九年级数学讲义-22 1 3 二次函数的图象和性质5.ppt
合集下载
人教版九年级数学上册《二次函数图像与性质》课件(共14张PPT)
相同点:开口:向上, 顶点:原点(0,0)——最低点 对称轴: y 轴
增减性:y 轴左侧,y随x增大而减小
y 轴右侧,y随x增大而增大
y x2
8 6
y 2x2
பைடு நூலகம்
不同点:a 值越大,抛物线的开 口越小.
4 2 -4 -2
y 1 x2 2
24
探究
画出函数 yx2,y1x2,y2x2 的图象,并考虑这些抛物 2
|a|越大,抛物线的开口越小;
二次函数y=ax2的性质
y=ax2
a>0
a<0
图象
(0,0)最低点
开口方向 开口向上
开口向下
对称轴 对称轴是y轴,即直线x=0
顶点
顶点坐标是原点(0,0)
最值 当x=0时,y最小值=0 当x=0时,y最大值=0
增减性
当x<0时,y随x的增大而减小 当x<0时,y随x的增大而
1
2
3 ···
y = x2 ··· 9 4 1 0 1 4 9 ···
2. 根据表中x,y的数值在坐标平面中描点(x,y)
3.连线 如图,再用平滑曲线顺次
9
连接各点,就得到y = x2 的图象
.
6
y = x2
3
-3
3
二次函数 y = x2的图象是一条曲线,它的形状类似于投篮球时球在空中 所经过的路线,只是这条曲线开口向上,这条曲线叫做抛物线 y = x2 ,
谢谢观赏
You made my day!
我们,还在路上……
当x>0时,y随x的增大而增大
增大;当x>0时,y随x的 增大而减小
|a|越大,抛物线的开口越小;
二次函数图像与性质ppt课件
D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式
《二次函数的图像和性质》PPT课件 人教版九年级数学
2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
人教版数学九年级上册《二次函数的图像和性质》课件PPT
2
2
2
2
b
1
1,
4ac b2
4
1 2
5 2
12
4
2
2a
y
21
1 2
x
1
2
4a
2
,
4
1 2
2
2
∴顶点为(1,-2),对称轴为直线 x=1。
练习2 用公式法把y 2x2 8x 6 化成
b 2a
,
4ac 4a
b2
;
(2)对称轴是直线 x b
2a
(3)开口方向:当 a>0时,抛物线开
口向上;当 a<0时,抛物线开口向下。
(4)最值:
如果a>0,当 x
b 2a
时,函数有最小值,
y最小=
4ac 4a
b
2
,
如果a<0,当
x
b 2a
时,函数有最大值,
y最大=
那么一般地,函数y ax2 的图象怎样平 移就得到 y ax2 bx c 的图象呢?
1.用配方法把 y ax2 bx c 化为
y a x h2 k 的形式。
例1
用配方法把 y 1 x2 3x 5
2
2
化为
y a x h2 k 的形式,求出顶点坐标和对称轴。
分析:我们可以用顶点坐标公式求出图 象的顶点,过顶点作平行于y轴的直线就 是图象的对称轴.在对称轴的一侧再找 两个点,则根据对称性很容易找出另两 个点,这四个点连同顶点共五个点,过 这五个点画出图像.
九年级数学二次函数的图象和性质课件
(h>0)
向下平移k个单位
(k<0)
y=
2
ax
|k|
-
探究
抛物线y = a(x-h)2+k抛物线y=ax2 有什么关系?
y=ax2
向右(h>0)或向左(h<0)平
移|h|个单位长度
2
向上(k﹥0)或
向下(k﹤0)平
移|k|个单位长度
向上(k﹥0)或
向下(k﹤0)平
移|k|个单位长度
y=ax2+k
=a −h
向右(h>0)或向左(h<0)
平移|h|个单位长度
= a − h 2 +k
1
2
【提问】若将抛物线y= − x2 先向右平移3个单位,再向下平移2个单
思考
位后所得的图象与抛物线 = −
抛物线 =
1
−
2
+1
2
− 1与抛物线y=
1 2
− x
2
1
2
+1
2
− 1有什么关系呢?
