电磁学练习题
电磁学练习题
电磁学练习题2第六章 静电场1一、选择题1、下列几个叙述中哪一个是正确的? [ ](A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C )场强方向可由E =F/q 定出,其中q 为试验电荷的电量,q 可正、可负,F为试验电荷所受的电场力。
(D )以上说法都不正确。
2、一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元dS 带有dS σ的电荷,该电荷在球面内各点产生的电场强度为 [ ] (A) 处处为零; (B) 不一定都为零; (C) 处处不为零; (D) 无法判断。
3、如图所示,任一闭合曲面SO为S面上任一点,若将q由闭合曲面内的P点移到T点,且OP=OT,那么[ ](A) 穿过S面的电通量改变,O点的场强大小不变;(B) 穿过S面的电通量改变,O点的场强大小改变;(C) 穿过S面的电通量不变,O点的场强大小改变;(D) 穿过S面的电通量不变,O点的场强大小不变。
4、关于高斯定理的理解有下面几种说法,其中正确的是[ ](A) 如果高斯面内无电荷,则高斯面上E 处处为零;(B) 如果高斯面上E 处处不为零,则该面内必无电荷;(C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;34(D) 如果高斯面上E处处为零,则该面内必无电荷。
5、 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 [ ](A) (B) (C) (D) 二、填空题1、 如图所示,边长分别为a 和b的矩形,其A 、B 、C 三个顶点上分别放置三个电量均为q的点电荷,则中心O 点的场强为 方向 。
2、在场强为E的均匀电场中,有一半径ABC60b aOO 1R 2R ErO 1R 2R E rO 1R 2R E rO 2R E1R r5为R 长为L 的圆柱面,其轴线与E的方向垂直,在通过轴线并垂直E方向将此柱面切去一半,如图所示,则穿过剩下的半圆柱面的电场强度通量等于 。
高考物理电磁学练习题库及答案
高考物理电磁学练习题库及答案一、选择题1. 在电场中,带电粒子的运动路径称为()A. 轨道B. 轨迹C. 路径D. 脉冲2. 下列哪项不是电磁感应现象中主要的应用?A. 电动机B. 发电机C. 变压器D. 电吹风3. 在电磁波中,波长越小,频率越()A. 大B. 小C. 相等D. 不确定4. 电流大小与导线截面积之间的关系是()A. 正比例B. 反比例C. 平方反比D. 指数关系5. 下列哪个现象与电磁感应无关?A. 磁铁吸引铁矿石B. 手持电磁铁吸附铁钉C. 相机闪光灯工作D. 电动车行驶二、填空题1. 电流的单位是()2. 电阻的单位是()3. 电势差的单位是()4. 电功的单位是()5. 法拉是电容的单位,它的符号是()三、简答题1. 什么是电磁感应?2. 什么是洛仑兹力?3. 简述电阻对电流的影响。
4. 电势差与电压的关系是什么?5. 什么是电容?四、计算题1. 一根导线质量为0.5kg,长度为2m,放在匀强磁场中,当磁感应强度为0.4T时,该导线受到的洛仑兹力大小为多少?(设导线的电流为2A)2. 一台电视机的功率为200W,使用时电流为2A,求电源的电压是多少?3. 一个电容器带电量为5μC,电容为10μF,求该电容器的电势差。
4. 一台电脑的电压为110V,电流为2A,求功率是多少?5. 一根电阻为10欧姆的导线通过电流2A,求该导线两端的电压。
五、综合题1. 请解释什么是电磁感应现象,并列举两个具体的应用。
2. 电流和电势差之间的关系是什么?请给出相关公式并解释其含义。
3. 请计算一个电感为2H的线圈,通过电流为5A,求该线圈的磁场强度。
4. 一个电容器的电容为20μF,通过电流为0.5A,求该电容器两端的电压。
5. 请简述电阻、电容和电感的区别与联系。
答案及解析如下:一、选择题1. B. 轨迹解析:带电粒子在电场中的运动路径称为轨迹。
2. C. 变压器解析:变压器是电磁感应现象的一种重要应用。
电磁学题库(附答案)
电磁学题库(附答案)《电磁学》练习题1. 如图所示,两个点电荷+q和-3q,相距为d. 试求: (1) 在它们的连线上电场强度E?0的点与电荷为+q的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U=0的点与电荷为+q的点电荷相距多远?+q d --3q-2. 一带有电荷q=33109 C的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动 5 cm 时,外力作功63105 J,粒子动能的增量为 J.求:(1) 粒子运动过程中电场力作功-E q 多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度.4. 一半径为R的带电球体,其电荷体密度分布为q L d P =Ar (r≤R) ,??=0(r>R)A为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度?均匀分布在半径分别为r1=10 cm和r2=20 cm的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V,试求两球面的电荷面密度?的值. (?0=-/ N2m2 )6. 真空中一立方体形的高斯面,边长a= m,位于图中所示位y a a x 置.已知空间的场强分布为:O Ex=bx , Ey=0 , Ez=0.z a a 常量b=1000 N/(C2m).试求通过该高斯面的电通量.-7. 一电偶极子电荷q= C的两个异号点电荷组成,两电荷相距l= cm.把这电偶极子放在场强大小为E= N/C的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q1= C和q2=- C 的两个点电荷相距20 cm,求离它们都是20 cm处--的电场强度. (真空介电常量?0= C2N1m2 )---9. 边长为b的立方盒子的六个面,分别平行于xOy、yOz 和xOz平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为E?200i?300j .试求穿过各面的电通量.第 1 页共 33 页10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: Ex=bx, Ey=0, Ez=0.高斯面边长a= m,常量b=1000 N/(C2m).试求该闭合面中包含的净电荷.(真空介电常数?0= C22N-12m-2 )11. 有一电荷面密度为?的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布. 12. 如图所示,在电矩为p的电偶极子的电场中,将一电荷为q的点电荷从A 点沿半径为R的圆弧(圆心与电偶极子中心重合,R>>电偶极子正负电荷之间距离)移到B点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E=53104 N/C,方向竖直朝上,把一电荷为q= C的点电荷,置于此电场中的a点,如图所示.求此点电荷在下列过程中-R A ?p B d Ⅲ 45?b 电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b点,ab=45 cm;(2) 沿直线路径Ⅱ向下移到c点,ac=80 cm;(3) 沿曲线路径Ⅲ朝右斜上方向移到d点, ad=260 cm(与水平方向成45°角).a c ⅡⅠ ?E14. 两个点电荷分别为q1=+23107 C和q2=-23107 C,相距 m.求距q1为 m、距q2--为 m处P点的电场强度. (1= Nm2 /C2) 4??0 ?A ?B 15. 图中所示, A、B为真空中两个平行的“无限大”均匀带电平面,A面上电荷面密度?A=- C2m2,B面的电荷面密度?B= 3108 C2m2.试计----算两平面之间和两平面外的电场强度.(真空介电常量?0= C22N-12m-2 )16. 一段半径为a的细圆弧,对圆心的张角为?0,其上均匀分布有正电荷q,如图所示.试以a,q,?0表示出圆心O处的电场强度.A 17. 