解直角三角形测试题与答案

合集下载

沪科版九年级数学上册《第二十三章解直角三角形》单元测试卷-附答案

沪科版九年级数学上册《第二十三章解直角三角形》单元测试卷-附答案

沪科版九年级数学上册《第二十三章解直角三角形》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________(满分150分,限时120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.(2023安徽淮南模拟)如果Rt△ABC的各边长都扩大为原来的3倍,那么锐角A 的正弦值、余弦值()A.都扩大为原来的3倍B.都缩小为原来的13C.没有变化D.不能确定2.(2023安徽宿州埇桥期末)三角函数sin 30°、cos 16°、cos 43°之间的大小关系是()A.cos 43°>cos 16°>sin 30°B.cos 16°>sin 30°>cos 43°C.cos 16°>cos 43°>sin 30°D.cos 43°>sin 30°>cos 16°3.(2023安徽巢湖三中月考)若sin(70°-α)=cos 50°,则锐角α的度数是()A.50°B.40°C.30°D.20°4.在△ABC中,∠C=90°,tan A=2,则cos A的值为()A.√55B.2√55C.12D.25.(2023安徽阜阳质检)下列运算中,值为14的是() A.sin 45°×cos 45° B.tan 45°-cos230°C.tan30°cos60°D.(tan 60°)-16.如图,在Rt△ABC中,∠ACB=90°,∠B=β,CD⊥AB,垂足为D,那么下列线段的比值不一定等于sin β的是()A.ADBD B.ACABC.ADACD.CDBC7.(2023安徽池州月考)如图,将△ABC放在每个小正方形的边长均为1的网格中,点A,B,C均在格点上,则tan A的值是()A.√55B.12C.2D.√1058.【新考法】一配电房的示意图如图所示,它是一个轴对称图形,已知AB=3 m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sin α)mB.(4+3tan α)mC.(4+3sinα)m D.(4+3tanα)m9.(2023安徽合肥庐江期末)如图,在△ABC中,sin B=12,AB=8,AC=5,且∠C 为锐角,cos C的值是()A.35B.45C.√32D.3410.【新情境·双翼闸机】下图是一个地铁站入口的双翼闸机示意图,它的双翼展开时,双翼边缘的端点A与B之间的距离为12 cm,双翼的边缘AC=BD=64 cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.76 cmB.(64√2+12)cmC.(64√3+12)cmD.64 cm二、填空题(本大题共4小题,每小题5分,满分20分)11.如果tan α=1,那么锐角α=度.12.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,BC=6,AC=8,设∠BCD=α,则tan α=.13.如图,已知tan O=4,点P在边OA上,OP=5,点M、N在边OB上,PM=PN,3如果MN=2,那么PM=.,BC=12,D是AB的中点,过点B 14.如图,在△ABC中,∠ACB=90°,cos A=35作线段CD的垂线,交CD的延长线于点E.(1)线段CD的长为;(2)cos∠DBE的值为.三、(本大题共2小题,每小题8分,满分16分) 15.计算:2cos 30°-tan 260°3tan45°+√(sin60°−1)2.16.(2023广西梧州模拟)构建几何图形解决代数问题是“数形结合”思想的重要体现,某数学兴趣小组在尝试计算tan 15°时,采用以下方法:如图,在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,设AC =1,则AB =2,BC =√3,所以tan 15°=ACCD =2+√3=√3(2+√3)×(2−√3)=2-√3,类比这种方法,计算tan 22.5°的值(画出计算所需图形,并用文字、计算说明).四、(本大题共2小题,每小题8分,满分16分)17.(2021广东潮州中考)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;BD,求tan∠ABC的值.(2)若AD=1318.(2023安徽合肥瑶海期末)有一架长为6米的梯子AB,将它的上端A靠着墙面,下端B放在地面上,梯子与地面所成的角记为α,地面与墙面互相垂直(如图1所示).一般满足50°≤α≤75°时,人才能安全地使用这架梯子.(1)当梯子底端B距离墙面2.5米时,人是否能安全地使用这架梯子?(2)当人能安全地使用这架梯子,且梯子顶端A离地面最高时,梯子开始下滑,如果梯子顶端A沿着墙面下滑1.5米到墙面上的D点处停止,梯子底端B也随之向后平移到地面上的点E处(如图2所示),此时人是否能安全地使用这架梯子?请说明理由.(参考数据:sin 50°≈0.77,cos 50°≈0.64,sin 75°≈0.97,cos 75°≈0.26)五、(本大题共2小题,每小题10分,满分20分)19.如图,数学兴趣小组成员在热气球A上看到横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20 ℃,海拔每升高100米,气温会下降约0.6 ℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:sin53°≈45,cos53°≈3 5,tan53°≈43)20.【方程思想】李老师给班级布置了一个实践活动,测量某广场纪念碑的高度,使用卷尺和测角仪测量.如图,纪念碑设在1.2 m的石台上,他们先在点B处测得纪念碑最高点A的仰角为22°,然后沿水平方向前进21 m,到达点N处,在点C 处测得点A的仰角为45°,BM=CN=1.7 m,求纪念碑的高度.(结果精确到0.1 m,参考数据:sin 22°≈0.37,cos 22°≈0.93tan 22°≈0.40,√2≈1.41)六、(本题满分12分)21.【主题教育·生命安全与健康】某校为检测师生体温,在校门安装了某型号测温门,如图,已知测温门AD的顶部A距地面2.2 m.某数学兴趣小组为了解测温门的有效测温区间,做了如下实践:身高为1.6 m的组员在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为20°,在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60°.求有效测温区间MN的长度.(参考数据:sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36,√3≈1.73,额头到地面的距离以身高计,计算结果精确到0.1 m)七、(本题满分12分)22.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1∶√3,AB=16米,AE=24米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:√2≈1.414,√3≈1.732)八、(本题满分14分)23.(2022四川自贡中考)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)[探究原理]制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由;(2)[实地测量]如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P 的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH;(√3≈1.73,结果精确到0.1米)(3)[拓展探究]公园高台上有一凉亭,为测量凉亭顶端P 距地面的高度PH (如图④),同学们经过讨论,决定先在水平地面上选取观测点E 、F (E 、F 、H 在同一直线上),分别测得点P 的仰角为α、β,再测得E 、F 间的距离为m 米,点O 1、O 2到地面的距离O 1E 、O 2F 均为1.5米.求PH (用α、β、m 表示).参考答案与解析1.C Rt △ABC 的各边长都扩大为原来的3倍后,所得的三角形与Rt △ABC 是相似的,∴锐角A 的大小是不变的,∴锐角A 的正弦值、余弦值没有变化.2.C ∵sin 30°=cos 60°,16°<43°<60°,余弦值随着角度的增大而减小,∴cos 16°>cos 43°>sin 30°.3.C ∵sin(70°-α)=cos 50°,∴70°-α+50°=90°,解得α=30°.故选C.4.A 在△ABC 中,∠C =90°,设∠A 、∠B 、∠C 的对边分别为a 、b 、c ,因为tan A =ab =2,所以a =2b ,由勾股定理得c =√a 2+b 2=√5b所以cos A =bc =√5b =√55.5.Bsin 45°×cos 45°=√22×√22=12,故A 不符合题意;tan 45°-cos 230°=1-(√32)2=1-34=14,故B 符合题意;tan30°cos60°=√3312=23√3,故C 不符合题意;(tan 60°)-1=(√3)-1=√33,故D 不符合题意. 6.AAD BD不一定等于sin β,故A 符合题意;∵△ABC 是直角三角形,∴sin β=AC AB,故B 不符合题意; ∵CD ⊥AB ,∠ACB =90°,∴∠ACD +∠A =∠B +∠A =90°∴∠ACD =∠B ,∴sin β=ADAC,故C 不符合题意;∵△BCD 是直角三角形,∴sin β=CDBC,故D 不符合题意.7.B 如图,取格点D ,连接BD由题意得AD 2=22+22=8,BD 2=12+12=2,AB 2=12+32=10,∴AD 2+BD 2=AB 2 ∴△ABD 是直角三角形,∴∠ADB =90°,在Rt △ABD 中 AD =2√2,BD =√2,∴tan A =BDAD =√22√2=12. 8.A 过点A 作AD ⊥BC 于点D ,如图∵AD ⊥BC ,∠ABC =α,∴sin α=AD AB=AD3,∴AD =3sin α m ,∴房顶A 离地面EF 的高度=AD +BE =(4+3sin α)m .9.A 如图,过点A 作AD ⊥BC ,垂足为D∴∠ADB =∠ADC =90°在Rt △ABD 中,sin B =12,AB =8,∴AD =AB ·sin B =8×12=4在Rt △ADC 中,AC =5,∴CD =√AC 2−AD 2=√52−42=3,∴cos C =CD AC =35.10.A 如图所示,过A 作AE ⊥CP 于E ,过B 作BF ⊥DQ 于F ,在Rt △ACE 中,AE =12AC =12×64=32(cm),同理可得BF =32 cm ,∵点A 与B 之间的距离为12 cm ,∴通过闸机的物体的最大宽度为32+12+32=76(cm).11.45解析 ∵tan α=1,∴锐角α=45度. 12.34解析 ∵CD ⊥AB ,∠ACB =90°,∴∠α+∠B =∠A +∠B =90°,∴∠α=∠A ∴tan α=tan A =68=34.13.√17解析 如图,过P 作PD ⊥OB ,交OB 于点D∵tan O =PD OD =43,∴设PD =4x ,则OD =3x∵OP =5,由勾股定理得(3x )2+(4x )2=52,∴x =1(已舍负),∴PD =4 ∵PM =PN ,PD ⊥OB ,MN =2,∴MD =ND =12MN =1在Rt △PMD 中,由勾股定理得PM =√MD 2+PD 2=√17. 14.(1)152(2)2425解析 (1)在Rt △ABC 中,cos A =AC AB =35∴设AC =3x ,则AB =5x ,∴BC =√AB 2−AC 2=√(5x)2−(3x)2=4x ∵BC =12,∴4x =12,∴x =3,∴AB =15,AC =9,∵D 是AB 的中点 ∴CD =12AB =152.(2)∵∠ACB =90°,D 是AB 的中点,∴△CBD 的面积=12×△ABC 的面积,∴12CD ·BE =12×12AC ·BC ,∴152BE =12×9×12,∴BE =365,在Rt △BDE 中cos ∠DBE =BE BD=365152=2425.15.解析原式=2×√32-(√3)23×1+1-√32=√3-1+1-√32=√32. 16.解析 如图,在等腰直角△ABC 中,∠C =90°,延长CB 至点D ,使得AB =BD ,则∠BAD =∠D.∵∠ABC =45°=∠BAD +∠D =2∠D ,∴∠D =22.5° 设AC =1,则BC =1,AB =√2AC =√2 ∴CD =CB +BD =CB +AB =1+√2 ∴tan 22.5°=tan D =ACCD =1+√2=√2−1(1+√2)×(√2−1)=√2-1.17.解析 (1)如图,连接BD ,设BC 的垂直平分线交BC 于点F ,∴BD =CD ∴C △ABD =AB +AD +BD =AB +AD +DC =AB +AC. ∵AB =CE ,∴C △ABD =AC +CE =AE =1 故△ABD 的周长为1.(2)设AD =x ,∴BD =3x.∵BD=CD,∴AC=AD+CD=4x在Rt△ABD中,AB=√BD2−AD2=√(3x)2−x2=2√2x∴tan∠ABC=ACAB =2√2x=√2.18.解析(1)在Rt△AOB中,cos α=OBAB∴OB=AB·cos α当α=50°时,OB=AB·cos α≈6×0.64=3.84当α=75°时,OB=AB·cos α≈6×0.26=1.56.∵1.56<2.5<3.84∴此时人能安全地使用这架梯子.(2)此时人不能安全地使用这架梯子.理由如下:当∠ABO=75°时∵sin∠ABO=AOAB∴AO=AB·sin 75°≈6×0.97=5.82(米)∵梯子顶端A沿着墙面下滑1.5米到墙面上的D点∴OD=AO-AD=5.82-1.5=4.32(米).当∠ABO=50°时∵sin∠ABO=AOAB∴AO=AB·sin∠ABO≈6×0.77=4.62(米)∵4.32<4.62∴此时人不能安全地使用这架梯子.19.解析过A作AD⊥BC,交CB的延长线于点D,如图所示则∠ACD=45°,∠ABD=53°,在Rt△ACD中,tan∠ACD=ADCD∴CD=ADtan45°=AD1=AD在Rt△ABD中,tan∠ABD=ADBD ,∴BD=ADtan53°≈AD43=34AD由题意得AD-34AD=75,∴AD=300 m,∵此时地面气温为20 ℃,海拔每升高100米,气温会下降约0.6 ℃,∴此时热气球(体积忽略不计)附近的温度约为20-300100×0.6=18.2(℃).答:此时热气球(体积忽略不计)附近的温度约为18.2 ℃.20.解析延长BC交AF于E,延长AF交MN的延长线于D,如图则四边形BMNC、四边形BMDE是矩形∴BC=MN=21 m,DE=CN=BM=1.7 m∵∠AEC=90°,∠ACE=45°∴△ACE是等腰直角三角形∴CE=AE设AE=CE=x m∴BE=(21+x)m∵∠ABE=22°∴tan 22°=AE BE =x21+x≈0.40,解得x =14∴AE =14 m∴AD =AE +ED =14+1.7=15.7(m) ∴纪念碑的高度=15.7-1.2=14.5(m). 答:纪念碑的高度约为14.5 m . 21.解析 延长BC 交AD 于点E则DE =CM =BN =1.6 m ,BC =MN ,∠AEB =90° ∵AD =2.2 m∴AE =AD -DE =2.2-1.6=0.6(m) 在Rt △ACE 中,∠ACE =60° ∴CE =AE tan60°=√3≈0.35(m)在Rt △ABE 中,∠ABE =20° ∴BE =AE tan20°≈0.60.36≈1.67(m)∴MN =BC =BE -CE =1.67-0.35=1.32(m) ∴有效测温区间MN 的长度约为1.32 m .22.解析 (1)Rt △ABH 中,tan ∠BAH =√3=√33 ∴∠BAH =30°,∴BH =12AB =8米.(2)如图,过B 作BG ⊥DE 于G 由(1)得BH =8米,易得AH =8√3米∴BG=HE=AH+AE=(8√3+24)米,在Rt△BGC中,∠CBG=45°∴CG=BG=(8√3+24)米.在Rt△ADE中,∠DAE=60°,AE=24米,∴DE=√3AE=24√3米.∴CD=CG+GE-DE=8√3+24+8-24√3=32-16√3≈4.3(米).答:广告牌CD的高约为4.3米.23.解析(1)∵∠COG=90°,∠AON=90°∴∠POC+∠CON=∠GON+∠CON∴∠POC=∠GON.(2)由题意可得KH=OQ=5米,QH=OK=1.5米,∠PQO=90°,∠POQ=60°在Rt△PQO中,tan∠POQ=PQOQ∴tan 60°=PQ5∴PQ=5√3米∴PH=PQ+QH=5√3+1.5≈10.2(米)即树高PH约为10.2米.(3)由题意可得O1O2=m米,O1E=O2F=DH=1.5米,tan β=PDO2D ,tan α=PDO1D∴O2D=PDtanβ,O1D=PDtanα∵O1O2=O2D-O1D,∴m=PDtanβ-PD tanα∴PD=mtanα·tanβtanα−tanβ米,∴PH=PD+DH=(mtanα·tanβtanα−tanβ+1.5)米。

中考《解直角三角形》复习练习题及答案

中考《解直角三角形》复习练习题及答案

中考数学复习专题练习解直角三角形一、选择题:1、在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形2、在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA= B.tanA= C.sinA= D.cosA=3、如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是( )A.2 B. C. D.4、在Rt ABC中,∠C=90°,sinB=,则tanA的值为( )A. B. C. D.5、在正方形网格中,△ABC的位置如图所示,则cosB的值为()A. B. C. D.6、在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长是()A. B.2 C.1 D.27、如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形顶点上,则tan∠ACB值为( )A. B. C. D.8、如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10mB.mC.15m D.m9、如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( )A.4米B.6米C.12米D.24米10、如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )A. B.-1 C.2- D.11、如图,已知的三个顶点都在方格图的格点上,则的值为( )A. B. C. D.12、如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.二、填空题:13、在△ABC中,∠A,∠B都是锐角,若sinA=,cosB=,则∠C=________.14、已知在Rt△ABC中,∠C=90°,AB=15,cosB=,则BC= .15、如图,先锋村准备在坡角为α=30°山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为______米.16、如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为______.17、如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN= .18、如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(+) tan+tan.(填“>”“=”“<”)19、如图在四边形ABCD中,∠ACB=∠BAD=105°,∠B=∠D=45°若 AD=,则AB=__________20、如图所示的半圆中,是直径,且,,则的值是.21、如图,在菱形ABCD中,DE⊥AB,,BE=2,则________.22、如图,在中,是边边上的中线,如果,tanB值是________23、如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为米.24、如图,在顶角为30°的等腰三角形ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°.根据图形计算tan15°= .三、简答题:25、在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=,若关于x的方程(+b)x2+2ax+(-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.26、已知:如图,正方形ABCD中,点E为AD边的中点,联结CE. 求cos∠ACE和tan∠ACE的值.27、如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)28、如图,河流两岸a,b互相平行,C,D是河岸a上间隔50m的两个电线杆.某人在河岸b上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=60°,求河流的宽度CF的值.(结果精确到个位)29、张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:≈1.732)30、如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.31、中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)参考答案1、A.2、C.3、B.4、D.5、B.6、B.7、B.8、A.9、B.10、A.11、D.12、B.13、答案为:60°14、答案为:9.15、答案为:(米).16、答案为24.17、答案为:4.3 18、答案为:>. 19、答案为:.20、答案为: ;21、答案为:2 ;22、答案为:23、答案为:137.24、答案为:2﹣.25、解:∵方程(5+b)x2+2ax+(5-b)=0有两个相等的实数根,且c=5,∴△=(2a)2-4(c+b)(c-b)=0,∴a2+b2=c2,则△ABC为直角三角形,且∠C=90°.设x1,x2是方程2x2-(10sin A)x+5sin A=0的两个根,则根据根与系数的关系有x1+x2=5sin A,x1·x2=sin A.∴x12+x22=(x1+x2)2-2x l·x2=(5sin A)2-2×sin A=6,解得sinA=或sinA=-(舍去),∴a=csin A=3,b==4,S△ABC=ab==18.26、解:过点作于点,∵四边形是正方形,∴平分,.∴,.∵是中点,∴.设,则,,.在Rt△AEF中,,.∴.∴,.27、【解答】解:(1)过C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离约为60海里.28、【解答】解:过点C作CE∥AD,交AB于E∵CD∥AE,CE∥AD∴四边形AECD是平行四边形∴AE=CD=50m,EB=AB﹣AE=50m,∠CEB=∠DAB=30°又∠CBF=60°,故∠ECB=30°∴CB=EB=50m∴在Rt△CFB中,CF=CB•sin∠CBF=50•sin60°≈43m答:河流的宽度CF的值为43m.29、解:如图,过B作BE⊥CD交CD延长线于E,∵∠CAN=45°,∠MAN=30°,∴∠CAB=15°∵∠CBD=60°,∠DBE=30°,∴∠CBD=30°,∵∠CBE=∠CAB+∠ACB,∴∠CAB=∠ACB=15°,∴AB=BC=20,在Rt△BCE中,∠CBE=60°,BC=20,∴CE=BCsin∠CBE=20×BE=BCcos∠CBE=20×0.5=10,在Rt△DBE中,∠DBE=30°,BE=10,∴DE=BEtan∠DBE=10×,∴CD=CE﹣DE=≈11.5,答:这棵大树CD的高度大约为11.5米.30、:(1)解:∵点E、F分别是BC、CD的中点,∴EC=DF=×4=2,由勾股定理得,DE==2,∵点F是CD的中点,点N为DE的中点,∴DN=DE=×2=,NF=EC=×2=1,∴△DNF的周长=1++2=3+;在Rt△ADF中,由勾股定理得,AF===2,所以,sin∠DAF===;(2)证明:在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠DAF+∠AFD=90°,∴∠CDE+∠AFD=90°,∴AF⊥DE,∵点E、F分别是BC、CD的中点,∴NF是△CDE的中位线,∴DF=EC=2NF,∵cos∠DAF==,cos∠CDE==,∴=,∴2AD•NF=DE•DM.31、【解答】解:过A作AD⊥CF于D,由题意得∠CAG=15°,∴∠ACE=15°,∵∠ECF=75°,∴∠ACD=60°,在Rt△ACD中,sin∠ACD=,则AD=AC•sin∠ACD=250≈433米,433米>400米,∴不需要改道.答:消防车不需要改道行驶.。