有什么关系?
y=
1
−
2
与抛物线y=
+ 1, =
1 2
− x
2
1
−
2
−1
有什么关系?
二次函数"y=ax2+c"的性质
抛物线y = ax2+k
a>0
a<0
k>0
图象
k<0
开口方向
向上
向下
对称轴
y轴(直线x=0)
y轴(直线x=0)
顶点坐标
(0,k)
(0,k)
函数的增减性
向下平移k个单位
(k<0)
y=
2
ax
|k|
-
探究
抛物线y = a(x-h)2+k抛物线y=ax2 有什么关系?
y=ax2
向右(h>0)或向左(h<0)平
移|h|个单位长度
2
向上(k﹥0)或
向下(k﹤0)平
移|k|个单位长度
向上(k﹥0)或
向下(k﹤0)平
移|k|个单位长度
y=ax2+k
=a −h
向右(h>0)或向左(h<0)
平移|h|个单位长度
= a − h 2 +k
1
2
【提问】若将抛物线y= − x2 先向右平移3个单位,再向下平移2个单
思考
位后所得的图象与抛物线 = −
抛物线 =
1
−
2
+1
2
− 1与抛物线y=
1 2
− x
2
1
2
+1
2
− 1有什么关系呢?
有什么关系?
y=
1
−
2
与抛物线y=
+ 1, =
1 2
− x
2
1
−
2
−1
有什么关系?
二次函数"y=ax2+c"的性质
抛物线y = ax2+k
a>0
a<0
k>0
图象
k<0
开口方向
向上
向下
对称轴
y轴(直线x=0)
y轴(直线x=0)
顶点坐标
(0,k)
(0,k)
函数的增减性
二次函数的图像和性质PPT课件(共21张PPT)
相同点
相同点:开口都向下,顶点是
原点而且是抛物线的最高点,
对称轴是 y 轴.
不同点
不同点:|a|越大,抛物线的
开口越小.
x
O
y
-4 -2
2
4
-2
-4
-6
y 1 x2 2
-8
y x2
y 2x2
尝试应用
1、函数y=2x2的图象的开向口上 ,对称轴y轴 ,顶点是(0,0;)
2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点是(0,0;) 3、已知抛物线y=ax2经过点A(-2,-8).
不在此抛物线上。
小结
1. 二次函数的图像都是什么图形?
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物 线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物 线的最高点;
(3)抛物线的增减性
(4)|a|越大,抛物线的开口越小;
得到y=-x2的图像.
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3 -4
-5
-6
y=-x2
-7
-8 -9
-10
二次函数的图像
从图像可以看出,二次函数y=x2和y=-x2的图像都是一条
曲线,它的形状类似于投篮球或投掷ห้องสมุดไป่ตู้球时球在空中所经过
的路线.
这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
解:分别填表,再画出它们的图象,如图 当a<0时,抛物线的开口向下,顶点是抛物线的最高点;
在同一直角坐标系中画出函数y=-x2、y=-2x2、y=- x2的图象,有什么共同点和不同点? -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.
二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
22.1.3二次函数的图像与性质 初中初三九年级数学教学课件PPT 人教版
y=2(x+3)2+5 y=-3(x-1)2-2 y = 4(x-3)2+7 y=-5(2-x)2-6
开口方向 对称轴 顶点坐标
向上 向下 向上
直线x=-3 直线x=1 直线x=3
(-3, 5 ) ( 1, -2 ) ( 3 , 7)
向下
直线x=2 ( 2 , -6 )
x=h 减小 h
x=h 增大 h
可以看作互相平移得到的.