电荷线密度为?的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB的半径为R,试求圆心O点的场强.第 2 页共 33 页A B q ?0 a O ∞R O B ∞18. 真空中两条平行的“无限长”均匀带电直线相距为a,其电荷线密度分别为-?和+?.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm,其间有一半充以相对介电常量a O x ?r=10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量?0= C22N12m2)---r 20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R的导体球带电.(1) 当球上已带有电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为?r的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A、B的面积都是S,极板间距离为d.接上电源后,A板电势UA=V,B板电势UB=0.现将一带有电荷q、面积也是S而厚度可忽略的导体片C平行插在两极板的中间位置,如图所示,试求导体片C的电势. 24. 一导体球带电荷Q.球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为?r1和?r2,分界面处半径为R,如图所示.求两层介质分界面上的极化电荷面密度. 25. 半径分别为 cm与 cm的两个球形导体,各带电荷 C,两球相距很远.若用细-A d d/2 d/2 q CB V ?r1 R Q R O ?r2 导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.( 第 3 页共 33 页1?9?109N?m2/C2) 4??026. 如图所示,有两根平行放置的长直载流导线.它们的直径为a,反向流过相同大小的电流I,电流在导线内均匀分布.试在图示的坐标系中求出I I x O 15a]内磁感强度的分布. x轴上两导线之间区域[a,2227. 如图所示,在xOy平面(即纸面)内有一载流线圈abcda,其中bc弧和da弧皆为以O为圆心半径R =20 cm的1/4圆弧,ab和cd皆为直线,电流I =20 A,其流向为沿abcda的绕向.设线圈处于B = T,方向与a→b的方向相一致的均匀磁场中,试求:(1) 图中电流元I?l1和I?l2所受安培力?F1和?F2的方向和大小,设?l1 =l2 = mm;-2a 2a a Ib y I?l1 R a O 30°c 45° x R I I?l2d (2) 线圈上直线段ab和cd所受的安培力Fab和Fcd 的大小和方向;(3) 线圈上圆弧段bc弧和da弧所受的安培力Fbc 和Fda的大小和方向.28. 如图所示,在xOy平面(即纸面)内有一载流线圈abcda,其中bc弧和 da弧皆为以O为圆心半径R =20 cm的1/4圆弧,ab和cd皆为直线,电流I =20 A,其流向沿abcda 的绕向.设该线圈处于磁感强度B = T的均匀磁场中,B方向沿x轴正方向.试求:-y I?l1 R a O 30°c 45° x R I I?l2 d I b (1) 图中电流元I?l1和I?l2所受安培力?F1和?F2的大小和方向,设?l1 = ?l2= mm;(2) 线圈上直线段ab和cd所受到的安培力Fab和Fcd 的大小和方向;(3) 线圈上圆弧段bc弧和da弧所受到的安培力Fbc和Fda的大小和方向.29. AA'和CC'为两个正交地放置的圆形线圈,其圆心相重合.AA'线圈半径为 cm,共10匝,通有电流 A;而CC'线圈的半径为 cm,共20匝,通有电流 A.求两线圈公共中心O点的磁感强度的大小和方向.(?0 =4?3107 N2A2) --30. 真空中有一边长为l的正三角形导体框架.另有相互平行并与三角形的 bc边平行的长直导线1和2分别在a 点和b点与三角形导体框架相连(如1 I O a 图).已知直导线中的电流为I,三角形框的每一边长为l,求正三角形中心2 I b e ?点O处的磁感强度B.c 31. 半径为R的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成??角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i,求轴线上的磁感强度.第 4 页共 33 页32. 如图所示,半径为R,线电荷密度为? (>0)的均匀带电的圆线圈,绕过圆 y O R ?心与圆平面垂直的轴以角速度??转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R1和R2,芯子材料的磁导率为?,导线总匝数为N,绕得很密,若线圈通电流I,求. (1) 芯子中的B值和芯子截面的磁通量. (2) 在r R2处的B值.34. 一无限长圆柱形铜导体(磁导率?0),半径为R,通有均匀分布的电流I.今取一矩形平面S (长为1 m,宽为2 R),位置如右图中画斜线部分所示,求通N b R2 R1 I S 1 m 过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R1与电子轨道半径R2的比值.36. 在真空中,电流长直导线1沿底边ac方向经a点流入一电阻均匀的导线构成的正三角形线框,再b点沿平行底边ac方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I,2R b I 2 O 1 I a e c 三角形框的每一边长为l,求正三角形中心O处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,实线表示),AB?EF?R,大圆弧BC的半径为R,小圆弧DE的半径为C I E A BD 60? O R F I ?1R,求圆心O处的磁感强度B的大小和方向. 238. 有一条载有电流I的导线弯成如图示abcda形状.其中ab、cd是直线段,其余为圆弧.两段圆弧的长度和半径分别为l1、R1和l2、R2,且两I a b l2 l1 R1 O c R2 -d ?段圆弧共面共心.求圆心O处的磁感强度B的大小.39. 假定地球的磁场是地球中心的载流小环产生的,已知地极附近磁感强度B为 T,地球半径为R = m.?0 =4?3107 H/m.试用毕奥-萨伐尔定律求该电流环的磁矩大小.-40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩pm与电子轨道运动的动量矩L大小之比,并指出pm和L方向间的关系.(电子电荷为e,电子质量为m)第 5 页共 33 页41. 两根导线沿半径方向接到一半径R = cm的导电圆环上.如图.圆弧ADB是铝导线,铝线电阻率为?1 = ?2m,圆弧ACB是铜导线,铜线电阻率为?2 = ?2m.两种导线截面积相同,圆弧ACB的弧长是圆周长的1/?.直导线在很远处与电源相联,弧ACB上的电流I2 =A,求圆心O点处磁感强度B的大小.(真空磁导率?0 =4?3107 T2m/A)--8-8D I1 R O A C I2 B 42. 一根很长的圆柱形铜导线均匀载有10 A电流,在导线内部作一平面S,S的一个边是导线的中心轴线,另一边是S平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m的一段S平面的磁通量.(真空的磁导率?0 =4?3107 T2m/A,铜的相对磁导率?r ≈1)-S 43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i1和 i2,若i1和i2之间夹角为??,如图,求: (1) 两面之间的磁感强度的值Bi. (2) 两面之外空间的磁感强度的值Bo. (3) 当i1?i2?i,??0时以上结果如何?44. 图示相距为a通电流为I1和I2的两根无限长平行载流直导线.i1 ??i2 a ??(1) 写出电流元I1dl1对电流元I2dl2的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.I1dl1 I1 I2 r12 I2dl245. 一无限长导线弯成如图形状,弯曲部分是一半径为R的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R的长直导线载有电流I,作一宽为R、长为l的假想平面S,如图所示。
