第六章 因子分析 (1)
第六章 因子分析
因此:因子也是综合变量;因子具有更 明确的指标意义;具有不同意义的因子 便于揭示事物变化的内在结构;提取少 量重要因子可以达到降维和简化分析的 作用。
(二)因子分析的一般模型:
令因子为 F(factor),当我们研究 m 个因子对实 际问题的影响时可以建立因子模型,即
X i ai1F1 ai 2 F2 aim Fm + i 。 其中的 F 是对所有
(三)基本思想:
基于对因子的认识,因子分析的基本思想就是通过变 量(或样品)的相关系数矩阵(或相似系数矩阵)内 部结构的研究,找出能控制所有变量(或样品)的少 数几个随机变量去描述多个变量(或样品)之间的相 关(或)相似关系。在分解原始变量的基础上,从中 归纳出潜在的“类别”,相关性较强的变量归为一类, 不同类间变量的相关性则较低。从而实现因子分析的 两个目的:一简化分析,二将原变量分类,对公因子 的意义作出合理可信的解释。
而进行因子分析的起点就是因子模型,我们通 过估计因子模型中的参数即因子负荷和方差对 各因子的重要程度进行衡量,并利用因子负荷 矩阵所体现的各变量或样品之间的相关程度提 取出具有明确意义的公因子F,赋予其有实际 背景的解释进而给以命名,从而达到降维和分 类的目的。
三、因子分析的数学原理。
因R型因子分析应用广泛,故本章的解释均是 以R型因子分析为对象。 (一)正交因子模型: 因子分析的一般模型为:
X 1 a11F1 a12 F2 a1m Fm 1 X 2 a21F1 a22 F2 a2 m Fm 2 X p a p1F1 a p 2 F2 a pm Fm p
i
可将上式写成简单的矩阵形式
6-因子分析
上式是假定了因子模型中特殊因子是不重要的,因而 从∑的分解中忽略掉特殊因子的方差 如果考虑了特殊因子以后,协差阵为:
当∑未知,可用样本协差阵S去代替,要经过标准化 处理,则S与相关阵R相同,仍然可作上面类似的表示。 一般设 则因子载荷阵的估计 即 为样本相关阵尺的特征根, 设 m < p, 相应的标准正交化特征向量为;
所以
也是公共因子,
ቤተ መጻሕፍቲ ባይዱ
也是因子载荷阵。
因子载荷这个不唯一性,从表面上看是不利的,但后面将 会看到当因子载荷阵A的结构不够简化时,可对A实行变 换以达到简化目的,使新的因子更具有鲜明的实际意义。 从因子分析的数学模型上看,它与多变量回归分析也有类 似之处,但本质的区别是因子分析模型作为“自变量”的 F是不可观测的。 2 因子模型中公共因子、因子载荷和变量共同度的 统计意义 为了便于对因子分析计算结果做解释,将因子分析数 学模型中各个量的统计意义加以说明是十分必要的, 假定因子模型中,各个变量以及公共因子、特殊因子 都已经是标准化(均值为0,方差为1)的变量。 (1)因子载荷的统计意义 已知模型:
为了说明它的统计意义,将下式两边求方差,即
由于
已标准化了,所以有
此式说明变量 的方差由两部分组成:第一部分为共 度 它刻划全部公共因子对变量 的总方差所作的贡 献, 越接近1,说明该变量的几乎全部原始信息都被 所选取的公共因子说明了,如 则说明 的 97%的信息被m个公共因子说明了,也就是说由原始变量 空间转为因子空间转化的性质越好, 保留原来信息量
A经过Tk j ,旋转(变换)后,矩阵A=A T k j ,其元素为
其中旋转角度
仍按下面公式求得:
m个因子,每次取两个全部配对进行旋转,共需旋转
第六章 因子分析
2
4
6
8
10 t
12
14
16
18
20
主因子的概念
如果对m个原变量(x1, x2,…, xm)进行n次观测,则各主成分的时间序列可表示为:
x11 x Y LT X LT 21 xm1 x12 ... x1n y11 y x22 ... x2 n = 21 xm 2 ... xmn ym1 y12 ... y1n y22 ... y2 n ym 2 ... ymn
第1主成分y1 第2主成分y2 第m主成分ym
主成分的方差,即X的协方差阵的特征值,按照y1、y2、…、ym的顺序从大到小进 行排列。 为了分析各主成分对原变量的作用、研究原变量与各主成分的关系:
对各主成分进行标准化,使它们的方差都等于1,这时的主成分称为“主因子”。
第i个主因子就是第i个主成分yi的标准化,记为fi, 有:
为了提高因子的利用率,需要将公共信息与独立信息尽可能地分离开来,以
便采取公共信息作为新的因子变量(少于原变量的个数m)建立预报方程,从而 达到减少误差,提高预报准确率的效果。 简言之,从数量较多的因子变量中分离出数量较少的新因子,并分析原变量 与各个新因子之间的关系,这称为“因子分析”。
例: x1和x2两个变量,存在相关性,寻找它们的共同信息和独立信息,并分离。 对x1和x2做了20次观测, 如右图所示20个散点,两样本的相关系 数为0.92。 可见,第一主成分y1可以表征x1和x2的共同的成分; 所以因子分析与主成分分析(或经验正交函数分解)有密切联系。