青岛版九年级上册数学第二章《解直角三角形》测试题

青岛版九年级上册数学第二章《解直角三角形》测试题

青岛版九年级上册数学第二章《解直角三角形》测试题一、单选题(共12题;共24分)1. 如图,在坡度为1:2的山坡上种树,要求相邻两棵树的水平距离是6m,则斜坡上相邻两棵树的坡面距离是()A.3mB.3√5mC.12mD.6m2. 如图,一架无人机航拍过程中在C处测得地面上A,B两个目标点的俯角分别为30∘和60∘.若A,B两个目标点之间的距离是100米,则此时无人机与目标点A之间的距离(即AC的长)为()A.100米B.100√3米C.50米D.50√3米3. 如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68∘方向上,航行2小时后到达N处,观测灯塔P在西偏南46∘方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68∘≈0.9272,sin46∘≈0.7193,sin22∘≈0.3746,sin44∘≈0.6947)()A.22.48海里B.41.68海里C.43.16海里D.55.63海里4. 如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;(2)量得测角仪的高度CD=a;(3)量得测角仪到旗杆的水平距离DB=b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A.a+b tanαB.a+b sinαC.a+btanαD.a+bsinα5. 如图,一棵珍贵的树倾斜程度越来越厉害了.出于对它的保护,需要测量它的高度,现采取以下措施:在地面上选取一点C,测得∠BCA=37∘,AC=28米,∠BAC=45∘,则这棵树的高AB约为()(参考数据:sin37∘≈,tan37∘≈,≈1.4)A.14米B.15米C.17米D.18米6. 如图,轮船在A处观测灯塔C位于北偏西70∘方向上,轮船从A处以每小时20海里的速度沿南偏西50∘方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25∘方向上,则灯塔C与码头B的距离是()A.10√2海里B.10√3海里C.10√6海里D.20√6海里7. 如图,A,B两景点相距20km,C景点位于A景点北偏东60∘方向上,位于B景点北偏西30∘方向上,则A,C两景点相距()A.10kmB.10√3kmC.10√2kmD.203√3km8. 如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28∘,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为( )(参考数据:sin28∘≈0.47,cos28∘≈0.88,tan28∘≈0.53)A.76.9mB.82.1mC.94.8mD.112.6m9. 如图,从点A看一山坡上的电线杆PQ,观测点P的仰角是45∘,向前走6m到达B点,测得顶端点P和杆底端点Q的仰角分别是60∘和30∘,则该电线杆PQ的高度()A.6+2√3B.6+√3C.10−√3D.8+√310. 某游乐场新推出了一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度.其中斜坡轨道BC的坡度(或坡比)为i=1:2,BC=12米,CD=8米,∠D=36∘,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为()米.(精确到0.1米,参考数据:tan36∘≈0.73,cos36∘≈0.81,sin36∘≈0.59)A.5.6B.6.9C.11.4D.13.911. 某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角45∘的传送带AB,调整为坡度i=1:√3的新传送带AC(如图所示).已知原传送带AB的长是4√2米,那么新传送带AC的长是()A.8米B.4米C.6米D.3米12. 如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60∘,然后在坡顶D测得树顶B的仰角为30∘,已知斜坡CD的长度为10m,DE的长为5m,则树AB的高度是()m.A.10B.15C.15√3D.15√3−5二、填空题(共8题;共9分)如图,航模小组用无人机来测量建筑物BC的高度,无人机从A处测得建筑物顶部B的仰角为45∘,测得底部C的俯角为60∘,若此时无人机与该建筑物的水平距离AD为30m,则该建筑物的高度BC为________m.(结果保留根号)如图,点C在线段AB上,且AC=2BC,分别以AC,BC为边在线段AB的同侧作正方形ACDE,BCFG,连接EC,EG,则tan∠CEG=________.如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是________.如图,小明在距离地面30米的P处测得A处的俯角为15∘,B处的俯角为60∘.若斜面坡度为1:√3,则斜坡AB的长是________米.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为________.计算sin60∘tan60∘−√2cos45∘cos60∘的结果为________ 。

第23章 解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)

第23章 解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)

第23章解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,=75°,则b的值为()A.3B.C.4D.2、如图,要测量河两相对的两点P、A之间的距离,可以在AP的垂线PB上取点C,测得PC=100米,用测角仪测得∠ACP=40°,则AP的长为()A.100sin40°米B.100tan40°米C. 米D. 米3、某公司要在如图所示的五角星(∠A=∠D=∠H=∠G=∠E=36°,AB=AC=CE=EF=FG=GI=HI=HK=DK=DB)中,沿边每隔25厘米装一盏闪光灯,若BC=(﹣1)米,则需要安装闪光灯()A.79盏B.80盏C.81盏D.82盏4、如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,下列结论正确的是()A.sinA=B.tanA=C.cosB=D.tanB=5、△ABC在网络中的位置如图所示,则cos∠ACB的值为()A. B. C. D.6、如图,将矩形沿折叠,使点落在边上的点,点的对应点为点,连接、、与交于点,与交于点,若点为中点,,,则的长为()A. B. C. D.7、已知a=3,且(4tan 45°-b)2+,以a,b,c为边组成的三角形面积等于()A.6B.7C.8D.98、如图,菱形ABCD中,对角线AC、BD交于点O,若AC=4,BD=2,则∠1的余弦值为()A. B. C. D.9、如图,一个梯子靠在垂直水平地面的墙上,梯子AB的长是2米.若梯子与地面的夹角为,则梯子顶端到地面的距离(BC的长)为()A. 米B. 米C. 米D. 米10、如图,在等腰中,,, 是上一点.若,那么的长为()A.2B.C.D.111、如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A,D分别落在点A',D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,的值为()A. &nbsp;B.C.D.12、在Rt△ABC,∠C=90°,AC=12,BC=5,则sinA的值为( )A. B. C. D.13、如图,在正方形网格中,∠1、∠2、∠3的大小关系()A.∠1=∠2=∠3B.∠1<∠2<∠3C.∠1=∠2>∠3D.∠1<∠2=∠314、如图,修建抽水站时,沿着坡度为i=1:6的斜坡铺设管道. 下列等式成立的是()A.sinα =B.cosα=C.tanα=D.tanα=215、如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A. 8tan20°B.6cos15°C.8tan15°D.6cot15°二、填空题(共10题,共计30分)16、用科学计算器计算:8cos31°+=________17、如图,点A、点B是双曲线y=上的两点,OA=OB=6,sin∠AOB=,则k=________.18、如图,将一张矩形纸片ABCD沿CE折叠,B点恰好落在AD边上,设此点为F,若AB:BC=4:5,则tan∠CFD=________.19、实数tan45°,,0,﹣π,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是________个.20、如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知乙楼的高CD=20m,则甲楼的高AB的高度是________m.(结果保留根号)21、如图,在△ABC中,CA =3, CB=4,AB= 5,点D是BC的中点,将△ABC沿着直线EF 折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin ∠BED的值为________.22、如图,在△ABC中,AB=AC=5,BC=8.若∠BPC= ∠BAC,则tan∠BPC=________.23、计算:2sin60°+tan45°=________24、如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:≈1.73)25、计算:3tan30°+sin45°=________.三、解答题(共5题,共计25分)26、计算:﹣4 ﹣tan60°+| ﹣2|.27、如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)28、先化简,再求值:,其中a=2sin45°﹣tan30°,b=tan45°.29、如图,水库大坝的横截面是梯形,坝顶宽5米,CD的长为20 米,斜坡AB的坡度i=1:2.5(i为坡比即BE:AE),斜坡CD的坡度i=1:2(i为坡比即CF:FD),求坝底宽AD的长.30、如图,轮船在A处观测灯塔C位于北偏东70o方向上,轮船从A处以每小时30海里的速度沿南偏东50o方向匀速航行,1小时后到达码头B处,此时观测灯塔C位于北偏东25o 方向上,求灯塔C与码头B之间的距离(结果保留根号).参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、D5、B6、A7、A8、D9、A11、A12、D13、D14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、。

解直角三角形》单元测试卷及答案

解直角三角形》单元测试卷及答案

《解直角三角形》单元测试卷一、填空题:1、如下图,表示甲、乙两山坡的情况, _____坡更陡。

(填“甲”“乙”)αβ1213 34甲乙2、在Rt △ABC 中,∠C =90°,若AC =3,AB =5,则cosB 的值为__________。

3、在Rt △ABC 中,∠C=90°.若sinA=22,则sinB= 。

4、计算:tan 245°-1= 。

5、在△ABC 中,AB=AC=10,BC=16,则tanB=_____。

6、△ABC 中,∠C=90°,斜边上的中线CD=6,sinA=31,则S △ABC=______。

7、菱形的两条对角线长分别为23和6,则菱形较小的内角为______度。

8、如图2是固定电线杆的示意图。

已知:CD ⊥AB ,CD 33=m ,∠CAD=∠CBD=60°,则拉线AC 的长是__________m 。

9、升国旗时,某同学站在离旗杆底部24米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若双眼离地面1.5米,则旗杆的高度为______米。

(用含根号的式子表示)10、如图3,我校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30,90BCA ∠=,台阶的高BC 为2米,那么请你帮忙算一算需要 米长的地毯恰好能铺好台阶.(结果精确到0.1m ,取2 1.414=,3 1.732=)11、如图4,如果△APB 绕点B 按逆时针方向旋转30°后得到△A'P 'B ,且BP=2,那么PP '的长为____________.(不取近似值. 以下数据供解题使用:sin15°=624-,cos 15°=624+)二、选择题:12、在ABC ∆中,︒=∠90C ,AB=15,sinA=13,则BC 等于( ) A 、45 B 、5 C 、15 D 、14513、李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是( ) A.40° B.30° C.20° D.10°14、身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300 m ,250 m ,200 m ;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝( )A.甲的最高B.乙的最低C.丙的最低D.乙的最高 15、在△ABC 中,若tanA=1,sinB=22,你认为最确切的判断是( ) A.△ABC 是等腰三角形 B.△ABC 是等腰直角三角形C.△ABC 是直角三角形D.△ABC 是一般锐角三角形16、如图5,某地夏季中午,当太阳移至房顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB=1.8 m ,要在窗子外面上方安装水平挡光板AC ,使午间光线不能直接射入室内,那么挡光板的宽度AC 为( )A.1.8tan80°mB.1.8cos80°mC.︒80sin 8.1 m D.︒80tan 8.1 m17、如图6,四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=23,AD=2,则四边形ABCD 的面积是( ) A.42B.43C.4D.6三、解答题:18、计算:(1)3cos30°+2sin45° (2)6tan 2 30°-3sin 60°-2sin 45°19、根据下列条件,求出Rt △ABC(∠C=90°)中未知的边和锐角. (1)BC=8,∠B=60°; (2)AC=2,AB=2.20、如图7,在Rt △ABC 中,∠C=90°,AC=8,∠A 的平分线AD=3316,求∠B 的度数及边BC 、AB 的长.21、等腰三角形的底边长20 cm ,面积为33100c m 2,求它的各内角.22、同学们对公园的滑梯很熟悉吧!如图是某公园在“六•一”前新增设的一台滑梯,该滑梯高度AC =2m ,滑梯着地点B 与梯架之间的距离BC =4m 。

解直角三角形测试题及答案

解直角三角形测试题及答案

《解直角三角形》整章测试【1】一、选择题(每小题3分,共24分)1.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( )(A )154(B)14(C)15 (D)42.计算:2)130(tan -︒=( )(A)331-(B)13- (C)133-(D )1-3 3.在ABC ∆中,,A B ∠∠都是锐角,且sinA =21, cosB =23,则ABC ∆的形状( ) (A )直角三角形(B )钝角三角形 (C )锐角三角形 (D )不能确定4.如图,在Rt ABC △中,3tan 2B =,23BC =,则AC 等于( )(A )3(B )4(C )43(D )65.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的 眼睛距地面的距离),那么这棵树高是( ) (A)(53332+)m (B)(3532+)m (C)533m (D)4m 6.因为1sin 302=,1sin 2102=-, 所以sin 210sin(18030)sin 30=+=-;因为2sin 452=,2sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )(A )12-(B)22-(C)32- (D)3-7.如图,客轮在海上以30km/h 的速度由B 向C 航行,在B 处测得 灯塔A 的方位角为北偏东80,测得C 处的方位角为南偏东25,航 行1小时后到达C 处,在C 处测得A 的方位角为北偏东20,则C 到A 的距离是( )(A)156km(B)152km (C)15(62)+km(D)5(632)+km北东ABC8.如图,在Rt ABC △中,906cm A AC ∠==,,8cm AB =,把AB 边翻折,使AB 边落在BC 边上,点A 落在点E 处,折痕为BD ,则sin DBE ∠的值为()(A)13(B)310(C)37373(D)1010二、填空题(每小题3分,共24分) 9.计算sin 60tan 45cos30-的值是.10. 用“>”或“<”号填空:1sin 50cos 402-0.(可用计算器计算) 11.在Rt ABC △中,90C ∠=,:3:4BC AC =,则cos A =. 12.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为米.13.如图,一轮船由南向北航行到O 处时,发现与轮船相距40海里的A 岛在北偏东33方向.已知A 岛周围20海里水域有暗礁, 如果不改变航向,轮船(填“有”或“没有”)触暗礁 的危险.(可使用科学计算器)14. 如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE=6cm ,3sin 5A =,则菱形ABCD 的面积是__________2cm . 15.根据指令[s,A](s ≥0,0°≤A <360°)机器人在平面上能完成如下动作:先在原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点(-3,3),应下的指令是.16. 有古诗“葭生池中”今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问: 水深、葭长各几何?(1丈=10尺)回答:水深,葭长. 17.(本题8分)计算:242(2cos 45sin 60)4︒-︒+. 18.(本题10分)某校数学兴趣小组在测量一座池塘边上A B ,两点间的距离时用了以下三种测量方法,如下图所示.图中a b c ,,表示长度,β表示角度.请你分别求出AB 的长度(用含有a b c β,,,字母的式子表示).(1)______AB = (2)______AB = (3)______AB =19.(本题10分)小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m ,请你帮小强计算这块菜地的面积(结果保留根号). 20.(本题12分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由. (1A C B a b(2AC B a β (3AC B aD Ec b A BCD EA BC21.(本题12分)如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求B,D之间的距离;(2)求C,D之间的距离.四、附加题(本题20分)22.现代家居设计的“推拉式”钢窗,运用了轨道滑行技术,纱窗装卸时利用了平行四边形的不稳定性,操作步骤如下:(1)将矩形纱窗转化成平行四边形纱窗后,纱窗上边框嵌入窗框的上轨道槽(如图1).(2)将平行四边形纱窗的下边框对准窗框的下轨道槽(如图2).(3)将平行四边形纱窗还原成矩形纱窗,同时下边框嵌入窗框的下轨道槽(如图3).在装卸纱窗的过程中,如图所示α∠的值不得小于81,否则纱窗受损.现将高96cm的矩形纱窗恰好安装在上、下槽深分别为0.9cm,高96cm(上、下槽底间的距离)的窗框上.试求合理安装纱窗时α∠的sin810.987=0.990=sin830.993=0.995=cos90.987=0.990=0.993=0.995=章《解直角三角形》整章测试答案:~8 BABA ACDD三、17.解:2=原式2=-2=18.解:(1)AB=(2)tanAB aβ=(3)acABb=.19.解:分两种情况:(1)当ACB∠为钝角时,BD是高,90ADB∴∠=.在Rt BCD△中,40BC=,30BD=∴CD==.在Rt ABD△中,50AB=,ABC中山路文化路D和平路45°15°30°环城路EF 图1 2 图3∴40AD ==.40AC AD CD ∴=-=-,新课标第一网∴211(4030(600)22ABC S AC BD ==-⨯=-△. (2)当ACB ∠为锐角时, BD 是高,90ADB BDC ∴∠=∠=,在Rt ABD △中,5030AB BD ==,,40AD ∴==.同理CD ==∴(40AC AD CD =+=+,∴211(4030(600)22ABC S AC BD ==+⨯=+△.综上所述:2(600)ABC S =±△.20.解:有触礁危险.理由: 过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°. ∴BD =PD =x .在Rt △PAD 中,∵∠PAD =90°-60°=30°,∴x .xAD 330tan =︒=∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险.21. 解:(1)由题意得,∠EA D =45°,∠FBD=30°. ∴∠EAC=∠EA D +∠DA C =45°+15°=60°. ∵ AE∥BF∥CD,∴ ∠FBC=∠EAC =60°. ∴ ∠DBC=30°.又∵ ∠DBC=∠DAB+∠ADB, ∴ ∠ADB=15°.∴∠DAB=∠ADB.∴ BD=AB=2. 即B ,D 之间的距离为2km .(2)过B 作BO⊥DC,交其延长线于点O , 在Rt△DBO 中,BD=2,∠DBO=60°. ∴ DO=2×sin60°=2×323=,BO=2×cos60°=1. 在Rt△CBO 中,∠CBO=30°,CO=BOtan30°=33, ∴ CD=DO-CO=332333=-(km ). 即C ,D 之间的距离为332km . 22. 解:能够合理装上平行四边形纱窗时的最大高度:960.995.1-=(cm ) 能够合理装上平行四边形纱窗时的高:96sin α∠或96cos(90)α-∠·°当81α∠=°时,纱窗高:96sin81960.98794.75295.1=⨯=<° ∴此时纱窗能装进去,当82α∠=°时,纱窗高:96sin82960.99095.0495.1=⨯=<° ∴此时纱窗能装进去.当83α∠=°时,纱窗高:96sin83960.99395.32895.1=⨯=>° ∴此时纱窗装不进去.因此能合理装上纱窗时α∠的最大值是82°.。

第一章 解直角三角形单元测试卷(困难 含解析)

第一章 解直角三角形单元测试卷(困难 含解析)

浙教版初中数学九年级下册第一单元《解直角三角形》(困难)(含答案解析)考试范围:第一单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1. 如图,已知△ABC中,∠B=90°,D,E分别为BC,AC的中点,连结DE,过D作AC的平行线与∠CAB的角平分线交于点F,连结EF,若EF⊥DF,AC=2,则∠DEF的正弦值为( )A. √5−12B. √5+14C. √5−14D. 3+√542. 在△ABC中,已知tanA=tanB,则下列说法不正确的是( )A. 边AB上任意一点P到边AC、BC的距离之和等于点B到AC的距离B. 边AB的垂直平分线是△ABC的对称轴C. △ABC的外心可能在△ABC内部、边上或外部D. 如果△ABC的周长是l,那么BC=l−2AB3. 如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点M处,折痕为AP,再将△PCM,△ADM分别沿PM,AM折叠,此时点C,D落在AP上的同一点N处.给出以下结论:①M是CD的中点;②AD//BC;③∠DAM+∠CPM=90∘;④当AD=CP时,ABCD =√32.其中正确的个数为( )A. 1B. 2C. 3D. 44. 在Rt△ABC中,∠C=90°,cosB=12,则sinA的值为( )A. 12B. √22C. √32D. √35. 如图,AB⏜是半径为1的半圆弧,△AOC 为等边三角形,点D 是BC ⏜上的一动点、则△COD 的面积S 的最大值是 ( )A. √34B. √33C. √32D. 126. 如图,Rt △ABC 中,∠BAC =90∘,cosB =14,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使∠ADE =∠B ,连接CE ,则CEAD的值为( )A. 32B. √3C. √152D. 27. 已知圆内接正三角形的面积为√3,则该圆的内接正六边形的边心距是( ) A. 2B. 1C. √3D. √328. 如图,在正方形ABCD 中,AB =2,点E 是BC 边的中点,连接DE ,延长EC 至点F ,使得EF =DE ,过点F 作FG ⊥DE ,分别交CD 、AB 于N 、G 两点,连接CM 、EG 、EN ,下列正确的是:①tan∠GFB =12;②MN =NC ;③CMEG =12;④S 四边形GBEM =√5+12( )A. 4B. 3C. 2D. 19. 四巧板是一种类似七巧板的传统智力玩具,它是由一个长方形按如图1分割而成,这几个多边形的内角除了有直角外,还有45°、135°、270°角.小明发现可以将四巧板拼搭成如图2的T字形和V字形,那么T字形图中高与宽的比值ℎl为( )A. √2B. √2+12C. 4+√24D. 3√2210. 如图,OA=4,线段OA的中点为B,点P在以O为圆心,OB为半径的圆上运动,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于( )A. 12B. 13C. 14D. 2311. 如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE⊥BF;②△OAP∽△EAC;③四边形OECF的面积是正方形ABCD面积的14;④AP−BP=√2OP;⑤若BE:CE=2:3,则tan∠CAE=47.其中正确的结论有( )个A. 2个B. 3个C. 4个D. 5个12. 如图,建筑工地划出了三角形安全区(△ABC),一人从A点出发,沿北偏东53°方向走50m 到达C点,另一人从B点出发,沿北偏西53°方向走100m到达C点,则点A与点B相距(tan53°=43)( )A. 30√15mB. 30√17mC. 40√10mD. 130m第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有______.14. 如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为______.,BE=2,则该菱形的面积是______.15.如图,在菱形ABCD中,DE⊥AB,cosA=3516.如图,在矩形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,若AH:AE=4:3,四边形EFGH的周长是40cm,则矩形ABCD的面积是______cm2.三、解答题(本大题共9小题,共72分。