(完整版)电磁学练习题及答案
Prλ2λ1R 1 R 21.坐标原点放一正电荷Q ,它在P 点(x =+1,y =0)产生的电场强度为E ρ。
现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x >1。
(B) x 轴上0<x <1。
(C) x 轴上x <0。
(D) y 轴上y >0。
(E) y 轴上y <0。
[ C ]2.个未带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为 (A) 0 (B)dq04επ(C)R q 04επ- (D) )11(40Rd q -πε [ D ] 3.图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r 0212ελλπ+ (B) ()()20210122R r R r -π+-πελελ(C) ()20212R r -π+ελλ(D) 20210122R R ελελπ+π [ A ]4.荷面密度为+σ和-σ的两块“无限大”均匀带电的平行平板,放在与平面相垂直的x 轴上的+a 和-a 位置上,如图所示。
设坐标原点O 处电势为零,则在-a <x <+a 区域的电势分布曲线为 [ C ]5.点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为(A)a q 04επ (B) a q08επ(C) a q 04επ- (D) aq08επ- [ D ]yxO +Q P(1,0)R O d +q+a aO -σ +σO-a +ax U (A)O -a +a xUO -a +a x U (C)O -a +ax U (D)aa+qPM6.图所示,CDEF 为一矩形,边长分别为l 和2l 。
电磁学部分练习题
电磁学部分练习题 一、选择题1、电场强度E = F /q 0 这一定义的适用范围是( )A 、点电荷产生的电场。
B 、静电场。
C 、匀强电场。
D 、任何电场。
2.一均匀带电球面,其内部电场强度处处为零。
球面上面元ds 的一个带电量为σds 的电荷元,在球面内各点产生的电场强度( )A 、处处为零B 、不一定都为零C 、处处不为零D 、无法判定3.半径为R 的均匀带电球面,若其电荷面密度为σ,周围空间介质的介电常数为ε0,则在距离球心R 处的电场强度为:A 、σ/ε0B 、σ/2ε0C 、σ/4ε0D 、σ/8ε04、半径为R 的带电圆环,其轴线上有两点P 1和P 2,它们支环心的距离分别为R 和2R ,如题1-4图示。
若取无限远处的电势为0,P 1点和P 2点的电势为( )A. B. C. D. 2125V V =2125V V =214V V =212V V =5、两个载有相等电流I 的圆线圈(半径都为R ),一个处于水平位置,一个处于竖直位置,如题1-5图所示。
在圆心O 处的磁感应强度的大小为( )A .0B .C .D .RI20μRI220μRI0μ题1-4图题1-5图 6、如题1-6图所示,图中曲线表示某种球对称性分布的电荷产生的电势V 随r 的分布,请指出该电势是下列哪种带电体产生的( ) A. 点电荷; B .半径为R 的均匀带电球体; C .半径为R 的均匀带电球面;D .外半径为R ,内半径为R/2的均匀带电球壳体;7、如题1-7图所示,一长直载流为I 的导线与一矩形线圈共面,且距CD 为,a 距EF 为b ,则穿过此矩形单匝线圈的磁通量的大小为( )A .B. C. D. a b a I ln 20πμa b Id ln 20πμaba Id ln 20πμ ab a Id ln 40πμ题1-6图题1-7图8、两个薄金属同心球壳,半径各为R 1和R 2(R 2>R 1),分别带有电荷q 1和q 2,二者电势差为( ) A . B .)4(101R q πε)4(202R q πεC .D .)11(42101R R q -πε)11(42102R R q -πε9、如题1-9图所示,一载有电流I 的长导线弯折成如图所示的状态,CD 为1/4圆弧,半径为R ,圆心O 在AC 、EF 的延长线上,则O 点处的磁感应强度的大小和方向为:( ) A .,方向垂直纸面向里; B .,方向垂直纸面)121(40πμ+=R I B )121(40πμ+=R I B 向外; C .,方向垂直纸面向里; D .,方向垂直纸面)141(20πμ+=R I B )141(20πμ+=R I B 向外;题1-9图 10、一带电粒子垂直射入磁场后,作周期为T 的匀速率圆周运动,若要使运动B周期变为T/2,磁感应强度应变为( )A 、2B 、/2C 、D 、–B BBB 11.已知一高斯面所包围的体积内电量的代数和Σqi=0,则可以肯定:( ) A 、高斯面上各点场强均为零。
(完整版)电磁学题库(附答案)
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
电磁学练习题(含答案)
一、选择题1、在磁感强度为的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量与的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B . . (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ D ]2、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流为I ,.若载流长直导线1、2以及圆环中的电流在圆心O 点所产生的磁感强度分别用1B 、2B , 3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B ) B = 0,因为021=+B B ,B 3 = 0. (C ) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0.(D ) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(E ) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ D ]3、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度(A) 与L 无关. (B) 正比于L 2.(C) 与L 成正比. (D) 与L 成反比.(E) 与I 2有关. [ D ]4、无限长直圆柱体,半径为R ,沿轴向均匀流有电流.设圆柱体内( r < R )的磁感强度为B i ,圆柱体外( r > R )的磁感强度为B e ,则有(A) B i 、B e 均与r 成正比.(B) B i 、B e 均与r 成反比.(C) B i 与r 成反比,B e 与r 成正比.(D) B i 与r 成正比,B e 与r 成反比. [ D ]5、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) ⎰=⋅0l d B ,且环路上任意一点B = 0.(B) ⎰=⋅0l d B ,且环路上任意一点B ≠0.(C) ⎰≠⋅0l d B ,且环路上任意一点B ≠0.(D) ⎰≠⋅0l d B ,且环路上任意一点B =常量. [ B ]6、按玻尔的氢原子理论,电子在以质子为中心、半径为r 的圆形轨道上运动.如果把这样一个原子放在均匀的外磁场中,使电子轨道平面与垂直,如图所示,则在r 不变的情况下,电子轨道运动的角速度将:(A) 增加. (B) 减小.(C) 不变. (D) 改变方向. [ A ]7、如图所示,一根长为ab 的导线用软线悬挂在磁感强度为的匀强磁场中,电流由a 向b 流.此时悬线张力不为零(即安培力与重力不平衡).欲使ab 导线与软线连接处张力为零则必须:(A) 改变电流方向,并适当增大电流.(B) 不改变电流方向,而适当增大电流.