EDA实验数字时钟

合集下载

(2023)EDA课程数字钟设计报告(一)

(2023)EDA课程数字钟设计报告(一)

(2023)EDA课程数字钟设计报告(一)EDA课程数字钟设计报告设计目的本次设计的目的是通过使用EDA software,设计一个能够正常运行的数字钟,使其能够满足一定的时间显示功能。

设计思路本设计主要使用Verilog HDL编程语言,利用EDA software提供的仿真功能,模拟数字钟的运行过程。

具体实现过程如下:1.首先,设置时钟频率,并利用counter计数器进行计数,产生时间基准信号。

2.利用BCD编码对时间进行编码,分别将时、分、秒的数据传至显示器。

3.设计逻辑电路计算秒钟、分针、时钟转动角度。

4.在EDA software上进行仿真,观察数字钟是否正常工作。

设计图样以下为数字钟方案的部分设计图样。

image textimage text实现结果通过复杂的编程训练和模拟,数字钟设计的功能已经被确认。

数字钟电路能够准确地显示当前时间。

同时,数字钟的设计也具有较高的可靠性、稳定性和精度。

并且,数字钟的主板设计紧凑、易于集成。

这些优点使得本次设计非常适合应用于智能仪器、家庭用品和其他数字显示电子设备中。

总结数字钟设计是一项有挑战性的工程,需要设计人员具有充分的编程功底和深入的EDA工具熟练度。

本设计的成功,体现了设计团队的技术实力和团队协作能力,为未来的科技产品发展提供了有力的技术支撑。

改进方案虽然本设计实现了数字钟正常工作的功能,但是我们仍然可以从以下几个方面进行改进:1.在原有电路基础上增加闹钟功能,方便用户定时提醒。

2.增加显示背光,使数字钟更方便在夜间环境下使用。

3.将数字钟设计进行微小的改动使其更小巧便携,方便携带和使用。

参考文献1.微机原理与接口技术(第四版) 教材2.EDA Software (Xilinx ISE) 许可证书致谢在本次数字钟的设计过程中,我们向来自各地的优秀工程师团队表示感谢,感谢他们在繁忙的工作中,准确地指导我们的设计工作。

同时也感谢电子设计自动化(EDA) company提供的软件支持,使得我们能够顺利完成该设计。

EDA数字钟试验

EDA数字钟试验

课程考查试题纸课程名称:EDA技术_____________________________考查内容:综合设计报告(随堂作业、论文、报告或其他)学院:计算机与信息工程学院任课教师:******综合设计题目:结合实验室EDA实验箱,完成一个可以计时的数字时钟,其显示时间范围是00:00 :00〜23:59:59,且该时钟具有暂停计时和清零功能。

要求设计报告中有原理分析,实验步骤,程序代码,遇到的问题及解决方法,课程总结。

多功能数字钟一.实验目的:1.回顾Quartus II的使用步骤,强化对软件的熟练使用度。

2.学习综合实验的设计思路及步骤。

3.学习顶层模块的设计以及底层模块调用原理(即编程例化语句的使用)。

4.进一步学习Verilog HDL语言的基本语法。

5.熟练掌握时钟显示的原理及对应代码的编写。

6.设计有特色的多功能可调的数字时钟。

7.学会查阅相关资料,解决实验调试过程中遇到的问题。

二 .实验环境:硬件环境:ALTERA 公司开发板 Cyclone EP1C12Q240C8 软件环境:Quartus II 开发软件三 .实验原理:该时钟项目共分为六大模块,大顶层模块(LAB_TOP)、分频模块 (ClkDivider)、分秒计数模块(Cnt_74161_fm)、时位计数模块(Cnt_74161_ss)、 显示模块(scan_led)、消抖模块(debounce)。

其中,分秒计数模块通过调整 74161计数模块实现,从而达到分秒的六十进制;分频模块由系统时钟clock 调整得到多种频率的信号输入;时位计数模块也通过调整74161计数模块实 现;显示模块与动态显示数码管实验类似,段选和片选以及时钟的输入由顶层 模块调用和产生以实现每位时钟数字的显示;消抖模块与按键实验类似,通过 对信号的三次取或运算判断按键是否是正常输入信号以实现外加按键的正常 控制,从而防止抖动产生的非正常信号输入;大顶层模块用来调用和整合各个 模块以实现对每个模块的复用、调整和连接从而完成时钟的所有功能。

eda多功能数字钟实验报告

eda多功能数字钟实验报告

eda多功能数字钟实验报告
《EDA多功能数字钟实验报告》
摘要:
本实验通过对EDA多功能数字钟的组装和测试,探索了数字钟的功能和性能。

实验结果表明,EDA多功能数字钟具有精准的时间显示、多种闹铃设置、温度
和湿度监测等功能,是一款实用且性能稳定的数字钟产品。

引言:
数字钟作为现代生活中不可或缺的家居用品,其功能和性能一直备受关注。


次实验选择了EDA多功能数字钟作为研究对象,旨在通过对其组装和测试,深
入了解数字钟的各项功能和性能指标。

实验方法:
1. 组装数字钟:按照产品说明书,将数字钟的各个部件进行组装,并确保连接
牢固。

2. 功能测试:测试数字钟的时间显示、闹铃设置、温度和湿度监测等功能。

3. 性能测试:对数字钟的时间精准度、闹铃响铃声音、温度和湿度监测准确度
等进行测试。

实验结果:
1. 时间显示:数字钟的时间显示精准,误差在1秒以内。

2. 闹铃设置:数字钟支持多组闹铃设置,响铃声音清晰、音量适中。

3. 温度和湿度监测:数字钟的温湿度监测准确度高,与实际环境温湿度相符合。

讨论:
通过本次实验,我们发现EDA多功能数字钟具有精准的时间显示、多种闹铃设
置、温度和湿度监测等功能,性能稳定,符合用户对数字钟的基本需求。

同时,数字钟的组装和操作也相对简单,适合家庭使用。

结论:
EDA多功能数字钟是一款实用且性能稳定的数字钟产品,能够满足用户对数字
钟的基本需求。

在未来的生活中,数字钟将继续扮演重要的角色,为人们的生
活提供便利。

致谢:
感谢实验中提供支持和帮助的老师和同学们。

eda课程设计数字钟实验

eda课程设计数字钟实验

eda课程设计数字钟实验一、课程目标知识目标:1. 学生能够理解数字时钟的基本原理,掌握EDA工具的使用方法,并能够运用Verilog HDL语言描述数字时钟的基本功能。