沪科版九年级上《第23章解直角三角形》测试题含答案

沪科版九年级上《第23章解直角三角形》测试题含答案

第23章 解直角三角形一、选择题(每小题4分,共40分) 1.在△ABC 中,∠C =90°,若sin A =22,则sin B 等于( ) A. 12B. 22C. 32D .1 2.如图23-Z -1,在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边AC 的长是( ) A .m ·sin35° B .m ·cos35° C. m sin35° D. mcos35°图23-Z -13.△ABC 在网格中的位置如图23-Z -2所示(每个小正方形的边长为1),AD ⊥BC 于点D ,下列选项中,错误..的是( ) A .sin α=cos α B .tan ∠ACD =2 C .sin β=cos β D .tan α=1图23-Z -24.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c .若a =3,b =4,c =5,则tan A 的值是( )A. 34B. 43C. 35D. 45 5.下列式子中不成立的是( ) A. 2cos45°=2sin30°B .sin30°×cos60°=12sin 245°C .cos45°-sin45°=0D .sin(30°+30°)=sin30°+sin30°6.如图23-Z -3,已知45°<∠A <90°,则下列各式中成立的是( ) A .sin A =cos A B .sin A >cos A C .sin A >tan A D .sin A <cos A图23-Z -37.在△ABC 中,∠ACB =90°,sin A =35,D 是AB 的中点,则 tan ∠BCD + tan ∠ACD 等于( )A. 2512B.75C. 43D. 838.在平面直角坐标系中,点A 的坐标为(0,3),点B 在x 轴上,且sin ∠OAB =45,则点B 的坐标为( )A .(4,0)B .(-4,0)C .(4,0)或(-4,0)D .(5,0)或(-5,0)9.如图23-Z -4所示,小明从A 地沿北偏东30°方向走100 3m 到B 地,再从B 地向正南方向走200 m 到C 地,此时小明离A 地( )A .60 mB .80 mC .100 mD .120 m图23-Z -410.如图23-Z -5,在等腰直角三角形ABC 中,∠C =90°,AC =6,D 是AC 上一点,若tan ∠DBA =15,则AD 的长为( )A .2 B. 3 C. 2 D .1图23-Z -5二、填空题(每小题5分,共20分)11.如图23-Z -6,在Rt △ABC 中,∠C =90°,BC =15,tan A =158,则AB =________.图23-Z -612.如图23-Z -7,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,CD ⊥AB ,垂足为D ,则 tan ∠BCD 的值是________.图23-Z -713.如图23-Z-8,在菱形ABCD中,AE⊥BC于点E,已知EC=1, cos B=513,则这个菱形的面积是________.图23-Z-814.如图23-Z-9,在四边形ABCD中,AD∥BC,AC⊥AB,AD=CD,tan∠DCA=错误!,AC=8,则AB的长度是________.图23-Z-9三、解答题(共40分)15.(8分)如图23-Z-10,在△ABC中,∠A=30°,∠B=45°,AC=2 3,求AB的长.图23-Z-1016.(8分)如图23-Z-11是某小区的一个健身器材的示意图,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到底面CD的距离.(结果精确到0.1 m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)图23-Z-1117.(12分)如图23-Z-12,某小区①号楼与⑪号楼隔河相望.李明家住在①号楼,他很想知道⑪号楼的高度,于是他测量了一些数据.他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算⑪号楼的高度CD.图23-Z-1218.(12分)如图23-Z -13,台风中心位于点O 处,并沿北偏东45°方向﹙OC 方向﹚以40千米/时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O 的正东方向,距离60 2千米的地方有一城市A .(1)A 市是否会受到此台风的影响?为什么?(2)在点O 的北偏东15°方向上,距离80千米的地方还有一城市B ,则B 市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受影响,请说明理由.图23-Z -131. B2.B [解析] cos A =AC AB ,即cos 35°=ACm,∴AC =m·cos 35°.3.C [解析] 先构建直角三角形,再根据三角函数的定义,sin α=cos α=22 2=22,tan ∠ACD =21=2,sin β=cos (90°-β),故选C .4.A 5.D6.B [解析] 根据锐角的正弦值随角度的增大而增大,余弦值随角度的增大而减小判断.也可用特殊值检验.7.A [解析] 如图,由sin A =35,设BC =3k ,AB =5k.由勾股定理得AC =4k.根据直角三角形斜边上的中线等于斜边的一半,得CD =AD =BD ,∴∠BCD =∠B,∠ACD =∠A,故tan ∠BCD +tan ∠ACD =43+34=2512.8.C [解析] ①如图,点B 在x 轴的正半轴上. ∵sin ∠OAB =45,∴设OB =4x ,AB =5x ,∴由勾股定理,得32+(4x)2=(5x)2,解得x =1,∴OB =4. 则点B 的坐标是(4,0);②同理,当点B 在x 轴的负半轴上时,点B 的坐标是(-4,0). 则点B 的坐标是(4,0)或(-4,0). 9.C10.A [解析] 如图,过点D 作DE⊥AB,垂足为E.易证△ADE 为等腰直角三角形,AE =DE.在Rt △BDE 中,tan ∠DBA =DE BE =AE BE =15,所以BE =5AE.在等腰直角三角形ABC 中,∠C =90°,AC =6,由勾股定理可求出AB =6 2,所以AE = 2.在等腰直角三角形ADE 中,利用勾股定理可求出AD 的长为2.故选A .11.17 [解析] ∵tan A =BC AC ,即158=15AC ,∴AC =8.根据勾股定理,得AB =AC 2+BC 2=82+152=17.12.34 [解析] 在Rt △ABC 与Rt △BCD 中,∵∠A +∠B=90°,∠BCD +∠B=90°,∴∠A =∠BCD.∴tan ∠BCD =tan A =BC AC =68=34.故答案为34.13.3916 [解析] 设BE =5x ,由cos B =513,得AB =13x ,AE =12x ,则13x =5x +1,解得x =18.所以菱形的面积=BC·AE=13x·12x=3916. 14.6 [解析] 由题意,得∠DCA=∠DAC=∠ACB.在Rt △ABC 中求解.15.解:如图,过点C 作CD⊥AB 于点D ,则∠ADC=∠BDC=90°. ∵∠B =45°,∴∠BCD =∠B=45°,∴CD =BD. ∵∠A =30°,AC =2 3, ∴CD =3,∴BD =CD = 3. 由勾股定理得AD =AC 2-CD 2=3, ∴AB =AD +BD =3+ 3.16.解:如图,过点A 作AE⊥直线CD 于点E ,过点B 作BF⊥AE 于点F. ∵OD ⊥CD ,∠BOD =70°,∴AE ∥OD , ∴∠A =∠BOD=70°.在Rt △ABF 中,∵AB =2.7,∴AF =2.7×cos 70°≈2.7×0.34=0.918(m ),∴AE =AF +BC≈0.918+0.15=1.068≈1.1(m ).答:端点A 到底面CD 的距离约是1.1 m .17.解:如图,过点A 作AE⊥CD 于点E. 在Rt △BCD 中,∵tan ∠CBD =CDBD ,∴CD =BD·tan 60°=3BD. 在Rt △ACE 中,∵tan ∠CAE =CEAE ,∴CE =AE·tan 30°=BD·tan 30°=33BD. ∵CD -CE =AB , 即3BD -33BD =42, ∴BD =21 3. ∴CD =3BD =63(米). 答:⑪号楼的高度CD 为63米.18.解:(1)不会.理由:如图,过点A 作AE⊥OC 于点E.在Rt △AOE 中,sin 45°=AEOA ,∴AE =60 2×22=60(千米). ∵60千米>50千米,∴A 市不会受到此台风的影响.(2)会.如图,过点B 作BF⊥OC 于点F.精品 Word 可修改 欢迎下载 在Rt △BOF 中,∵∠BOF =45°-15°=30°,sin 30°=BF OB,∴BF =80×12=40(千米). ∵40千米<50千米,∴B 市会受到台风的影响.如图,以B 为圆心,50千米为半径作圆交OC 于点G ,H.在Rt △BGF 中,∵BF =40千米, ∴GF =502-402=30(千米).同理,FH =30千米.∴GH =60千米,60÷40=1.5(时),∴B 市受到台风影响的时间为1.5小时.。

解直角三角形测试题与答案

解直角三角形测试题与答案

解直角三角形测试题与答案一、选择题(每小题 5 分,共 25 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。

2、在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:D解析:因为 sinA =,设 BC = 4x,AB = 5x,则 AC = 3x,所以tanB =。

3、如图,在△ABC 中,∠C = 90°,AC = 8,∠A 的平分线 AD =,则 BC 的长为()A 12B 10C 8D 6答案:B解析:因为 AD 是∠A 的平分线,所以∠CAD =∠BAC。

在Rt△ACD 中,cos∠CAD =,即,解得 CD = 6。

在 Rt△ABC 中,BC =。

4、已知在 Rt△ABC 中,∠C = 90°,tanA =,则 sinA 的值为()A B C D答案:B解析:设 BC = 3x,AC = 4x,则 AB = 5x,所以 sinA =。

5、如图,在菱形 ABCD 中,DE⊥AB,cosA =,BE = 2,则tan∠DBE 的值是()A B 2C D答案:C解析:因为 cosA =,设 AD = 5x,AE = 3x,则 DE = 4x。

因为BE = 2,所以 5x 3x = 2,解得 x = 1,所以 DE = 4。

在 Rt△BDE 中,tan∠DBE =。

二、填空题(每小题 5 分,共 25 分)1、在 Rt△ABC 中,∠C = 90°,若 sinA =,AB = 10,则 BC=________。

答案:6解析:因为 sinA =,所以,设 BC = 3x,AB = 5x,因为 AB =10,所以 5x = 10,解得 x = 2,所以 BC = 6。

解直角三角形测试题与答案

解直角三角形测试题与答案

解直角三角形测试题与答案一、选择题(每小题 3 分,共 30 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:在直角三角形中,30°角所对的直角边等于斜边的一半。

设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。

2、已知在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:A解析:因为 sinA =,所以设 BC = 3x,AB = 5x,则 AC = 4x。

所以 tanB =。

3、在△ABC 中,∠C = 90°,AB = 15,sinA =,则 BC 等于()A 9B 12C 10D 6答案:B解析:因为 sinA =,所以 BC = AB×sinA = 15×= 9。

4、如图,在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,则cosB 的值是()A B C D答案:A解析:因为在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,所以BC = 3。

所以 cosB =。

5、一个直角三角形的两条直角边分别为 6 和 8,则其斜边上的高为()A 48B 5C 3D 10答案:A解析:根据勾股定理可得斜边为 10,设斜边上的高为 h,根据面积相等可得 ×6×8 = ×10×h,解得 h = 48。

6、在 Rt△ABC 中,∠C = 90°,若 sinA =,则 cosA 的值为()A B C D答案:B解析:因为 sin²A + cos²A = 1,sinA =,所以 cosA =。

7、如图,在 Rt△ABC 中,∠ACB = 90°,CD⊥AB 于点 D,若AC =,BC = 2,则 sin∠ACD 的值为()A B C D答案:A解析:因为∠ACB = 90°,AC =,BC = 2,所以 AB = 3。

沪科版九年级数学上册试题 第23章《解直角三角形》章节测试卷(含解析)

沪科版九年级数学上册试题 第23章《解直角三角形》章节测试卷(含解析)