(C) 改变磁场方向,并适当增大磁感强度的大小. (D) 不改变磁场方向,适当减小磁感强度的大小. [ B ]8、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ B ]9、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率μr 为(真空磁导率μ0 =4π×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102(C) 1.99×102 (D) 63.3 [ B ]10、半径为a 的圆线圈置于磁感强度为的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与的夹角α =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关.(B) 与线圈面积成正比,与时间成正比.(C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关. [ A ]11、如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a –U c 为(A) =0,221l B U U b a ω=-. (B) =0,221l B U U b a ω-=-. (C) =2l B ω,221l B U U b a ω=- (D) =2l B ω,221l B U U b a ω-=-. [ B ]12、有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为μ1和μ2.设r 1∶r 2=1∶2,μ1∶μ2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1.(B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1.(C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.(D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. [ C ]13、用导线围成的回路(两个以O 点为心半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过O 点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图所示.如磁场方向垂直图面向里,其大小随时间减小,则(A)→(D)各图中哪个图上正确表示了感应电流的流向?[ B ]二、填空题 14、如图,一个均匀磁场B 只存在于垂直于图面的P 平面右侧,B 的方向垂直于图面向里.一质量为m 、电荷为q 的粒子以速度射入磁场.在图面内与界面P 成某一角度.那么粒子在从磁场中射出前是做半径为______________的圆周运动.如果q > 0时,粒子在磁场中的路径与边界围成的平面区域的面积为S ,那么q < 0时,其路径与边界围成的平面区域的面积是_________________.答案:)(qB mv15、若在磁感强度B =0.0200T 的均匀磁场中,一电子沿着半径R = 1.00 cm 的圆周运动,则该电子的动能E K =________________________eV .(e =1.6 ×10-19 C, m e = 9.11×10-31 kg)答案: 3.51×103参考解: mR B q mv E K 2212222== =5.62×10-16 J=3.51×103 eV16、氢原子中电子质量m ,电荷e ,它沿某一圆轨道绕原子核运动,其等效圆电流的磁矩大小p m 与电子轨道运动的动量矩大小L 之比=Lp m ________________. 答案:me 217、载有恒定电流I 的长直导线旁有一半圆环导线cd ,半圆环半径为b ,环面与直导线垂直,且半圆环两端点连线的延长线与直导线相交,如图.当半圆环以速度沿平行于直导线的方向平移时,半圆环上的感应电动势的大小是____________________.答案:ba b a Iv -+ln 20πμ 18、如图所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由下落,则t 秒末导线两端的电势差=-N M U U ______________________.答案:al a Igt +-ln 20πμ 19、位于空气中的长为l ,横截面半径为a ,用N匝导线绕成的直螺线管,当符 合________和____________________的条件时,其自感系数可表成V I N L 20)/(μ=,其中V 是螺线管的体积.20、一线圈中通过的电流I 随时间t 变化的曲线如图所示.试定性画出自感电动势 L 随时间变化的曲线.(以I 的正向作为 的正向)答案:21、真空中两条相距2a 的平行长直导线,通以方向相同,大小相等的电流I ,O 、P 两点与两导线在同一平面内,与导线的距离如图所示,则O 点的磁场能量密度w m o =___________,P 点的磁场能量密度w mr =__________________.答案: 022、一平行板空气电容器的两极板都是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流为 ________________________.答案:dt dE R /20πε三、计算题23、如图所示,一无限长直导线通有电流I =10 A ,在一处折成夹角θ =60°的折线,求角平分线上与导线的垂直距离均为r =0.1 cm 的P 点处的磁感强度.(μ0 =4π×10-7 H ·m -1)解:P 处的可以看作是两载流直导线所产生的,与的方向相同.)]60sin(90[sin 4)]90sin(60[sin 400 --+--=rI r I πμπμ ]90sin 60[sin 420 +=rI πμ=3.73×10-3 T 方向垂直纸面向上.24、一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m /A ,铜的相对磁导率μr ≈1)解:在距离导线中心轴线为x 与dx x +处,作一个单位长窄条,其面积为dx dS ⋅=1.窄条处的磁感强度所以通过d S 的磁通量为 dx R Ix BdS d r 202πμμ==Φ 通过1m 长的一段S 平面的磁通量为Wb I dx R Ix r R r 600201042-===Φ⎰πμμπμμ 25、 一通有电流I 1 (方向如图)的长直导线,旁边有一个与它共面通有电流I 2 (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23 (如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为方向向右,从x = a 到x = 2a 磁场所作的功为26、螺绕环中心周长l = 10 cm ,环上均匀密绕线圈N = 200匝,线圈中通有电流I = 0.1 A .管内充满相对磁导率μr = 4200的磁介质.求管内磁场强度和磁感强度的大小.解: 200===l NI nI H A/mH H B r μμμ0===1.06 T27、如图所示,有一矩形回路,边长分别为a 和b ,它在xy 平面内以匀速沿x 轴方向移动,空间磁场的磁感强度与回路平面垂直,且为位置的x 坐标和时间t 的函数,即kx t B t x B sin sin ),(0ω =,其中0B ,ω,k 均为已知常数.设在t =0时,回路在x =0处.求回路中感应电动势对时间的关系.解:选沿回路顺时针方向为电动势正方向,电动势是由动生电动势 1和感生电动势 2组成的.设回路在x 位置:∴ kkx a x k t bB cos )(cos cos 02-+=ωωε 设总感应电动势为 ,且 x =v t ,则有∴。
电磁学试题(含答案)