2. 学生能够掌握数字时钟设计中涉及的计数器、分频器等基本模块的工作原理和设计方法。

3. 学生了解数字时钟系统的层次化设计方法,并能够根据设计需求进行模块划分。

技能目标:1. 学生能够运用所学知识,使用EDA工具设计并实现一个简单的数字时钟,培养动手实践能力。

2. 学生能够通过分析问题、解决问题,培养逻辑思维能力和团队协作能力。

情感态度价值观目标:1. 学生通过实际操作,体验数字电路设计的乐趣,激发对电子信息技术学习的兴趣。

2. 学生在课程学习过程中,培养严谨的科学态度和良好的工程意识,提高对电子产品质量的追求。

3. 学生通过团队合作,培养沟通协作能力,增强团队意识和集体荣誉感。

课程性质:本课程为电子设计自动化(EDA)的实践课程,结合数字电路设计原理,让学生通过实际操作,掌握数字时钟的设计与实现。

学生特点:学生已经具备一定的电子信息技术基础,对数字电路有一定的了解,具备基本的编程能力。

教学要求:注重理论与实践相结合,强调学生的动手实践能力,鼓励学生独立思考和团队协作,培养解决实际问题的能力。

通过本课程的学习,使学生能够将所学知识应用于实际工程项目中,提高学生的综合素质。

二、教学内容本课程教学内容主要包括以下三个方面:1. 数字时钟原理及设计方法- 理解数字时钟的基本原理,包括计时原理、分频原理等。

- 学习数字时钟的模块化设计方法,掌握计数器、分频器等基本模块的设计与实现。

关联教材章节:第五章《数字时钟的设计与应用》2. EDA工具及Verilog HDL语言- 学习EDA工具的使用方法,如Quartus II等。

- 掌握Verilog HDL语言的基本语法和编程技巧,能够使用Verilog描述数字电路。

关联教材章节:第四章《EDA工具与Verilog HDL编程》3. 数字时钟设计与实现- 学习数字时钟的整体设计流程,包括模块划分、代码编写、仿真验证等。

电子设计自动化(EDA)_数字时钟程序模块(LED数码管显示)_实验报告

电子设计自动化(EDA)_数字时钟程序模块(LED数码管显示)_实验报告

电子设计自动化(EDA)—数字时钟LED数码管显示二、实验内容和实验目的1. 6个数码管动态扫描显示驱动2. 按键模式选择(时\分\秒)与闹钟(时\分)调整控制,3. 用硬件描述语言(或混合原理图)设计时、分、秒计数器模块、闹钟模块、按键控制状态机模块、动态扫描显示驱动模块、顶层模块。

要求使用实验箱左下角的6个动态数码管(DS6 A~DS1A)显示时、分、秒;要求模式按键和调整按键信号都取自经过防抖处理后的按键跳线插孔。

实验目的: 1)学会看硬件原理图, 2)掌握FPGA硬件开发的基本技能3)培养EDA综合分析、综合设计的能力三、实验步骤、实现方法(或设计思想)及实验结果主要设备: 1)PC机, 2)硬件实验箱, 3)Quartus II软件开发平台。