第23章《解直角三角形》章节测试卷一.选择题(共9小题,满分27分,每小题3分)1.在△ABC 中,∠A 、∠B 都是锐角,且sinA =32,cosB =12,则△ABC 是( ).A .等腰三角形B .等边三角形C .直角三角形D .钝角三角形2.直角三角形纸片ABC ,两直角边BC =4,AC =8,现将△ABC 纸片按如图那样折叠,使A 与电B 重合,折痕为DE ,则tan ∠CBE 的值是( )A .12B .34C .1D .433.如图,△ABC 的顶点分别在单位长度为1的正方形网格的格点上,则sin ∠BAC 的值为( )A .5B .55C .12D .2534.如图,在△ABC 中,∠C =90°,点D 、E 分别在BC 、AC 上,AD 、BE 交于F ,若BD=CD =CE ,AF =DF ,则tan ∠ABC 的值为( )A .12B .23C .34D .455.一块直角三角板ABC 按如图放置,顶点A 的坐标为(0,1),直角顶点C 的坐标为(−3,0),∠B =30°,则点B 的坐标为( )A. (−3−33,33)B .(−3+3,3)C .(−3+33,33)D .(−3−3,33)6.在Rt △ABC 中,∠A =90°,有一个锐角为60°,BC =6,若点P 在直线AC 上(不与点A 、C 重合),且∠ABP =30°,则CP 的长为( )A .6或23B .6或43C .23或43D .6或23或437.如图,延长等腰Rt ΔABC 斜边AB 到D ,使BD =2AB ,连接CD ,则tan ∠BCD 的值为( )A .23B .1C .13D .128.如图,在△ABC 中,∠ACB =90∘,分别以AB ,AC ,BC 为边向外作正方形,连结CD ,若sin∠BCD=35,则tan ∠CDB 的值为( )A .23B .34C .710D .9139.如图1是由四个全等的直角三角形组成的“风车”图案,其中∠AOB =90°,延长直角三角形的斜边恰好交于另一直角三角形的斜边中点,得到如图2,若IJ =2,则该“风车”的面积为( )A .2+1B .22C .4−2D .42二.填空题(共6小题,满分18分,每小题3分)10.如图,在Rt △ABC 中,∠C =90°,点D ,E 分别在AC ,BC 边上,且AD =3,BE =4,连接AE ,BD ,交于点F ,BD=10,cos ∠AFD=32,则AE 的长为 .11.如图,在菱形ABCD 中,tan ∠ABC =43,AE ⊥BC 于点E ,AE 的延长线与DC 的延长线交于点F ,则S △ECF :S 四边形ADCE = .(S 表示面积)12.如图,在矩形ABCD中,AB=3,AD=4,E是对角线BD上一动点(点E不与点B,D重合),当△ABE是等腰三角形时,DE=.13.如图,已知点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD,DC延长线的垂线,垂足分别为点E,F.若∠ABC=120°,AB=6,则PE−PF的值为.14.如图,在正方形ABCD中,M,N分别是AB,CD的中点,P是线段MN上的一点,BP的延长线交4D 于点E,连接PD,PC,将△DEP绕点P顺时针旋转90°得△GFP,则下列结论:①CP=GP,②tan∠CGF=1;③BC垂直平分FG;④若AB=4,点E在AD边上运动,则D,F两点之间距离的2.其中结论正确的序号有.最小值是3215.如图,△A B1A1,△A1B2A2,△A2B3A3,…是等边三角形,直线y=33x+2经过它们的顶点A,A1,A2,A3,…,点B1,B2,B3,…在x轴上,则线段B2022B2023的长度是.16.如图,E、F、G、H分别是矩形的边AB、BC、CD、AD上的点,AH=CF,AE=CG,∠EHF=60°,∠GHF=45°,若AH=2,AD=5+3,则四边形EFGH的周长为.三.解答题(共7小题,满分52分)17.(6分)计算:(1)2sin60°−tan45°2−tan30°⋅tan60°−2cos30°+6sin245°. (2)(π−1)0+4sin45°−8+|−3|.18.(6分)如图,在△ABC中,AD⊥BC于点D,若AD=6,BC=12,tan∠ACD=32.求:(1)CD的长;(2)sin∠ABC的值.19.(8分)(2023春·河南南阳·九年级统考期中)如图,已知点A(7,8)、C(0,6),AB⊥x轴,垂足为点B,点D在线段OB上,DE∥AC,交AB于点E,EF∥CD,交AC于点F.(1)求经过A、C两点的直线的表达式;(2)设OD=t,BE=s,求s与t的函数关系式;(3)是否存在点D,使四边形CDEF为矩形?若存在,请直接写出点D的坐标;若不存在,请说明理由.20.(8分)(1)在如图1的正方形网格图中,每个小正方形的边长为1,A,B,C,D均为格点(小正方形的顶点).求证:∠ABC=∠D.(2)在如图2所示的正方形网格图中,每个小正方形的边长为1,A,B,C均为格点,请你仅用无刻度的直尺在线段AC上求作一点P,使得∠PBA=∠C,并简要说明理由.21.(9分)如图,小明为测量宣传牌AB的高度,他站在距离建筑楼底部E处6米远的地面C处,测得宣传牌的底部B的仰角为60°.同时测得建筑楼窗户D处的仰角为30°(A、B、D、E在同一直线上.)然后,小明沿坡度为i=1:2.5的斜坡从C走到F处,此时DF正好与地面CE平行,小明在F处又测得宣传牌顶部A的仰角为45°.(1)填空:∠DAF=__________度,∠BDC=__________度;(2)求F距离地面CE的高度(结果保留根号);(3)求宣传牌AB的高度(结果保留根号).22.(9分)我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad),如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=底边腰=BCAB.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad90°=________.(2)对于0°<A<180°,∠A的正对值sadA的取值范围是________.(3)如图②,已知sinA=35,其中∠A为锐角,试求sadA的值.23.(9分)已知:△ABC 中,AB =AC ,D 为直线BC 上一点.(1)如图1,BH ⊥AD 于点H ,若AD =BD ,求证:BC =2AH .(2)如图2,∠BAC =120°,点D 在CB 延长线上,点E 在BC 上且∠DAE=120°,若AB =6,DB=23,求CE 的值.(3)如图3,D 在CB 延长线上,E 为AB 上一点,且满足:∠BAD=∠BCE ,AE BE=23,若tan ∠ABC =34,BD =5,求BC 的长.答案解析一.选择题1.B【分析】根据特殊角的三角函数值求出∠A=60°,∠B=60°,然后利用三角形内角和定理求出∠C的度数,即可解答.【详解】解:∵sinA=32,cosB=12,∴∠A=60°,∠B=60°,∴∠C=180°−∠A−∠B=60°,∴△ABC是等边三角形,故选:B.2.B【分析】根据折叠的性质得出BE=AE,设CE=x,则BE=AE=8−x,在Rt△BCE中,根据勾股定理得出B C2+C E2=B E2,列出方程求出x的值,最后根据正切的定义,即可解答.【详解】解:∵△ADE沿DE折叠得到△BDE,∴BE=AE,设CE=x,则BE=AE=8−x,在Rt△BCE中,根据勾股定理可得:B C2+C E2=B E2,即42+x2=(8−x)2,解得:x=3,∴tan∠CBE=CEBC =34,故选:B.3.B【分析】过B作BD⊥AC于点D,根据勾股定理得出AB,AC的值,再利用面积公式求出BD的值,由sin∠BAC=BDBA可得角的正弦值.【详解】解:如图,过B作BD⊥AC于点D根据勾股定理得:AB =32+42=5,AC =32+62=35∴S ΔABC =12AC ⋅BD =4×6−12×3×1−12×3×4−12×6×3=152, ∴BD =5∴sin ∠CAB=BD AB =55故选:B .4.C 【分析】如图,过A 作AG ∥BC ,交BE 的延长线于G ,证明△AGF ≌△DBF (AAS ),则AG =BD =12BC ,证明△AEG ∽△CEB ,则AE CE =AG BC =12,解得AE =12CE ,AC =32CE ,根据tan ∠ABC =ACBC,计算求解即可.【详解】解:如图,过A 作AG ∥BC ,交BE 的延长线于G ,∴∠G =∠DBF ,在△AGF 和△DBF 中,∵{∠G =∠DBF∠AFG =∠DFB AF =DF,∴△AGF ≌△DBF (AAS ),∴AG =BD =12BC ,∵∠G =∠CBE ,∠AEG =∠CEB ,∴△AEG ∽△CEB ,∴AE CE =AG BC=12,解得AE =12CE ,∴AC =32CE ,∴tan ∠ABC=AC BC =32CE 2CE =34,故选:C .5.D【分析】过点B 作BE ⊥OC 于点E ,根据ΔABC 为直角三角形可证明ΔBCE ∽ΔCAO ,求出AC =10,求出BC ,再由比例线段可求出BE ,CE 长,则答案可求出.【详解】解:过点B 作BE ⊥OC 于点E ,∵△ABC 为直角三角形,∴∠BCE +∠ACO =90°,∴ΔBCE ∽ΔCAO ,∴ BE OC =BC AC =EC OA ,在Rt △ACO 中,AC =A O 2+C O 2=12+32=10,在Rt △ABC 中,∠CBA=30°,∴ tan ∠CBA=CA BC ,∴ BC =CA tan ∠CBA =10tan30°=30,∴ BE3=3010=EC1,解得BE =33,EC =3,∴ EO =EC +CO =3+3,∴点B 的坐标为(−3−3,33).故选:D .6.D【分析】根据点P在直线AC上的不同位置,∠ABP=30°,利用特殊角的三角函数进行求解.【详解】如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°−30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB=3cos30°=332=23如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BCcos30°=632=43故选:D7.A【分析】过点D作DE垂直于CB的延长线于点E,设AC=BC=a,根据勾股定理得AB=2a,由等腰直角三角形的性质得∠ABC=∠BAC=45°,从而得BD=2AB=22a,在Rt△BDE中,解直角三角形得DE=2a,BE=2a,进而求得CE=BC+BE=3a即可求得tan∠BCD.【详解】解:过点D作DE垂直于CB的延长线于点E,如下图,设AC=BC=a,∵AC⊥BC,AC=BC=a,∴AB=A C2+B C2=2a,∠ABC+∠BAC=90°,∠ABC=∠BAC,∴∠ABC=∠BAC=45°,BD=2AB=22a,∴∠DBE=∠ABC=45°,∵DE⊥CE,∴DE=BD·sin∠DBE=22a·sin45°=2a,BE=BD·cos∠DBE=22a·cos45°=2a,∴CE=BC+BE=3a,∴tan∠BCD=DECE =2a3a=23,故选:A.8.D【分析】过点B作BE⊥CD于点E,过点C作CF⊥AB于点F,可得△ABC,△BED,△BEC,△BCF都是直角三角形,根据sin∠BCE=BEBC =35,设BE=3a,BC=5 a,得CE=B C2−B E2=4 a,过点C作DB延长线于点G,得矩形CFBG,设AC=x,AB=y,然后利用勾股定理和三角形的面积可得y2−9=133,进而利用锐角三角函数即可解决问题.【详解】解:如图,过点B作BE⊥CD于点E,过点C作CF⊥AB于点F,∴△ABC,△BED,△BEC,△BCF都是直角三角形,∵sin∠BCD=35,∴sin∠BCE=BEBC =35,设BE=3a,BC=5a,∴CE=B C2−B E2=4a,过点C作DB延长线于点G,得矩形CFBG,∴BF=CG,设AC=x,AB=y,在Rt△ABC中,根据勾股定理,得AB2﹣AC2=BC2,∴y2﹣x2=25a2,∵S△ABC=12×AB•CF=12×AC•BC,∴y•CF=5ax,∴CF=5axy,在Rt△BCF中,根据勾股定理,得BF=B C2−C F2=25a2−(5axy )2=25ya,∴BF=CG=25ya,在正方形ABDH中,AB=BD=y,在Rt△BDE中,根据勾股定理,得DE=B D2−B E2=y2−9a2,∴CD=CE+ED=4a +y2−9a2,∵S△CBD=12×CD•BE=12×BD•CG,∴CD•BE=BD•CG,∴(4a +y2−9a2)×3=y×25ya,∴y2−9a2=133a,∴tan∠CDB=tan∠EDB=BEDE =3ay2−9a2=913.故选:D.9.B【分析】连接AC,由题意可得Rt△AOB≌Rt△DCO≌Rt△EOF≌Rt△GOH,进而说明△OAC为等腰直角三角形,再说明分CD、GI垂直平分AB,进而说明∠OBH=∠OHB=45°,然后再运用解直角三角形求得AI,然后再求得三角形AOB的面积,最后求风车面积即可.【详解】解:如图:连接AC由题意可得:Rt△AOB≌Rt△DCO≌Rt△EOF≌Rt△GOH∴OA=OC, ∠OAB= ∠OCD∵∠AOC=∠AOB=90°∴△OAC为等腰直角三角形又∵∠OAB= ∠OCD:∴∠AJD=180°-∠ADJ-∠OAB=180°-∠ODC-∠OCD=90°,即AJ⊥CD又∵CJ=DJ∴AJ垂直平分CD同理:GI垂直平分AB∴AC=AD,AJ是等腰三角形顶角∠CAD的角平分线即∠DAJ=12∠CAD=12×45°=22.5°易得IH=BJ,IJ=IB+BJ=IB+IH 又∵IB=IA∴IJ=IB+BJ=IH+IA= 2在Rt△ABO中,∠ABH=∠BAH=22.5°∴∠OBH=OHB=45°设OB=OH=a,即AH=BH=2OB=2a∴tan∠A=BOAO =aa+2a=2−1∴IHIA=tan∠A=2−1设IH=(2−1)x,AI=x ∴IH+IA=2x=2,即x=1∴S△ABH =12×AB×IH=2−1又∵SΔBOHSΔABH =OHAH=12∴S△BOH =1−22∴S△AOB =S△ABH+S△BOH=2−1+1−22=22∴S风车=4S△AOB=4×22=22.故选B.二.填空题10.53【分析】过点A作AG∥BE,BG∥AE交于点G,连接DG,勾股定理求得DG,过点D作DH⊥BG,证明G,H重合,进而勾股定理即可求解.【详解】解:如图所示,过点A作AG∥BE,BG∥AE交于点G,连接DG,则四边形AGBE是平行四边形,∴AG=BE=4,∵∠C=90°,则BC⊥AC∴AG⊥AC∴△ADG是直角三角形,∴DG=5∵cos∠AFD=32∴∠AFD=30°∵AE∥BG∴∠DBG=30°∵DG=5,DB=10过点D作DH⊥BG,∵sin∠DBG=12∴DH=12DB=5,∴G,H重合,∴AE=BG=BH=53故答案为:53.11.4:21【分析】设AE=4k,则BE=3k,根据勾股定理求出AB=5k,然后证明△CEF∽△DAF,最后根据相似三角形的性质求解即可.【详解】解∶∵tan∠ABC=43,AE⊥BC,∴tan∠ABC=43=AEBE,设AE=4k,则BE=3k,∴AB =A E 2+B E 2=5k ,∵四边形ABCD 是菱形,∴CB ∥AD ,AD =BC =AB =5k ,∴CE =BC −BE =2k ,∵CB ∥AD ,∴△CEF ∽△DAF ,∴S △CEF S△DAF =(CE DA )2=(2k 5k )2=425,∴S △CEFS 四边形ADCE =S △CEF S △DAF −S △CEF =425−4=421.故答案为:4:21.12.2或52或75【分析】分AB =AE,BE =BA,EA =EB 三种情况,分别画出图形,即可求解.【详解】解:在矩形ABCD 中,AB =3,AD =4,∴∠BAD=90°,∴BD =A B 2+A D 2=32+42=5,当AB =AE 时,过点A 作AF ⊥AD 于点F ,则AF ⊥BD ,∴cos ∠ABD=AB BD =BF AB ,∴BF =AB 2BD =95∴DE =BD −BE =BD −2BF =5−185=75,当BA =BE 时,DE =BD −BE =5−3=2,当EA =EB 时,过点E 作EG ⊥AB 于点G ,∴EG ∥AD ,AG =GB ,∴BE ED=BG AG =1,∴DE =12BD=52,综上所述DE = 2或52或75,故答案为:2或52或75.13.33【分析】如图,延长BC 交EP 于M ,由菱形的性质可知,CP 为∠BCD ,∠FCM 的平分线,则PF =PM ,PE −PF =PE −PM =EM ,由题意知,EM 为△ABD 底边AD 上的高,由菱形ABCD ,∠ABC=120°,AB =6,可得∠BAD=60°,根据EM=AB ⋅sin ∠BAD ,计算求解,进而可得结果.【详解】解:如图,延长BC 交EP 于M ,由菱形的性质可知,CP为∠BCD,∠FCM的平分线,∵PF⊥CF,PM⊥CM,∴PF=PM,∴PE−PF=PE−PM=EM,由题意知,EM为△ABD底边AD上的高,∵菱形ABCD,∠ABC=120°,AB=6,∴∠BAD=60°,∴EM=AB⋅sin∠BAD=33,∴PE−PF=33,故答案为:33.14.①②③【分析】延长GF交AD于点H,连接FC,FB,FA,由已知可得MN为AB,CD的垂直平分线,由垂直平分线的性质和图形旋转的性质可得①的结论正确;利用三角形的内角和定理和等腰三角形的性质计算可得∠BCG=45°,由四边形内角和定理通过计算可得∠EHF=90°;利用平行线的性质可得BC⊥FG,则∠CGF=45°,可说明②的结论正确;通过证明点A,B,E,F在以点P为圆心,PA为半径的同一个圆上,利用圆周角定理可得∠FAB=45°,得到A,F,C三点共线,得到△CGF为等腰直角三角形,则③的结论正确;由题意点F在对角线AC上运动,当EF⊥AC时,EF的值最小,连接AC,解直角三角形的知识可得④的结论不正确.【详解】解:延长GF交AD于点H,连接FC,FB,FA,如图,∵正方形ABCD中,M,N分别是AB,CD的中点,∴MN是线段BA,CD的垂直平分线.∴PD=PC,PA=PB.∵△FPG是△PED绕点P顺时针旋转90°得到,∴△FPG≌△PED,∴PD=PG.∴PC=PG.∴①的结论正确;∵PD=PC,∴∠PDC=∠PCD=1(180°−∠DPC).2∵PC=PG,∴∠PCG=∠PGC=1(180°−∠CPG).2∴∠PCD+∠PCG=1[360°−(∠DPC+∠CPG)].2∵∠DPC+∠CPG=90°,∴∠PCD+∠PCG=135°.∵∠BCD=90°,∴∠BCG=45°.∵△FPG≌△PED,∴∠DEP=∠GFP.∵∠HFP+∠PFG=180°,∴∠DEP+∠HFP=180°.∵∠DEP+∠HFP+∠EHF+∠EPF=360°,∴∠EHF+∠EPF=180°.∴∠EPF=90°,∴∠EHF=90°.即GH⊥AD.∵AD//BC,∴GF⊥BC.∴∠CGF=45°.∴tan∠CGF=1.∴②的结论正确;∵PA=PB,PM⊥AB,∴∠APM=∠BPM,∵PM//AE,∴∠PEA=∠BPM,∠PAE=APM.∴∠PEA=∠PAE.∴PA=PE.∵PE=PF,∴PA=PB=PE=PF.∴点A,B,E,F在以点P为圆心,PA为半径的同一个圆上.∴∠FAB=12∠FPB=12×90°=45°.∴点F在对角线AC上,∴∠FCB=45°.∵∠BCG=∠CGF=45°,∴△FCG为等腰直角三角形.∵BC平分∠FCG,∴BC垂直平分FG.∴③的结论正确;由以上可知:点F在正方形的对角线AC上运动,∴当EF⊥AC时,EF的值最小.此时点E与点D重合,∴DF=AD⋅sin45°=4×22=22.∴④的结论不正确.综上,结论正确的序号有:①②③,故答案为:①②③.15.220233【分析】设直线y=33x+2与x轴交于点C,求出点A、C的坐标,可得OA=2,OC=23,推出∠C B1A1=90°,∠C B1A=30°,然后求出C B1=2O B1=43=22×3,C B2=2C B1=83=23×3,C B3=2C B2=163=24×3,…,进而可得C B2022=22023×3,C B2023=22024×3,再求出B2022B2023即可.【详解】解:如图所示,设直线y =33x +2与x 轴交于点C ,当x =0时,y =2;当y =0时,x =−23,∴ A (0,2),C (−23,0),∴ OA=2,OC =23,∴ tan ∠ACO =OA OC=223=33,∴ ∠ACO=30°,∵ △A B 1A 1是等边三角形,∴ ∠A A 1B 1=∠A B 1A 1=60°,∴ ∠C B 1A 1=90°,∠C B 1A =30°,∴ AC =A B 1,∵ AO⊥C B 1,∴ O B 1=OC =23,∴ C B 1=2O B 1=43=22×3,同理,C B 2=2C B 1=83=23×3,C B 3=2C B 2=163=24×3,……,∴ C B 2022=22023×3,C B 2023=22024×3,∴ B 2022B 2023=22024×3−22023×3=220233,故答案为:220233.16.8+46【分析】先构造15° 的直角三角形,求得15° 的余弦和正切值;作EK ⊥FH ,可求得EH:EF =2:6;作∠ARH=∠BFT =15°,分别交直线AB 于R 和T ,构造“一线三等角”,先求得FT 的长,进而根据相似三角形求得ER ,进而求得AE ,于是得出∠AEH =30°,进一步求得结果.【详解】解:如图1,Rt △PMN 中,∠P =15°,NQ =PQ ,∠MQN =30°,设MN=1,则PQ =NQ =2,MQ=3,PN =6+2,∴cos15°=6+24,tan15°=2−3,如图2,作EK ⊥FH 于K ,作∠AHR =∠BFT =15°,分别交直线AB 于R 和T ,∵四边形ABCD 是矩形,∴∠A =∠C ,在△AEH 与△CGF 中,{AE =CG ∠A =∠C AH =CF,∴△AEH ≌△CGF(SAS),∴EH =GF ,同理证得△EBF ≌△GDH ,则EF =GH ,∴四边形EFGH 是平行四边形,设HK=a ,则EH=2a ,EK =3a ,∴EF =2EK =6a ,∵∠EAH =∠EBF =90°,∴∠R=∠T =75°,∴∠R=∠T=∠HEF=75°,可得:FT=BFcos15°=3+36+24=26,AR=AH⋅tan15°=4−23,△FTE∽△ERH,∴FTER =EFEH,∴26ER =62,∴ER=4,∴AE=ER−AR=23,∴tan∠AEH=223=33,∴∠AEH=30°,∴HG=2AH=4,∵∠BEF=180°−∠AEH−∠HEF=75°,∴∠BEF=∠T,∴EF=FT=26,∴EH+EF=4+26=2(2+6),∴2(EH+EF)=4(2+6),∴四边形EFGH的周长为:8+46,故答案为:8+46.三.解答题17.(1)原式=2×32−12−33×3−2×32+6×(22)2=3−12−1−3+6×12=3−1−3+3=2.(2)原式=1+4×22−22+3 =1+22−22+3=4.18.(1)解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ADC中,tan∠ACD=ADCD =32,AD=6,∴CD=4;(2)解:由(2)得CD=4,∴BD=BC−CD=8,∴AB=A D2+B D2=10,在Rt△ABD中,sin∠ABD=ADAB =35,即sin∠ABC=35.19.解:(1)设直线AC的表达式为y=kx+b 将点A、C的坐标代入,得得:{7k+b=8b=6,解得:{k=27b=6,故直线AC的表达式为:y=27x+6;(2)∵OD=t,BE=s,AB⊥x轴∴则点D(t,0),点E(7,s)∵DE∥AC可设直线DE的解析式为y=27x+c将点D的坐标代入0=27t+c解得:c=﹣27t∴直线的表达式为:y=27x﹣27t,将点E的坐标代入,得s=2﹣27t(根据点D在线段OB上,可得0<t<7);(3)存在,理由:设点D(t,0),由(2)BE=2﹣27t,四边形CDEF为矩形,则∠CDE=90°,∵∠EDB +∠CDO =90°,∠CDO +∠OCD =90°,∴∠OCD =∠BDE ,∴tan ∠OCD =tan ∠BDE ,∴ODOC =BE BD即t 6=2−27t 7−t,解得:t =127或7(因为0<t <7,故舍去7),故点D 的坐标为(127,0).20.(1)如图所示,取格点E ,F ,连接BF,AF ,AE,CE ,∵BF =12+12=2,DF =32+32=32,∴tan ∠D =BF DF=232=13,∵CE =1,BE =3,∴tan ∠ABC=CE BE=13,∴tan ∠D =tan ∠ABC ,∴∠ABC=∠D ;(2)解:如图,取格点D ,E ,同理(1)可得,在Rt△AEC中,tan∠ACE=1,2,在Rt△ABD中,tan∠ABD=12∴tan∠ACE=tan∠ABD,∴∠ACE=∠ABD,直线BD与AC的交点为所求的点P.21.(1)解:由题意,得AD⊥DF,∴∠ADF=90°∴∠DAF=90°−∠AFD=90°−45°=45°,由题意,得FD∥CE,∴∠CDF=∠ECD=30°∴∠BDC=∠ADF+∠CDF=90°+30°=120°.(2)解:如图,过点F作FG⊥EC于G,由题意得,FG∥DE,DF∥GE,∠FGE=90°,∴四边形DEGF是矩形.∴FG=DE.在Rt △CDE 中,DE =CE ⋅tan ∠DCE=6×tan30°=23(米),∴FG =23(米).答:F 距离地面CE 的高度为23米;(3)解:∵斜坡CF 的坡度为i =1:2.5,∴Rt △CFG 中,CG = 2.5FG =23× 2.5=53(米),∴FD =EG =(53+6)(米).∴在Rt △AFD 中,∠AFD=45°,∴AD =FD =(53+6)米.在Rt △BCE 中,BE =CE ⋅tan ∠BCE =6×tan60°=63(米),∴AB =AD +DE −BE =53+6+23−63=(6+3)(米).答:宣传牌AB 的高度约为(6+3)米.22.(1)解:如图,∠BAC=90°,AB =AC ,sad90°=BC AB ,∵cos45°=AB BC=22,∴sad90°=BCAB = 2.(2)解:如图,点A 在BC 的中垂线上,当点A 向BC 靠近时,∠A 增大,逐渐接近180°,腰长AB 接近12BC ,AB >12BC 相应的sadA =BC AB <2;当点A 远离BC 时,∠A 减小,逐渐接近0°,腰长AB 逐渐增大,相应的sadA =BCAB 逐渐接近0,sad A =BCAB >0;∴0<sadA <2(3)解:如图,在AB 上截取AH=AC ,过H 作HD ⊥AC 于D ,sinA =35=DH AH ,设HD =3x,AH =AC =5x ,则,AD =A H 2−H D 2=4x ,∴DC =AC −AD =5x −4x =x .Rt △HDC 中,HC =C D 2+H D 2=10x ,∴sadA =CH AH =10x 5x =105.23.(1)解:证明:如图1,过点A 作AN ⊥BC 于N ,∵AB =AC ,∴BN =12BC ,∵AD =BD ,∴∠ABD =∠BAD ,在△ABN 和△BAH 中,{∠ANB=∠BHA=90°∠ABD=∠DABAB=BA,∴△ABN≌△BAH(AAS),∴BN=AH,∴12BC=AH,∴BC=2AH;(2)如图2,在AC上取一点F,使EF=EC,连接EF,∵∠BAC=∠DAE=120°,∴∠DAB=∠EAC,∵AB=AC,∴∠ABE=∠C=∠CFE=30°,∴∠ABD=∠AFE=150°,∴△ABD∽△AFE,∴ABAF =BDEF,即6AF=23EF,∴AFEF=3,设EF=a,则AF=3a,∵EF=CE=a,∠C=30°,∴CF=2EF·cos30°=3a,∴6−3a=3a,∴a=3,∴CE=EF=3;(3)如图3,过点A作AP⊥BC于P,作AG∥CE交BC的延长线于G,设AE=2m,BE=3m,则AB=AC=5m,∵tan∠ABC=34=AP BP ,∴ BP AB =45,∴BP =CP =4m ,BC =8m ,∵∠BAD =∠BCE =∠G ,∠ABD =∠GCA ,∴△ABD ∽△GCA ,∴ CG AB =AC BD ,即CG 5m =5m 5,∴CG =5m 2,∵AG ∥CE ,∴ BE AE =BC CG ,∴ 3m 2m =8m5m 2,∴m =1615,∴BC =8m =12815.。

第2章 解直角三角形数学九年级上册-单元测试卷-青岛版(含答案)

第2章 解直角三角形数学九年级上册-单元测试卷-青岛版(含答案)

第2章解直角三角形数学九年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、方程,则锐角=()A.30°B.45°C.60°D.无法确定2、如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5 .若用科学计算器求边AC的长,则下列按键顺序正确的是()A. B.C. D.3、如图,Rt△ABC中,∠CAB=90°,在斜边CB上取点M,N(不包含C、B两点),且tanB=tanC=tan∠MAN=1,设MN=x,BM=n,CN=m,则以下结论能成立的是()A.m=nB.x=m+nC.x>m+nD.x 2=m 2+n 24、如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,AB=8,则tan∠ACB的值等于()A. B. C. D.5、如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A. B. C. D.6、如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要 ( )A.450a元B.225a元C.150a元D.300a元7、cos30°=()A. B. C. D.8、如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=S△ABF ,其中正确的结论有()A.2个B.3个C.4个D.5个9、如图,小强从热气球上测量一栋高楼顶部的倾角为30°,测量这栋高楼底部的俯角为60°,热气球与高楼的水平距离为45米,则这栋高楼高为多少(单位:米)()A.15B.30C.45D.6010、如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4kmB.(2+ )kmC.2 kmD.(4﹣)km11、三角形在正方形网格纸中的位置如图所示,则cosα的值是()A. B. C. D.12、等于()A. B. C. D.13、如图,港口A在观测站O的正东方向,OA=6km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.3 kmB.3 kmC.4 kmD.(3 ﹣3)km14、如图,⊙O是△ABC的外接圆,弦AC的长为3,sinB= ,则⊙O的半径为().A.4B.2.5C.2D.15、如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.()米B.()米C.()米 D.()米二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,点A(0,3),B是x轴正半轴上一动点,将点A绕点B 顺时针旋转60°得点C,OB延长线上有一点D,满足∠BDC=∠BAC,则线段BD长为________.17、如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为________.18、如图所示,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12米,塔影长DE=18米,小明和小华的身高都是1.6米,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2米和1米,那么塔高AB为________米。

第24章 解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)

第24章 解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)

第24章解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是()A.AE=3CEB.AE=2CEC.AE=BDD.BC=2CE2、如图,线段是⊙的直径,弦,垂足为,点是上任意一点,,则的值为()A. B. C. D.3、在Rt△ABC中,∠C=90°,若AB=2AC,则sinA 的值是()A. B. C. D.4、如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A. B. C. D.5、已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为()A.45°B.75°C.45°或15°或75°D.60°6、以下列各组线段为边,能组成三角形的是()A.4cm,5cm,6cmB.8cm,2cm,5cmC.12cm,5cm,6cm D.3cm,6cm,3cm7、如图,,是角平分线上一点,,垂足为,点是的中点,且,如果点是射线上一个动点,则的最小值是()A.1B.C.2D.8、如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN=3,则CM的长为()A.3B.C.4D.9、定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角的正对记作,即底边:腰.如图,在中,,.则()A. B. C.1 D.210、等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A.25cmB.20cmC.15cmD.20cm或25cm11、如图,已知P是射线OB上的任意一点,PM⊥OA于M,且OM:OP=4:5,则cosα的值等于( )A. B. C. D.12、已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是()A. B. C. D.13、如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.14、如图,正方形中,为的中点,为上一点,,设,则的值等于().A. B. C. D.15、在中,,,则的值等于()A. B. C. D. 或二、填空题(共10题,共计30分)16、计算:2sin45°cos45°=________.17、如图,已知等边的边长是6,点D在AC上,且延长BC到E,使,连接点F,G分别是AB,DE的中点,连接FG,则FG的长为________.18、如图,优弧纸片所在的半径为2,,点为优弧上一点(点不与,重合),将图形沿折叠,得到点的对称点.当与相切时,则折痕的长________.19、如图,在△ABC中,,,AD是△ABC的中线,AE是∠BAD的角平分线,DF//AB交AE的延长线于点F,则DF的长为________.20、如图,点是圆形纸片的圆心,将这个圆形纸片按下列要求折叠,使弧和弧都经过圆心,已知的半径为,则阴影部分的面积是________.21、已知等边的边长为3,点在直线上,点在直线上,且,若,则的长为________.22、在直角三角形ABC中,若2AB=AC,则cosC=________.23、已知tanα= ,那么sinα=________.(其中α为锐角)24、如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30o得到正方形AB′C′D′,则它们的公共部分的面积等于________ 。