平移规律
左 右 平 移 y = ax2 + k
பைடு நூலகம்
y = a( x - h )2 + k 上 下 平 移
简记为: 上下平移, 括号外上加下减;
y = a(x - h )2 左右平移,
上下平移 y = ax2 左右平移
括号内左加右减. 二次项系数a不变.
当堂练习
1.完成下列表格: 二次函数
左右平移:括号内 左加右减自变量; 上下平移:括号外 上加下减函数值.
一般地,抛物线 y = a(x-h)2+k与y = ax2形状相同,位置不同.
数学享有盛誉还有另一个原因: 正是数学给了各种精密自然科学一定程 度的可靠性,没有数学,它们不可能获 得这样的可靠性。
――艾伯特·爱因斯坦
这是函数 y=a(x-h)2+k 的性质
哦!
(h,k) 小
(h,k) 大
向上
增大 k
向下
减小 k
练一练
1.请回答抛物线y = 4(x-3)2+7由抛物线y=4x2怎样平移得到? 由抛物线向上平移7个单位再向右平移3个单位得到的.
2.如果一条抛物线的形状与 y 1 x2 2形状相同,且 3
顶点坐标是(4,2),试求这个函数关系式.
开口方向 对称轴 顶点坐标
向上 向下 向上
直线x=-3 直线x=1 直线x=3
(-3, 5 ) ( 1, -2 ) ( 3 , 7)
向下
直线x=2 ( 2 , -6 )
x=h 减小 h
x=h 增大 h
可以看作互相平移得到的.
平移规律
左 右 平 移 y = ax2 + k
பைடு நூலகம்
y = a( x - h )2 + k 上 下 平 移
简记为: 上下平移, 括号外上加下减;
y = a(x - h )2 左右平移,
上下平移 y = ax2 左右平移
括号内左加右减. 二次项系数a不变.
当堂练习
1.完成下列表格: 二次函数
左右平移:括号内 左加右减自变量; 上下平移:括号外 上加下减函数值.
一般地,抛物线 y = a(x-h)2+k与y = ax2形状相同,位置不同.
数学享有盛誉还有另一个原因: 正是数学给了各种精密自然科学一定程 度的可靠性,没有数学,它们不可能获 得这样的可靠性。
――艾伯特·爱因斯坦
这是函数 y=a(x-h)2+k 的性质
哦!
(h,k) 小
(h,k) 大
向上
增大 k
向下
减小 k
练一练
1.请回答抛物线y = 4(x-3)2+7由抛物线y=4x2怎样平移得到? 由抛物线向上平移7个单位再向右平移3个单位得到的.
2.如果一条抛物线的形状与 y 1 x2 2形状相同,且 3
顶点坐标是(4,2),试求这个函数关系式.
初三二次函数课件ppt课件
02
二次函数的解析式
一般式
总结词
最通用的二次函数形式,包含三个系数a、b和c。
详细描述
一般式为y=ax^2+bx+c,其中a、b和c为实数,且a≠0。它可以表示任意二次 函数,通过调整系数a、b和c的值,可以改变函数的形状、开口方向和大小。
顶点式
总结词
包含顶点坐标的二次函数形式。
详细描述
顶点式为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。通过顶点式可以直接 读出顶点的坐标,并且可以快速判断抛物线的开口方向和对称轴。
伸缩变换
总结词
伸缩变换是指二次函数的图像在平面坐标系中沿x轴或y轴方向进行缩放。
详细描述
伸缩变换包括沿x轴方向的伸缩和沿y轴方向的伸缩。沿x轴方向的伸缩是指将图像在x轴方向上放大或 缩小,对应的函数变换是将x替换为kx(k>1表示放大,0<k<1表示缩小)。沿y轴方向的伸缩是指将图 像在y轴方向上放大或缩小,对应的函数变换是将y替换为ky(k>1表示放大,0<k<1表示缩小)。
利用二次函数求面积
详细描述
通过设定一个变量为常数,将 二次函数转化为一次函数,再 根据一次函数的性质求出面积 。
总结词
几何图形面积
详细描述
在几何图形中,如矩形、三角 形、圆等,可以利用二次函数
来求解面积。
生活中的二次函数问题
总结词
生活中的二次函数
总结词
实际应用案例
详细描述
在生活中,许多问题都可以用二次函数来 描述和解决,如速度、加速度、位移等物 理量之间的关系。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形 状由系数$a$决定。
22.1《二次函数的图象和性质》课件(共5课时)
2.类比探究二次函数 y = ax2 + k 的图象和性质
归纳: 一般地,当 a>0 时,抛物线 y = ax2 + k 的对称轴是 y 轴,顶点是(0,k),开口向上,顶点是抛物线的最 低点,a 越大,抛物线的开口越小.当 x<0 时, y 随 x 的增大而减小,当 x>0 时, y 随 x 的增大而增大.