1.打开Quartus II , 连接实验箱上的相关硬件资源, 如下图1所示。

2.建立新文件, 选择文本类型或原理图类型。

3. 编写程序。

4.编译5. 仿真, 加载程序到芯片, 观察硬件输出结果(数码管显示)6.结果正确则完成。

若结果不正确, 则修改程序, 再编译, 直到正确。

模24计数器模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY count24 ISPORT(clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END count24;ARCHITECTURE arc OF count24 ISSIGNAL a,b:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(clk,en)BEGINhh<=a;hl<=b;IF(clk'EVENT AND clk='1') THENIF(en='1') THENIF(a="0010" AND b="0011") THENa<="0000";b<="0000";ELSE IF(b="1001") THENa<=a+'1';b<="0000";ELSE b<=b+'1';END IF;END IF;IF(a="0010" AND b="0010") THENcout<='1';ELSE cout<='0';END IF;END IF;END IF;END PROCESS;END arc;模60计数器模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY count60 ISPORT(clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END count60;ARCHITECTURE arc OF count60 ISSIGNAL a,b:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL sout:STD_LOGIC;BEGINPROCESS(clk)BEGINhh<=a; hl<=b;IF(clk'EVENT AND clk='1') THENIF(en='1') THENIF(a="0101" AND b="1001") THENa<="0000";b<="0000";ELSE IF(b="1001") THENa<=a+'1';b<="0000";ELSE b<=b+'1';END IF;END IF;END IF;END IF;END PROCESS;sout<='1' WHEN a="0101" AND b="1001" ELSE '0';cout<=sout AND en;END arc;4-7显示译码模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY segment4to7 ISPORT(s:IN STD_LOGIC_VECTOR(3 DOWNTO 0);a,b,c,d,e,f,g:OUT STD_LOGIC);END segment4to7;ARCHITECTURE arc OF segment4to7 IS SIGNAL y:STD_LOGIC_VECTOR(6 DOWNTO 0); BEGINa<= y(6);b<= y(5);c<= y(4);d<= y(3);e<= y(2); f<= y(1);g<= y(0);PROCESS(s)BEGINCASE s ISWHEN "0000"=>y<="1111110"; WHEN "0001"=>y<="0110000"; WHEN "0010"=>y<="1101101"; WHEN "0011"=>y<="1111001"; WHEN "0100"=>y<="0110011"; WHEN "0101"=>y<="1011011"; WHEN "0110"=>y<="1011111"; WHEN "0111"=>y<="1110000"; WHEN "1000"=>y<="1111111"; WHEN "1001"=>y<="1111011"; WHEN OTHERS=>y<="0000000"; END CASE;END PROCESS;END arc;带闹钟控制模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY mode_adjust_with_alarm ISPORT (adjust,mode,clk1hz: IN STD_LOGIC;clkh,enh,clkm,enm,clks,enha: OUT STD_LOGIC;clkh_a,clkm_a:OUT STD_LOGIC;mode_ss: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END mode_adjust_with_alarm;ARCHITECTURE arc OF mode_adjust_with_alarm ISTYPE mystate IS (s0,s1,s2,s3,s4,s5);SIGNAL c_state,next_state: mystate;BEGINPROCESS (c_state)BEGINCASE c_state ISWHEN s0=> next_state <= s1; clkh<=clk1hz; clkm<=clk1hz; clks<=clk1hz;enh<='0'; enm<='0'; enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="000";WHEN s1=> next_state <= s2; clkh<=adjust; clkm<= '0'; clks<='0';enh<='1'; enm<='0';enha<='0'; clkh_a<= '0';clkm_a<= '0'; mode_ss <="001";WHEN s2=> next_state <= s3; clkh<= '0'; clkm<=adjust; clks <= '0';enh<='0';enm<='1';enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="010";WHEN s3=> next_state <= s4; clkh<= '0'; clkm<= '0'; clks<=adjust;enh<='0'; enm<='0';enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="011";WHEN s4=> next_state <= s5; clkh<= clk1hz; clkm<= clk1hz; clks<=clk1hz;enh<='0';enm<='0';enha<='1'; clkh_a<=adjust; clkm_a<= '0'; mode_ss <="100";WHEN s5=> next_state <= s0; clkh<= clk1hz; clkm<= clk1hz; clks<=clk1hz;enh<='0'; enm<='0'; enha<='0'; clkh_a<= '0'; clkm_a<=adjust; mode_ss <="101";END CASE;END PROCESS;PROCESS (mode)BEGINIF (mode'EVENT AND mode='1') THENc_state<=next_state ;END IF;END PROCESS;END arc;扫描模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY scan ISPORT(clk256hz:IN STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END scan;ARCHITECTURE arc OF scan ISTYPE mystate IS (s0, s1,s2,s3,s4,s5);SIGNAL c_state,next_state: mystate;BEGINPROCESS ( c_state )BEGINCASE c_state ISWHEN s0=> next_state <=s1; ss<="010";WHEN s1=> next_state <=s2; ss<="011";WHEN s2=> next_state <=s3; ss<="100";WHEN s3=> next_state <=s4; ss<="101";WHEN s4=> next_state <=s5; ss<="110";WHEN s5=> next_state <=s0; ss<="111";END CASE;END PROCESS;PROCESS (clk256hz)BEGINIF (clk256hz'EVENT AND clk256hz='1') THENc_state<=next_state ;END IF;END PROCESS;END arc;复用模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY mux ISPORT(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla:IN STD_LOGIC_VECTOR(3 DOWNTO 0);ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);alarm:OUT STD_LOGIC);END mux;ARCHITECTURE arc OF mux ISSIGNAL a,hhtmp,hltmp,mhtmp,mltmp,shtmp,sltmp:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(mode_ss)BEGINCASE mode_ss ISWHEN "000"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "001"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "010"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "011"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "100"=> hhtmp<=hha; hltmp<=hla; mhtmp<=mha; mltmp<=mla; shtmp<=sh; sltmp<=sl;WHEN "101"=> hhtmp<=hha; hltmp<=hla; mhtmp<=mha; mltmp<=mla; shtmp<=sh; sltmp<=sl;WHEN OTHERS=>hhtmp<="0000";hltmp<="0000";mhtmp<="0000";mltmp<="0000";shtmp<="0000";sltmp<="0000"; END CASE;END PROCESS;PROCESS(ss)BEGINCASE ss ISWHEN "010"=> a <=hhtmp;WHEN "011"=> a <=hltmp;WHEN "100"=> a <=mhtmp;WHEN "101"=> a <=mltmp;WHEN "110"=> a <=shtmp;WHEN "111"=> a <=sltmp;WHEN OTHERS => a <="0000";END CASE;y<=a;END PROCESS;alarm<='1' WHEN ((hh=hha)AND(hl=hla)AND(mh=mha)AND(ml=mla)) ELSE '0';END arc;闪烁模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY blink_control ISPORT(ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);blink_en:OUT STD_LOGIC);END blink_control;ARCHITECTURE arc OF blink_control ISBEGINPROCESS (ss,mode_ss)BEGINIF(ss="010" AND mode_ss="001") THEN blink_en<='1';ELSIF(ss="011" AND mode_ss="001") THEN blink_en<='1';ELSIF(ss="100" AND mode_ss="010") THEN blink_en<='1';ELSIF(ss="101" AND mode_ss="010") THEN blink_en<='1';ELSIF(ss="110" AND mode_ss="011") THEN blink_en<='1';ELSIF(ss="111" AND mode_ss="011") THEN blink_en<='1';ELSIF(ss="010" AND mode_ss="100") THEN blink_en<='1';ELSIF(ss="011" AND mode_ss="100") THEN blink_en<='1';ELSIF(ss="100" AND mode_ss="101") THEN blink_en<='1';ELSIF(ss="101" AND mode_ss="101") THEN blink_en<='1';ELSE blink_en<='0';END IF;END PROCESS;END arc;Top文件LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY design3 ISPORT (mode,adjust,clk1hz,clk2hz,clk256hz,clk1khz:IN STD_LOGIC;alarm,a,b,c,d,e,f,g:OUT STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END design3;ARCHITECTURE arc OF design3 ISCOMPONENT mode_adjust_with_alarm PORT (adjust,mode,clk1hz: IN STD_LOGIC;clkh,enh,clkm,enm,clks,enha: OUT STD_LOGIC;clkh_a,clkm_a:OUT STD_LOGIC;mode_ss: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END COMPONENT;COMPONENT scan PORT (clk256hz:IN STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END COMPONENT;COMPONENT segment4to7 PORT (s: IN STD_LOGIC_VECTOR(3 DOWNTO 0);a,b,c,d,e,f,g: OUT STD_LOGIC);END COMPONENT;COMPONENT mux PORT(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla:IN STD_LOGIC_VECTOR(3 DOWNTO 0);ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);alarm:OUT STD_LOGIC);END COMPONENT;COMPONENT blink_control PORT(ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);blink_en:OUT STD_LOGIC);END COMPONENT;COMPONENT count24 PORT (clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END COMPONENT;COMPONENT count60 PORT (clk ,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END COMPONENT;SIGNALclkh,enh,clkm,enm,clks,clkh_a,clkm_a,coutm,couts,coutm_en,couts_en,cout,vcc,coutma_en,coutma,alarm1,bli nk_en,blink_tmp,enha: STD_LOGIC;SIGNAL mode_ss,ss1:STD_LOGIC_VECTOR(2 DOWNTO 0);SIGNAL hh,hl,mh,ml,sh,sl,hha,hla,mha,mla,y,i:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINvcc<='1';coutm_en <= enh OR coutm;couts_en <= enm OR couts;coutma_en<= enha OR coutma;blink_tmp<=blink_en and clk2hz;i(3)<=y(3) OR blink_tmp;i(2)<=y(2) OR blink_tmp;i(1)<=y(1) OR blink_tmp;i(0)<=y(0) OR blink_tmp;ss<=ss1;alarm<=alarm1 AND clk1khz;u1:mode_adjust_with_alarmPORT MAP( adjust,mode,clk1hz,clkh,enh,clkm,enm,clks,enha,clkh_a,clkm_a,mode_ss);u2:count24 PORT MAP(clkh,coutm_en,cout,hh,hl);u3:count60 PORT MAP(clkm,couts_en,coutm,mh,ml);u4:count60 PORT MAP(clks,vcc,couts,sh,sl);u5:count24 PORT MAP(clkh_a,coutma_en,cout,hha,hla);u6:count60 PORT MAP(clkm_a,vcc,coutma,mha,mla);u7:mux PORT MAP(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla,ss1,mode_ss,y,alarm1);u8:scan PORT MAP(clk256hz,ss1);u9:blink_control PORT MAP(ss1,mode_ss,blink_en);u10:segment4to7 PORT MAP(i,a,b,c,d,e,f,g);END arc;实验结果:数字钟包括正常的时分秒计时, 实验箱左下角的6个动态数码管(DS6 A~DS1A)显示时、分、秒。

