Type 充电器原理图

合集下载

type-c笔记本供电原理

type-c笔记本供电原理

type-c笔记本供电原理
Type-C 笔记本供电原理是利用 USB Type-C 接口可以同时传输数据、音频、视频和电源的特性,将电源信号通过 Type-C 接口输入到笔记本电脑中进行供电。

传统的笔记本电脑一般使用不同的接口来实现电源输入和数据传输,需要使用两根线缆分别连接到电源适配器和外部设备。

而 Type-C 接口可以实现这两个功能的合并,只需要使用一根线缆即可完成数据传输和电源输入。

Type-C 接口上的 24 个引脚中包含了 4 个用于电源传输的固定电压供应线,可以为笔记本电脑提供直流电源。

这些引脚可以根据需求来进行正向或反向的供电。

在 Type-C 接口上,通过 CC(Configuration Channel)引脚进行交互,识别连接的设备类型并确定供电方向。

当笔记本电脑需要供电时,它会通过 CC 引脚发送唤醒信号给连接的电源适配器,然后电源适配器会根据电源协商协议(如 USB PD)来提供合适的电压和电流给笔记本电脑供电。

同时,CC 引脚还可以实现电源逆供,即允许笔记本电脑作为电源向连接的设备(如手机、平板电脑)提供电力。

总的来说,Type-C 笔记本供电原理是通过 Type-C 接口的多功能性,将数据传输和电源输入进行合并,并通过 CC 引脚来实现供电方向的确定和电源协商,从而为笔记本电脑提供电源。

手机充电器原理图

手机充电器原理图

一款手机充电器用电源变换器电路的分析分析一个电源,往往从输入开始着手。

220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。

这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。

右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。

13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。

当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。

由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。

不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。

左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。

13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。

当取样电压大约大于,即开关管电流大于时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。

变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。

为了分析方便,我们取三极管C945发射极一端为地。

那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。

取样电压经过稳压二极管后,加至开关管13003的基极。

原理图如下:前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。

(完整版)电动车充电器原理及带电路图维修

(完整版)电动车充电器原理及带电路图维修

常用电动车充电器根据电路结构可大致分为两种。

第一种是以uc3842 驱动场效应管的单管开关电源,配合LM358 双运放来实现三阶段充电方式。

其电原理图和元件参数见图表1)220v 交流电经T0 双向滤波抑制干扰,D1 整流为脉动直流,再经C11 滤波形成稳定的300V 左右的直流电。

U1 为TL3842 脉宽调制集成电路。

其 5 脚为电源负极,7 脚为电源正极, 6 脚为脉冲输出直接驱动场效应管Q1(K1358) 3 脚为最大电流限制,调整R25(2.5 欧姆)的阻值可以调整充电器的最大电流。

2 脚为电压反馈,可以调节充电器的输出电压。

4 脚外接振荡电阻R1, 和振荡电容C1。

T1 为高频脉冲变压器,其作用有三个。

第一是把高压脉冲将压为低压脉冲。

第二是起到隔离高压的作用,以防触电。

第三是为uc3842 提供工作电源。

D4 为高频整流管(16A60V )C10 为低压滤波电容,D5 为12V 稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35)起到自动调节充电器电压的作用。

调整w2(微调电阻)可以细调充电器的电压。

D10 是电源指示灯。

D6 为充电指示灯。

R27 是电流取样电阻(0.1 欧姆,5w )改变W1 的阻值可以调整充电器转浮充的拐点电流(200 -300 mA )。

通电开始时,C11 上有300v 左右电压。

此电压一路经T1 加载到Q1。

第二路经R5,C8,C3, 达到U1 的第7 脚。

强迫U1 启动。

U1 的 6 脚输出方波脉冲,Q1 工作,电流经R25 到地。

同时T1 副线圈产生感应电压,经D3,R12 给U1 提供可靠电源。

T1 输出线圈的电压经D4,C10 整流滤波得到稳定的电压。

此电压一路经D7(D7 起到防止电池的电流倒灌给充电器的作用)给电池充电。

第二路经R14,D5,C9, 为LM358(双运算放大器,1 脚为电源地,8 脚为电源正)及其外围电路提供12V 工作电源。

手机充电器电路图详解

手机充电器电路图详解

手机充电器电路图详解充电器电路手机(或其它小电器)充电器多如牛毛,不同厂家的电路结构大不相同,随着科技的进步新技术、新元件的出现又增加了新款的充电器,再加上山寨充电器充斥其中,导致小小充电器电路结构琳琅满目,让人应接不暇。