06 第六章 R-Q型因子分析
4
图 6-1 25 个沉积物样本 6 个变量的 R-Q 型分析图
在R-Q型因子分析中,我们定义了这样的矩阵W,使得WΤW反映变量间的相似性,WWΤ 反映样品间的相似性,并且只作R型分析便可由对偶性得到Q型分析的结果。
一般地也是这样,如果我们能找到这样一种W的定义方式,使得WΤW是合适的变量间的 相似性度量,同时WWΤ是合适的样品间的形似性度量,则总可以象上节那样找到R型分析与 Q型分析间的对偶性,并实现R-Q型因子分析。关键是定义矩阵是要同时保证WΤW和WWΤ具 有实际意义。
2 Lj
n
=
m
(xkj − xLj ) 2
m
∑ j=1
(xij − x j )2
∑ j=1 (xij − x j )2
i =1
i =1
考虑样品 k 与 L 间的欧氏距离,即矩阵 W 中各行的欧氏距离有
∑ ∑ d
2 kL
=
m
(Wkj − WLj ) =
m
(xkj − x j − xKj + x j )2
(6.10)
且有λ1≥λ2≥…≥λp,其对应的p个单位特征向量构成矩阵
U=(u1,u2,…,up)=(uij)m×p
其中第 j 列
uj=(u1j,u2j,…,umj)Τ=(uij)m×p
j=1,2,…,p
为λj对应的单位特征向量,它们满足
u Τj uk
第六章 温度因子分析
不同生态系统生产力
化,形成与此相应的植物发育节律,称为物候。 • 植物发芽、生长、现蕾、开花、结实、落叶、 休
眠等生长发育阶段的开始和结束称为物候期。 • 植物物候具有稳定性,可以用来指导林业生产。
影响物候的因素
• 纬度、经度和海拔 • 霍普金斯通过研究发现: • 在北美洲温带,每向北移动纬度1度,或向
东移动经度5度,或海拔上升124m,植物 在春天和初夏 物候会延迟4天。这一规律称 为霍普金斯定律。 • 南京和北京,纬度相差6度,桃、李开花 间 差19天;但到4、5月间,两地物候相差9天。
二、关于温度的一些生态概念
• (一)三基点温度 • 最适温度:生物生长发育或生理活动得以
正常进行的温度范围。 • 最低温度和最高温度:植物生长发育和生
理活动的低温和高温限度。 • 合称为三基点温度。
• (二)积温: 积温既能说明某一地区的热 量条件,又能说明生物各生长发育阶段或 整个生长期所需要的热量条件。
• *昼夜变温与种子萌发
•
有一些植物的种子在变温下萌发良好。
低温有利于增加氧在细胞中的溶解度;提
高透性。
• 昼夜变温与生长发育 • 较低的夜温和适宜的昼温对植物生长、开花、结
实和物质的贮藏有利。 • 云南松林:1000m 3/ha。 • 波密云杉林:2000m 3/ha。 • (二)物候 • 季节明显地区,植物适应于气候条件的节律性 变
第六章因子分析
第六章因子分析第六章因子分析§6.1因子分析的基本原理与模型一、因子分析的基本思想基本思想:根据相关性的大小将变量分组,使得同组内变量间的相关性较高,不同组间的相关性较低。
每组变量代表一个基本结构,并用一个不可观测的综合变量形式表示,这个基本结构成为公共因子。
此时的原始变量就可以分解成两部分之和的形式,一部分是少数几个不可测的所谓公共因子的线性函数,另一部分是与公共因子无关的特殊因子。
目的:从一些有错综复杂的问题中找出几个主要因子,每个主要因子代表原始变量间相互依赖的一种作用。
二、因子分析的基本模型常用的因子分析模型:R型因子分析和Q 型因子分析(一)R型因子分析模型R型因子分析是对变量作因子分析。
R型因子分析中的公共因子是不可直接观测但又客观存在的共同影响因素,每一个变量都可以表示成公共因子的线性函数与特殊因子之和,即:其中:称为公共因子,称为的特殊因子矩阵表达式:且满足:(1)(2),即公共因子与特殊因子是不相关的(3),即各公共因子不相关且方差为1(4),即各个特殊因子不相关,方差不要求相等模型中称为因子载荷,是第个变量在第个因子上的负荷,如果把变量看成维空间中的一个点,则表示它在坐标轴上的投影,因此矩阵称为因子载荷矩阵。
(二)Q型因子分析Q型因子分析是对样品作因子分析。
模型同上注:主成分分析与因子分析的区别主成分分析的数学模型本质上是一种线性变换,是将原始坐标变换到变异程度大的方向上去,相当于从空间上转换观看数据的的角度,突出数据变异的方向,归纳重要信息。
因子分析与主成分分析一样都属降低变量维数的方法。
但因子分析的本质是从显在变量去“提炼”潜在因子的过程。
模型中应注意的问题:(1)变量的协方差阵的分解式为即(2)因子载荷不是唯一的。
三、因子载荷阵的统计意义(一)因子载荷的统计意义对于因子模型可知的协方差若对作标准化处理,的标准差为1,且的标准差为1则(相关系数)综上可知:对于标准化后的,是的相关系数,一方面表示的依赖程度,绝对值越大,密切程度越高;另一方面也反映了变量对公共因子的相对重要性。
7.因子分析