EDA数字钟实验报告

EDA数字钟实验报告

EDA数字钟实验报告EDA实验EDA实验数字钟一.实验任务用FPGA器件和EDA技术的设计已知条件:XXX软件XXX实验开发装臵基本功能:1.以数字形式显示时,分,秒的时间;2.小时计数器为24进制;3.分,秒计数器为60进制;多功能数字电子钟设计:输入变量:时钟CPS,直接清零RD;输出变量:小时H[7..4]、H[3..0]为8421BCD码输出,其时钟为CLK;分计时M[7..4]、M[3..0]为8421BCD 码输出,其时钟为CPM;秒计时S[7..4]、S[3..0]为8421BCD码输出,其时钟为CLK;RD为清零信号等。

二.仿真与波形1.60进制原理图如下;其仿真波形如下:2.24进制原理图如下:其仿真波形如下:3.数字钟的整个电路图如下:逻辑电路说明:由电路分析得知,多功能数字电子钟最基本的计时电路在CLK(秒)时钟作用下,电路输出变量为H[7..0],M[7..0]及S[7..0],按8421BCD码正常走时,电路为异步时序逻辑电路4.数字电子钟的仿真波形如下:仿真波形分析及结论:由仿真波形分析得知在CLK(秒)时钟作用下,电路正常走时。

分析过程完全符合多功能数字电子钟最基本的计时功能,逻辑电路设计正确。

三.感想:这次的课程设计的内容是《EDA多功能数字钟》,这次课程设计验我花了两个上午的时间。

虽然我是顺利的完成了任务,但是在实验中我还是发现了自己存在的一些问题。

在课程设计中我经常做完上一步就忘记了下一步该怎么做,总是一边看老师的课件一边做,这样一来浪费了不少时间,这是由于我对软件的操作不熟练的缘故,因此我觉得我应该在今后的日子里多练习一下这个MA_+PLUS软件,做到在以后的学习及工作中能利用这个软件快速的正确的完成任务。

在实验中我还经常出现掉步骤的现象,比如经常忘记“指向当前文件”,从而导致得到的结果是错误的甚至根本就得不到结果,这全都是因为粗心大意造成的。

在今后的日子里我会努力的去改掉这个毛病,从而高质量的完成老师交给我的各项任务!。

eda数字钟实验报告

eda数字钟实验报告

eda数字钟实验报告EDA数字钟实验报告本次实验旨在设计并实现一个EDA数字钟。

通过这个实验,我们将学习如何使用EDA工具来设计数字电路,并通过实际的电路实现来验证我们的设计。

1. 实验背景数字钟是我们日常生活中常见的设备之一。

它不仅可以显示时间,还具有闹钟等功能。

在这个实验中,我们将使用EDA工具来设计一个数字钟电路,并通过FPGA实现这个电路。

2. 实验目标本次实验的目标是设计一个能够显示小时、分钟和秒的数字钟电路。

我们将使用七段数码管来显示这些信息,并通过按键来设置时间和闹钟。

3. 设计思路我们的设计思路如下:3.1 时钟模块我们首先需要设计一个时钟模块,用来产生一个固定的时钟信号。

我们可以使用FPGA的时钟模块来实现这个功能,或者使用外部的晶振电路。

3.2 数码管驱动模块接下来,我们需要设计一个数码管驱动模块,用来将数字转换为七段数码管的显示信号。

我们可以使用查找表或者逻辑门电路来实现这个功能。

3.3 时间设置模块为了能够设置时间,我们需要设计一个时间设置模块。

这个模块可以通过按键来设置小时、分钟和秒。

3.4 闹钟设置模块类似于时间设置模块,我们还需要设计一个闹钟设置模块。

这个模块可以通过按键来设置闹钟的小时和分钟。

3.5 主控制模块最后,我们需要设计一个主控制模块,用来控制时钟、数码管驱动、时间设置和闹钟设置模块之间的交互。

这个模块可以根据设置的时间和闹钟来控制数码管的显示。

4. 电路实现根据我们的设计思路,我们使用EDA工具来实现我们的数字钟电路。

我们使用VHDL语言来描述电路,并使用模块化的方式来组织我们的代码。

5. 实验结果经过实际的电路实现和测试,我们成功地实现了数字钟电路。

我们可以通过按键来设置时间和闹钟,并通过七段数码管来显示时间和闹钟。

6. 实验总结通过这个实验,我们学习了如何使用EDA工具来设计数字电路,并通过实际的电路实现来验证我们的设计。

我们深入了解了数字钟的工作原理,并学会了如何使用VHDL语言来描述电路。

EDA设计数字钟实验报告

EDA设计数字钟实验报告

南京理工大学EDA(Ⅱ)实验报告——多功能数字钟姓名:学号:学院:指导教师:时间:2014/11/3~2014/11/7摘要日益复杂的电子线路使得基于原理图的设计越来越复杂,甚至不切实际。

硬件描述语言的诞生,对设计自动化起到了极大的促进和推动作用。

Verilog HDL就是在用途最广泛的C语言的基础上发展起来的一种硬件描述语言,实现了从算法级、门级到开关级的多种抽象设计层次的数字系统建模,具有仿真,验证,故障模拟与时序分析等功能。