一、单选题1、 如果通过闭合面S 的电通量e Φ为零,则可以肯定A 、面S 内没有电荷B 、面S 内没有净电荷C 、面S 上每一点的场强都等于零D 、面S 上每一点的场强都不等于零2、 下列说法中正确的是A 、沿电场线方向电势逐渐降低B 、沿电场线方向电势逐渐升高C 、沿电场线方向场强逐渐减小D 、沿电场线方向场强逐渐增大3、 高压输电线在地面上空m 25处,通有A 1023⨯的电流,则该电流在地面上产生的磁感应强度为A 、T 104.15-⨯B 、T 106.15-⨯C 、T 1025-⨯D 、T 104.25-⨯4、 载流直导线和闭合线圈在同一平面内,如图所示,当导线以速度v 向左匀速运动时,在线圈中A 、有顺时针方向的感应电流B 、有逆时针方向的感应电C 、没有感应电流D 、条件不足,无法判断5、 两个平行的无限大均匀带电平面,其面电荷密度分别为σ+和σ-,则P 点处的场强为A 、02εσB 、0εσ C 、02εσ D 、0 6、 一束α粒子、质子、电子的混合粒子流以同样的速度垂直进入磁场,其运动轨迹如图所示,则其中质子的轨迹是A 、曲线1B 、曲线2C 、曲线3D 、无法判断 7、 一个电偶极子以如图所示的方式放置在匀强电场E 中,则在电场力作用下,该电偶极子将A 、保持静止B 、顺时针转动C 、逆时针转动D 、条件不足,无法判断8、 点电荷q 位于边长为a 的正方体的中心,则通过该正方体一个面的电通量为A 、0B 、0εqC 、04εqD 、06εq 9、 长直导线通有电流A 3=I ,另有一个矩形线圈与其共面,如图所示,则在下列哪种情况下,线圈中会出现逆时针方向的感应电流?A 、线圈向左运动B 、线圈向右运动C 、线圈向上运动D 、线圈向下运动10、 下列说法中正确的是A 、场强越大处,电势也一定越高3B 、电势均匀的空间,电场强度一定为零C 、场强为零处,电势也一定为零D 、电势为零处,场强一定为零11、 关于真空中静电场的高斯定理0εi S q S d E ∑=∙⎰ ,下述说法正确的是:A. 该定理只对有某种对称性的静电场才成立;B. i q ∑是空间所有电荷的代数和;C. 积分式中的E 一定是电荷i q ∑激发的;D. 积分式中的E 是由高斯面内外所有电荷激发的。
高考物理电磁学大题练习20题Word版含答案及解析
高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。
金属棒的质量为m,棒的左端与导轨相接,右端自由。
设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。
2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。
答案】(1) v=B1d/2m。
I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。
ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。
金属棒始终与导轨相互垂直并接触良好。
问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。
解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。
根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。
因此,我们需要求出这段时间内的电流强度。
根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。
高中物理电磁学基础练习题及答案
高中物理电磁学基础练习题及答案练习题一:电场1. 电荷的基本单位是什么?答案:库仑(C)2. 两个等量的正电荷相距1米,它们之间的电力是多少?答案:9 × 10^9 N3. 电场强度的定义是什么?答案:单位正电荷所受到的电力4. 空间某点的电场强度为10 N/C,某个电荷在此点所受的电力是5 N,求该电荷的电量。
答案:0.5 C练习题二:磁场1. 磁力线的方向与什么方向垂直?答案:磁力线的方向与磁场的方向垂直。
2. 磁力的大小与什么有关?答案:磁力的大小与电流强度、导线长度以及磁场强度有关。
3. 磁感应强度的单位是什么?答案:特斯拉(T)4. 在垂直磁场中,一根导线受到的力大小与什么有关?答案:导线长度、电流强度以及磁场强度有关。
练习题三:电磁感应1. 什么是电磁感应?答案:电磁感应是指导体在磁场的作用下产生感应电动势的现象。
2. 什么是法拉第电磁感应定律?答案:法拉第电磁感应定律指出,当导体回路中的磁通量变化时,导体回路中会产生感应电动势。
3. 一根长度为1 m的导体以2 m/s的速度与磁感应强度为0.5 T 的磁场垂直运动,求导体两端的感应电动势大小。
答案:1 V4. 一根长度为3 m的导线以2 m/s的速度穿过磁感应强度为0.5 T的磁场,若导线两端的电压为6 V,求导线的电阻大小。
答案:1 Ω练习题四:电磁波1. 什么是电磁波?答案:电磁波是由电场和磁场相互作用产生的波动现象。
2. 电磁波的传播速度是多少?答案:光速,约为3 × 10^8 m/s。
3. 可见光属于电磁波的哪个频段?答案:可见光属于电磁波的红外线和紫外线之间的频段。
4. 无线电波属于电磁波的哪个频段?答案:无线电波属于电磁波的低频段。
练习题五:电磁学综合练习1. 一个电荷在垂直磁场中受到的磁力大小为5 N,该电荷的电量是2 C,求该磁场的磁感应强度。
答案:2.5 T2. 一段长度为2 m的导线以8 m/s的速度进入磁感应强度为0.2 T的磁场中,导线所受的感应电动势大小为4 V,求导线两端的电阻大小。
电磁学练习题积累(含部分答案)
一.选择题(本大题15小题,每题2分)第一章、第二章1.在静电场中,下列说法中哪一个是正确的 [ ](A)带正电荷的导体,其电位一定是正值(B)等位面上各点的场强一定相等(C)场强为零处,电位也一定为零(D)场强相等处,电位梯度矢量一定相等2.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是[](A)通过封闭曲面的电通量仅是面内电荷提供的(B) 封闭曲面上各点的场强是面内电荷激发的(C) 应用高斯定理求得的场强仅是由面内电荷所激发的(D) 应用高斯定理求得的场强仅是由面外电荷所激发的3.关于静电场下列说法中正确的是 [ ](A)电场和试探电荷同时存在和消失(B)由E=F/q知道,电场强度与试探电荷成反比(C)电场强度的存在与试探电荷无关(D)电场是试探电荷和场源电荷共同产生的4.下列几个说法中正确的是: [ ](A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同(C)场强方向可由E=F/q定出,其中q为试验电荷的电量,q可正、可负,F为试验电荷所受的电场力(D)以上说法全不对。
5.一平行板电容器中充满相对介电常数为的各向同性均匀电介质。
已知介质两表面上极化电荷面密度为,则极化电荷在电容器中产生的电场强度的大小为 [ ](A)0εσ' (B) 02εσ' (C) 0εεσ' (D) εσ'6. 在平板电容器中充满各向同性的均匀电介质,当电容器充电后,介质中 D 、E 、P 三矢量的方向将是 [ ] (A) D 与E 方向一致,与P 方向相反 (B) D 与E 方向相反,与P 方向一致 (C) D 、E 、P 三者方向相同(D) E 与P 方向一致,与D 方向相反7. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布,如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: [ ] (A) 球壳内、外场强分布均无变化 (B) 球壳内场强分布改变,球壳外的不变 (C) 球壳外场强分布改变,球壳内的不变 (D) 球壳内、外场强分布均改变8. 一电场强度为E 的均匀电场,E 的方向与x 轴正向平行,如图所示,则通过图中一半径为R 的半球面的电场强度通量为 [ ](A) 2R E π;(B) 212R E π;(C) 22R E π;(D ) 0。
高三物理电磁学练习题及答案
高三物理电磁学练习题及答案一、选择题1. 带电粒子在磁场中受力的大小与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 粒子所受磁场的大小D. 粒子所受磁场的方向2. 一个导线以匀速矩形轨道绕一个垂直于轨道面的固定轴旋转。
