴DC=26分(2)∵在Rt△DHC中,7分∴12+HC2=22,∴HC=,8分∵∠AEB=∠CED=45°,∠BAC=90°,BE=2,∴AB=AE=2,9分∴AC=2+1+=3+,10分∴S四边形ABCD=S△BAC+S△DAC11分=×2×(3+)+×1×(3+)=12分27.解:(1)①90°.2分②线段OA,OB,OC之间的数量关系是.3分如图1,连接OD.4分∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°.∴CD=OC,∠ADC=∠BOC=120°,AD=OB.∴△OCD是等边三角形,5分∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°.∴∠DAO=90°.6分在Rt△ADO中,∠DAO=90°,∴.(2)①如图2,当α=β=120°时,OA+OB+OC有最小值.8分作图如图2,9分如图2,将△AOC绕点C按顺时针方向旋转60°得△A’O’C,连接OO’.∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°.∴O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC.∴△OCO′是等边三角形.10分∴OC=O′C=OO′,∠COO′=∠CO′O=60°.∵∠AOB=∠BOC=120°,∴∠AOC=∠A′O′C=120°.∴∠BOO′=∠OO′A′=180°.∴四点B,O,O′,A′共线.∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小.11分②当等边△ABC的边长为1时,OA+OB+OC的最小值A′B=.12分。

2024年人教版初二数学下册期末考试卷(附答案)

2024年人教版初二数学下册期末考试卷(附答案)

一、选择题(每题1分,共5分)1. 若a > b,则下列哪个选项一定成立?A. a + c > b + cB. a c > b cC. ac > bcD. a/c > b/c2. 下列哪个数是有理数?A. √3B. πC. 1/2D. √13. 已知等差数列的前三项分别是2,5,8,求第10项。

A. 29B. 30C. 31D. 324. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 等边三角形5. 若|a 3| = 4,则a的值为?A. 7B. 1C. 7或1D. 4二、判断题(每题1分,共5分)1. 两个负数相乘,结果是正数。

()2. 任何数乘以1都等于它本身。

()3. 0既不是正数也不是负数。

()4. 两个锐角相加一定大于90度。

()5. 任何数都有相反数。

()三、填空题(每题1分,共5分)1. 两个互为相反数的和是______。

2. 任何数乘以______都等于它本身。

3. 两个负数相乘,结果是______。

4. 两个锐角相加一定______90度。

5. 任何数都有______数。

四、简答题(每题2分,共10分)1. 简述等差数列的定义。

2. 简述等边三角形的性质。

3. 简述矩形的性质。

4. 简述平行四边形的性质。

5. 简述勾股定理。

五、应用题(每题2分,共10分)1. 已知等差数列的前三项分别是2,5,8,求第10项。

2. 已知等边三角形的周长为18,求它的面积。

3. 已知矩形的周长为20,求它的面积。

4. 已知平行四边形的面积为30,求它的周长。

5. 已知直角三角形的两条直角边分别为3和4,求它的斜边。

六、分析题(每题5分,共10分)1. 分析并解答:已知a > b,c > d,那么a + c与b + d的大小关系。

2. 分析并解答:已知等差数列的前三项分别是2,5,8,求第10项。

七、实践操作题(每题5分,共10分)1. 请用直尺和圆规作一个等边三角形。

初二数学下册期末考试试卷及答案

初二数学下册期末考试试卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长是()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是二次函数?()A. y = 2x² 3x + 1B. y = x² + 4C. y = 3x + 2D. y = 5x² 4x + 13. 在直角坐标系中,点(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的面积是()A. 60cm²B. 78cm²C. 84cm²D. 90cm²5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。