本文利用Verilog HDL语言,采用自顶向下的设计方法设计多功能数字钟,并通过QuartusⅡ分块进行了仿真。

此程序通过下载到FPGA芯片后,可实现实际的数字钟显示,具有基本的计时显示和设置,时间校正,整点报时,12h/24h转换,闹钟设置和闹铃控制的功能。

关键词: FPGA, Verilog HDL, QuartusⅡ, EP3C25F324C8,数字钟AbstractThe development of electronic circuit has grown to be too complicated to be designed base on schematic diagram. The birth of HDL accelerated the development of electronic design automation drastically. Verilog HDL is one of the HDL with multiple and strong functions.In this thesis, a complex digital system is designed in the bottom-up way with Verilog HDL and is simulated by QuartusⅡ. The function of a digital clock can be realized by downloading the program to FPGA, which includes timing, time-setting, hourly chiming, 12/24transforming, bell-setting and bell-controlling.Keywords: FPGA, Verilog HDL, QuartusⅡ, EP3C25F324C8,Digital clock目录摘要Abstract第一章数字钟设计要求说明第二章数字钟的设计思路和工作原理第三章模块的Verilog HDL设计与仿真3.1 计数器模块3.2 基本计时顶层模块3.3 分频模块3.4 整点报时模块3.5闹钟模块3.6 LED数码管显示模块3.7 数字钟顶层模块第四章FPGA实现第五章总结5.1 遇到的问题与解决方案5.2 尚存在的不足之处5.3 收获与感悟参考文献第一章数字钟设计要求说明(一)数字钟可以正常进行基本的时,分,秒计时功能。

EDA设计(II)实验报告数字电子钟

EDA设计(II)实验报告数字电子钟

EDA设计(II)实验报告-数字电子钟实验报告:数字电子钟一、实验目的本实验旨在通过使用EDA设计软件,设计并实现一个具有时、分、秒功能的数字电子钟。

通过学习使用EDA工具,掌握数字电路设计的基本步骤和技巧,培养实践能力和创新思维。

二、实验原理数字电子钟是一种以数字形式显示时间的装置,它利用了时、分、秒的计时原理。

核心部分包括一个时钟发生器,用于产生标准时间信号,以及一个计数器,用于对时间进行计数并显示。

此外,还需要一些控制逻辑来控制时、分、秒的进位和显示。

三、实验步骤1.设计准备:在开始设计之前,首先明确设计要求和功能。

考虑到实验的复杂性和可实现性,我们采用最简单的电路结构,即基于计数器和译码器的数字电子钟。

2.绘制电路图:使用EDA设计软件(如Quartus II)绘制电路图。

首先创建新项目,然后添加必要的元件(如74LS192计数器、74LS248译码器等),并根据设计要求连接元件。

3.编写程序:使用硬件描述语言(如VHDL或Verilog)编写计数器和译码器的程序。

确保程序能够实现所需的功能,并进行仿真测试。

4.编译和下载:将程序编译成可下载的配置文件,然后下载到FPGA开发板上。

5.硬件测试:连接开发板到PC,启动程序,观察数字电子钟的显示情况。

检查时间是否准确,各部分功能是否正常。

6.性能评估:对数字电子钟的性能进行评估,包括计时精度、稳定性等指标。

根据评估结果对设计进行优化。

四、实验结果与分析1.设计结果:经过上述步骤,我们成功地设计并实现了一个基于FPGA的数字电子钟。

通过EDA软件和硬件描述语言,我们实现了计数器和译码器的功能,并完成了程序的编写和下载。

2.性能分析:经过测试,我们的数字电子钟具有较高的计时精度和稳定性。

时间显示准确,各部分功能正常。

这表明我们的设计是成功的。

3.优化方向:虽然我们的数字电子钟已经具有较好的性能,但仍有一些方面可以优化。

例如,可以考虑添加更多的功能,如闹钟、温度显示等;也可以进一步优化电路结构,降低成本和提高性能。

eda多功能数字钟实验报告

eda多功能数字钟实验报告

eda多功能数字钟实验报告EDA多功能数字钟实验报告一、引言数字钟是现代生活中常见的一种时间显示工具,其准确性和便携性使其成为人们生活中不可或缺的一部分。

本实验旨在设计并制作一款多功能数字钟,通过EDA(电子设计自动化)软件进行模拟和仿真,验证其功能和性能。

二、设计原理1. 时钟电路:采用CMOS(互补金属氧化物半导体)技术设计时钟电路,包括时钟发生器、计数器和显示器。

时钟发生器产生稳定的方波信号,计数器根据方波信号进行计数,显示器将计数结果以数字形式显示出来。

2. 功能模块:多功能数字钟除了显示时间外,还应具备日期显示、闹钟设置、温度检测等功能。

为实现这些功能,需要添加相应的模块,如时钟芯片、温度传感器、闹钟电路等。

三、电路设计1. 时钟电路设计:根据设计原理,使用EDA软件进行电路设计,选择合适的元器件和连接方式。

通过仿真验证电路的工作稳定性和准确性。

2. 功能模块设计:根据需求,添加相应的功能模块。

时钟芯片用于精确计时和日期显示,温度传感器用于检测环境温度并显示,闹钟电路用于设置闹钟时间并触发报警。

四、电路实现1. 元器件选取:根据电路设计需求,选择合适的元器件。

时钟芯片应具备高精度和稳定性,温度传感器应具备高灵敏度和准确度,闹钟电路应具备可调节和触发功能。

2. 电路布局:将选取的元器件按照电路设计进行布局,注意元器件之间的连接和布线,避免干扰和短路。

3. 电路连接:根据电路设计进行元器件之间的连接,注意连接的正确性和稳定性。

五、仿真与测试1. 仿真验证:使用EDA软件进行电路仿真,检查电路的稳定性和准确性。

通过仿真结果对电路进行调整和优化,确保其正常工作。

2. 功能测试:对多功能数字钟进行功能测试,包括时间显示、日期显示、温度检测和闹钟设置等。

通过测试结果对电路进行调整和改进,确保其功能的完善和可靠性。

六、实验结果与分析经过仿真和测试,多功能数字钟实现了准确的时间显示、日期显示、温度检测和闹钟设置等功能。

EDA数字时钟实验报告

EDA数字时钟实验报告

EDA与数字系统课程设计报告书专业(班级):自动化2011级姓名(学号):丁兴宇20111965指导教师:刘春朱维勇胡存刚指导单位:电气与自动化工程学院目录中文摘要英文摘要实验一 (6)实验二 (7)实验三 (8)实验四 (9)数字时钟实验一.设计说明1.功能说明 (10)2.功能简介 (10)二.各模块设计原理1.扫描显示模块及原理 (11)2.时钟计时模块电路图及原理 (13)3.整点报时模块 (15)4.闹铃模块 (16)三.管脚分布 (19)四.讨论与心得 (20)参考文献 (21)附件 (22)中文摘要本文是基于Altera公司出品MAX+Plus2软件以及相应的ALTERA FLEX EPF10K10LC84-4实验平台完成的数字时钟实验,使我们清楚地了解到我们身边的数字时钟的功能是怎样实现的。