第24章 解直角三角形单元测试卷及参考答案

第24章  解直角三角形单元测试卷及参考答案

图(1)图(2)第24章 解直角三角形单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 如图(1)所示,在△ABC 中,︒=∠90B ,AB BC 2=,则A cos 等于 【 】 (A )25 (B )21 (C )552 (D )552. 如图(2)所示,在Rt △ABC 中,︒=∠90BAC ,BC AD ⊥于点D ,如果α=∠ABC ,那么下列结论 错误的是 【 】 (A )αsin ACBC =(B )αtan ⋅=AD CD (C )αcos ⋅=AB BD (D )αcos ⋅=AD AC3. 如图(3)所示,在菱形ABCD 中,AB DE ⊥,2,53cos ==BE A ,则DBE ∠tan 的值是 【 】图(3)(A )21(B )2 (C )25 (D )554. 在Rt △ABC 中,︒=∠90C ,已知54sin =A ,则A cos 的值为 【 】 (A )54(B )1 (C )53 (D )525. 如图(4)所示,△ABC 的顶点是正方形网格的格点,则A sin 的值为 【 】图(4)CBA(A )21(B )55 (C )1010 (D )5526. 如图(5)所示,已知︒=∠60AOB ,点P 在边OA 上,,12=OP 点M 、N 在边OB 上,PN PM =,若2=MN ,则OM 等于 【 】A B图(5)N OPM(A )3 (B )4 (C )5 (D )67. 如图(6)所示,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若,5,4==BC AB 则AFE ∠tan 的值为 【 】图(6)D(A )54 (B )53 (C )43 (D )358. 如图(7)所示,在Rt △ABC 中,︒=∠90C ,︒=∠30A ,E 为AB 上一点,且1:4:=EB AE ,AC EF ⊥于点F ,连结FB ,则CFB ∠tan 的值等于【 】(A )33 (B )332 (C )335 (D )35 图(7)图(8)9. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度,如图(8)所示,旗杆P A 的高度与拉绳PB 的长度相等.小明将PB 拉到PB′的位置,测得α=∠C PB '(C B '为水平线),测角仪D B '的高度为1米,则旗杆P A 的高度为 【 】(A )αsin 11-米 (B )αsin 11+米(C )αcos 11-米 (D )αcos 11+米10. 如图(9)所示,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD 长2米,且与灯柱BC 成︒120角,路灯采用圆锥形灯罩,灯罩的轴线DO 与灯臂CD 垂直,当灯罩的轴线DO 通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC 的高度应该设计为 【 】A图(9)O DBC(A )()2211-米 (B )()22311-米 (C )()3211-米 (D )()4311-米二、填空题(每小题3分,共15分)11. 如图(10)所示,在△ABC 中,12,==BC AC AB ,BD 为高,M 为AB 的中点,且5=DM ,则△ABC 的面积为_________.图(10)图(11)MNBCAD12. 在△ABC 中,如果B A ∠∠、满足021cos 1tan 2=⎪⎭⎫⎝⎛-+-B A ,那么=∠C _________.13. 如图(11)所示,正方形ABCD 的边长为4,N 是DC 的中点,M 是AD 上异于D 的点,且MBC NMB ∠=∠,则=∠ABM tan _________.14. 一般地,当βα,为任意角时,()βα+sin 与()βα-sin 的值可以用下面的公式求得:()βαβαβαsin cos cos sin sin +=+,()βαβαβαsin cos cos sin sin -=-.例如:()4622223222145sin 30cos 45cos 30sin 4530sin 75sin +=⨯+⨯=︒︒+︒︒=︒+︒=︒类似地,可以求得=︒15sin __________.15. 如图(12)所示,已知点()0,35A ,直线b x y +=)0(>b 与y 轴交于点B ,连结AB ,若︒=75α,则=b _________.图(12)三、解答题(共75分)16. 计算:(每小题5分,共20分)(1)︒+︒45cos 360sin 2; (2)130sin 560cos 3-︒︒;(3)︒-︒-︒45tan 230cos 1245sin 22; (4)︒-︒-︒︒60cos 2345tan 60sin 230sin 2.17.(8分)先化简,再求值:1211222++-÷⎪⎭⎫ ⎝⎛+-x x x x x x ,其中︒=30sin x .18.(11分)如图(13)所示,在△ABC 中,AC BE BC AD ⊥⊥,,垂足分别为D 、E ,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当1=AC时,求BF的长.tan=∠ABD,3 Array图(13)19.(12分)如图(14)所示,在矩形ABCD中,点E是BC边上的点,AEAE⊥=,,垂足为点F,连结DE.BCDF(1)求证:DFAB=;(2)若,6=ABAD求EDF10=,tan的值.∠Array图(14)20.(12分)如图(15)所示,小强从自己家的阳台上看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42 m,这栋楼有多高?图(15)21.(12分)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(记作sad ).如图1,在△ABC 中,AC AB =,顶角A 的正对记作sad A ,这时sad A ABBC==腰底边.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题: (1)sad =︒60_________;(2)如图2,在△ABC 中,CA CB =,若sad C 56=,求B tan 的值; (3)如图3,在Rt △ABC 中,︒=∠90C ,若54sin =A ,试求sad A 的值.图 1BCA图 2BAC图 3C第24章 解直角三角形单元测试卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. 48 12. ︒75 13.3114. 426- 15. 5 三、解答题(共75分)16. 计算:(每小题5分,共20分) (1)︒+︒45cos 360sin 2;解:原式223232⨯+⨯= 62626=+=(2)130sin 560cos 3-︒︒;解:原式1215213-⨯⨯=1= (3)︒-︒-︒45tan 230cos 1245sin 22; 解:原式223322222-⨯-⨯=292321-=--=(4)︒-︒-︒︒60cos 2345tan 60sin 230sin 2.解:原式21231232212⨯--⨯⨯=41324321343131-=-+=--=17.(8分)先化简,再求值:1211222++-÷⎪⎭⎫ ⎝⎛+-x x x x x x ,其中︒=30sin x .解:1211222++-÷⎪⎭⎫ ⎝⎛+-x x x x x x()()()()1111122-=-++⋅+=x x x x x x x x ……………………………………6分当2130sin =︒=x 时……………………………………7分 原式112121-=-=. ……………………………………8分 18.(11分)如图(13)所示,在△ABC 中,AC BE BC AD ⊥⊥,,垂足分别为D 、E ,AD 与BE 相交于点F . (1)求证:△ACD ∽△BFD ;(2)当1tan =∠ABD ,3=AC 时,求BF 的长.图(13)(1)证明:∵AC BE BC AD ⊥⊥, ∴︒=∠+∠︒=∠+∠902,901C C ……………………………………1分 ∴21∠=∠……………………………………2分 ∵︒=∠=∠90BDF ADC ,21∠=∠∴△ACD ∽△BFD ;……………………………………5分 (2)在Rt △ABD 中 ∵1tan =∠ABD ∴1=BDAD……………………………………7分 ∵△ACD ∽△BFD∴13,1===BFBD AD BF AC ∴3=BF .……………………………………9分 19.(12分)如图(14)所示,在矩形ABCD 中,点E是BC边上的点,AE DF BC AE ⊥=,,垂足为点F ,连结DE .(1)求证:DF AB =;(2)若,6,10==AB AD 求EDF ∠tan 的值.图(14)(1)证明:∵四边形ABCD 是矩形 ∴BC AD BC AD ABE =︒=∠,//,90 ……………………………………1分 ∴AEB DAF ∠=∠ ∵AE DF ⊥∴︒=∠=∠90ABE DFA ∵BC AE = ∴DA BC AE == 在△ABE 和△DF A 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠DA AE DAF AEB DFA ABE ∴△ABE ≌△DF A (AAS )……………………………………5分 ∴DF AB =;(2)由(1)可知:△ABE ≌△DF A ∴6==DF AB……………………………………6分 ∵10=AD ∴10=AE在Rt △ABE 中,由勾股定理得:86102222=-=-=AB AE BE……………………………………9分 ∴8=FA∴2=-=FA AE EF……………………………………10分 ∴3162tan ===∠DF EF EDF . ……………………………………12分 20.(12分)如图(15)所示,小强从自己家的阳台上看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42 m,这栋楼有多高?解:由题意可知:42,=⊥AD BC AD m……………………………………1分 在Rt △ABD 中 ∵ADBDBAD =∠tan ∴3342=BD ∴314=BD m……………………………………6分 在Rt △ACD 中 ∵ADCDCAD =∠tan ∴360tan 42=︒=CD∴342=CD m……………………………………11分 ∴356=+=CD BD BC m……………………………………12分 答:这栋楼的高度为356m.21.(12分)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(记作sad ).如图1,在△ABC 中,AC AB =,顶角A 的正对记作sad A ,这时sad A ABBC==腰底边.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:(1)sad =︒60_________;(2)如图2,在△ABC 中,CA CB =,若sad C 56=,求B tan 的值; (3)如图3,在Rt △ABC 中,︒=∠90C ,若54sin =A ,试求sad A 的值. 解:(1)1;……………………………………3分 (2)作AB CD ⊥.图 2∵CA CB =,AB CD ⊥ ∴AB BD 21=……………………………………4分∵sad C 56=∴56=BC AB 设x AB 6=,则x BC 5=∴x BD 3=在Rt △BCD 中,由勾股定理得:()()xx x BD BC CD 4352222=-=-=……………………………………5分 ∴3434tan ===x x BD CD B . ……………………………………6分 (3)延长AC 至E ,使AE AB =. ……………………………………8分图 3∵54sin =A ∴54=AB BC 设x AB x BC 5,4== ∴x AE 5=在Rt △ABC 中,由勾股定理得:()()xx x BC AB AC 3452222=-=-=……………………………………9分 ∴x AC AE CE 2=-= 在Rt △BCE 中,由勾股定理得:()()xx x CE BC BE 52242222=+=+=∴sad A 552552===x x AB BE .(12分)图 2 mm。

第一章 解直角三角形单元测试卷(标准难度 含答案)

第一章 解直角三角形单元测试卷(标准难度 含答案)

浙教版初中数学九年级下册第一单元《解直角三角形》(标准难度)(含答案解析)考试范围:第一单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1. 如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A. sinA=√32B. tanA=12C. cosB=√32D. tanB=√32. 如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为( )A. 8B. 10C. 12D. 163. 如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tan B=53,则tan∠CAD的值为( )A. √33B. √35C. 13D. 154. 在实数π,13,√2,sin30°中,无理数的个数为( )A. 1B. 2C. 3D. 45. 如图,△ABC的三个顶点分别在正方形网格的格点上,下列三角函数值错误的是( )A. sinB=35B. cosB=45C. tanB=34D. tanA=436. 如图,CD是平面镜,光线从点A出发,经CD上点E反射后照射到点B.若入射角为α,AC⊥CD,BD⊥CD,垂足分别为点C,D,且AC=3,BD=6,CD=11,则tanα的值为( )A. 113B. 311C. 911D. 1197. 在Rt△ABC中,∠C=90∘,cosA=√32,∠B的平分线BD交AC于点D,若AD=16,则BC的长为( )A. 6B. 8C. 8√3D. 128. 如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为( )A. ①②;B. ②③;C. ①②③;D. ①③;9. 某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )A. 95sinα米B. 95cosα米C. 59sinα米D. 59cosα米10. 如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD=√3.若E,F分别为AB,BC的中点,则EF的长为( )A. √33B. √32C. 1D. √6211. 如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=α,则点A到OC的距离等于( )A. a⋅sinα+b⋅sinαB. a⋅cosα+b⋅cosαC. a⋅sinα+b⋅cosαD. a⋅cosα+b⋅sinα12. 如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45∘方向然后向西走80米到达C点,测得点B在点C的北偏东60∘方向,则这段河的宽度为( )A. 80(√3+1)米B. 40(√3+1)米C. (120−40√3)米D. 40(√3−1)米第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 在Rt△ABC中,∠C=90°,AB=3,BC=2,则cosA的值是.14. 在菱形ABCD中,DE⊥AB,垂足是E,DE=6,sin A=3,则菱形ABCD的周长是.515. 若锐角α满足cosα<√2且tanα<√3,则α的范围是.216. 如图,在△ABC中,AB=AC=5cm,cosB=3.如果⊙O的半径为√10cm,且经过点B,5C,那么线段AO=cm.三、解答题(本大题共9小题,共72分。

第2章 解直角三角形数学九年级上册-单元测试卷-青岛版(含答案)

第2章 解直角三角形数学九年级上册-单元测试卷-青岛版(含答案)

第2章解直角三角形数学九年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、的值等于()A. B. C. D.2、如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A. B. C. D.3、已知,△ABC中,∠C=90°,sinA=,则∠A 的度数是()A.30°B.45°C.60°D.90°4、如图,在的正方形网格中,每个小正方形的边长都是,的顶点都在这些小正方形的顶点上,则的值为()A. B. C. D.5、cos60°的值等于()A. B.1 C. D.6、在中,,,,则的值是()A. B. C. D.7、如图,折叠矩形的一边,使点落在边的点处,已知折痕,且,那么矩形的周长是()A. B. C. D.8、李红同学遇到了这样一道题:tan(α+20°)=1,你猜想锐角α的度数应是()A.40°B.30°C.20°D.10°9、如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC=()A. B. C. D.10、某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼三楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知CD=6米,则旗杆AB的高度为()A.9米B.9(1+ )米C.12米D.18米11、如图,在平面直角坐标系中,菱形的顶点与原点重合,顶点落在轴的正半轴上,对角线、交于点,点、恰好都在反比例函数的图象上,则的值为()A. B. C.2 D.12、图1是一张圆形纸片,直径AB=4,现将点A折叠至圆心O形成折痕CD,再把点C,D 都折叠至圆心O处,最后将图形打开铺平(如图2所示),则弧EF的长为( )A. πB. πC. πD. π13、如图,小明在C处看到西北方向上有一凉亭A,北偏东35°的方向上有一棵大树B,已知凉亭A在大树B的正西方向,若BC=100米,则A、B两点相距()米.A.100(cos35°+sin35°)B.100(cos35°﹣sin35°)C.D.14、如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④15、某数学社团开展实践性研究,在大明湖南门测得历下亭在北偏东37°方向,继续向北走105m后到达游船码头,测得历下亭在游船码头的北编东53°方向.请计算一下南门与历下亭之间的距离约为()(参考数据:,)A.225B.275C.300D.315二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,以点P为圆心,PC长为半径作⊙P。