导线的两端接有电源,通过导线的电流大小和方向在转过一个周期后是:A. 大小不变,方向也不变B. 大小不变,方向相反C. 大小相反,方向不变D. 大小相反,方向相反3. 两个平行的长直导线之间通过电流会发生什么现象?A. 两导线之间会产生吸引力B. 两导线之间会产生斥力C. 两导线之间会发生磁场D. 两导线之间电流大小会发生变化4. 一根导线形状为正方形,两边的两段导线与均匀磁场垂直并相等。
通过导线的总电流为I,导线所在的平面与磁场之间夹角为θ。
则导线所受力的大小为:A. IθB. Iθ/2C. Iθ^2D. Iθ^2/25. 在变化磁场中一个回路内的感应电动势的大小与以下哪个因素无关?A. 磁场的变化速率B. 回路面积的大小C. 回路的形状D. 磁场的方向二、填空题1. 两根平行导线之间的距离为0.2 m,通过第一根导线的电流为2 A,第二根导线与第一根导线的角度为30°,则在第二根导线上的磁感应强度为_____ T。
2. 一根长直导线通过电流3 A,产生的磁场的磁感应强度为____ T。
3. 一个圆形回路的半径为0.2 m,它所在的平面与一个磁场垂直,磁感应强度为0.5 T,磁场持续变化,则回路内感应电动势的大小为_____ V。
4. 一根导线形状为正方形,两边的两段导线与均匀磁场垂直并相等。
通过导线的总电流为4 A,导线所在的平面与磁场之间夹角为60°。
则导线所受力的大小为_____ N。
三、计算题1. 一条长直导线通过电流I,产生的磁场与另一根平行导线距离为d,并在两导线之间产生一个力作用。
当其中一根导线的电流大小为2I时,两导线之间的力变为原来的几倍?2. 一个包围面积为0.2 m^2的圆形回路,其平面与磁场成60°角,磁感应强度为0.4 T,磁场变化的速率为5 T/s,计算回路中感应电动势的大小。
电磁学考试题库及答案详解
电磁学考试题库及答案详解一、单项选择题1. 真空中两个点电荷之间的相互作用力遵循()。
A. 牛顿第三定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:B解析:库仑定律描述了真空中两个点电荷之间的相互作用力,其公式为F=k*q1*q2/r^2,其中F是力,k是库仑常数,q1和q2是两个电荷的量值,r是它们之间的距离。
2. 电场强度的方向是()。
A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于电荷分布D. 与电荷分布无关解析:电场强度的方向是从正电荷指向负电荷,这是电场的基本性质之一。
3. 电势能与电势的关系是()。
A. 电势能等于电势的负值B. 电势能等于电势的正值C. 电势能等于电势的两倍D. 电势能与电势无关答案:A解析:电势能U与电势V的关系是U=-qV,其中q是电荷量,V是电势。
4. 电容器的电容C与板间距离d和板面积A的关系是()。
A. C与d成正比B. C与d成反比C. C与A成正比D. C与A和d都成反比解析:电容器的电容C与板间距离d成反比,与板面积A成正比,公式为C=εA/d,其中ε是介电常数。
5. 磁场对运动电荷的作用力遵循()。
A. 洛伦兹力定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:A解析:磁场对运动电荷的作用力遵循洛伦兹力定律,其公式为F=qvBsinθ,其中F是力,q是电荷量,v是电荷的速度,B是磁场强度,θ是速度与磁场的夹角。
二、多项选择题1. 以下哪些是电磁波的特性?()A. 传播不需要介质B. 具有波粒二象性C. 传播速度等于光速D. 只能在真空中传播答案:ABC解析:电磁波的传播不需要介质,具有波粒二象性,传播速度等于光速,但它们也可以在其他介质中传播,只是速度会因为介质的折射率而改变。
2. 以下哪些是电场线的特点?()A. 电场线从正电荷出发,终止于负电荷B. 电场线不相交C. 电场线是闭合的D. 电场线的疏密表示电场强度的大小答案:ABD解析:电场线从正电荷出发,终止于负电荷,不相交,且电场线的疏密表示电场强度的大小。
电磁学练习题(毕奥—萨伐尔定律 )
磁感应强度,毕奥—萨伐尔定律、磁感应强度叠加原理1. 选择题1. 两条无限长载流导线,间距厘米,电流10A ,电流方向相同,在两导线间距中点处磁场强度大小为:( )(A )0 (B )πμ02000(C )πμ04000 (D )πμ0400 答案:(A )2.通有电流J 的无限长直导线弯成如图所示的3种形状,则P 、Q 、O 各点磁感应强度的大小关系为( )A .PB >Q B >O B B .Q B >P B >O BC . Q B >O B >P BD .O B >Q B >P B 答案:D^3.在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。
问那个区域中有些点的磁感应强度可能为零:( )A .仅在象限1B .仅在象限2C .仅在象限1、3D .仅在象限2、4 答案:D4.边长为a 的一个导体方框上通有电流I ,则此方框中心点的磁场强度( ) A .与a 无关 B .正比于2a C .正比于a D .与a 成反比 答案:D }5.边长为l 的正方形线圈,分别用图示两种方式通以电流I ,图中ab 、cd 与正方形共面,在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为( )A .01=B ,02=B B .01=B ,lIB πμ0222=C .l I B πμ0122=,02=BD .l I B πμ0122=, lIB πμ0222= 答案:C6.载流的圆形线圈(半径1a )与正方形线圈(边长2a )通有相同的电流强度I 。
若两个线圈中心1O 、2O 处的磁感应强度大小相同,则1a :2a =( ) A .1:1 B .π2:1 C .π2:4 D .π2:8 答案:D\7.如图所示,两根长直载流导线垂直纸面放置,电流A I 11=,方向垂宜纸面向外;电流A I 22=,方向垂直纸面向内。
则P 点磁感应强度B 的方向与X 抽的夹角为( )A .30°B .60°C .120°D .210°答案:A8.四条相互平行的载流长直导线电流强度均为I ,方向如图所示。
(完整版)电磁学题库(附答案)
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
(完整版)电磁学试题库试题及答案
电磁学试题库 试题3一、填空题(每小题2分,共20分)1、带电粒子受到加速电压作用后速度增大,把静止状态下的电子加速到光速需要电压是( )。
2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。
3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势(4、两个同心的导体薄球壳,半径分别为b a r r 和,其间充满电阻率为ρ的均匀介质(1)两球壳之间的电阻( )。
(2)若两球壳之间的电压是U ,其电流密度( )。
5、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强度的大小为( )6、一矩形闭合导线回路放在均匀磁场中,磁场方向与回路平 面垂直,如图所示,回路的一条边ab 可以在另外的两条边上滑动,在滑动过程中,保持良好的电接触,若可动边的长度为L ,滑动速度为V ,则回路中的感应电动势大小( ),方向( )。
7、一个同轴圆柱形电容器,半径为a 和b ,长度为L ,假定两板间的电压t U u m ω=sin ,且电场随半径的变化与静电的情况相同,则通过半径为r (a<r<b )的任一圆柱面的总位移电流是( )。
8、如图,有一均匀极化的介质球,半径为R ,极 化强度为P ,则极化电荷在球心处产生的场强 是( )。
9、对铁磁性介质M B H、、三者的关系是( ) )。
10、有一理想变压器,12N N =15,若输出端接一个4Ω的电阻,则输出端的阻抗为( )。
一、选择题(每小题2分,共20分) 1、关于场强线有以下几种说法( ) (A )电场线是闭合曲线(B )任意两条电场线可以相交(C )电场线的疏密程度代表场强的大小(D )电场线代表点电荷在电场中的运动轨迹R I O a b vPzRLI2、对某一高斯面S ,如果有0=⋅⎰S S d E则有( ) (A )高斯面上各点的场强一定为零 (B )高斯面内必无电荷 (C )高斯面内必无净电荷 (D )高斯面外必无电荷3、将一接地的导体B 移近一带正电的孤立导体A 时,A 的电势。