数字时钟实验主要包含两个主体时钟基本功能电路、闹钟电路。

主体一:主要涉及模60与模24计数器、动态显示控制电路、分频器主要整点报时电路,这些电路都是以模块封装好的,以便其他电路调用。

以计数器构成计时部件,通过分频器分出的1HZ脉冲计时,调用动态显示电路显示,通过整点报时电路控制蜂鸣器。

主体二:主要涉及模60与模24计数器、显示控制电路、4个数据比较器。

以模60与模24计数器构成定时与存储电路,调用动态显示控制电路显示,通过4个数据比较器比较时钟与闹铃的小时、分钟,和后续与门控制蜂鸣器。

英文摘要(Abstract)This article is based on Altera MAX + Plus2 software company produced and the corresponding ALTERA FLEXEPF10K10LC84-4 experimental platform to complete the digital clock experiments, so that we clearly understand our side of the digital clock function is how to achieve.Digital clock experiment consists mainly of two basic functions of the body clock circuits, alarm circuits.The main one: mainly related to mold 60 and the mold 24 counters, dynamic display control circuit, the whole point timekeeping main divider circuits, which are packaged in modules, so that other circuits calls. To constitute a timing counter parts, through the separation of the 1HZ divider pulse timing, called dynamic display circuit display, through the whole point timekeeping circuit control buzzer.Subject II: mainly related counter mold 60 and the mold 24, a display control circuit, four data comparator. Mold 60 and the mold 24 to form counter timing and memory circuit,called dynamic display control circuit shows that by four data comparator compares the clock and the alarm hour, minute, and follow-up with the door control buzzer.关键词:MAX+Plus2软件 EPF10K10LC84-4 数字时钟基本功能电路闹钟电路实验一题目:Max+Plus2使用练习,完成一个简单门电路的图形设计输入、编译、仿真、管脚分配、下载。

EDA设计报告-数字钟

EDA设计报告-数字钟

一、设计要求1、设计一个能显示1/10秒、秒、分、时的12小时数字钟。

2、熟练掌握各种计数器的使用。

能用计数器构成十进制、六十进制、十二进制等所需进制的计数器。

能用低位的进位输出构成高位的计数脉冲。

3、“时显示”部分应注意12点后显示1点。

4、注意各部分的关系,由低位到高位逐级设计、调试。

5、时钟显示使用数码管显示。

二、系统方案论证与模块划分1、计数器模块计数器模块中,1/10秒采用带进位的10进制功能模块,秒和分采用带进位的60进制功能模块,小时采用不带进位的12进制功能模块。

计数器模块均用Verilog HDL语言编写,实现计数逻辑功能。

(1)十进制计数器设计程序如下:module ssecond(q,rco,clk,reset);input clk,reset;output [3:0] q;output rco;reg rco;reg [3:0] q;always @(posedge clk or negedge reset)beginif(~reset)q<=4'b0000;else if (q==4'b1001) begin q<=4'b0000; rco=1;endelse begin q<=q+1'b1; rco=0;endendendmodule经编译、仿真、下载,满足要求。

然后通过Create Default Symbol,生成符号体如下:(2)六十进制计数器设计程序如下:module second(qh,ql,rco,clk,reset);output[3:0]qh;output[3:0]ql;output rco;reg [3:0]qh;reg [3:0]ql;reg rco;input clk,reset;always @(posedge clk or negedge reset)beginif(~reset){qh,ql}<=0;elsebeginif({qh,ql}==8'h59)begin {qh,ql}<=0;rco<=1;endelsebeginif(ql==9)begin ql<=0; qh<=qh+1;endelsebegin ql<=ql+1;rco<=0;endendendendendmodule经编译、仿真、下载,满足要求。

eda课程设计数字时钟

eda课程设计数字时钟

eda课程设计 数字时钟一、课程目标知识目标:1. 学生能理解数字时钟的基本概念和原理,掌握数字时钟的组成、功能及使用方法。

2. 学生能够运用所学知识,分析并设计简单的数字时钟电路。

3. 学生了解EDA(电子设计自动化)软件在数字时钟设计中的应用。

技能目标:1. 学生能够运用EDA软件完成数字时钟电路的绘制、仿真和调试。

2. 学生能够运用逻辑电路知识,设计并实现数字时钟的基本功能,如时、分、秒显示。

3. 学生能够通过团队合作,解决数字时钟设计过程中遇到的问题。

情感态度价值观目标:1. 学生培养对电子设计技术的兴趣,提高创新意识和动手能力。

2. 学生在学习过程中,养成积极思考、主动探究的良好习惯。

3. 学生通过团队合作,培养沟通协作能力和集体荣誉感。

课程性质:本课程为实践性课程,以学生动手实践为主,注重培养学生的实际操作能力和创新能力。

学生特点:本课程面向初中生,学生对电子技术有一定了解,具备基本的逻辑思维能力,但实际操作能力有待提高。

教学要求:教师应结合学生特点,采用任务驱动法、分组合作法等教学方法,引导学生主动参与,确保课程目标的实现。

同时,注重过程评价和成果评价,全面评估学生的学习成果。

二、教学内容本章节教学内容依据课程目标,紧密结合教材,确保科学性和系统性。

具体内容包括:1. 数字时钟基础知识:介绍数字时钟的原理、组成及功能,对应教材第3章“数字电路基础”。

- 时钟信号产生- 计数器原理- 显示技术2. EDA软件应用:学习EDA软件的使用方法,绘制数字时钟电路图,对应教材第5章“EDA技术及其应用”。

- EDA软件操作- 电路图绘制- 电路仿真与调试3. 数字时钟电路设计:运用逻辑电路知识,设计数字时钟电路,对应教材第4章“组合逻辑电路”。

- 逻辑门电路- 时钟分频器设计- 计数器设计- 显示控制电路4. 数字时钟制作与调试:分组合作,动手实践,完成数字时钟的制作与调试,对应教材第6章“数字电路实践”。

EDA 多功能数字钟实验报告

EDA 多功能数字钟实验报告

EDAⅡ多功能数字钟目录内容摘要 (3)一.引言 (4)二、实验要求 (4)三、方案论证 (5)四、整体电路功能综述 (6)五、各模块设计1、分频器模块 (8)2、计时模块 (9)3、闹铃模块 (12)4、上下午切换模块 (13)5、显示模块 (14)6、整点报时模块 (15)7、秒表模块 (15)8、动态显示模块 (16)9、倒计时模块 (18)10、开关防抖动 (19)11、开关复用控制 (20)六、实验中的问题及解决方法 (21)中文摘要本实验利用QuartusII软件,结合所学的数字电路的知识设计一个24时多功能数字钟,具有正常时、分、秒计时,动态显示,清零、快速校分、整点报时、闹钟、秒表、倒计时功能。

论文分析了整个电路的工作原理,还分别说明了各子模块的设计原理和调试、仿真、编程下载的过程,并对最终结果进行总结,最后提出了在实验过程中出现的问题和解决的方案,以及后续设计思想。