解直角三角形测试题与答案

解直角三角形测试题与答案

解直角三角形测试题与答案一.选择题〔共12小题〕1.〔2021•义乌市〕如图,点A〔t,3〕在第一象限,OA与x轴所夹的锐角为α,tanα=,那么t的值是〔〕A.1B.C.2D.32.〔2021•巴中〕在Rt△ABC中,∠C=90°,sinA=,那么tanB的值为〔〕A.B.C.D.3.〔2021•凉山州〕在△ABC中,假设|cosA﹣|+〔1﹣tanB〕2=0,那么∠C的度数是〔〕A.45°B.60°C.75°D.105°4.〔2021•随州〕如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,那么B点到河岸AD的距离为〔〕A.100米B.50米C.D.50米米5.〔2021•凉山州〕拦水坝横断面如下图,迎水坡AB的坡比是1:,坝高BC=10m,那么坡面AB的长度是〔〕A.15m B.20m C.10m D.20m6.〔2021•百色〕从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,两栋楼之间的水平距离为6米,那么教学楼的高CD是〔〕A.〔6+6〕米B.〔6+3〕米C.〔6+2〕米D.12米7.〔2021•苏州〕如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,那么该船航行的距离〔即AB的长〕为〔〕A.4km B.2km C.2km D.〔+1〕km 8.〔2021•路北区二模〕如图,△ABC的项点都在正方形网格的格点上,那么cosC的值为〔〕A.B.C.D.9.〔2021•长宁区一模〕如图,在△ABC中,∠ACB=90°,CD⊥AB于D,下边各组边的比不能表示sinB的〔〕A.B.C.D.10.〔2021•工业园区一模〕假设tan〔α+10°〕=1,那么锐角α的度数是〔〕A.20°B.30°C.40°D.50°11.〔2021•鄂州四月调考〕在△ABC中,∠A=120°,AB=4,AC=2,那么sinB的值是〔〕A.B.C.D.12.〔2021•邢台一模〕在Rt△ABC中,∠C=90°,假设AB=4,sinA=,那么斜边上的高等于〔〕A.B.C.D.二.填空题〔共6小题〕13.〔2021•济宁〕如图,在△ABC中,∠A=30°,∠B=45°,AC=,那么AB的长为_________.14.〔2021•徐汇区一模〕如图,梯形ABCD中,AB∥CD,AB⊥BC,且AD⊥BD,假设CD=1,BC=3,那么∠A的正切值为_________.15.〔2021•虹口区一模〕计算:cos45°+sin260°=_________.16.〔2021•武威模拟〕某人沿坡度为i=3:4斜坡前进100米,那么它上升的高度是_________米.17.〔2021•海门市模拟〕某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进20m到达点D处,又测得点A 的仰角为60°,那么建筑物AB的高度是_________m.18.〔2021•扬州〕在△ABC中,AB=AC=5,sin∠ABC=0.8,那么BC=_________.三.解答题〔共6小题〕19.〔2021•盘锦〕如图,用一根6米长的笔直钢管弯折成如下图的路灯杆ABC,AB垂直于地面,线段AB与线段BC所成的角∠ABC=120°,假设路灯杆顶端C到地面的距离CD=,求AB长.20.〔2021•遵义〕如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.〔注:坡度i是指坡面的铅直高度与水平宽度的比〕21.〔2021•哈尔滨〕如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.〔1〕求两建筑物底部之间水平距离BD的长度;〔2〕求建筑物CD的高度〔结果保存根号〕.22.〔2021•邵阳〕一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.〔温馨提示:sin53°≈0.8,cos53°≈0.6〕23.〔2021•射阳县三模〕小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.斜坡的坡度为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,求树的高度.24.〔2021•崇川区一模〕如图,某登山队在山脚A处测得山顶B处的仰角为45°,沿坡角30°的斜坡AD前进1000m 后到达D处,又测得山顶B处的仰角为60°.求山的高度BC.参考答案与试题解析一.选择题〔共12小题〕1.〔2021•义乌市〕如图,点A〔t,3〕在第一象限,OA与x轴所夹的锐角为α,tanα=,那么t的值是〔〕A.1B.C.2D.3考点:锐角三角函数的定义;坐标与图形性质.专题:数形结合.分析:根据正切的定义即可求解.解答:解:∵点A〔t,3〕在第一象限,∴AB=3,OB=t,又∵tanα==,∴t=2.应选:C.点评:此题考察锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.〔2021•巴中〕在Rt△ABC中,∠C=90°,sinA=,那么tanB的值为〔〕A.B.C.D.考点:互余两角三角函数的关系.专题:计算题.分析:根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tan∠B.解答:解:∵sinA=,∴设BC=5x,AB=13x,那么AC==12x,故tan∠B==.应选:D.点评:此题考察了互余两角三角函数的关系,属于根底题,解题的关键是掌握三角函数的定义和勾股定理的运用.3.〔2021•凉山州〕在△ABC中,假设|cosA﹣|+〔1﹣tanB〕2=0,那么∠C的度数是〔〕A.45°B.60°C.75°D.105°考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.专题:计算题.分析:根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C 的度数.解答:解:由题意,得cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.应选:C.点评:此题考察了特殊角的三角形函数值及绝对值、偶次方的非负性,属于根底题,关键是熟记一些特殊角的三角形函数值,也要注意运用三角形的内角和定理.4.〔2021•随州〕如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,那么B点到河岸AD的距离为〔〕A.100米B.50米C.D.50米米考点:解直角三角形的应用.专题:几何图形问题.分析:过B作BM⊥AD,根据三角形内角与外角的关系可得∠ABC=30°,再根据等角对等边可得BC=AC,然后再计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.解答:解:过B作BM⊥AD,∵∠BAD=30°,∠BCD=60°,∴∠ABC=30°,∴AC=CB=100米,∵BM⊥AD,∴∠BMC=90°,∴∠CBM=30°,∴CM=BC=50米,∴BM=CM=50米,应选:B.点评:此题主要考察了解直角三角形的应用,关键是证明AC=BC,掌握直角三角形的性质:30°角所对直角边等于斜边的一半.5.〔2021•凉山州〕拦水坝横断面如下图,迎水坡AB的坡比是1:,坝高BC=10m,那么坡面AB的长度是〔〕A.15m B.20m C.10m D.20m考点:解直角三角形的应用-坡度坡角问题.专题:计算题.分析:在Rt△ABC中,坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.解答:解:Rt△ABC中,BC=10m,tanA=1:;∴AC=BC÷tanA=10m,∴AB==20m.应选:D.点评:此题主要考察学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答此题的关键.6.〔2021•百色〕从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,两栋楼之间的水平距离为6米,那么教学楼的高CD是〔〕A.〔6+6〕米B.〔6+3〕米C.〔6+2〕米D.12米考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:在Rt△ABC求出CB,在Rt△ABD中求出BD,继而可求出CD.解答:解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AB=6米,∴BC=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6米,∴DC=CB+BD=6+6〔米〕.应选:A.点评:此题考察仰角俯角的定义,要求学生能借助仰角俯角构造直角三角形并解直角三角形,难度一般.7.〔2021•苏州〕如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,那么该船航行的距离〔即AB的长〕为〔〕A.4km B.2km C.2km D.〔+1〕km考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,那么AB=AD=2.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离〔即AB的长〕为2km.应选:C.点评:此题考察了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.8.〔2021•路北区二模〕如图,△ABC的项点都在正方形网格的格点上,那么cosC的值为〔〕A.B.C.D.考点:锐角三角函数的定义;勾股定理.专题:网格型.分析:先构建格点三角形ADC,那么AD=2,CD=4,根据勾股定理可计算出AC,然后根据余弦的定义求解.解答:解:在格点三角形ADC中,AD=2,CD=4,∴AC===2,∴cosC===.应选B.点评:此题考察了锐角三角函数的定义:在直角三角形中,一锐角的余弦等于它的邻边与斜边的比值.也考察了勾股定理.9.〔2021•长宁区一模〕如图,在△ABC中,∠ACB=90°,CD⊥AB于D,下边各组边的比不能表示sinB的〔〕A.B.C.D.考点:锐角三角函数的定义.分析:利用两角互余关系得出∠B=∠ACD,进而利用锐角三角函数关系得出即可.解答:解:∵在△ABC中,∠ACB=90°,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠B=∠ACD,∴sinB===,故不能表示sinB的是.应选:B.点评:此题主要考察了锐角三角函数的定义,正确把握锐角三角函数关系是解题关键.10.〔2021•工业园区一模〕假设tan〔α+10°〕=1,那么锐角α的度数是〔〕A.20°B.30°C.40°D.50°考点:特殊角的三角函数值.分析:根据tan30°=解答即可.解答:解:∵tan〔α+10°〕=1,∴tan〔α+10°〕=.∴α+10°=30°.∴α=20°.应选A.点评:熟记特殊角的三角函数值是解答此题的关键.11.〔2021•鄂州四月调考〕在△ABC中,∠A=120°,AB=4,AC=2,那么sinB的值是〔〕A.B.C.D.考点:解直角三角形.分析:首先延长BA过点C作CD⊥BA延长线于点D,进而得出AD,CD,BC的长,再利用锐角三角函数关系求出即可.解答:解:延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD=,BD=5,∴BC==2,∴sinB===.应选:B.点评:此题主要考察了解直角三角形,作出正确辅助线构造直角三角形是解题关键.12.〔2021•邢台一模〕在Rt△ABC中,∠C=90°,假设AB=4,sinA=,那么斜边上的高等于〔〕A.B.C.D.考点:解直角三角形.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如下图,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.应选C.点评:此题考察了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法那么是解此题的关键.二.填空题〔共6小题〕13.〔2021•济宁〕如图,在△ABC中,∠A=30°,∠B=45°,AC=,那么AB的长为3+.考点:解直角三角形.专题:几何图形问题.分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解答:解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.点评:此题考察了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比拟好的题目.14.〔2021•徐汇区一模〕如图,梯形ABCD中,AB∥CD,AB⊥BC,且AD⊥BD,假设CD=1,BC=3,那么∠A的正切值为.考点:锐角三角函数的定义.分析:求出∠ABC=∠ADB=90°,根据三角形内角和定理求出∠A=∠DBC,解直角三角形求出即可.解答:解:∵AB∥CD,AB⊥BC,∴DC⊥BC,∠ABC=90°,∴∠C=90°,∵AD⊥BD,∴∠ADB=90°,∴∠DBC+∠ABD=∠A+∠ABD=90°,∴∠A=∠DBC,∵CD=1,BC=3,∴∠A的正切值为tanA=tan∠DBC==,故答案为:3.点评:此题考察了锐角三角函数的定义,三角形内角和定理的应用,关键是求出∠A=∠DBC和求出tan∠DBC=.15.〔2021•虹口区一模〕计算:cos45°+sin260°=.考点:特殊角的三角函数值.分析:将cos45°=,sin60°=代入求解.解答:解:原式=×+〔〕2=1+=.故答案为:.点评:此题考察了特殊角的三角函数值,解答此题的关键是熟记几个特殊角的三角函数值.16.〔2021•武威模拟〕某人沿坡度为i=3:4斜坡前进100米,那么它上升的高度是60米.考点:解直角三角形的应用-坡度坡角问题.分析:根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.解答:解:由题意得,AB=100米,tanB==3:4,设AC=3x,那么BC=4x,那么〔3x〕2+〔4x〕2=1002,解得:x=20,那么AC=3×20=60〔米〕.故答案为:60.点评:此题考察了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于根底题.17.〔2021•海门市模拟〕某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进20m到达点D处,又测得点A 的仰角为60°,那么建筑物AB的高度是m.考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:设AB=x,在Rt△ABC中表示出BC,在Rt△ABD中表示出BD,再由CD=20米,可得关于x的方程,解出即可得出答案.解答:解:设AB=x,在Rt△ABC中,∠C=30°,那么BC==x,在Rt△ABD中,∠ADB=60°,那么BD==x,由题意得,x﹣x=20,解得:x=10.即建筑物AB的高度是10m.故答案为:10.点评:此题考察了解直角三角形的应用,解答此题的关键是熟练掌握三角函数的定义,利用三角函数的知识表示出相关线段的长度.18.〔2021•扬州〕在△ABC中,AB=AC=5,sin∠ABC=0.8,那么BC=6.考点:解直角三角形;等腰三角形的性质.分析:根据题意做出图形,过点A作AD⊥BC于D,根据AB=AC=5,sin∠ABC=0.8,可求出AD的长度,然后根据勾股定理求出BD的长度,继而可求出BC的长度.解答:解:过点A作AD⊥BC于D,∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,那么BD==3,∴BC=BD+CD=3+3=6.故答案为:6.点评:此题考察了解直角三角形的知识,难度一般,解答此题的关键是构造直角三角形并解直角三角形以及勾股定理的应用.三.解答题〔共6小题〕19.〔2021•盘锦〕如图,用一根6米长的笔直钢管弯折成如下图的路灯杆ABC,AB垂直于地面,线段AB与线段BC所成的角∠ABC=120°,假设路灯杆顶端C到地面的距离CD=,求AB长.考点:解直角三角形的应用.专题:几何图形问题.分析:过B作BE⊥DC于E,设AB=x米,那么CE=5.5﹣x,BC=6﹣x,根据30°角的正弦值即可求出x,那么AB 求出.解答:解:过B作BE⊥DC于E,设AB=x米,∴CE=5.5﹣x,BC=6﹣x,∵∠ABC=120°,∴∠CBE=30°,∴sin30°==,解得:x=5,答:AB的长度为5米.点评:考察了解直角三角形,解直角三角形的一般过程是:①将实际问题抽象为数学问题〔画出平面图形,构造出直角三角形转化为解直角三角形问题〕.②根据题目特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.20.〔2021•遵义〕如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.〔注:坡度i是指坡面的铅直高度与水平宽度的比〕考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:应用题.分析:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.解答:解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=〔25+10〕米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=〔25+10〕米,∴AB=AH+HB=〔35+10〕米.答:楼房AB的高为〔35+10〕米.点评:此题考察了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是解题关键.21.〔2021•哈尔滨〕如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.〔1〕求两建筑物底部之间水平距离BD的长度;〔2〕求建筑物CD的高度〔结果保存根号〕.考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:〔1〕根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;〔2〕延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.解答:解:〔1〕根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;〔2〕延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为〔60﹣20〕米.点评:考察解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决此题的突破点.22.〔2021•邵阳〕一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.〔温馨提示:sin53°≈0.8,cos53°≈0.6〕考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.解答:解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50〔海里〕,∴海警船到大事故船C处所需的时间大约为:50÷40=〔小时〕.点评:此题考察了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.23.〔2021•射阳县三模〕小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.斜坡的坡度为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,求树的高度.考点:解直角三角形的应用-坡度坡角问题.分析:延长AC交BF延长线于D点,那么BD即为AB的影长,然后根据物长和影长的比值计算即可.解答:解:延长AC交BF延长线于D点,那么∠CFE=30°,作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4m,∴CE=2〔米〕,EF=4cos30°=2〔米〕,在Rt△CED中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE=2〔米〕,CE:DE=1:2,∴DE=4〔米〕,∴BD=BF+EF+ED=12+2〔米〕在Rt△ABD中,AB=BD=〔12+2〕=〔6+〕〔米〕.答:树的高度为:〔6+〕〔米〕.点评:此题考察了解直角三角形的应用以及相似三角形的性质.解决此题的关键是作出辅助线得到AB的影长.24.〔2021•崇川区一模〕如图,某登山队在山脚A处测得山顶B处的仰角为45°,沿坡角30°的斜坡AD前进1000m 后到达D处,又测得山顶B处的仰角为60°.求山的高度BC.考点:解直角三角形的应用-仰角俯角问题.分析:过点D作DE⊥AC,△ACB是等腰直角三角形,直角△ADE中满足解直角三角形的条件.在直角△BDF 中,根据三角函数可得BF,进一步得到BC,即可求出山高.解答:解:过D分别作DE⊥AC与E,DF⊥BC于F.∵在Rt△ADE中,AD=1000m,∠DAE=30°,∴DE=AD=500m.∵∠BAC=45°,∴∠DAB=45°﹣30°=15°,∠ABC=90°﹣45°=45°.∵在Rt△BDF中,∠BDF=60°,∴∠DBF=90°﹣60°=30°,∴∠DBA=45°﹣30°=15°,∵∠DAB=15°,∴∠DBA=∠DAB,∴BD=AD=1000m,∴在Rt△BDF中,BF=BD=500m,∴山的高度BC为〔500+500〕m.点评:此题考察了解直角三角形的应用﹣仰角俯角问题的应用,根据得出FC,BF的长是解题关键.。

中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)

中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)