1 0.32 1 0.33 0.24 1 0.18 0.34 0.24 1 0.01 0.02 0.17 0.02 1
38
变量
F1
0.691 0.789 0.702 0.674 0.62 0.687 0.621 0.538 0.434 0.147
的含义不清,则不便于进行实际背景的解释。由于因
子载荷阵是不惟一的,所以应该对因子载荷阵进行旋 转。目的是使因子载荷阵的结构简化,使载荷矩阵每 列或行的元素平方值向0和1两极分化。 有三种主要的正交旋转法:四次方最大法、方差
最大法和等量最大法。
36
例:奥运会十项全能运动项目得分数据的因子分析
百米跑成绩 X 1 跳远成绩 X 2 铅球成绩 X 3 跳高成绩 X 4 400米跑成绩 X 5 百米跨栏 X 6 铁饼成绩 X 7 撑杆跳远成绩 X 8 标枪成绩 X9 1500米跑成绩 X
1 u1
2 u 2
1 u1 2 u2 ˆ ˆ ˆ ˆ m u m D AA D p um 因子载 荷矩阵
注:残差矩阵
17
主成分法中,原变量可用公因子表示为:
上式有一个假定,模型中的特殊因子是不重要的, 因而从的分解中忽略了特殊因子的方差。
第六章 因子分析
1
主要内容
§1 §2 §3 §4 §5 §6 什么是因子分析 因子分析模型 因子载荷矩阵的估计方法 因子旋转(正交变换) 因子得分 因子分析的步骤、展望和建议
2
§1 什么是因子分析
因子分析(factor analysis)是一种数据简化的技 术。它通过研究众多变量之间的内部依赖关系,探求 观测数据中的基本结构,并用少数几个假想变量来表 示其基本的数据结构。这几个假想变量能够反映原来 众多变量的主要信息。原始的变量是可观测的显在变 量,而假想变量是不可观测的潜在变量,称为因子。
因子分析
因子分析因子分析是一种常用的统计方法,广泛应用于社会科学、经济学、心理学等领域。
它可以帮助研究者找出数据中的主要因素,并将原始变量转化为更少的几个综合指标,从而简化数据分析和解释。
本文将介绍因子分析的基本原理、应用场景以及一些常见的因子分析方法。
一、因子分析的基本原理因子分析基于一种潜在变量模型,假设观察到的一组变量是由少数几个潜在的因子所决定的。
这些潜在因子无法直接观察到,但可以通过观察到的变量来推断。
通过因子分析,我们可以找出这些潜在因子,并将原始变量转化为这些因子的得分。
在因子分析中,我们假设每个潜在因子与一组观察到的变量相关联,这些变量称为因子载荷。
因子载荷可以解释变量之间的协方差结构,反映了变量与潜在因子之间的相关程度。
我们可以通过计算因子载荷矩阵来评估这种关系。
同时,我们还假设观察到的变量之间相互独立,即不存在多重共线性。
多重共线性会使得因子分析的结果不准确,因此在进行因子分析之前,我们需要先进行相关性分析和多重共线性检验。
二、因子分析的应用场景因子分析在许多领域都有广泛的应用。
以下是其中一些常见的应用场景:1.心理学研究:因子分析可以帮助心理学家理解人类行为的潜在因素。
例如,在人格心理学中,我们可以使用因子分析来研究人格特征的结构,并找出彼此相关的因素。
2.市场研究:因子分析可以帮助市场研究人员理解消费者行为的背后因素。
例如,在消费者调查中,我们可以使用因子分析来提取消费者购买决策中的主要影响因素,并根据这些因素进行市场定位和目标群体选择。
3.经济学研究:因子分析可以帮助经济学家理解经济变量之间的关系。
例如,在宏观经济学中,我们可以使用因子分析来提取经济增长、通货膨胀和失业率等变量的主要因素,并分析它们之间的相互作用。
4.社会科学研究:因子分析可以帮助社会科学家理解社会现象的潜在因素。
例如,在教育研究中,我们可以使用因子分析来研究学生学习成绩的主要影响因素,并提供相应的教学策略。
三、常见的因子分析方法在因子分析中,有许多不同的方法可以选择。
第六章 因子分析
9
寻找基本结构
在多元统计中,经常遇到诸多变量之间存在强相关的问题,它 会对分析带来许多困难。通过因子分析,可以找出几个较少的有实
际意义的因子,反映出原来数据的基本结构。
例如:调查汽车配件的价格中,通过因子分析从 20 个指标中概 括出原材料供应商、配件厂商、新进入者、后市场零部件厂商、整 车厂和消费者6个基本指标。从而找出对企业配件价格起决定性作用 的几个指标。
本包含了原来变量的所有信息。
12
主成分分析的数学模型
13
主成分分析与因子分析公式上的区别
y1 a11 x1 a12 x2 a1 p x p
主成分分析
y2 a21 x1 a22 x2 a2 p x p y p a p1 x1 a p 2 x2 a pp x p
由于umn为随机向量X的相关矩阵的特征值对 应的特征向量的分量,特征向量之间彼此正交, 实际上从X到F的转换关系是可逆的,即:
x1 11 F1 21 F2 p1 Fp x2 12 F1 22 F2 p 2 Fp x F F F 1p 1 2p 2 pp p p