通过实验掌握了一些逻辑组合器件的基本功能和用法,同时体会到了利用软件设计电路的方便快捷,避免了硬件布线的繁琐,提高了效率,在为以后设计更复杂的电路打下了良好基础。

关键词数字钟闹钟秒表倒计时外文摘要Title DIGITAL CLOCK DESIGN PROPOSAlAbstractUsing the QuartusII, we design a digital clock of 24 hours with learning electric circuit knowledge. The circuit can keep the time, reset, adjust the minute and hour, ring the time in the round number time , alarm clock , stopwatch and countdown. The paper has analyzed the principle of all work and explained the designing principle of different parts separately. By debugging, simulating, compiling, programming, I put forward a matter and give a settling plan.I know about the basic functions and using method of some electric pieces in this experiment. At the same time, I realized the convenience of making use of the software to carry on the electric circuit, which is fast and let us have a good foundation for design a more complex system, avoided the hardware cloth line tedious, and raised the efficiency.Keywords digital clock, alarm clock,stopwatch,count down一、引言传统硬件电路在设计存在连线麻烦,出错率高且不易修改,很难控制成本的缺点。

eda数字时钟实验报告

eda数字时钟实验报告

EDA数字时钟电工电子实习实验报告姓名班级学号20一、实验目的:1、掌握多位计数器相连的设计方法。

2、掌握十进制、六十进制和二十四进制计数器的设计方法。

3、巩固数码管的驱动原理及编程方法。

4、掌握CPLD技术的层次化设计方法。

二、实验要求:基本要求:具有时、分、秒计数显示功能,以二十四小时循环计时。

扩展要求:具有整点报时功能。

三、实验原理:计数时钟由模60秒计数器、模60分计数器、模24小时计数器、蜂鸣器(用于整点报时)、分/时设定模块、输出显示模块构成,秒计数模块的进位输出为分钟计数模块的进位输入,分钟计数模块的进位输出为小时计数模块的进位输入。

74163功能简介:图1图2由图1可知,74163的脉冲上升沿的时候工作。

四、实验过程1.模60计数器(如图3)图3由74163实现计数功能,第一片74163实现10进制,即做0-9的循环,9即二进制的1001,化简可得当q[0]与q[3]同时为1的时候进行清零。

第二片74163实现6进制,即做0-5的循环,5即二进制的111,化简可得当q[4]与q[6]同时为1的时候进行清零,同时第一片74163的进位端作为第二片的脉冲端。

这样就可实现60进制。

60进制计数器用于秒计数器和分计数器,秒个位的进位端作为秒十位的脉冲端秒十位的进位端作为分个位的脉冲端,分个位的进位端作为分十位的脉冲端。

2.模24计数器(如图4)图4分十位的进位端作为时个位的脉冲端,时个位的进位端作为时十位的脉冲端。

因为24进制的特殊性,当十位是0和1的时候,个位做十进制循环,即0-9,9的二进制为1001;当十位是2的时候,个位做0-3的循环。

而十位做0-2的循环。

2的二进制为0010,3的二进制为0011。

所以第一片74163不仅要在q[14]与q[17]同时为1的时候清零,还要在第二片74163的q[19]、第一片的q[14]、q[15]同时为1(即23时)做清零。

第二片是3进制,在q[19]=1的时候进行清零。

eda数字钟实验报告

eda数字钟实验报告

eda数字钟实验报告一、实验目的与背景数字钟是一种在现代社会中广泛应用的时间显示器,其具有精度高、易于观察、维修方便等特点。

本次实验旨在通过使用EDA 软件,实现数字钟的制作,以便更好地了解数字时钟的原理及其设计过程。

二、实验器材与软件器材:电脑、EDA软件、闹钟模块、LCD液晶显示器、电源线、按键开关、电阻等。

软件:Protues、Keil、Proteus VSM等。

三、设计过程1. 硬件设计(1)指示器:使用了LCD液晶显示屏来显示时间。

其可显示当前的小时、分钟、秒等信息。

(2)核心控制器:使用了AT89S52单片机作为核心,用来控制整个数字时钟的运行。

(3)时钟电路:使用DS1302时钟芯片来实现时钟计时功能。

该芯片具有高精准度、低功耗等特点,能够提供准确的时间信号。

(4)外设控制:使用了按键开关、蜂鸣器等外设来实现数字时钟的启停、闹钟设置等功能。

2. 软件设计(1)包含了时间可视化方案的设计。

(2)编写了大量的实时驱动程序,使计时、位置更新、操作循环等功能得到实现。

(3)事件触发机制设计,使得按键响应、报时提示等功能得到实现。

(4)根据时钟电路信号进行时钟校准等相关处理。

四、实验结果通过实验,我们成功地制作出了一个高精度、功能齐全、操作简便的数字时钟。

该时钟可以准确地显示当前时间,同时根据设置还可以产生报时提示,启动或关闭闹钟等功能。

五、实验总结通过本次实验,我们对数字时钟的原理和设计过程有了更加深入的理解,增加了对数字电路的整体认识。

同时,我们还掌握了EDA软件的使用方法和调试技术。

希望今后能够在数字电路设计和嵌入式系统开发中能够有更好的发挥。

多功能数字钟(EDA设计)实验报告

多功能数字钟(EDA设计)实验报告

多功能数字钟一、实验原理分析通过晶振产生的50MHz的脉冲,用分频器进行分频产生1Hz的脉冲信号,即作为时钟的1s的信号进行计数。

秒钟每计数60秒后产生进位使分钟显示加1,分钟满60循环至0。

为实现手动校准时间功能,可以对分和秒计数器进行加减。

为实现校准时间时候的闪烁,对数码管使用消隐,把数码管的接地端口接一个脉冲信号。

在实验过程中,要注意很多细节,比如进行按键消抖,手动调整时间时不会进位。

二、逻辑分析三、功能模块分析功能模块包括分频模块,时间计数及校准模块,数码管译码显示模块、判决模块和消抖模块1.分频模块该电路由多个70LS90经过分频将由晶振产生的50MHz分频为1Hz方波,供后续时钟电路使用。