初三物理电磁学练习题及答案
初三物理电磁学练习题及答案一、选择题1. 电流通过一根电线,会产生什么样的磁场?A. 强磁场B. 弱磁场C. 无磁场答案:A2. 距离电流较远的地方,磁场的强度会如何变化?A. 增大B. 减小C. 保持不变答案:B3. 下列哪个物质不是磁性材料?A. 铁B. 镍C. 铜答案:C4. 电磁铁的磁性来源于什么?A. 电流B. 铁材料C. 温度变化答案:A5. 电磁感应现象最早由谁发现?A. 培根B. 爱迪生C. 法拉第答案:C二、填空题1. 电流的单位是______。
答案:安培(A)2. 在电磁铁中,使铁芯磁化的是_____。
答案:电流3. 电磁感应现象是指导体中的__________变化时,会在导体两端产生感应电流。
答案:磁通量4. 在一个闭合电路中,若磁通量减小,则通过电路的感应电流的方向为______。
答案:逆时针方向5. 电磁波是一种______波。
答案:横波三、解答题1. 描述电磁铁的工作原理及应用。
答案:电磁铁是利用通电线圈产生的磁力,使铁芯具有磁性的装置。
当通过电流时,电磁铁会产生磁场,这使得铁芯磁化,成为一个强磁体。
电磁铁广泛应用于电动机、电磁阀、电磁吸盘等设备中,在工业生产和生活中起到很大的作用。
2. 解释电磁感应现象,并举例说明。
答案:电磁感应现象是指导体中的磁通量发生变化时,会在导体两端产生感应电流的现象。
当导体与磁场相互运动或磁场发生变化时,导体中的自由电子会受到磁场的作用,发生运动产生感应电流。
例如,当将一根导体放入磁场中并快速移动时,导体中会产生感应电流,从而使灯泡发光。
3. 简述电磁波的特点及应用领域。
答案:电磁波是一种横波,具有能量传播速度快、可以穿透空气、真空等介质,且具有多种波长和频率的特点。
电磁波的应用领域非常广泛,包括电视、无线电通信、雷达、医疗技术、卫星通信等。
通过对电磁波的利用,人们可以进行远距离通信、进行遥感探测、进行医学诊断和治疗等。
这些题目和答案旨在帮助初三学生巩固和理解物理电磁学的相关知识点。
高中物理《电磁学》练习题(附答案解析)
高中物理《电磁学》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.下列哪种做法不属于防止静电的危害()A.印染厂房中保持潮湿B.油罐车的尾部有一铁链拖在地上C.家用照明电线外面用一层绝缘胶皮保护D.在地毯中夹杂一些不锈钢丝纤维2.避雷针能起到避雷作用,其原理是()A.尖端放电B.静电屏蔽C.摩擦起电 D.同种电荷相互排斥3.2022年的诺贝尔物理学奖同时授予给了法国物理学家阿兰•阿斯佩、美国物理学家约翰•克劳泽及奥地利物理学家安东•蔡林格,以表彰他们在“纠缠光子实验、验证违反贝尔不等式和开创量子信息科学”方面所做出的杰出贡献。
许多科学家相信量子科技将改变我们未来的生活,下列物理量为量子化的是()A.一个物体带的电荷量B.一段导体的电阻C.电场中两点间的电势差D.一个可变电容器的电容4.关于电流,下列说法中正确的是()A.电流跟通过截面的电荷量成正比,跟所用时间成反比B.单位时间内通过导体截面的电量越多,导体中的电流越大C.电流是一个矢量,其方向就是正电荷定向移动的方向D.国际单位制中,其单位“安培”是导出单位5.转笔(Pen Spinning)是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示。
转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是()A.笔杆上的点离O点越近的,做圆周运动的向心加速度越大B.若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动而被甩走C.若该同学使用的是金属笔杆,且考虑地磁场的影响,由于笔杆中不会产生感应电流,因此金属笔杆两端一定不会形成电势差D.若该同学使用的是金属笔杆,且考虑地磁场的影响,那么只有在竖直平面内旋转时,金属笔杆两端才会形成电势差6.关于电场力做功与电势差的关系,下列说法正确的是()A.M、N两点间的电势差等于将单位电荷从M点移到N点电场力做的功B.不管是否存在其他力做功,电场力对电荷做多少正功,电荷的电势能就减少多少C.在两点间移动电荷电场力做功为零,则这两点一定在同一等势面上,且电荷一定在等势面上移动D.在两点间移动电荷,电场力做功的多少与零电势的选取有关7.图甲和乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈。
电磁学题库(附答案)知识分享
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E ϖ的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E ϖϖϖ300200+= .试求穿过各面的电通量.E ϖqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p ϖ的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRϖⅠⅡ Ⅲ dba 45︒cEϖσAσBA BOa θ0 q AR ∞∞ O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λ26. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ϖ∆和2F ϖ∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F ϖ和cd F ϖ的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F ϖ和da F ϖ的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B ϖ方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ϖ∆和2F ϖ∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F ϖ和cd F ϖ的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F ϖ和da F ϖ的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B ϖ.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1 I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B ϖ的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B ϖ的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B ϖ.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B ϖ的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B ϖ的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p ϖ与电子轨道运动的动量矩L ϖ大小之比,并指出m p ϖ和L ϖ方向间的关系.(电子电荷为e ,电子质量为m )41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I ϖ对电流元22d l I ϖ的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 静电场1一、选择题1、下列几个叙述中哪一个是正确的? [ ](A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C )场强方向可由E =F /q 定出,其中q 为试验电荷的电量,q 可正、可负,F为试验电荷所受的电场力。
(D )以上说法都不正确。
2、一均匀带电球面,电荷面密度为 ,球面内电场强度处处为零,球面上面元dS 带有dS的电荷,该电荷在球面内各点产生的电场强度为 [ ] (A) 处处为零; (B) 不一定都为零; (C) 处处不为零; (D) 无法判断。