3.练习、巩固二次函数的定义
练习2 填空: (1)一个圆柱的高等于底面半径,则它的表面积 S 与底面半径 r 之间的关系式是__S_=__4_π_r_2_; (2) n 支球队参加比赛,每两队之间进行两场比 赛,则比赛场次数 m 与球队数 n 之间的关系式是 ___m_=__n(__n_-_1__)____.
某种产品现在的年产量是 20 t ,计划今后两年增加 产量.如果每一年都比上一年的产量增加 x 倍,那么两 年后这种产品的产量 y 将随计划所定的 x 的值而确定, y 与 x 之间的关系应该怎样表示?
y 20x2 40x 20
2.通过实例,归纳二次函数的定义
这三个函数关系式有什么共同点?
y 6x2 m 1 n2 1 n
2
4.小结
(1)本节课学了哪些主要内容? (2)抛物线 y = ax2 + k 与抛物线 y = ax2 的区别与联 系是什么?
5.布置作业
教科书习题 22.1 第 5 题(1).
九年级 上册
22.1 二次函数的图象和性质 (第4课时)
• 本课是在学生已经学习了二次函数 y = ax2,y = ax2+ k 的基础上,继续进行二次函数的学习,这是对二次函 数图象和性质研究的延续.
2.类比探究 y a(x h)2, y a(x h)2 k 的图 象和性质
二次函数图像与性质(共44张PPT)
与y=3x2的图象形状
相同,可以看作是抛
物线y=3x2整体沿x轴 向右平移了1 个单位
图象是轴对称图形
对称轴是平行于
y轴的直线:x=1.
二次项系数相同
a>0,开口都向上.
顶点坐标
是点(1,0).
想一想,在同一坐标系中作二次函数
y=3(x+1)2的图象,会在什么位置?
(4)x取哪些值时,函数y=3(x1)2的值随x值的增大而增大 ?x取哪些值时,函数y=3(x-1)2 的值随x的增大而减少?
2 (4)当x<0时,随着x的值增大,y 的1 值如何变化?当x>0呢?
(5)当x取-4什么-值3时,-y2的值最-1小?最0 小值1是什么2?你是3如何4知道的x ? -2
y x2
二次函数y=x2的 图象形如物体抛射 时所经过的路线,我
们把它叫做抛物线.
这条抛物线关于
y轴对称,y轴就
是它的对称轴.
二次函数的图象有什么关系?
你能用配方的方法把y=3x2-6x+5变形成y=3(x-1)2+2的形 式吗?
由于y=3x2-6x+5=3(x-1)2+2,因此我们先作二次函数 y=3(x-1)2的图象.
在同一坐标系中作出二次函数y=3x2和y=3(x-1)2的图象.
想一想
比较函数y 3x2与y 3x1的2 图象
右侧, y随着x的增大而减小.
当x=0时,最小值为0.
当x=0时,最大值为0.
做一做
函数y=ax2(a≠0)的图象和性质:
y
在同一坐标系中作出函数 y=x2和y=-x2的图象
y=x2
y=x2和y=-x2是y=ax2当a=±1
相同,可以看作是抛
物线y=3x2整体沿x轴 向右平移了1 个单位
图象是轴对称图形
对称轴是平行于
y轴的直线:x=1.