()7. 两个等腰直角三角形的面积一定相等。

()8. 一次函数的图像是一条直线。

()9. 二次函数的图像是一个抛物线。

()10. 两个负数相乘的结果是正数。

()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则这个圆的面积是______。

12. 一次函数y = 3x 5的图像与y轴的交点是______。

13. 二次函数y = x² 4x + 4的顶点坐标是______。

14. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的高是______。

15. 两个相同的数相乘,结果是这个数的______。

四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。

17. 什么是等腰三角形?请给出一个例子。

18. 请解释一次函数的图像是一条直线的原理。

19. 什么是二次函数的顶点?如何找到它?20. 请解释无理数的概念,并给出一个例子。

五、应用题(每题2分,共10分)21. 一个长方形的长度是10cm,宽度是5cm,求这个长方形的面积。

仁爱版初二下册《数学》期末考试卷及答案【可打印】

仁爱版初二下册《数学》期末考试卷及答案【可打印】

仁爱版初二下册《数学》期末考试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。

A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。

A. 2B. 0.5C. √3D. 3/43. 在平面直角坐标系中,点P(2,3)关于x轴的对称点是()。

A. (2,3)B. (2,3)C. (2,3)D. (2,3)4. 若a²=4,则a的值为()。

A. ±2B. 2C. 2D. 05. 下列函数中,是反比例函数的是()。

A. y=x²B. y=1/xC. y=2x+1D. y=x26. 下列各数中,绝对值最小的是()。

A. 5B. 3C. 2D. 17. 若a+b=0,则a和b的关系是()。

A. a=bB. a=bC. a+b=0D. ab=08. 下列图形中,不是轴对称图形的是()。

A. 矩形B. 圆C. 等腰三角形D. 梯形9. 若一个数的平方是9,则这个数是()。

A. ±3B. 3C. 3D. 010. 下列各数中,是无理数的是()。

A. 2B. 0.5C. √2D. 3/4二、填空题(每题3分,共30分)1. 一个数的立方根是2,这个数是______。

2. 若a²=16,则a的值为______。

3. 在平面直角坐标系中,点P(3,4)关于y轴的对称点是______。

4. 下列函数中,是正比例函数的是______。

5. 下列各数中,绝对值最大的是______。

6. 若a+b=0,则a和b的和是______。

7. 下列图形中,是中心对称图形的是______。

8. 若一个数的平方是4,则这个数是______。

9. 下列各数中,是有理数的是______。

10. 下列函数中,是二次函数的是______。

三、解答题(每题10分,共50分)1. 解方程:2x+3=7。

2. 求下列函数的解析式:y=kx+b,其中k=2,b=5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末试题(5)一、选择题(每小题3分,共24分) 1、4的算术平方根是( ) A .4B .2C .2D .22、在﹣2,0,3,这四个数中,最大的数是( ) ]A . ﹣2B .0 $C .3D ..3、如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是( )A . 50°@B .45°C .35° D . }30°4、一次函数y =﹣2x +1的图象不经过下列哪个象限( ) A . 第一象限 B . 第二象限 C . 第三象限 D .第四象限5、若方程mx +ny =6的两个解是,,则m ,n 的值为( )] A .4,2 B . 2,4C .《 ﹣4,﹣2D . ﹣2,﹣46、为了解升龙花园社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民(户);13 2 4月用电量(度/户) (4050 55 60那么关于这10户居民月用电量(单位:度),下列说法错误的是()@A.中位数是55B.众数是60:C.方差是29D.平均数是547、下列四组线段中,可以构成直角三角形的是()—A.4,5,6 B.,2,》C.2,3,4 D.1,,38、图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()…A.体育场离张强家千米,B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米}D.张强从早餐店回家的平均速度是3千米/小时二、选择题(每小题3分,共21分)9、-10、计算:()()2121+-=。

11、命题“相等的角是对顶角”是命题(填“真”或“假”)。

12、若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为。

12、将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.阅卷人得分)—13、按下图的运算程序,请写出一组能使输出结果为3的x ,y 的值:。

14、如图,已知直线y=ax+b 和直线y=kx 交于点P (-4,-2),则关于x ,y 的二元一次方程组,.y ax b y kx =+⎧⎨=⎩的解是_ __.^15、在平面直角坐标系中,已知点A (﹣,0),B (,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C 的坐标 。