1、因子分析的核心:用较少的、相互独立的因 子反映原有变量的绝大部分信息。 因子分析的数学模型:设有p个变量,每个变量 的均值为0,标准差为1。将每个原有变量用k个 (k<p)因子f1,f2,…,fk 的线性组合表示,即
x1 a11 f1 a12 f 2 a1k f k 1 x2 a21 f1 a22 f 2 a2 k f k 2 x p a p1 f1 a p 2 f 2 a pk f k p
因子分析
因子应用
在市场调研中,研究人员关心的是一些研究指标的集成或者组合,这些概念通常是通过等级评分问题来测量 的,如利用李克特量表取得的变量。每一个指标的集合(或一组相关联的指标)就是一个因子,指标概念等级得 分就是因子得分。
因子分析
统计学方法
01 简介
03 得到因子 05 分析描述
目录
02 隐性变量 04 验证因子 06 因子应用
因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学 生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某 些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代 表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。
简介
因子分析是简化、分析高维数据的一种统计方法。假定p维随机向量满足 是q维随机变量,,满足,它的分量称为公共因子,对X的每个分量都起作用。是p维不可观测的随机向量, 满足 且,e的分量称为特殊因子,它仅对X的分量起作用。 μ和A为参数矩阵。若X满足上式,则称随机向量X具有因子结构。这时,容易算得 矩阵A称为因子载荷,其元素是第i个分量在第j个因子上的载荷。记,则有 由此可见,反映了公共因子对的影响,称为公共因子对的“贡献”。当时,表明公共因子对的影响大于特殊 因子的影响,也可以看出反映了分量对公共因子的依赖程度。 另一方面,对一个指定的公共因子,记,称为公共因子对X的贡献。的值越大,反映了公共因子对X的影响也 越大,所以是衡量公共因子重要性的一个尺度。
因子分析(因子评价)
因子分析一.因子分析原理因子分析是根据相关性大小把原始变量进行分组,使得同组内的变量之间相关性高,而不同组的变量之间的相关性低。
每组变量代表一个基本结构(即公共因子),并用一个不可观测的综合变量来表示。
对于所研究的某一具体问题,原始变量分解为两部分之和。
一部分是少数几个不可观测的公共因子的线性函数,另一部分是与公共因子无关的特殊因子。
从全部计算过程来看作R 型因子分析与作Q 型因子分析都是一样的,只不过出发点不同,R 型从相关系数矩阵出发,Q 型从相似系数阵出发都是对同一批观测数据,可以根据其所要求的目的决定用哪一类型的因子分析因子模型的性质:模型不受变量量纲的影响;因子载荷不是唯一的。
二.因子分析的数学模型设有p 个指标,则因子分析数学模型为:11111221221122221122p p p pp p p pp p X r Y r Y r Y X r Y r Y r Y X r Y r Y r Y=+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ 其中,12,,,p X X X 是已标准化的可观测的评价指标。
12,,,k F F F 出现在每个指标i X 的表达式中,称为公共因子,公共因子是不可观测的,其含义要根据具体问题来解释。
i ε是各个对应指标i X 所特有的因子,故称为特殊因子,它与公共因子之间彼此独立。
ij r 是指标i X 在公共因子j F 上的系数,称为因子载荷,因子载荷ij r 的统计含义是指标i X 在公共因子j F 上的相关系数,表示i X 与j F 线性相关程度。
用矩阵形式表示为:X AF ε=+其中12(,,,)p X X X X '=,12(,,,)k F F F F '=,12(,,,)p εεεε'=,111212122212m m p p pm r r r r r r A rr r ⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭,A 称为因子载荷矩阵。
其统计含义是:A 中的第i 行元素12,,,i i im r r r 说明了指标i X 依赖于各个公共因子的程度。
第6章因子分析m
m
hi2 ui2j j 1
i 1,2,, n 24
• Q型因子分析模型与R型因子分析模型的差 异体现在X1,…,Xn表示的是n个样品。
• 因子分析的目的就是通过模型X=UF+ε,以 F代替X,由于一般都要求m<p,m<n,从而 达到简化变量维数的目的。
25
• 注:在因子分析中,因子载荷阵是不唯一的。 • 证明:
若T为任意一个m m阶正交矩阵,令U * UT,F * T F,