二次项系数相同
a>0,开口都向上.
顶点坐标
是点(1,0).
想一想,在同一坐标系中作二次函数
y=3(x+1)2的图象,会在什么位置?
(4)x取哪些值时,函数y=3(x1)2的值随x值的增大而增大 ?x取哪些值时,函数y=3(x-1)2 的值随x的增大而减少?
2 (4)当x<0时,随着x的值增大,y 的1 值如何变化?当x>0呢?
(5)当x取-4什么-值3时,-y2的值最-1小?最0 小值1是什么2?你是3如何4知道的x ? -2
y x2
二次函数y=x2的 图象形如物体抛射 时所经过的路线,我
们把它叫做抛物线.
这条抛物线关于
y轴对称,y轴就
是它的对称轴.
二次函数的图象有什么关系?
你能用配方的方法把y=3x2-6x+5变形成y=3(x-1)2+2的形 式吗?
由于y=3x2-6x+5=3(x-1)2+2,因此我们先作二次函数 y=3(x-1)2的图象.
在同一坐标系中作出二次函数y=3x2和y=3(x-1)2的图象.
想一想
比较函数y 3x2与y 3x1的2 图象
右侧, y随着x的增大而减小.
当x=0时,最小值为0.
当x=0时,最大值为0.
做一做
函数y=ax2(a≠0)的图象和性质:
y
在同一坐标系中作出函数 y=x2和y=-x2的图象
y=x2
y=x2和y=-x2是y=ax2当a=±1
中考数学专题《二次函数》复习课件(共54张PPT)
当x b 时, y最小值为 4ac b2
2a
4a
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对 称轴的右侧, y随着x的增大而减小.
当x b 时, y最大值为 4ac b2
2a
例1: 已知二次函数 y 1 x2 x 3
2
2
(1)求抛物线开口方向,对称轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两
点,求C,A,B的坐标。
(3)x为何值时,y随的增大而减少,x为何值时,
y有最大(小)值,这个最大(小)值是多少?
(4)x为何值时,y<0?x为何值时,y>0?
写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
二次函数复习
二次函数知识点:
• 1、二次函数的定义 • 2、二次函数的图像及性质 • 3、求解析式的三种方法 • 4、a,b,c及相关符号的确定 • 5、抛物线的平移 • 6、二次函数与一元二次方程的关系 • 7、二次函数的应用题 • 8、二次函数的综合运用
1、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0)
a= ___. -2
2、二次函数的图像及性质
y
y
0
x
0
x
抛物线 顶点坐标 对称轴
人教版九年级数学上册第22章第1节二次函数的图像和性质(共46张PPT)
1.y=x2 8x 7
2.y=-2x2 9x 17
3.y=mx2 kx-4k2
x
⑶a,b决定抛物线对称轴的位置: 对称轴是直线x =
b 2a
① a,b同号<=> 对称轴在y轴左侧;
② b=0 <=> 对称轴是y轴;
③ a,b异号<=> 对称轴在y轴右侧
y
左同右异
o
x
练习:
1.若抛物线yax2 bxc的图象如图,说出a,b,
c的符号。
2.若抛物线yax2 bxc经过原点和第一二三
象限,则a,b,c的取值范围分别是
3.若抛物线yax2 bxc的图象
如图所示,则一次函数y=ax+bc
的图象不经过
。y
。 y ox
o 图1
x 图2
y abc 0 ( 4 ) 与 直 线 x1 交 点 y a b c 0
y a b c 0
方法归纳
1
配方法
2