55分)16、证明三角形内角和定理(6分)^三角形内角和定理内容:三角形三个内角和是1800。

已知△ABC ,求证:∠A +∠B +∠C =180°}\17、(6分)在边长为1的小正方形网格中,△AOB 的顶点均在格)>阅卷人得分(第14题点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.:(第17题图)(…18、(6分)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺阅卷人得分|19、(9分)郑州四中八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表参赛同学答对题数答错题数]未答题数A19011721[B23C;152D17、1E//、7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)|20、(8分)如图1,A,B,C是郑州市二七区三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=40米.八位环卫工人分别测得的BC长度如下表:甲.乙丙丁戊戌;申辰BC(单位:米)8476…7882748486#80他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中BC长度的平均数、中位数、众数:(2)求A处的垃圾量,并将图2补充完整;)(3)用(1)中的作为BC的长度,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为元,求运垃圾所需的费用.(注:3=)21、!22、(10分)观察下列各式及其验证过程:322322=+228222223333⨯+===.333388+=2327333338888⨯+===—阅卷人得分(1)按照上述两个等式及其验证过程,猜想1544 的变形结果并进行验证.:(2)针对上述各式反映的规律,写出用a(a为任意自然数,且2a≥)表示的等式,并给出验证.(3)针对三次根式及n次根式(n为任意自然数,且2n≥),有无上述类似的变形,如果有,写出用a(a为任意自然数,且2a≥)表示的等式,并给出验证.`22(11分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=40米/分;)(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰>-答案(5)一、1-8 CCDC ACBC二、9.1 10.假11. (﹣3,﹣2)12. 75°13. x=﹣3,y=﹣9 14. ⎩⎨⎧==2-y-4x15. (0,-2) (3,0) (-3,0)三、16. 证明:延长BC到D点,过点C作CE∥AB<则:∠1=∠A(两直线平行内错角相等),∠2=∠B(两直线平行同位角相等)∵∠1+∠2+∠ACB=180°(平角的定义)∴∠A+∠B+∠ACB=180°(等量代换)'解答:解:(1)B点关于y轴的对称点坐标为(﹣3,2);(2)△A1O1B1如图所示;(3)A1的坐标为(﹣2,3).故答案为:(1)(﹣3,2);(3)(﹣2,3).【18.解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长222015+=25(尺).故答案为:2519.解答解:(1)==(分),:答:A,B,C,D四位同学成绩的平均分是分.(2)①设E同学答对x题,答错y题,由题意得,解得,答:E同学答对12题,答错1题.②C同学,他实际答对14题,答错3题,未答3题.20.解:(1)=(84×2+76+78+82+74+86)/8=80;(2)∵C处垃圾存放量为:320kg,在扇形统计图中所占比例为:50%,∴垃圾总量为:320÷50%=640(kg),∴A处垃圾存放量为:(1﹣50%﹣%)×640=80(kg),占%.补全条形图如下:(3)∵∠BAC=90度,AC=40米,BC=80米°,∴AB=403=40×=米∵运送1千克垃圾每米的费用为元,∴运垃圾所需的费用为:×80×=(元),答:运垃圾所需的费用为元.21.解:(144 441515 +=验证:24644444415151515⨯+===. (2)2211a aa a a a +=--(a 为任意自然数,且2a ≥). 验证:3322221111a a a a a aa a a a a a -++===----. (3)333311aaa a a +=--(a 为任意自然数,且2a ≥). 验证:33334433331111aa a aa aa a a a a a -++===----. 11nnn n a aa a a a +=--(a 为任意自然数,且2a ≥). 22. 解答:解:(1)乙的速度v 2=120÷3=40(米/分), 故答案为:40;(2)v 1==×40=60(米/分), 60÷60=1(分钟),a =1, d 1=;(3)d 2=40t ,当0≤t ≤1时,d 2﹣d 1>10, 即﹣60t +60﹣40t >10, 解得0;当0时,两遥控车的信号不会产生相互干扰;当1≤t ≤3时,d 1﹣d 2>10, 即40t ﹣(60t ﹣60)>10, 当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0或1≤t时,两遥控车的信号不会产生相互干扰.(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。

相关文档
最新文档