34
可看出,公因子F1与变量X1,X2,X5关系密 切,它主要代表了这些变量的信息;公因子F2与变 量X3,X4关系密切,它主要代表了这两个变量的 信息。
35
4、变量共同度hi2 ——U的行元素平方和
变量共同度也称为公共方差(公因子方差),指观
测变量方差中由公因子决定的比例,也即原始变量Xi对
公因子依赖的程度。
• 例:五个观测变量,两个公因子的模型: X1 0.9562F1 0.2012F2 1 X 2 0.8735F1 0.2896F2 2 X 3 0.1744F1 0.8972F2 3 X 4 0.5675F1 0.7586F2 4 X 5 0.8562F1 0.3315F2 5
的公共因素,每个公因子Fj (j=1, …,m)假定至少对
两个原始变量有作用(有贡献),否则它将归入特殊 因子。
29
公因子是相互独立的不可观测的理论变 量(之所以称其为因子,是因为它是不可观 测的,即不是具体的变量,与前面的聚类分 析不同)。公共因子的含义,必须结合具体 问题的实际意义而定。
30
06-第六章因子分析
第六章 因子分析一.基本原理因子分析(Factor anslysis )是用来分析隐藏在表象背后的因子作用的一类统计模型与方法。
起源于心理度量学(Phsycholometrics ),在方法上与主成分分析有密切联系。
因子分析一般有两个用途,一是通过寻求变量的基本结构,对变量进行简化;二是通过因子得分,在因子轴构成的空间中将变量或者样品进行分类。
1.正交因子模型设x 为一个p 维可观测随机向量,假定x 受到m 个不可观测的随机因子的控制,称这m 个影响x 的因子为公共因子,若m 维随机向量f 对x 的影响是线性的,则x 与f 之间的关系可用下述模型来表述:x Lf με=++其中μ为P 维常向量,表示X 的均值;L 为p m ⨯维常数阵,L 的第I 行表示公共因子f 对X 第I 个分量i x 的影响系数;ε为P 维随机变量,表示X 中与f 无关的那一部分,称为特殊因子。
其中f 和ε都是不可观测的,假定它们满足下列条件 (1)f 和ε相互独立 (2)()0,()m E f V f I ==(3)()0,()E V εε==ψ,其中ψ(psai)为对角阵。
由于()m V f I =,即各因子之间不相关,这样的模型便称为正交因子模型。
在正交因子模型中,公共因子f 对X 的各分量都起作用,而特殊因子ε的第I 个分量只对X 的第I 个分量起作用。
L 称为载荷阵(Loading Matrix )。
如果对X 进行标准化处理,则μ为0,原式化为x Af ε=+。
A 为载荷阵。
X 的方差是由载荷阵和特殊因子的方差构成的。
即()Var X AA '=+ψ。
2.因子分析与其他多元分析方法的区别与多元回归的区别:因子分析中,各个公共因子是虚拟的,本身是未知量。
与主成分分析的区别:主成分分析本质上是一种变量变换,而因子分析则是构造出一组新的因子来对原变量进行解释。
二.计算模型1.因子载荷的含义假定在因子分析模型中,对各变量及公共因子、特殊因子均进行了标准化处理。
第六讲 因子分析
第五讲因子分析在许多实际问题中,涉及的变量众多,各变量间还存在错综复杂的相关关系,这时最好能从中提取少数综合变量,这些综合变量彼此不相关,而且包含原变量提供的大部分信息。
因子分析就是为解决这一问题提供的统计分析方法。
以后,如无特别说明,都假定总体是一个p维变量:它的均值向量,协方差矩阵V=(ij)pp都存在。
第一节正交因子模型1.1 公共因子与特殊因子从总体中提取的综合变量:F1, F2, … , F m(m<p)称为(总体的)公共因子。
一般来说,公共因子不可能包含总体的所有信息,每个变量X i 除了可以由公共因子解释的那部分外,总还有一些公共因子解释不了的部分,称这部分为变量X i的特殊因子,记为:i。
于是,我们有:变量X i的信息=公共因子可以表达部分公共因子不可表达部分这就是所谓因子模型。
目前,公共因子可以表达的部分由公共因子的线性组合表示。
即上面的因子模型可以写成以下的形式:1.2 正交因子模型设总体,均值向量,协方差矩阵。
因子模型有形式:其中m<p,F1,F2,…,F m称为所有变量的公共因子;i称为变量X i的特殊因子。
如果引入以下向量与矩阵:则因子模型的矩阵形式为:对于正交的因子模型,还要进一步要求:z1. 。
即有:公共因子是互相不相关的。
z2. 。
即:特殊因子和公共因子不相关。
1.3 因子载荷矩阵1.矩阵A称为因子载荷矩阵(component matrix),系数a ij称为变量X i在因子F j上的载荷(loading)。
由于特别,如果总体是标准化的,则有Var(X i)=1,从而有:于是:即变量X i在公共因子F j上的载荷a ij就是X i与F j的相关系数。
2.载荷矩阵的估计:主成分法。