公式法
二次函数y=ax2+bx+c(a≠0)的图象和性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
抛物线 顶点坐标
对称轴 位置
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a
由a,b和c的符号确定
y=ax2+bx+c(a<0)
小结 拓展 回味无穷 驶向胜利 的彼岸
二次函数y=ax2+bx+c(a≠0)与=ax²的关系
2.不同点:
(1)位置不同(2)顶点不同:分别是
b 2a
,
4acb2 4a
22.1.3二次函数的图像和性质
的两实数根
(7)抛物线 y ax bx c 与x轴的交点情况
2
可由对应的一元二次方程ax 2 bx c 0
的根的判别式判定: ① △>0有两个交点抛物线与x轴相交; ② △=0有一个交点抛物线与x轴相切; ③ △<0没有交点抛物线与x轴相离。
再见
1
y
x -2 -1 o 1 2
y轴(直线x 0)
y轴(直线x 0)
(0,0) (0, c)
( h, k )
一般地,抛物线y=a(x-h)2+k与y=ax2 的 形状 相同, 位置 不同
y = a( x – h )2 + k 平左 移右 y = ax2 + k 上下平移 y = ax2 y=ax2 平上 移下 y = a(x – h )2
解:①抛物线经过原点,则当x=0时, y=0,所以0 02 k 4 0 k 7 ,所以k= -7,所以当k=-7时,抛物线经过原点; ②抛物线顶点在y轴上,则顶点横坐标为0, k 4 b 即 0 ,所以k=-4,所 以当k=-4时,抛物线顶点在y轴上。
b h=- 2a
4ac b 2 k= 4 a
配方后的表达 式通常称为配 方式或顶点式
综上得
2 4 ac b b y=ax2+bx+c=a(x+ 2a )2+ 4a
抛物线y=ax2+bx+c (a≠0)
2 b 2 4ac b =a(x+ 2a ) + 4a
\
识记
因此,抛物线y=ax2+bx+c 的对称轴是
直接画函数
1 2 y x 6 x 21 2
的图象
根据顶点式确定开口方向,对称轴,顶点坐标.
1 ∵a= >0, 2
(7)抛物线 y ax bx c 与x轴的交点情况
2
可由对应的一元二次方程ax 2 bx c 0
的根的判别式判定: ① △>0有两个交点抛物线与x轴相交; ② △=0有一个交点抛物线与x轴相切; ③ △<0没有交点抛物线与x轴相离。
再见
1
y
x -2 -1 o 1 2
y轴(直线x 0)
y轴(直线x 0)
(0,0) (0, c)
( h, k )
一般地,抛物线y=a(x-h)2+k与y=ax2 的 形状 相同, 位置 不同
y = a( x – h )2 + k 平左 移右 y = ax2 + k 上下平移 y = ax2 y=ax2 平上 移下 y = a(x – h )2
解:①抛物线经过原点,则当x=0时, y=0,所以0 02 k 4 0 k 7 ,所以k= -7,所以当k=-7时,抛物线经过原点; ②抛物线顶点在y轴上,则顶点横坐标为0, k 4 b 即 0 ,所以k=-4,所 以当k=-4时,抛物线顶点在y轴上。
b h=- 2a
4ac b 2 k= 4 a
配方后的表达 式通常称为配 方式或顶点式
综上得
2 4 ac b b y=ax2+bx+c=a(x+ 2a )2+ 4a
抛物线y=ax2+bx+c (a≠0)
2 b 2 4ac b =a(x+ 2a ) + 4a
\
识记
因此,抛物线y=ax2+bx+c 的对称轴是
直接画函数
1 2 y x 6 x 21 2
的图象
根据顶点式确定开口方向,对称轴,顶点坐标.