3、如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 [ ](A) 穿过S 面的电通量改变,O 点的场强大小不变;(B) 穿过S 面的电通量改变,O 点的场强大小改变;(C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。
4、 关于高斯定理的理解有下面几种说法,其中正确的是 [(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷;(C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。
5、 两个均匀带电的同心球面,半径分别为R 1、R2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布[ ](A) (B) (C) (D)12121221二、填空题1、 如图所示,边长分别为a 和b 的矩形,其A 、B 、C 三个顶点上分别放置三个电量均为q 的点电荷,则中心O 点的场强为方向 。
2、在场强为E的均匀电场中,有一半径为R 长为L 的圆柱面,其轴线与E的方向垂直,在通过轴线并垂直E方向将此柱面切去一半,如图所示,则穿过剩下的半圆柱面的电场强度通量等于 。
3、 两块“无限大”的均匀带电平行平板,其电荷面密度分别为 (0 )及2 ,如图所示,试写出各区域的电场强度E v:I 区E v的大小 ,方向 ; II 区E v的大小 ,方向 ; III 区E v的大小 ,方向 。
三、计算题1.如图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上距杆一端距离为d 的P 点的电场强度。
ABC60ba O q Ld•P2I II III第六章 静电场2一、选择题1、在点电荷+q 的电场中,若取图中p 点处电势为零点,则M 点的电势为 [ ]A 、aq 04 B 、aq 08 C 、aq 04 D 、aq 082、在电荷为Q 的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点,a 、b 两点距离点电荷A 的距离分别为1r 和2r ,如上图右所示,则移动过程中电场力做的功为A:012114Q r r ;B:012114qQ r r ;C:012114qQ r r; D : 0214qQ r r 。
[ ] 3、对于带电的孤立导体球 [ ](A) 导体内的场强与电势大小均为零。
(B) 导体内的场强为零,而电势为恒量。
(C) 导体内的电势比导体表面高。
(D) 导体内的电势与导体表面的电势高低无法确定。
二、填空题1、真空中,有一均匀带电细圆环,电荷线密度为 ,其圆心处的电场强度E 0=____,电势U 0=_________.(选无穷远处电势为零)2、A 、B 两点分别有点电荷q 1和-q 2,距离为R ,则A 、B 两点连线中点电势U= (无穷远处电势设为零)。
三、计算题1、若电荷以相同的面密度 均匀分布在半径分别为110r cm 和220r cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300V ,试求两球面的电荷面密度 的值。
(122208.8510/C N m )A1r 2r ab2、两个点电荷,电量分别为 +q 和 -3q ,相距为 d ,求: (1)在它们连线上0E v的点与+q 相距多远?(2)若选取无穷远处电势为零,两点电荷之间电势 U=0 的点与 +q 相距多远?3、真空中无限长导体圆柱半径R 1,外套同轴圆柱形导体薄壳,半径R 2。
单位长度带电荷分别为λ1和λ2。
求空间各处的场强。
第七章 稳恒磁场1一、选择题1、如图所示,两种形状的载流线圈中的电流强度相同,则O 1、O 2处的磁感应强度大小关系是 [ ](A )21O O B B ;(B )21O O B B ; (C )21O O B B ;(D )无法判断。
2、在磁感应强度为B 的均匀磁场中, 放入一载有电流 I 的无限长直导线.在此空间中磁感应强度为零之处为 [ ](A )以半径为BIr 20 的无限长圆柱表面处;(B )无限长圆柱面上的ab 线;(C )无限长圆柱面上的cd 线; (D )无限长圆柱面上的ef 线。
3、边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷,此正方形以角速度 绕AC 轴旋转时,在中心O 点产生的磁感应强度大小为1B ;此正方形同样以角速度 绕I1O R 2R I 2O 1R 2R过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为2B ,则1B 与2B 间的关系为: [ ](A)12B B ; (B) 122B B ; (C) 1212B B; (D) 1214B B 。
4、对于安培环路定理的理解, 正确的是 [ ](A )若 l d B0, 则必定L 上B 处处为零; (B )若 l d B0, 则L 包围的电流的代数和为零;(C )若 l d B0, 则必定L 不包围电流;(D )若 l d B0, 则L 上各点的B 仅与L 内电流有关。
二、填空题1、如图所示,一条无穷长载流直导线在一处折成直角。
P 点在折线的延长线上,到折点距离a ,则P 点磁感应强度大小。
方向。
2、如图,一条无穷长直导线在一处弯成半径R 的半圆形,电流I ,则圆心O 处磁感应强度大小,方向。
3、一磁场的磁感应强度为k c j b i a B(T),则通过一半径为R ,开口向Z 方向的半球壳表面的磁通量大小为.。
4、如图所示,两根长直导线通有电流I ,图中三个环路在每种情况下l d B(a 环路), l d B (b 环路),l d B(c 环路)三、计算题1、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ,求与平板共面距平板一边为b 的一点P 的磁感应强度。
2、线圈均匀密绕在截面为长方形的整个木环上。
(木料对磁场分布无影响),共有N 匝。
(1)求通入电流I 后环内外磁场的分布,(2)求环内磁通。
第七章 稳恒磁场2一、选择题1、在匀强磁场中,有两个平面线圈,共面积S 1=2S 2,通有电流I 1=2I 2,它们所受最大力矩之比M 1/M 2为 [ `] (A )1;(B )2;(C )1/4 ;(D )4 。
2、在阴极射线管外,如图所示放置一个蹄形磁铁,则阴极射线将(A) 向下偏. (B) 向上偏. [ ](C) 向纸外偏. (D) 向纸内偏.3、如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是: [ ](A) ab 边转入纸内,cd 边转出纸外; (B) ab 边转出纸外,cd 边转入纸内; (C) ad 边转入纸内,bc 边转出纸外; (D) ad 边转出纸外,bc 边转入纸内。
4、一无限长载流导线通有电流I1,长为b 通有电流I2的导线AB 与长直载流导线垂直,其A 端距长直导线的距离为a, 则导线AB 受到的安培力大小为 [ ]NS+-abcd(A)a bI I 2210; (B)22102b a b I I ; (C)a b a a I I ln2210 ; (D) aba I I ln 2210二、填空题1、如图,一半径R=0.10m 的半圆形闭合线圈,载有电流I =10A ,放在均匀外磁场中,磁场方向与线圈平面平行,磁感应强度的大小B= 5.0×10-1特斯拉,则该线圈所受磁力矩的大小为,方向。
在这力矩的作用下线圈转900(即转到线圈平面与B 垂直),则该力矩所作的功为。
2、在匀强磁场B 中,取一半径为R 的圆,圆面法线n 与B 成60度角,如图所示,求通过以该圆周为边线的如图所示的任意曲面S 的磁通量为 。
三、计算题1、一圆线圈的半径为R ,载有电流I ,放在均匀外磁场B 中,线圈的右旋法线方向与B 的方向相同,则线圈导线上的张力为多少?3、无限长导体圆柱半径R ,其中挖去半径为R/2的小导体圆柱,成为一个导体管,两轴相距R/2,若有电流I 沿导体管流动,电流均匀分布,方向沿轴向。
求原圆柱轴线上的磁感应强度的大小。