主成分法是估计载荷矩阵的一种方法,由于其估计结果和变量的主成分仅相差一个常数倍,因此就冠以主成分法的名称。
在学到这里的时候,不要和主成分分析混为一谈。
主成分法是SPSS系统默认的方法,在一般情况下,这是比较好的方法。
第六章因子分析
§6.1.1 因子分析的基本思想
因子分析还可用于对变量或样品的分类处理,我们在得出 因子的表达式之后,就可以把原始变量的数据代入表达式 得出因子得分值,根据因子得分在因子所构成的空间中把 变量或样品点画出来,形象直观地达到分类的目的。
因子分析不仅仅可以用来研究变量之间的相关关系, 还可以用来研究样品之间的相关关系,通常将前者称之 为R 型因子分析,后者称之为Q 型因子分析。我们下面 着重介绍R型因子分析。
第六章 因子分分析
•§6.1 因子分析的基本理论 •§6.2 因子载荷的求解 •§6.3 因子分析的步骤与逻辑框图 •§6.4 因子分析的上机实现
第六章 因子分分析
因子分析(factor analysis)模型是主成分分析的 推广。它也是利用降维的思想,由研究原始变量相关 矩阵内部的依赖关系出发,把一些具有错综复杂关系 的变量归结为少数几个综合因子的一种多变量统计分 析方法。相对于主成分分析,因子分析更倾向于描述 原始变量之间的相关关系;因此,因子分析的出发点 是原始变量的相关矩阵。因子分析的思想始于1904年 Charles Spearman对学生考试成绩的研究。
1。F1, F2 ,, Fm 是彼此独立的公共因子,都满足均值为0,方差 为1。ei为特殊因子,与每一个公共因子均不相关且均值为0。
则ai1, ai2 ,, aim为对第 i门科目考试成绩的因子载荷。对该模型,
有: var( X i ) ai21 ai22 ai2m var(ei ) 1 (6.5)
121
cov(ε)
Σ
2 22
0 ห้องสมุดไป่ตู้
0
2 pp
第6章--因子分析
第6章--因子分析第六章因子分析一、填空题1. 因子分析常用的两种类型为 ____________ 和 ___________ 。
2. 因子分析是将具有错综复杂关系的变量(或样品)综合为数量较少的几个因子,以再现______________ 与____________ 间的相互关系。
3•因子分析就是通过寻找众多变量的______________ 来简化变量中存在的复杂关系的一种方法。
4 •因子分析是把每个原始变量分解成两个部分即____________ 、。
5 •变量共同度是指因子载荷矩阵中__________________________ 。
6 •公共因子方差与特殊因子方差之和为________ 。
7.求解因子载荷矩阵常用的方法有______________________ 和________________ &常用的因子旋转方法有 ____________________ 和__________________ 。
9. Spss中因子分析采用__________________ 命令过程。
10•变量X i的方差由两部分组成,一部分为 ___________ ,另一部分为__________二、判断题1. 在因子分析中,因子载荷阵不是唯一的。
()2. 因子载荷阵经过正交旋转后,各变量的共性方差和各个因子的贡献都发生了变化。
()3. 因子分析和主成分分析的核心思想都是降维。
()4.因子分析有两大类,R型因子分析和Q型因子分析;其中R型因子分析是从变量的相似矩阵出发,而Q型因子分析是从样品的相关矩阵出发。
()5. 特殊因子与公共因子之间是相互独立的。
()6. 变量共同度是因子载荷矩阵列元素的平方和。
()7. 公共因子的方差贡献是衡量公共因子相对重要性指标。
()8. 对因子载荷阵进行旋转的目的是使结构简化。
()三、简答题1.因子分析的基本思想是什么,它与主成分分析有什么区别和联系?2 •因子模型的矩阵形式UF ,其中:F F1, ,F m 1, , P U U ij pm请解释式中F、、U的统计意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 因子分析首先通过主因子分析(factor),得到主成分因子:Factor | Eigenvalue Difference Proportion Cumulative -------------+------------------------------------------------------------Factor1 | 4.75929 3.71841 0.6954 0.6954 Factor2 | 1.04088 0.38315 0.1521 0.8475 Factor3 | 0.65773 0.37761 0.0961 0.9436 Factor4 | 0.28012 0.09188 0.0409 0.9845 Factor5 | 0.18825 0.19040 0.0275 1.0120 Factor6 | -0.00216 0.01548 -0.0003 1.0117 Factor7 | -0.01764 0.04472 -0.0026 1.0091 Factor8 | -0.06236 . -0.0091 1.0000 从上面的分析可以看出,只有两个成分大于1大于的特征值,同时两个成分解释了全部八个变量组合的方差还多。