中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)1.如图,小明为了测量学校旗杆CD的高度,在地面离旗杆底部C处22米的A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,求旗杆的高度CD.(结果精确到0.1米)【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62】2.如图,在一次数学实践活动中,小明同学为了测量学校旗杆EF的高度,在观测点A处观测旗杆顶点E的仰角为45°,接着小明朝旗杆方向前进了7m到达C点,此时,在观测点D处观测旗杆顶点E的仰角为60°.假设小明的身高为1.68m,求旗杆EF的高度.(结果保留一位小数.参考数据:√2≈1.414,√3≈ 1.732)3.如图,在徐州云龙湖旅游景区,点A为“彭城风华”观演场地,点B为“水族展览馆”,点C为“徐州汉画像石艺术馆”.已知∠BAC=60°,∠BCA=45°,AC=1640m.求“彭城风华”观演场地与“水族展览馆”之间的距离AB(精确到1m).(参考数据:√2≈1.41,√3≈1.73)4.大连作为沿海城市,我们常常可以在海边看到有人海钓.小华陪爷爷周末去东港海钓,爷爷将鱼竿AB摆成如图所示.已知AB=2.4m,在有鱼上钩时,鱼竿与地面的夹角∠BAD=45°.此时鱼线被拉直,鱼线BO= 3m.点O恰好位于海面,鱼线BO与海面OH的夹角∠BOH=60°.求海面OH与地面AD之间的距离DH的长.(结果保留一位小数,参考数据:√2=1.414,√3=1.73)5.让运动挥洒汗水,让青春闪耀光芒.重庆某中学倡议全校师生“每天运动一小时,快乐学习每一天”,响应学校号召,小明决定早睡早起,每天步行上学.如图,小明家在A处,学校在C处,从家到学校有两条线路,他可以从点A经过点B到点C,也可以从点A经过点D到点C.经测量,点B在点A的正北方向,AB=300米.点C在点B的北偏东45°;点D在点A的正东方向,点C在点D的北偏东30°方向CD=2900米.(1)求BC的长度(精确到个位);(2)小明每天步行上学都要从点A到点C,路线一;从点A经过点B到点C,路线二;从点A经过点D到点C,请计算说明他走哪一条路线较近?(参考数据:√2≈1.414,√3≈1.732,√6≈2.449)6.拉杆箱是外出旅行常用工具.某种拉杆箱示意图如图所示(滚轮忽略不计),箱体截面是矩形BCDE,BC 的长度为60cm,两节可调节的拉杆长度相等,且与BC在同一条直线上.如图1,当拉杆伸出一节(AB)时,AC与地面夹角∠ACG=53°;如图2,当拉杆伸出两节(AM、MB)时,AC与地面夹角∠ACG=37°,两种情况下拉杆把手A点距离地面高度相同.求每节拉杆的长度.(参考数据:sin53°≈45,sin37°≈35,tan53°≈4 3,tan37°≈34)7.某中学凤栖堂前一尊孔子雕像矗立于萋萋芳草间,小刚站在雕像前,自C处测得雕像顶A的仰角为53°,小强站凤栖堂门前的台阶上,自D处测得雕像顶A的仰角为45°,此时,两人的水平距离EC为0.45m,已知凤栖堂门前台阶斜坡CD的坡比为i=1:3.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)计算台阶DE的高度;(2)求孔子雕像AB的高度.8.如图为某景区平面示意图,C为景区大门,A,B,D分别为三个风景点.经测量,A,B,C在同一直线上,且A,B在C的正北方向,AB=240米,点D在点B的南偏东75∘方向,在点A的东南方向.(参考数据:√2≈1.414,√3≈1.732)(1)求B,D两地的距离;(结果精确到0.1米)(2)大门C在风景点D的南偏西60∘方向,景区管理部门决定重新翻修CD之间的步道,求CD间的距离.9.小明和小玲游览一处景点,如图,两人同时从景区大门A出发,小明沿正东方向步行60米到一处小山B处,再沿着BC前往寺庙C处,在B处测得亭台D在北偏东15°方向上,而寺庙C在B的北偏东30°方向上,小玲沿着A的东北方向上步行一段时间到达亭台D处,再步行至正东方向的寺庙C处.(1)求小山B与亭台D之间的距离;(结果保留根号)(2)若两人步行速度一样,则谁先到达寺庙C处.(结果精确到个位,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)10.研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动,同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D扫描仪采集纪念碑的相关数据.数据采集:如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE=9米数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长.(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33)11.【综合与实践】如图1,光线从空气射入水中会发生折射现象,其中α代表入射角,β代表折射角.学习小组查阅资料了解到,若n=sinαsinβ,则把n称为折射率.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【实践操作】如图2,为了进一步研究光的折射现象,学习小组设计了如下实验:将激光笔固定在MN处,光线可沿PD照射到空容器底部B处,将水加至D处,且BF=12cm时,光点移动到C处,此时测得DF=16cm,BC=7cm四边形ABFE是矩形,GH是法线.【问题解决】(1)求入射角∠PDG的度数;(2)请求出光线从空气射入水中的折射率n.12.数学兴趣小组设计了一款含杯盖的奶茶纸杯(如图1),图2为该纸杯的透视效果图,在图3的设计草图中,由AF、线段EF和ED构成的图形为杯盖部分,其中AF、与ED均在以AD为直径的⊙O上,且AF= ED,G为EF的中点,点G是吸管插孔处(忽略插孔直径和吸管直径),由点A,B,C,D构成的图形(杯身部分)为等腰梯形,已知杯壁AB=13.6cm,杯底直径BC=5.8cm,杯壁与直线l的夹角为84°.(1)求杯口半径OD的长;(2)若杯盖顶FE=3.2cm,吸管BH=22cm,当吸管斜插,即吸管的一端与杯底点B重合时,求吸管漏出杯盖部分GH的长.(参考数据:sin84∘≈0.995,cos84∘≈0.105,tan84∘≈9.514,√15.93≈3.99,17.5222≈307.02,√315.43≈17.76,结果精确到0.1cm).13.为了保护小吉的视力,妈妈为他购买了可升降夹书阅读架(如图1),将其放置在水平桌面上的侧面示意图(如图2),测得底座高AB为2cm,∠ABC=150°,支架BC为18cm,面板长DE为24cm,CD为6cm.(厚度忽略不计)(1)求支点C离桌面l的高度:(计算结果保留根号)(2)小吉通过查阅资料,当面板DE绕点C转动时,面板与桌面的夹角α满足30°≤α≤70°时,能保护视力.当α从30°变化到70°的过程中,问面板上端E离桌面l的高度是增加了还是减少了?增加或减少了多少?(精确到0.1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)14.如图,四边形ABCD是某公园的游览步道(步道可以骑行),把四个景点连接起来,为了方便,在景点C的正东方设置了休息区K,其中休息区K在景点A的南偏西30°方向800√2米处,景点A在景点B的北偏东75°方向,景点B和休息区K两地相距400√5米(∠ABK<90°),景点D分别在休息区K、景点A的正东方向和正南方向.(参考数据:√2≈1.41,√5≈2.24,√6≈2.45)(1)求步道AB的长度;(2)周末小明和小宏相约一起去公园游玩,他们在景点C一起向正东出发,不久到达休息区K,他们发现有两条路线到达景点A,于是小宏想比赛看谁先到达景点A.他们分别租了一辆共享单车,两人同时在K点出发,小明选择①K−B−A路线,速度为每分钟320米;小宏选择②K−D−A路线,速度为每分钟240米,其中两人在各个景点停留的时间不计.请你通过计算说明,小明和小宏谁先到达景点A呢?15.某公园里有一座凉亭,亭盖呈圆锥状,如图所示,凉亭的顶点为O,点O在圆锥底面、地面上的正投影分别为点O1,O2,点P为圆锥底面的圆上一点,数据显示,该圆锥的底面半径为2米(即O1P=2米),圆锥底面离地面的高度为3米(即O1O2=3米).(1)若OO1=2米,求圆锥的侧面积;(2)现计划对亭盖的外部进行喷漆作业,需测算亭盖的外部面积(即圆锥的侧面积).因凉亭内堆积建筑材料,导致无法直接测量OO2的高度,工人先在水平地面上选取观测点A,B(A,B,O2在同一直线上),利用测角仪分别测得点O的仰角为α,β,其中tanα=12,tanβ=25,再测得A,B两点间的距离为m米(即AB=MN=m米),已知测角仪的高为1米(即MA=NB=QO2=1米),求亭盖的外部面积(用含m的代数式表示).16.赤水河畔的“美酒河”三个大字,是世界上最大的摩崖石刻汉字.小茜想测量绝壁上“美”字AG的高度,根据平面镜反射原理可推出入射光线与镜面的夹角等于反射光线与镜面的夹角(如图中∠DEC=∠AEB,∠DFC=∠GFB),具体操作如下:将平面镜水平放置于E处,小茜站在C处观测,俯角∠MDE=45°时,恰好通过平面镜看到“美”字顶端A处(CD为小茜眼睛到地面的高度),再将平面镜水平放置于F处观测,俯角∠MDF=36.9°时,恰好通过平面镜看到“美”字底端G处.测得BE=163.3m,CE=1.5m,点C,E,F,B在同一水平线上,点A,G,B在同一铅垂线上.(参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75)(1)CD的高度为__________m,CF的长为__________m;(2)求“美”字AG的高度.17.风能是一种清洁无公害的可再生能源,利用风力发电非常环保.如图1所示,是一种风力发电装置;如图2为简化图,塔座OD建在山坡DF上(坡比i=3:4,DE垂直于水平地面EF,O,D,E三点共线),坡面DF长10m,三个相同长度的风轮叶片OA,OB,OC可绕点O转动,每两个叶片之间的夹角为120°;当叶片静止,OA与OD重合时,在坡底F处向前走25米至点M处,测得点O处的仰角为53°,又向前走23.5米至点N处,测得点A处的仰角为30°(点E,F,M,N在同一水平线上).(1)求叶片OA的长;(2)在图2状态下,当叶片绕点O顺时针转动90°时(如图3),求叶片OC顶端C离水平地面EF的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,√3≈1.7,结果保留整数)18.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB,CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A,B 两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A,E,F在同一水平线上)(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m).(参考数据:sin15°≈0.26cos15°≈0.97tan15°≈0.27√2≈1.41)19.春天是踏青的好季节小明和小华决定去公园出游踏青.如图已知A为公园入口景点B位于A点东北方向400√2米处景点E位于A点南偏东30°方向景点B在景点E的正北方向景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.景点F既位于景点E的正东方向又位于景点D的正南方向.DF=400米.(参考数据:√2≈1.41,√3≈1.73,sin37.5°≈35,cos37.5°≈45,tan37.5°≈34)(1)求BE的长;(精确到个位)(2)小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/分小明在景点B、C处各停留了10分钟、5分钟.小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/分.小华在景点E、F处各停留了9分钟、8分钟.请通过计算说明:小明和小华谁先到达景点D处.20.如图是一种家用健身卷腹机由圆弧形滑轨⌒AB可伸缩支撑杆AC和手柄AD构成.图①是其侧面简化示意图.滑轨⌒AB支撑杆AC与手柄AD在点A处连接其中D A B三点在一条直线上.(1)如图① 固定∠DAC=120°,若BC=30√6cm,AC=60cm,求∠ABC的度数;(2)如图② 固定∠DAC=100°若AC=50cm,∠ABC=30°时圆弧形滑轨AB所在的圆恰好与直线BC 相切于点B求滑轨⌒AB的长度.(结果精确到0.1 参考数据:π取3.14 sin70°≈0.940)参考答案:1.解:由题意得BE⊥CD于EBE=AC=22米∠DBE=32°在Rt△DBE中DE=BE⋅tan∠DBE=22×0.62≈13.64(米)CD=CE+DE=1.5+13.64≈15.14(米)答:旗杆的高CD约为15.14米.2.解:延长AD交EF于点G设EG=x∵AD∥BF,EF⊥BF∵AG⊥EF∵∠B=∠F=∠AGF=90°∵四边形ABFG是矩形∠AGE=90°∵∠EAG=45°∵∠AEG=90°−∠EAG=45°∵AG=EG=x∵AD=7∵DG=x−7∵∠EDG=60°=√3∵tan∠EDG=EGDG=√3∵xx−7∵x=7(3+√3)2∵EG=7(3+√3)2∵GF=AB=1.68∵EF=EG+GF=7(3+√3)2+1.68≈7(3+1.732)2+1.68 =16.562+1.68=18.242≈18.2.故旗杆EF的高度约18.2m.3.解:过B作BH⊥AC于H设AH=xm∵∠BAC=60°∵∠ABH=90°−60°=30°∵AB=2AH=2xm∵tanA=tan60°=BHAH=√3∵BH=√3xm∵∠BCA=45°∠BHC=90°∵△BHC是等腰直角三角形∵CH=BH=√3xm∵AH+CH=√3x+x=AC=1640≈600.7∵x=√3+1∵AB=2x≈1201(m).答:“彭城风华”观演场地与“水族展览馆”之间的距离AB约是1201m.4.解:过点B作BC⊥OH交OH于点C延长AD交BC于点E∵四边形DECH是矩形∵DH=CE.根据题意可知∠BAD=45°,∠BOH=60°在Rt△ABE中AB=2.4m∵sin∠BAE=BEAB即sin45°=BE2.4=1.2×1.41=1.692.解得BE=2.4×√22在Rt△BOC中BO=3m∵sin∠BOC=BCBO即sin60°=BC3=1.5×1.73=2.595解得BC=3×√32∵DH=CE=BC−BE=0.903≈0.9(m).所以海面OH与地面AD之间得距离DH的长0.9m.5.(1)解:过点C作CM⊥AD交AD的延长线于点M过点B作BN⊥AM交AM于点N过点D作DH⊥BN 交BN于点H.由题可知:∠CBN=45°∠A=90°∠CDM=60°.∵四边形ABNM、四边形ABHD、四边形DMNH都是矩形△BCN是等腰直角三角形.在Rt△CMD中∵∠CDM=60°CD=2900米∵DM=12DC=1450米CM=√3DM=1450√3米∵AB=MN=300米∵CN=CM−MN=(1450√3−300)米在Rt△CBN中∠CBN=45°∵CB=√2CN=(1450√6−300√2)米≈3127米答:BC的长度为3127米.(2)解:路线一:AB+BC=(300+1450√6−300√2)米≈3427米∵AM=BN=CN=(1450√3−300)米∵AD=AM−DM=(1450√3−1750)米∵路线二:AD+CD=(1450√3+1150)米≈3361米∵3427<3361∵路线二较近.6.解:如图1 作AF⊥CG垂足为F设AB=xcm则AC=60+x∵sin53°=AFAC =AF60+x∴AF=(60+x)⋅sin53°如图2 作AH⊥CG垂足为H则AC=60+2x∴AH=(60+2x)⋅sin37°∵AF=AH∴(60+x)⋅sin53°=(60+2x)⋅sin37°∴4(60+x)5=3(60+2x)5解得:x=30.答:每节拉杆的长度为30cm.7.(1)解:∵凤栖堂门前台阶斜坡CD的坡比为i=1:3EC为0.45m∵DE EC =13∴DE=EC3=0.15m即台阶DE的高度为0.15m;(2)解:如图所示设AB的对边为MN作DF⊥MN于F∵由题意得四边形NFDE是矩形∵FN=DE=0.15m DF=NE设MN=xm则MF=(x−0.15)m在Rt△MFD中∠MDF=45°∵FD=MF=(x−0.15)m∵NC=NE−EC=(x−0.15)−0.45=(x−0.6)m∵tan53°=MNNC ≈43即xx−0.6=43解得x=2.4经检验x=2.4是原方程的解答:孔子雕像AB的高度约2.4m.8.(1)解:过点B作BP⊥AD于点P由题意知∠BAD=45∘∠CBD=75∘∴∠ADB=30∘∠ABP=45∘=∠A∴BD=2BP AP=BP在Rt△ABP中AB=240米∴AP=BP=AB=120√2(米)sin45∘∴BD=2BP=240√2≈339.4(米).答:B、D两地的距离约为339.4米;(2)解:过点B作BM⊥CD于点M由(1)得BD=2BP=240√2(米)∵∠CDB=180∘−60∘−75∘=45∘∠CBD=75∘∠DCB=60∘∴∠DBM=45∘=∠CDB∴BM=DM在Rt△BDM中BD=240√2sin45∘=BMBD∴BM=DM=BD⋅sin45∘=240√2×√2=240(米)2在Rt△BCM中∠CBM=75∘−45∘=30∘∴CM=BM⋅tan30∘=80√3(米)∴DC=DM+CM=240+80√3(米).9.解:(1)作BE⊥AD于点E由题意知AB=60∠A=45°∠ABD=90°+15°=105°∠CBA=90°+30°=120°在Rt△ABE中在Rt△BDE中ED=√3BE=30√6BD=2BE=60√2∴小山B与亭台D之间的距离60√2米(2)延长AB作DF⊥BA于点F作CG⊥BA于点G则∠CBG=180°−∠CBA=60°由题意知CD∥AB∵四边形CDFG是矩形∵CG=DF,CD=FG.∵AE=30√2ED=30√6∴AD=30√2+30√6在Rt△AFD中DF=AF=√2=30+30√3CG=DF=30+30√3米在Rt△BCG中BG=√3=10√3+30∴CD=FG=AB+BG−AF=60−20√3∴S玲=AD+CD=30√2+30√6+60−20√3≈141.2米S明=AB+BC=60+60+20√3≈154.6米∵141.2<154.6且两人速度一致∴小玲先到.答:小玲先到达寺庙C处.10.解:如图:延长CD交AB于点H则四边形CMBH为矩形∴CM=HB=20在Rt△ACH中∠AHC=90°∠ACH=18.4°∴tan∠ACH=AH CH∴CH=AHtan∠ACH=AHtan18.4°≈AH0.33在Rt△ECH中∠EHC=90°∠ECH=37°∴tan∠ECH=EH CH∴CH=EHtan∠ECH=EHtan37°≈EH0.75设AH=x.∵AE=9∴EH=x+9∴x0.33=x+90.75解得x≈7.1∴AB=AH+HB≈7.1+20=27.1≈27(米).答:点A到地面的距离AB的长约为27米.11.(1)解:如图1 ∵GH∥FB∴∠DBF=∠PDG,∵BF=12cm,DF=16cm,∴tan∠DBF=DFBF=1612=43,∵tan53°≈4 3∴入射角∠PDG约为53°.(2)解:如图2 作DM⊥AB于点T在Rt△BDF中BF=12cm,DF=16cm∴BD=√DF2+BF2=20cm,在Rt△DTC中TC=DF−BC=16−7=9cm,DT=BF=12cm∴CD=√DT2+TC2=√122+92=15cm,∴光线从空气射入水中的折射率∴光线从空气射入水中的折射率n=43.12.(1)解:过点B作BP⊥AD于点D过点C作CQ⊥AD于点Q延长BC到点R ∵四边形BCQP是矩形∵BC=QP BP=CQ∵AB=13.6cm杯底直径BC=5.8cm杯壁与直线l的夹角为84°点A B C D构成的图形(杯身部分)为等腰梯形∵AD∥BC CD=AB=13.6cm QP=BC=5.8cm∵∠A=∠D=∠DCR=84°∵BP=CQ CD=AB∵Rt△ABP≌Rt△DCQ(HL)∵AP=DQ∵AP=DQ=CDcosD=13.6×0.105=1.428(cm)CQ=CDsinD=13.6×0.995=13.532(cm)∵AD=2AP+PQ=DQ=2×1.428+5.8=8.656(cm)AD=4.328≈4.3(cm)∵OD=12故杯口半径OD的长为4.3cm.(2)解:连接GO并延长交BC于点N∵G为EF的中点EF=1.6(cm)∵GO⊥EF,EG=FG=12连接FD∵ AF=ED,∵∠EFD=∠ADF,∵AD∥EF∵GO⊥AD∵ AD∥BC∵GO⊥BC∵NO=13.532(cm)∵GO=√(4.3)2−(1.6)2≈4.0(cm)∵GN≈17.532(cm)∵GB=√(17.532)2+(2.9)2≈17.77(cm)∵GH=BH−GB=22−17.77≈4.2(cm)13.(1)解:过点C作CF⊥l于点F过点B作BM⊥CF于点M∴∠CFA=∠BMC=∠BMF=90°.由题意得:∠BAF=90°∴四边形ABMF为矩形∴MF=AB=2cm∠ABM=90°.∵∠ABC=150°∴∠MBC=60°.∵BC=18cm∴CM=BC⋅sin60°=18×√32=9√3(cm).∴CF=CM+MF=(9√3+2)cm.答:支点C离桌面l的高度为(9√3+2)cm;(2)解:过点C作CN∥l过点E作EH⊥CN于点H∴∠EHC=90°.∵DE=24cm CD=6cm∴CE=18cm.当∠ECH=30°时EH=CE⋅sin30°=18×12=9(cm);当∠ECH=70°时EH=CE⋅sin70°≈18×0.94=16.92(cm);∴16.92−9=7.92≈7.9(cm)∴当α从30°变化到70°的过程中面板上端E离桌面l的高度是增加了增加了约7.9cm.14.(1)解:由题意得∠DAK=30°∠BAD=75°∠D=90°AK=800√2米BK=400√5米∵∠BAK=∠BAD−∠DAK=75°−30°=45°过点K作KH⊥AB于H则∠AHK=∠BHK=90°∵△AHK为等腰直角三角形∵AH=KH=√22AK=√22×800√2=800米∵BH=√BK2−KH2=√(400√5)2−8002=400米∵AB=AH+BH=800+400=1200米;(2)解:∵AK=800√2∠DAK=30°∠D=90°∵DK=12AK=400√2米AD=AK·cos30°=800√2×√32=400√6米∵路线②K−D−A的路程为KD+AD=400√2+400√6≈1544米∵小宏到达景点A的时间为1544÷240≈6.43分钟∵路线①K−B−A的路程为KB+BA=400√5+1200≈2096米∵小明到达景点A的时间为2096÷320≈6.55分钟∵6.43<6.55∵小宏先到达景点A.15.(1)解:由题意得:∠OO1P=90°.∵OO1=2米O1P=2米∴OP=2√2(米).∴圆锥的侧面积=π×2√2×2=4√2π(米2).答:圆锥的侧面积为4√2π平方米;(2)解:由题意得:∠OQM=90°.设OQ长x米.∵tanα=1 2∴MQ=2x米.∵MN=m米∴NQ=(m+2x)米.∵tanβ=2 5∴xm+2x =25.解得:x=2m.∵O1O2=3米QO2=1米∴OO1=2m+1−3=(2m−2)米.∵O1P=2米∠OO1P=90°.∴OP=√22+(2m−2)2=√4m2−8m+8=2√m2−2m+2(米).∴圆锥的侧面积=π×2√m2−2m+2×2=4π√m2−2m+2(米2).答:亭盖的外部面积为4π√m2−2m+2平方米.16.(1)解:∵∠MDE=45°∴∠DEC=45°∵DC⊥BC∴△DCE是等腰直角三角形∴DC=CE=1.5m 在Rt△DCF中∠DFC=36.9°DC=1.5m∴DF=DCsin36.9°=1.50.60=2.5(m)∴CF=√DF2−DC2=√2⋅52−1⋅52=2(m);故答案为:1.52;(2)∵∠DEC=45°∴∠AEB=45°∴∠BAE=45°∴AB=BE=163.3m由题意可知∠MDF=36.9°∴∠GFB=∠DFC=∠MDF=36.9°∵EF=CF−CE=2−1.5=0.5(m)∴BF=163.3−0.5=162.8(m)在Rt△BFG中BG=tan∠GFB⋅BF≈0.75×162.8=122.1(m)∴AG=163.3−122.1=41.2(m)即“美”字的高度AG约为41.2m.17.(1)解:∵DE垂直于水平地面EF∵∠E=90°∵坡比i=3:4∵DE EF =34设DE=3xm则EF=4xm ∵坡面DF长10m∵(3x)2+(4x)2=102解得:x=2(负值舍去)∵DE=6m EF=8m∵MF=25m∵ME=MF+EF=33m由题意得:∠OME=53°=44m∵OE=ME⋅tan53°≈33×43∵MN=23.5m∵NE=ME+MN=56.5m.由题意得:∠N=30°≈32m∵AE=NE⋅tan30°=56.5×√33∵OA=OE−AE=44−32=12m.(2)如图过点C作CH⊥OE于点M CG⊥NE于G∵∠CHE=∠HEG=∠CGE=∠CHO=90°∵四边形HEGC是矩形∵EH=CG∵叶片绕点O顺时针转动90°∵∠AOE=90°∵∠AOC=120°∵∠COH=30°由题意得:OC=OA=12m=6√3m∵OH=OCcos∠COH=12×√32∵CG=HE=OE−OH=44−6√3≈34m.∵叶片OC顶端C离水平地面EF的距离为34m.18.(1)解:在Rt△ABE中∠AEB=90°∠A=15°AE=576m∴AB=AEcosA =576cos15°≈594(m).答:索道AB的长约为594m.(2)延长BC交DF于点G∵BC∥AF DF⊥AF∴DG⊥CG.∵四边形BEFG为矩形.∴EF=BG.∵CD=AB≈594m∠DCG=45°∴CG=CD·cos∠DCG≈594×cos45°=297√2(m).∴AF=AE+EF=AE+BG=AE+BC+CG≈576+50+297√2≈1045(m).答:水平距离AF的长约为1045m19.(1)解:如图所示过点A作AH⊥BE于点H∵∠BAH=45°,AB=400√2米∴AH=BH=√22AB=400米∵∠AEB=30°∴HE=√3AH=400√3米AE=2AH=800米∴BE=400+400√3≈1092(米).∴BE长约1092米.(2)解:小华先到达景点D处理由如下:如图过点C作CN⊥EF于点N过点D作DM⊥BE于点M交CN于点G则四边形BCNE和四边形DFNG都是矩形∴BC=EN BE=CN=(400+400√3)米GN=DF=400米DG=NF∴CG=CN−GN=400√3米∵景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.∴BC=310(米)∠DCN=37.5°在Rt△CGD中cos∠DCN=CGCD tan∠DCN=DGCG∴CD=CGcos37.5°=400√345≈865(米)DG=CG⋅tan37.5°=400√3×34≈519(米)∴EF=EN+NF=BC+DG≈829(米)∵小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/秒.小明在景点B、C处各停留了10分钟、5分钟∴小明的游览时间为400√2+310+86572+10+5≈39(分钟)在Rt△AEH中AH=400米∠EAH=60°∴AE=AHcos60°=40012=800(米)∵小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/秒.小华在景点E、F处各停留了9分钟、8分钟∴小华的游览时间为800+829+40096+9+8≈38(分钟)∴小华的游览时间更短先到达景点D处.20.(1)解:如图过点C作CE⊥AB垂足为E∵∠DAC=120°∴∠EAC=180°−∠DAC=60°在Rt△AEC中AC=60cm∴CE=AC⋅sin60°=60×√32=30√3(cm)在Rt△BEC中BC=30√6cm∴sin∠EBC=ECBC=√330√6=√22∴∠ABC=45°∴∠ABC的度数约为45°;(2)解:如图过点A作AF⊥BC垂足为F∵圆弧形滑轨⌒AB所在的圆恰好与直线BC相切于点B ∴过点B作HB⊥BC作AB的垂直平分线MG交HB于点O连接OA∴OB=OA∴圆弧形滑轨⌒AB所在的圆的圆心为O∵∠DAC=100°∠ABC=30°∴∠ACF=∠DAC−∠ABC=100°−30=70°在Rt△AFC中AC=50cm∴AF=AC⋅sin70°≈50×0.940=47(cm)在Rt△AFB中∠ABC=30°∴AB=2AF=2×47=94(cm)∵OB⊥BC∴∠OBC=90°∴∠OBA=∠OBC−∠ABC=60°∴△OBA为等边三角形∴OB=AB=94cm∠BOA=60°∴滑轨⌒AB的长度=60π×94180≈98.4(cm)∴滑轨AB⌒AB的长度约为98.4cm.。

九年级数学上册试题 第23章《解直角三角形》单元测试卷 -沪科版(含答案)

九年级数学上册试题  第23章《解直角三角形》单元测试卷 -沪科版(含答案)

第23章《解直角三角形》单元测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.在Rt ABC ∆中,90C ∠=︒,6AC =,4sin 5A =,则AB 的值为()A.8B.9C.10D.122.如图,在ABC ∆中,90C ∠=︒,30A ∠=︒,则cos B 的值为()A.13B.12C.22D.323.如图,某游乐场山顶滑梯的高BC 为50米,滑梯的坡比为5:12,则滑梯的长AB 为()A.100米B.110米C.120米D.130米4.如图,ABC ∆的顶点都在正方形网格的格点上,则tan ACB ∠的值为()A.13B.35C.23D.125.下列各式中正确的是()A.sin 46cos 44︒>︒B.2sin 40sin 80︒=︒C.cos 44cos 46︒<︒D.22sin 44sin 461︒+︒=6.如图,在44⨯的正方形网格中,小正方形的顶点称为格点若ABC ∆的顶点都在格点上,则cos ABC ∠的值是()A.13B.12C.55D.2557.如图,在ABC ∆中,90ACB ∠=︒,点D 在AB 的延长线上,连接CD ,若2AB BD =,2tan 3BCD ∠=,则ACBC的值为()A.1B.2C.12D.328.如图,Rt ABC ∆中,90ABC ∠=︒,6AB =,8BC =,D 为AC 边上一动点,且1tan 2ABD ∠=,则BD 的长度为()A.1558B.25C.5D.5119.如图,AC 垂直于AB ,P 为线段AC 上的动点,F 为PD 的中点, 2.8AC m =, 2.4PD m =, 1.2CF m =,15DPE ∠=︒.若90PEB ∠=︒,65EBA ∠=︒,则AP 的长约为()(参考数据:sin 650.91︒≈,cos 650.42︒≈,sin 500.77︒≈,cos500.64)︒≈A.1.2B.1.3m C.1.5m D.2.0m10.如图,在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,延长CA 到点D ,使AD AB =,连接BD .根据此图形可求得tan15︒的值是()A.23-B.23+C.36D.32二、填空题(本大题共8小题,每小题3分,共24分)11.如图,在ABC ∆中,90C ∠=︒,设A ∠,B ∠,C ∠所对的边分别为a ,b ,c ,则正确的是.A .sin a c A =⋅B .cos b c B =⋅C .tan a b A =⋅D .tan a b B=⋅12.有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是BAC ∠,若坡比为2:5,则此斜坡的水平距离AC 为.13.在Rt ABC ∆中,90BCA ∠=︒,CD 是AB 边上的中线,8BC =,5CD =,则tan ACD ∠=.14.如图所示,MON ∠是放置在正方形网格中的一个角,则tan MON ∠的值是.15.在ABC ∆中,22AB =,1tan 3B =,BC 边上的高长为2,则ABC ∆的面积为.16.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB 与水平桥面的夹角是30︒,拉索BD 与水平桥面的夹角是60︒,两拉索底端距离20AD =米,则立柱BC 的高为米.(结果保留根号)17.如图是一款利用杠杆原理设计的平衡灯,灯管AB 与支架AD ,砝码杆AC 均成120︒角,且40AB cm =,18AC cm =,6AD cm =,底座是半径为2cm 的圆柱体,点P 是杠杆的支点.如图1,若砝码E 在端点C 时,当杠杆平衡时,支架AD 垂直于桌面,则此时垂直光线照射到最远点M 到支点P 的距离PM 为cm .由于特殊设计,灯管的重力集中在端点B ,砝码杆重力集中在砝码E 上,支架AD 的重力忽略不计,由杠杆原理可知,平衡时重力保持垂直水平桌面向下,且1122G h G h ⋅=⋅,如图2.为了使得平衡时砝码杆与桌面平行,则砝码E 到离A 点的距离为cm .18.用一副如图1所示的七巧板,拼出如图2所示中间有一个空白正方形的“风车图”,则图2中tan ABC ∠=.三、解答题(本大题共8小题,共66分.)19.计算:22sin 456cos303tan 454sin 60︒-︒+︒+︒.20.如图,在Rt ABC ∆中,90C ∠=︒,10AB =,6BC =,求sin A ,cos A ,tan A 的值.21.如图,在ABC∆中,90C∠=︒,AB的垂直平分线分别交边AB、BC于点D、E,连接AE.(1)如果25B∠=︒,求CAE∠的度数;(2)如果2CE=,2sin3CAE∠=,求tan B的值.22.如图,在ABC∆中,已知ABC m∠=︒,ACB n∠=︒.090m n︒<︒+︒<︒,1AC=.(1)求AB及BC的长度(用m︒,n︒的三角函数表示);(2)试判断sin()sin cos cos sinm n m n m n︒+︒=︒︒+︒︒是否成立并说明理由.23.如图,梯子斜靠在与地面垂直(垂足为)O 的墙上.当梯子位于AB 位置时,它与地面所成的角60ABO ∠=︒,当梯子底端向右滑动0.5m (即0.5)BD m =到达CD 位置时,它与地面所成的角5118CDO ∠=︒',求梯子的长.(参考数据:sin 51180.780︒'=,cos 51180.625︒'=,tan 5118 1.248)︒'=24.如图,在Rt ABC ∆中,90A ∠=︒,作BC 的垂直平分线交AC 于点D ,延长AC 至点E ,使CE AB =.(1)若1AE =,求ABD ∆的周长;(2)若13AD BD =,求tan ABC ∠的值.25.在太原郁郁葱葱的西山上,环绕着一条蜿蜒曲折、鲜艳夺目的公路,它就是太原环城旅游公路暨公路自行车赛道,该赛道环西山而建,全长约136千米,将百余处景点串连成一条线.(1)周日,某自行车骑行团组织甲、乙两个赛队在该赛道进行骑行活动,他们从赛道同一端出发,甲队出发25分钟时乙队出发,结果乙队比甲队提前15分钟到达终点(即赛道的另一端).已知乙队骑行的平均速度为甲队的1.2倍.求甲、乙两个赛队此次活动骑行的平均速度.(2)该赛道一端附近是太原市的摄乐桥如图(1),摄乐桥是太原市第18座跨汾河大桥,也是太原市首座仅靠主塔及缆索承担桥面重量的跨河大桥.某数学兴趣小组的同学们为了测量摄乐桥主塔的高AB,在地面上选取测点C放置测倾仪,测得主塔顶端A的仰角45∠=︒,将测ADM倾仪向靠近主塔的方向前移10m至点E处,测得主塔顶端A的仰角47.7∠=︒,测量示意图AFM如图(2)所示.已知测倾仪的高度 1.5︒≈,=,求摄乐桥主塔的高AB.(参考数据:sin47.70.74CD m︒≈︒≈,tan47.7 1.10)cos47.70.6726.山西省隰县盛产香梨,被称为“隰县玉露香”.县政府运用“互联网+玉露香梨”的发展思路,探索“爱心助农精准脱贫”的方式,构建“隰县玉露香”电商生态圈,使隰县成为中国北方最大的电商孵化基地.2021年春节期间,“隰县玉露香”在网上热销,某电商看准商机,用10000元购进一批“隰县玉露香”,销量可观,于是又用18000元购进一批同款规格的“隰县玉露香”,但第二次的进价比第一次每箱上涨20元,第二次所购数量恰好是第一次的1.5倍.(1)求第一次购进的“隰县玉露香”每箱的价格.(2)政府为推进农村电商高质量可持续发展,在隰县新建一批移动信号发射塔,以提高农村互联网的传输效率.如图,是一个新建的移动信号发射塔AC ,其高15AC m =.用测角仪在山脚下的点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42ABD ∠=︒,点A ,C ,D 在同一条铅垂线上.果农要在山脚B 处修建房屋以方便管理梨园,按国家规定,通讯基站离居民居住地至少100m 就可不受信号塔辐射的影响.请判断在点B 处的房屋是否受信号塔塔顶A 发出的信号辐射的影响.(测角仪、房屋的高度忽略不计;结果精确到0.1m ;参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒=,sin 420.67︒=,cos 420.74︒=,tan 420.90)︒≈答案一、选择题C .B .D .D .D .C .B .D .B .A .二、填空题11.A 、C .12.75m .13.43.14.1.15.7或5.16..17.165.18.3.三、解答题19.原式22()6314222=⨯-⨯+⨯+⨯2234=⨯-+13=-++4=.20.在Rt ACB ∆中,由勾股定理得:8AC ===,所以63sin 105BC A AB ===,84cos 105AC A AB ===,63tan 84BC A AC ===.21.(1)DE 垂直平分AB ,EA EB ∴=,25EAB B ∴∠=∠=︒.40CAE ∴∠=︒.(2)90C ∠=︒ ,∴2sin 3CE CAE AE ∠==.2CE = ,3AE ∴=,AC ∴=3EA EB == ,5BC ∴=,∴tan AC B BC ==.22.(1)作AD BC ⊥于点D ,在Rt ACD ∆中,1AC =,sin AD n AD AC ︒==,cos CD n CD AC︒==,在Rt ABD ∆中,sin AD m AB ︒=,sin sin sin AD n AB m m ︒∴==︒︒,cos BD m AB︒= ,sin cos cos sin n BD AB m m m ︒∴=⋅︒=︒︒.sin cos cos sin n BC BD CD m n m ︒∴=+=︒+︒︒.(2)成立,理由如下:作CE BA ⊥交BA 延长线于点E ,EAC ∠ 为ABC ∆的外角,EAC B ACB m n ∴∠=∠+∠=︒+︒,在Rt EBC ∆中,sin CE m BC︒=,sin sin (cos cos )sin sin cos cos sin sin n CE BC m m n m m n m n m ︒∴=⋅︒=︒+︒︒=︒︒+︒︒︒.23.设梯子的长为xm ,在Rt ABO ∆中,cos OBABO AB∠=1cos cos 602OB AB ABO x x ∴=∠=︒=在Rt CDO ∆中,cos ODCDO CD∠=cos cos51180.625OD CD CDO x x ∴=∠=︒'≈ .BD OD OB =- ,0.5BD m =10.6250.52x x ∴-=,解得4x =.故梯子的长是4米.24.(1)如图,连接BD ,设BC 垂直平分线交BC 于点F ,BD CD ∴=,ABD C AB AD BD∆=++AB AD DC=++AB AC =+,AB CE = ,1ABD C AC CE AE ∆∴=+==,故ABD ∆的周长为1.(2)设AD x =,3BD x ∴=,又BD CD = ,4AC AD CD x ∴=+=,在Rt ABD ∆中,AB ==.tanAC ABC AB ∴∠===.25.(1)设甲队骑行的平均速度为/xkm h,则乙队骑行的平均速度为1.2/xkm h.根据题意,得13613625151.26060x x-=+,解得:34x=.经检验,34x=是原方程的根.1.2 1.23440.8x∴=⨯=.答:甲队骑行的平均速度为34/km h,乙队骑行的平均速度为40.8/km h.(2)如图,过点D作DG AB⊥于点G,则DG过点F.由题意得 1.5BG EF CD m===,10DF m=.设FG a=m.在Rt ADG∆中,45ADG∠=︒,(10)AG DG a m∴==+.在Rt AFG∆中,tanAG AFGFG∠=,tan tan47.7 1.10() AG FG AFG a x m∴=⋅∠=︒≈,10 1.10a a∴+=,解得:100a≈,10100110()AG m∴=+=,110 1.5111.5()AB AG BG m∴=+=+=.答:摄乐桥主塔的高AB约为111.5m.26.(1)设第一次购进隰县玉露香的进价为x 元/箱,根据题意可得:10000180001.520x x ⨯=+,解得100x =,经检验,100x =是原方程的解,答:第一次购进的“隰县玉露香”每箱的价格为100元;(2)由题意得,90ADB ∠=︒,在Rt ABD ∆中,tan AD ABD BD∠=,tan 42AD BD ∴=⋅︒,在Rt BCD ∆中,tan CD CBD BD ∠=,tan 36.9CD BD ∴=⋅︒,AC AD CD =- ,15AC m =,15tan 42tan 36.9BD BD ∴=⋅︒-⋅︒,解得100BD m ≈,100135.1()cos 0.74BD AB m ABD ∴=≈≈∠,135.1100> ,∴在点B 处的房屋不会受信号塔塔顶A 发出的信号辐射的影响.。