1 ∵a= >0, 2
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)y=ax2+c
3)y=a(x-h)2
首页
2 .请说出二次函数y=ax²+c与y=ax²的平移关系。 y=a(x-h)2与y=ax²的平移关系
将抛物线y=ax²沿y轴方向平移c个单位,得抛物线 y =ax²+c 将抛物线y=ax²沿x轴方向平移h个单位,得抛物线 y=a(x-h)2 3 .请说出二次函数y=2(x-3)2与抛物线y=2(x+3)2如何 由y=2x2 平移而来
第3课时 二次函数y=a(x-h)2+k的图
象与性质
一、情景引入 二、合作探究 三、课堂小结
探究点一 二次函数y=a(x-h)2+k 的图象、性质及平移
提出 问题
知识 要点
典例 精析
巩固 训练
四、课后作业
一、情景导入
1.说出下列函数图象的开口方向,对称轴,顶点,最值和 增减变化情况:
1)y=ax2
a<0 向下 x=h (h,k) x=h时, x<h时, y随x的增大而增 有最大 大; x>h时, y随x的增大而 值y=k 减小.
首页
典例精析
例1:求二次函数y=x2- 2x-1的顶点坐标、 对称轴及其最值.
解 y x2 2x 1 x2 2x 111
: (x 1)2 2∴ 顶点坐标为(1,-2), 对称轴是直线x=1.当x=1,时,y最小 值=-2.
首页
y
y=2x2 +1
y=2x2
5
4.
3.
2.
1.
y=2(x-1)2+1
-3. -2 -1 0.
1. 2. 3.
x
-1
首页
联系: 将函数 y=2x²的图象向右平移1个 单位, 就得到
y=2(x-1)²的图象; 在向上平移2个单位, 得到函数 y=2(x-1)²+1的图象.
相同点: (1)图像都是抛物线, 形状相同, 开口方向相同. (2)都是轴对称图形. (3)顶点都是最低点.
x
C.①②④
D.②③④
解析:∵- =-1,∴b=2a,即b-2a =0,∴①x=正-1 确;∵当
x=-2时点在x轴的上方,即4a-2b+c>0,②不正确;
∵4a+2b+c=0,∴c=-4a-2b,∵b=2a,∴a-b+c=a-b-4a-2b=-3a-
3对④b=正称-9确轴a,.的∴距综③离上正小所确于述;点,∵(选抛B23 .物,线y2)是到轴对对称称轴图的形距,离点,(即-3,y1>yy1)2,到∴
(4) 在对称轴左侧,都随 x 的增大而减小,在对称 轴右侧,都随 x 的增大而增大.
(5)它们的增长速度相同.
首页
不同点: (1)对称轴不同. (2)顶点不同. (3)最小值不相同.
知识要点
y=a(x 开口 对 顶 最值 -h)²+k 方向 称 点
轴
增减情况
a>0 向上 x=h (h,k) x=h时, x<h时, y随x的增大而减 有最小 小; x>h时,y随x的增大而 值y=k 增大.
首页
首页
ቤተ መጻሕፍቲ ባይዱ
b 2a
例2:(2014·聊城中考)如图是二次函数
y=ax2+bx+c(a≠0)图象的一部分,x=-1是对称轴,
有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=
-9a;④若(-3,y1),(3 ,y2)是抛物线y 上两点,
则y1>y2.其中正确的是 2
()
A.①②③
B.①③④
O2
首页
巩固训练
见《学练优》第33页课堂达标训练第1、2、 3、4、5、6、7、8题
首页
三、课堂小结
y=a(x-h)²+k • 对称轴 直线 x=h • 顶点 (h,k) • 最值 当a>0时 x=h时,y有最小值k
当a<0时 x=h时,y有最大值k
首页
四、课外作业
见《学练优》本课时课后巩固提升
学.科.网
首页
二、合作探究
探究点一 二次函数y=a(x-h)2+k的图象、性质及平
画移 出二次函数y=2x², y=2(x-1)², y=2(x1)²+1的图象,并说一说三个图象的关系?
首页
y
y=2x2
5
4.
3.
2.
1.
y=2(x-1)2+1 y=2(x-1)2
-3. -2 -1 0.