不重要的第2 到8个主成分在随后的分析中可以放心地省略去。
运行factor 命令后,我们可以接着运行screeplot 命令画出碎石图。
碎石图中特征值等于1处的水平线标示了保留主成分的常用分界点,同时再次强调了本例中的成分3到成分6并不重要。
Variable | Factor1 Factor2 Factor3 Factor4 Factor5 -------------+--------------------------------------------------x1 | 0.9611 0.0193 0.2412 -0.0637 0.0013 x2 | 0.9119 0.3828 -0.1409 0.0380 0.0786 x3 | 0.8626 -0.0724 0.3816 0.0792 -0.2719 x4 | 0.9395 0.3468 -0.0299 -0.0313 0.0137 x5 | 0.7542 -0.0828 -0.2302 0.3307 0.1499E i g e n v a l u e sx6 | -0.3772 0.6987 0.2923 -0.1118 0.1221x7 | -0.6108 0.0367 0.4572 0.3336 0.0883x8 | 0.5416 -0.5217 0.2929 -0.1850 0.2505--------------------------------------------------------------------------------------------Variable | Uniqueness-------------+--------------x1 | 0.0136x2 | -0.0055x3 | 0.0249x4 | -0.0049x5 | 0.2396x6 | 0.2567x7 | 0.2975x8 | 0.2518----------------------------Variable | kmo-------------+---------x1 | 0.7491x2 | 0.5483x3 | 0.4993x4 | 0.5778x5 | 0.8127x6 | 0.2958x7 | 0.5122x8 | 0.4569-------------+---------Overall | 0.5671-----------------------Variable | smc-------------+---------x1 | 0.9726x2 | 0.9965x3 | 0.9662x4 | 0.9972x5 | 0.7447x6 | 0.7280x7 | 0.6925x8 | 0.7463根据kmo and smc,数据反映良好旋转会进一步简化因子结构。
在提取因子之后,键入rotate命令进行旋转。
Factor | Variance Difference Proportion Cumulative -------------+------------------------------------------------------------Factor1 | 3.29837 2.02383 0.4819 0.4819Factor2 | 1.27454 0.18586 0.1862 0.6682Factor3 | 1.08868 0.26654 0.1591 0.8272Factor4 | 0.82213 0.37958 0.1201 0.9473Factor5 | 0.44256 . 0.0647 1.0120 --------------------------------------------------------------------------LR test: independent vs. saturated: chi2(28) = 145.13 Prob>chi2 = 0.0000Rotated factor loadings (pattern matrix) and unique variances----------------------------------------------------------------Variable | Factor1 Factor2 Factor3 Factor4 Factor5 -------------+--------------------------------------------------x1 | 0.70950.5683 -0.1027 0.3740 -0.0975x2 | 0.9676 0.2217 -0.0499 0.0474 -0.1241x3 | 0.5061 0.8027 -0.1636 0.2187 -0.0040x4 | 0.9214 0.3453 -0.0091 0.1006 -0.1627x5 | 0.6915 0.1199 -0.4893 0.1292 0.1084x6 | -0.0084 -0.1536 0.8052 -0.2130 0.1608x7 | -0.5039 -0.0349 0.2985 -0.0838 0.5926x8 | 0.1457 0.3158 -0.2682 0.7436 -0.0486 --------------------------------------------------------------------------------------------Variable | Uniqueness-------------+--------------x1 | 0.0136x2 | -0.0055x3 | 0.0249x4 | -0.0049x5 | 0.2396x6 | 0.2567x7 | 0.2975x8 | 0.2518----------------------------Factor rotation matrix-----------------------------------------------------------| Factor1 Factor2 Factor3 Factor4 Factor5-------------+---------------------------------------------Factor1 | 0.7938 0.4425 -0.2719 0.2768 -0.1535Factor2 | 0.4893 -0.1208 0.7125 -0.4862 0.0433 Factor3 | -0.2264 0.6171 0.4956 0.3824 0.4197 Factor4 | 0.1336 0.0421 -0.3949 -0.3813 0.8240 Factor5 | 0.2477 -0.6380 0.1298 0.6287 0.3456 -----------------------------------------------------------载荷图根据载荷图主因子1是,1245项是高载荷指标,把他作为盈利因子 主因子2是3,作为收入因子因子分是通过将每个变量标准化为平均数等于0和方差等于1,然后以因子分系数进行加权合计为每个因子构成的线性组合。
基于最近的rotate 或factor 结果,predict 会自动进行这些计算。
通过命令predict f1 f2,我们得到了各个观察变量的主因子1、主因子2的得分情况。
| com f1 f2 | |-----------------------------|1. | 1 -.5668753 .0989984 |2. | 2 -.2911694 -.3330244 |3. | 3 -.5543 .6418742 |4. | 4 -1.632766 -.9359169 |5. | 5 1.737429 .6392142 | |-----------------------------|6. | 6 .3500338 2.000377 |F a c t o r 27. | 7 .4818828 .1623446 |8. | 8 -.9290398 -.1175181 |9. | 9 -.1907071 .3500897 |10. | 10 .124752 1.297857 ||-----------------------------|11. | 11 -.2882031 -.3848062 |12. | 12 -.1015409 -1.14786 |13. | 13 -.064743 .3978167 |14. | 14 2.454457 -1.63357 |15. | 15 -.5292097 -1.035877 |+-----------------------------+. summarize f1 f2V ariable | Obs Mean Std. Dev. Min Max-------------+--------------------------------------------------------f1 | 15 2.98e-09 1.002487 -1.632766 2.454457f2 | 15 -2.98e-09 .964788 -1.63357 2.000377在这些因子分之间是存在着相关,在默认选项中,promax旋转允许因子分之间存在相关。