京改版九年级上册数学第二十章 解直角三角形含答案(综合测试)

京改版九年级上册数学第二十章 解直角三角形含答案(综合测试)

京改版九年级上册数学第二十章解直角三角形含答案一、单选题(共15题,共计45分)1、如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:=①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG2.6;其中正确的个数是( )A.2B.3C.4D.52、如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A. B. C. D.3、tan60°=()A. B. C.1 D.4、如图,的一边在轴上,长为5,且,反比例函数和分别经过点,,则的周长为A.12B.14C.D.5、在Rt△ABC中,∠C=90°,AC=1,BC=则sinA,cosA的值分别为( )A. ,B. ,C. ,D. ,6、正方形ABCD、正方形BEFG和正方形RKPF的位置如图4所示,点G在线段DK上,正方形BEFG的边长为4,则的面积为()A.10B.12C.14D.167、如图,在矩形ABCD中,DE⊥AC于E,∠EDC∶∠EDA=1∶3,且AC=10,则DE 的长度是()A.3B.5C.D.8、已知为锐角,且,则的值是()A. B. &nbsp; C. D.9、如图,在边长为1的小正方形网格中,点A,B,C,D都在这些小正方形的顶点上,连结CD与AB相交于点P,则tan∠APD的值是( )A.2B.C.D.10、的值等于()A. B. C.3 D.11、在Rt△ABC中,∠A=90°,AC=a,∠ACB=θ,那么下面各式正确的是()A. ;B. ;C. ;D..12、如图,把直角三角形ABO放置在平面直角坐标系中,已知,B 点的坐标为,将沿着斜边AB翻折后得到,则点C的坐标是()A. B. C. D.13、若角都是锐角,以下结论:①若,则;②若,则;③若,则;④若,则.其中正确的是( )A.①②B.①②③C.①③④D.①②③④14、在Rt△ABC中,∠C=90°,sinA= ,则∠A的度数是()A.30°B.45°C.60°D.90°15、如图,在Rt△ABC中,CD是斜边AB上的高,则下列线段的比中不等于sinA的是( )A. B. C. D.二、填空题(共10题,共计30分)16、如图,在梯形ABCD中,AD BC,AB⊥BC,AD=1,BC=3,点P是边AB上一点,如果把△BCP沿折痕CP向上翻折,点B恰好与点D重合,那么sin∠ADP 为________.17、在Rt△ABC中,∠C=90°,tanA= ,BC=8,则△ABC的面积为________ .18、用科学计算器计算:sin87°≈________(精确到0.01)19、在△ABC中,若,∠A、∠B都是锐角,则∠C的度数为________.20、如图,于点,取内一点,满足,以为直角顶点的等腰直角三角形,当绕点旋转时,记,过作交射线于点,作射线交射线于点.当时,________.21、若一个正多边形的一个外角等于36°,则这个正多边形有________条对角线;用科学计算器计算:135× sin13°≈________.(精确到0.1)22、如图,已知菱形的面积为,,对角线、交于点,若点为对角线上一点,则的最小值是________.23、在Rt 中,若,则________;24、如图1,一个圆球放置在形架中,图2是它的平面示意图,和都是的切线,切点分别是,若的半径为,且,则________.25、如图,△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于点D.若∠A=30°,AE=6cm,则BC=________.三、解答题(共5题,共计25分)26、计算:+2sin60°+|3﹣|﹣(﹣π)0.27、如图,某旅游景区为方便游客,修建了一条东西走向的栈道AB,栈道AB 与景区道路CD平行.在C处测得栈道一端A位于北偏西45°方向,在D处测得栈道另一端B位于北偏东32°方向.已知AC=60 m ,CD=46 m,求栈道AB 的长(结果保留整数).参考数据:sin32° ≈ 0.53,cos32° ≈ 0.85,tan32° ≈ 0.62,≈ 1.414.28、在△ABC中,∠C=90°,若sinA=,求cosB,tanB的值.29、先化简,再求值:(2﹣)÷ ,其中x=2sin30°+tan60°.30、如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)参考答案一、单选题(共15题,共计45分)1、C3、D4、B5、B6、D7、D8、A9、A10、C11、C12、C13、C14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解直角三角形测试题与答案一.选择题(共12小题)1.(2014义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.C.2D.32.(2014巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.3.(2014凉山州)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°4.(2014随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A.100米B.50米C.D.50米米5.(2014凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()A.15m B.20m C.10m D.20m6.(2014百色)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米7.(2014苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km 8.(2014路北区二模)如图,△ABC的项点都在正方形网格的格点上,则cosC的值为()A.B.C.D.9.(2014长宁区一模)如图,在△ABC中,∠ACB=90°,CD⊥AB于D,下边各组边的比不能表示sinB的()A.B.C.D.10.(2014工业园区一模)若tan(α+10°)=1,则锐角α的度数是()A.20°B.30°C.40°D.50°11.(2014鄂州四月调考)在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A.B.C.D.12.(2014邢台一模)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.二.填空题(共6小题)13.(2014济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为_________.14.(2014徐汇区一模)如图,已知梯形ABCD中,AB∥CD,AB⊥BC,且AD⊥BD,若CD=1,BC=3,那么∠A的正切值为_________.15.(2014虹口区一模)计算:cos45°+sin260°=_________.16.(2014武威模拟)某人沿坡度为i=3:4斜坡前进100米,则它上升的高度是_________米.17.(2014海门市模拟)某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进20m到达点D处,又测得点A的仰角为60°,则建筑物AB的高度是_________m.18.(2013扬州)在△ABC中,AB=AC=5,sin∠ABC=,则BC=_________.三.解答题(共6小题)19.(2014盘锦)如图,用一根6米长的笔直钢管弯折成如图所示的路灯杆ABC,AB垂直于地面,线段AB与线段BC 所成的角∠ABC=120°,若路灯杆顶端C到地面的距离CD=5.5米,求AB长.20.(2014遵义)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)21.(2014哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).22.(2014邵阳)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈,cos53°≈)23.(2014射阳县三模)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡度为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,求树的高度.24.(2014崇川区一模)如图,某登山队在山脚A处测得山顶B处的仰角为45°,沿坡角30°的斜坡AD前进1000m 后到达D处,又测得山顶B处的仰角为60°.求山的高度BC.参考答案与试题解析一.选择题(共12小题)1.(2014义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.C.2D.3考点:锐角三角函数的定义;坐标与图形性质.专题:数形结合.分析:根据正切的定义即可求解.解答:解:∵点A(t,3)在第一象限,∴AB=3,OB=t,又∵tanα==,∴t=2.故选:C.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.考点:互余两角三角函数的关系.专题:计算题.分析:根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tan∠B.解答:解:∵sinA=,∴设BC=5x,AB=13x,则AC==12x,故tan∠B==.故选:D.点评:本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.3.(2014•凉山州)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.专题:计算题.分析:根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C 的度数.解答:解:由题意,得cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.故选:C.点评:此题考查了特殊角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些特殊角的三角形函数值,也要注意运用三角形的内角和定理.4.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()D.50米A.100米B.50米C.米考点:解直角三角形的应用.专题:几何图形问题.分析:过B作BM⊥AD,根据三角形内角与外角的关系可得∠ABC=30°,再根据等角对等边可得BC=AC,然后再计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.解答:解:过B作BM⊥AD,∵∠BAD=30°,∠BCD=60°,∴∠ABC=30°,∴AC=CB=100米,∵BM⊥AD,∴∠BMC=90°,∴∠CBM=30°,∴CM=BC=50米,∴BM=CM=50米,点评:此题主要考查了解直角三角形的应用,关键是证明AC=BC,掌握直角三角形的性质:30°角所对直角边等于斜边的一半.5.(2014•凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()A.15m B.20m C.10m D.20m考点:解直角三角形的应用-坡度坡角问题.专题:计算题.分析:在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.解答:解:Rt△ABC中,BC=10m,tanA=1:;∴AC=BC÷tanA=10m,∴AB==20m.故选:D.点评:此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.6.(2014•百色)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:在Rt△ABC求出CB,在Rt△ABD中求出BD,继而可求出CD.解答:解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AB=6米,∴BC=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6米,∴DC=CB+BD=6+6(米).点评:本题考查仰角俯角的定义,要求学生能借助仰角俯角构造直角三角形并解直角三角形,难度一般.7.(2014•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选:C.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.8.(2014•路北区二模)如图,△ABC的项点都在正方形网格的格点上,则cosC的值为()A.B.C.D.考点:锐角三角函数的定义;勾股定理.专题:网格型.分析:先构建格点三角形ADC,则AD=2,CD=4,根据勾股定理可计算出AC,然后根据余弦的定义求解.解答:解:在格点三角形ADC中,AD=2,CD=4,∴AC===2,∴cosC===.故选B.点评:本题考查了锐角三角函数的定义:在直角三角形中,一锐角的余弦等于它的邻边与斜边的比值.也考查了勾股定理.9.(2014•长宁区一模)如图,在△ABC中,∠ACB=90°,CD⊥AB于D,下边各组边的比不能表示sinB的()A.B.C.D.考点:锐角三角函数的定义.分析:利用两角互余关系得出∠B=∠ACD,进而利用锐角三角函数关系得出即可.解答:解:∵在△ABC中,∠ACB=90°,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠B=∠ACD,∴sinB===,故不能表示sinB的是.故选:B.点评:此题主要考查了锐角三角函数的定义,正确把握锐角三角函数关系是解题关键.10.(2014•工业园区一模)若tan(α+10°)=1,则锐角α的度数是()A.20°B.30°C.40°D.50°考点:特殊角的三角函数值.分析:根据tan30°=解答即可.解答:解:∵tan(α+10°)=1,∴tan(α+10°)=.∴α+10°=30°.∴α=20°.故选A.点评:熟记特殊角的三角函数值是解答此题的关键.11.(2014•鄂州四月调考)在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A.B.C.D.考点:解直角三角形.分析:首先延长BA过点C作CD⊥BA延长线于点D,进而得出AD,CD,BC的长,再利用锐角三角函数关系求出即可.解答:解:延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD=,BD=5,∴BC==2,∴sinB===.故选:B.点评:此题主要考查了解直角三角形,作出正确辅助线构造直角三角形是解题关键.12.(2014•邢台一模)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.考点:解直角三角形.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD 的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=,根据勾股定理得:AC==,∵S△ABC=AC•BC=AB•CD,∴CD==.故选C.点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.二.填空题(共6小题)13.(2014•济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为3+.考点:解直角三角形.专题:几何图形问题.分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解答:解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.14.(2014•徐汇区一模)如图,已知梯形ABCD中,AB∥CD,AB⊥BC,且AD⊥BD,若CD=1,BC=3,那么∠A的正切值为.考点:锐角三角函数的定义.分析:求出∠ABC=∠ADB=90°,根据三角形内角和定理求出∠A=∠DBC,解直角三角形求出即可.解答:解:∵AB∥CD,AB⊥BC,∴DC⊥BC,∠ABC=90°,∴∠C=90°,∵AD⊥BD,∴∠ADB=90°,∴∠DBC+∠ABD=∠A+∠ABD=90°,∴∠A=∠DBC,∵CD=1,BC=3,∴∠A的正切值为tanA=tan∠DBC==,故答案为:3.点评:本题考查了锐角三角函数的定义,三角形内角和定理的应用,关键是求出∠A=∠DBC和求出tan∠DBC=.15.(2014•虹口区一模)计算:cos45°+sin260°=.考点:特殊角的三角函数值.分析:将cos45°=,sin60°=代入求解.解答:解:原式=×+()2=1+=.故答案为:.点评:本题考查了特殊角的三角函数值,解答本题的关键是熟记几个特殊角的三角函数值.16.(2014•武威模拟)某人沿坡度为i=3:4斜坡前进100米,则它上升的高度是60米.考点:解直角三角形的应用-坡度坡角问题.分析:根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.解答:解:由题意得,AB=100米,tanB==3:4,设AC=3x,则BC=4x,则(3x)2+(4x)2=1002,解得:x=20,则AC=3×20=60(米).故答案为:60.点评:本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.17.(2014•海门市模拟)某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进20m到达点D处,又测得点A的仰角为60°,则建筑物AB的高度是m.考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:设AB=x,在Rt△ABC中表示出BC,在Rt△ABD中表示出BD,再由CD=20米,可得关于x的方程,解出即可得出答案.解答:解:设AB=x,在Rt△ABC中,∠C=30°,则BC==x,在Rt△ABD中,∠ADB=60°,则BD==x,由题意得,x﹣x=20,解得:x=10.即建筑物AB的高度是10m.故答案为:10.点评:本题考查了解直角三角形的应用,解答本题的关键是熟练掌握三角函数的定义,利用三角函数的知识表示出相关线段的长度.18.(2013•扬州)在△ABC中,AB=AC=5,sin∠ABC=,则BC=6.考点:解直角三角形;等腰三角形的性质.分析:根据题意做出图形,过点A作AD⊥BC于D,根据AB=AC=5,sin∠ABC=,可求出AD的长度,然后根据勾股定理求出BD的长度,继而可求出BC的长度.解答:解:过点A作AD⊥BC于D,∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==,∴AD=5×=4,则BD==3,∴BC=BD+CD=3+3=6.故答案为:6.点评:本题考查了解直角三角形的知识,难度一般,解答本题的关键是构造直角三角形并解直角三角形以及勾股定理的应用.三.解答题(共6小题)19.(2014•盘锦)如图,用一根6米长的笔直钢管弯折成如图所示的路灯杆ABC,AB垂直于地面,线段AB与线段BC所成的角∠ABC=120°,若路灯杆顶端C到地面的距离CD=5.5米,求AB长.考点:解直角三角形的应用.专题:几何图形问题.分析:过B作BE⊥DC于E,设AB=x米,则CE=﹣x,BC=6﹣x,根据30°角的正弦值即可求出x,则AB求出.解答:解:过B作BE⊥DC于E,设AB=x米,∴CE=﹣x,BC=6﹣x,∵∠ABC=120°,∴∠CBE=30°,∴sin30°==,解得:x=5,答:AB的长度为5米.点评:考查了解直角三角形,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.20.(2014•遵义)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:应用题.分析:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.解答:解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.点评:本题考查了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是解题关键.21.(2014•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.解答:解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.点评:考查解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决本题的突破点.22.(2014•邵阳)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈,cos53°≈)考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.解答:解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.23.(2014•射阳县三模)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡度为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,求树的高度.考点:解直角三角形的应用-坡度坡角问题.分析:延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.解答:解:延长AC交BF延长线于D点,则∠CFE=30°,作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4m,∴CE=2(米),EF=4cos30°=2(米),在Rt△CED中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE=2(米),CE:DE=1:2,∴DE=4(米),∴BD=BF+EF+ED=12+2(米)在Rt△ABD中,AB=BD=(12+2)=(6+)(米).答:树的高度为:(6+)(米).点评:本题考查了解直角三角形的应用以及相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.24.(2014•崇川区一模)如图,某登山队在山脚A处测得山顶B处的仰角为45°,沿坡角30°的斜坡AD前进1000m 后到达D处,又测得山顶B处的仰角为60°.求山的高度BC.考点:解直角三角形的应用-仰角俯角问题.分析:过点D作DE⊥AC,△ACB是等腰直角三角形,直角△ADE中满足解直角三角形的条件.在直角△BDF中,根据三角函数可得BF,进一步得到BC,即可求出山高.解答:解:过D分别作DE⊥AC与E,DF⊥BC于F.∵在Rt△ADE中,AD=1000m,∠DAE=30°,∴DE=AD=500m.∵∠BAC=45°,∴∠DAB=45°﹣30°=15°,∠ABC=90°﹣45°=45°.∵在Rt△BDF中,∠BDF=60°,∴∠DBF=90°﹣60°=30°,∴∠DBA=45°﹣30°=15°,∵∠DAB=15°,∴∠DBA=∠DAB,∴BD=AD=1000m,∴在Rt△BDF中,BF=BD=500m,∴山的高度BC为(500+500)m.点评:本题考查了解直角三角形的应用﹣仰角俯角问题的应用,根据已知得出FC,BF的长是解题关键.。

相关文档
最新文档