1. 2. 3.
x
-1
3)y=a(x-h)2
首页
2 .请说出二次函数y=ax²+c与y=ax²的平移关系。 y=a(x-h)2与y=ax²的平移关系
将抛物线y=ax²沿y轴方向平移c个单位,得抛物线 y =ax²+c 将抛物线y=ax²沿x轴方向平移h个单位,得抛物线 y=a(x-h)2 3 .请说出二次函数y=2(x-3)2与抛物线y=2(x+3)2如何 由y=2x2 平移而来
第3课时 二次函数y=a(x-h)2+k的图
象与性质
一、情景引入 二、合作探究 三、课堂小结
探究点一 二次函数y=a(x-h)2+k 的图象、性质及平移
提出 问题
知识 要点
典例 精析
巩固 训练
四、课后作业
一、情景导入
1.说出下列函数图象的开口方向,对称轴,顶点,最值和 增减变化情况:
1)y=ax2
a<0 向下 x=h (h,k) x=h时, x<h时, y随x的增大而增 有最大 大; x>h时, y随x的增大而 值y=k 减小.
首页
典例精析
例1:求二次函数y=x2- 2x-1的顶点坐标、 对称轴及其最值.
解 y x2 2x 1 x2 2x 111
: (x 1)2 2∴ 顶点坐标为(1,-2), 对称轴是直线x=1.当x=1,时,y最小 值=-2.
首页
y
y=2x2 +1
y=2x2
5
4.
3.
2.
1.
y=2(x-1)2+1
-3. -2 -1 0.
1. 2. 3.
x
-1
首页
联系: 将函数 y=2x²的图象向右平移1个 单位, 就得到
y=2(x-1)²的图象; 在向上平移2个单位, 得到函数 y=2(x-1)²+1的图象.
相同点: (1)图像都是抛物线, 形状相同, 开口方向相同. (2)都是轴对称图形. (3)顶点都是最低点.
x
C.①②④
D.②③④
解析:∵- =-1,∴b=2a,即b-2a =0,∴①x=正-1 确;∵当
x=-2时点在x轴的上方,即4a-2b+c>0,②不正确;
∵4a+2b+c=0,∴c=-4a-2b,∵b=2a,∴a-b+c=a-b-4a-2b=-3a-
3对④b=正称-9确轴a,.的∴距综③离上正小所确于述;点,∵(选抛B23 .物,线y2)是到轴对对称称轴图的形距,离点,(即-3,y1>yy1)2,到∴
(4) 在对称轴左侧,都随 x 的增大而减小,在对称 轴右侧,都随 x 的增大而增大.
(5)它们的增长速度相同.
首页
不同点: (1)对称轴不同. (2)顶点不同. (3)最小值不相同.
知识要点
y=a(x 开口 对 顶 最值 -h)²+k 方向 称 点
轴
增减情况
a>0 向上 x=h (h,k) x=h时, x<h时, y随x的增大而减 有最小 小; x>h时,y随x的增大而 值y=k 增大.
首页
首页
ቤተ መጻሕፍቲ ባይዱ
b 2a
例2:(2014·聊城中考)如图是二次函数
y=ax2+bx+c(a≠0)图象的一部分,x=-1是对称轴,
有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=
-9a;④若(-3,y1),(3 ,y2)是抛物线y 上两点,
则y1>y2.其中正确的是 2
()
A.①②③
B.①③④
O2
首页
巩固训练
见《学练优》第33页课堂达标训练第1、2、 3、4、5、6、7、8题
首页
三、课堂小结
y=a(x-h)²+k • 对称轴 直线 x=h • 顶点 (h,k) • 最值 当a>0时 x=h时,y有最小值k
当a<0时 x=h时,y有最大值k
首页
四、课外作业
见《学练优》本课时课后巩固提升
学.科.网
首页
二、合作探究
探究点一 二次函数y=a(x-h)2+k的图象、性质及平
画移 出二次函数y=2x², y=2(x-1)², y=2(x1)²+1的图象,并说一说三个图象的关系?
首页
y
y=2x2
5
4.
3.
2.
1.
y=2(x-1)2+1 y=2(x-1)2
-3. -2 -1 0.
1. 2. 3.
x
-1