这一模块是整个电路的基础。

2.时间计数及校准模块该模块连接至分频模块的信号输出端,以分频模块产生的1Hz 方波作为基础。

1Hz方波与秒同步,以秒为基础,分别实现电子钟中,分与时的运转,即1分钟=60秒,1小时=60分钟的循环运转。

为了修正电子钟在运行过程中产生的一些误差或其他认为错误,另设置校准功能,可以对电子钟的计时进行调整。

其中,此模块的逻辑部分需Verilog语言实现并进行封装。

此模块用到3个十进制计数器、2个六进制计数器和1个三进制计数器。

3.数码管译码显示模块本电子钟采用数码管来显示,可以简单、直观地表现出确切的时间,实现其他配套功能。

且数码管易于操作。

此模块中有四个数码管,每两个数码管分别显示小时与分钟。

由上一模块,即时间计数及校准模块中的时间计数器产生的数值,将其对应的七段码直接传送至相应的数码管译码显示。

4.判决模块该电路判决信号连接至开关,当开关选中数码管某位后,经过判决器令改为停止计数,并开始1秒闪烁,按动按键可实现手动调整。

5.消抖模块通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。

EDA课程设计多功能数字时钟报告

EDA课程设计多功能数字时钟报告
II.功能简介…………………………………………………………………………………4
III.开关功能介绍(两种方案)……………………………………………………………4
二.方案论证……………………………………………………5
I.总体方案分析…………………………………………………………………………5
II.电路的工作原理……………………………………………………………………6
二.方案论证:
I。总体方案分析:
利用QuartusII软件设计一个数字钟,对设计电路进行功能仿真,并下载到SmartSOPC实验系统中,可以完成00:00:00到23:59:59的计时功能,并在控制电路的作用下具有保持、清零、快速校时、快速校分、整点报时等功能.本电路在原有基础上进行了拓展,具备以下功能:
①.能进行正常的时、分、秒计时功能;
These electric circuits are all packed with mold piece okay, for the purpose of other electric circuits adjust to use.With count machine composing to account parts, pass a cent repeatedly the machine divides of when the 1 HZ pulse accounts adjust to show that the electric circuit suggests and passes a little bit whole buzzer that tell the time an electric circuit control with the dynamic state.BE counting the way that the machine class adopted synchronously external different step in the inner part while uniting, but came to a synchronous effect through a simple change and than synchronously returned credibility。While showing a control for economizing a resources adoption dynamic state principle,from wove VHDL language of 24 choose 4 data selectors.文档为个人收集整理,来源于网络文档为个人收集整理,来源于网络
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
end if;
end process;
process(div_cnt(26),rst,last_over)
begin
if(s='1')then
if(rst='0')then
cntfirst<="0000";
first_over<='0';
elsif(div_cnt(26)'event and div_cnt(26)='1')then
if( cntfour="0101")then
cntfour<="0000";
four_over<='1';
else
four_over<='0';
cntfour<= cntfour+1;
end if;
end if;
end process;
process(four_over,rst)--four 10 counter
WHEN "0010" =>dataout_xhdl1 <= "10100100";
WHEN "0011" =>dataout_xhdl1 <= "10110000";
WHEN "0100" =>dataout_xhdl1 <= "10011001";
WHEN "0101" =>dataout_xhdl1 <= "10010010";
end if;
end if;
end process;
process(third_over,rst)--third 10 counter
begin
if(rst='0')then
cntfour<="0000";
four_over<='0';
elsif(third_over'event and third_over='1')then
third_over<='0';
elsif(second_over'event and second_over='1')then
if( cntthird="1001")then
cntthird<="0000";
third_over<='1';
else
third_over<='0';
cntthird<= cntthird+1;
WHEN "1010" =>dataout_xhdl1 <= "10000000"
WHEN "1011" =>dataout_xhdl1 <= "10010000";
WHEN "1100" =>dataout_xhdl1 <= "01100011
WHEN "1101" =>dataout_xhdl1 <= "10000101";
院(系):电子工程学院课程名称:EDA技术与VHDL日期:
班级
学号
实验室
专业
姓名
计算机号
实验名称
数字时钟
成绩评价
所用软件
QuartusⅡ7.0
教师签名



的或要求源自设计一个可以计时的数字时钟,其显示时间范
围是00:00:00~23:59:59,且该时钟具有暂停计时、
清零等功能。









1、启动QuartusⅡ建立一个空白工程并命名。
led_out<=dataout_xhdl1;
led_bit<=en_xhdl;
process(clk,rst)
begin
if(rst='0')then
div_cnt<="001001100000000000000000000";
elsif(clk'event and clk='1')then
div_cnt<=div_cnt+1;--利用计数器分频
begin
if(rst='0')then
cntlast<="0000";
last_over<='0';
elsif(five_over'event and five_over='1')then
if( cntlast="0010")then
cntlast<="0000";
last_over<='1';
else
4、对该工程进行全程编译处理,若在编译过程中发现错误,则找出并更正错误,直至编译成功为止。
5、设计下载
1)使用下载线,连接计算机USB口和实验箱JTAG下载口(注意插口方向),打开实验箱电源。
2)启动下载界面,确认已选中下载线。
3)完成下载界面的设置,启动下载。
4)按动按键开关KET1来输入脉冲信号,波动拨挡开关SW2、SW1来控制输入信号,观察数码管的变化规律并记录实验结果,看是否与预期设计一致。
last_over<='0';
cntlast<= cntlast+1;
end if;
end if;
if(cntlast="0010" and cntfive="0100")then cntlast<="0000" ;end if;
end process;
---****************显示部分***************--
begin
if(rst='0')then
cntsecond<="0000";
second_over<='0';
elsif(first_over'event and first_over='1')then
if(cntsecond="0101")then
cntsecond<="0000";
second_over<='1';
signal cntfour : std_logic_vector(3 downto 0);
signal cntfive : std_logic_vector(3 downto 0);
signal cntlast : std_logic_vector(3 downto 0);
signal first_over: std_logic;
WHEN "1110" =>dataout_xhdl1 <= "01100001";
WHEN "1111" =>dataout_xhdl1 <= "01110001";
five_over<='1';
else
five_over<='0';
cntfive<= cntfive+1;
end if;
end if;
if(cntlast="0010" and cntfive="0100")then cntfive<="0000" ;end if;
end process;
process(five_over,rst)--five 10 counter
if(cntfirst="1001" or last_over='1')then
cntfirst<="0000";
first_over<='1';
else
first_over<='0';
cntfirst<=cntfirst+1;
end if;
end if;
end if;
end process;
process(first_over,rst)--first 10 counter
signal en_xhdl : std_logic_vector(5 downto 0);
signal cntfirst :std_logic_vector(3 downto 0);
signal cntsecond : std_logic_vector(3 downto 0);
signal cntthird : std_logic_vector(3 downto 0);
END LED_0000_9999 ;
ARCHITECTURE arch OF LED_0000_9999 IS
signal div_cnt : std_logic_vector(26 downto 0 );
signal data4 : std_logic_vector(3 downto 0);
signal dataout_xhdl1 : std_logic_vector(7 downto 0);
相关文档
最新文档