但有一款比较现代也比较简洁、很容易看懂电路图、容易查找故障的分立元件充电器,可作为经典教材进行研究,笔者使用这款充电器已有三年之久,由于后来大电流的快充的出现,现在已经不用它了,只将其作为一种研究对象进行分析,今天就将此分享给大家。

电路原理图见下图:电路图分析:一、该电路属于自励、反激式、变压器耦合型、PWM开关电源;电源变换过程:交流(AC,输入市电)→直流(DC)→交流(AC,高频)→直流(DC,输出);电路由整流、振荡、稳压、保护四大系统组成。

二、输入整流、滤波电路:由二极管VD1、电解电容器C1组成,属于半波整流电路,输出脉动直流电压,峰值电压311v,经电容滤波达到300v左右的直流电压。

VD1为1N4007这个二极管使用比较普遍,最大整流电流1A,最大反向电压1000v;电解电容器的耐压要大于300v;三、振荡电路:由R2、VT1、L1、L2、C4、R5组成,如果没有L2、C4、R5反馈支路的存在,三极管VT1过着一种平淡的田园生活,它通过偏置电阻R2提供合适的偏压,形成了一般的放大电路,但第三者---反馈电路的插足让它的生活不再平静,而是动荡不安--形成了振荡电流。

L2为反馈线圈,从图上L1、L2同名端的关系看出该反馈属于正反馈,于是形成了振荡电路,由于电容C4的存在导致该振荡电路形成的振荡是间歇振荡,不是正弦波;起振过程:电路接通时,启动电阻R2为电路提供偏置电流,于是VT1的集电极就有电流Ic通过Ic,当集电极线圈L1电流发生变化时(0→增加),就会产生自感电动势,方向上+下-,因L2与L1同绕在一个磁心上,于是L2在互感的作用下,产生下+上-的感应电动势;版权所有。

详解常见三种电动车充电器电路图及结构和工作原理KIAMOS管

详解常见三种电动车充电器电路图及结构和工作原理KIAMOS管

详解常见三种电动车充电器电路图及结构和工作原理KIAMOS管电动车充电器电路图一、电动车充电器的作用充电器是电动自行车的附件,是给蓄电池补充电能的装置。

它可以满足电动自行车用电的需要,并对蓄电池产生保护,有效的延长蓄电池的使用寿命。

电动自行车的充电器一般采用开关电源充电器,分为二阶段充电模式和三阶段充电模式两种。

二阶段充电模式即恒压充电,它是将充电过程分为恒流、恒压两个充电阶段,充电电流随蓄电池电压上升而逐渐减少。

当蓄电池电量上升到一定程度时,再转为恒压充电,使蓄电池内的电压缓慢上升,当蓄电池的电压达到充电器的充电终止电压(不同的充电方式,电压不一样,多段式充电方式的终止电压一般为41.4V,恒压式充电方式一般为43.8~44.4V)时,再转为涓流充电,即浮充,这样可以有效的保护蓄电池,延长蓄电池的使用寿命。

电动车普遍采用三阶段式充电。

电动自行车充电器是从电动自行车中独立出来的。

充电器是给蓄电池补充电能的装置。

充电器的好坏对蓄电池的使用寿命及电动自行车的正常行驶有着直接的影响。

电动自行车使用的蓄电池有多种类型,各种类型的充电方式不尽相同,但工作原理大同小异。

充电器充电就是在蓄电池放电后,按与放电电流相反的方向用直流电通过蓄电池,使电能在蓄电池内转化为化学能储存起来,恢复其工作能力,这个过程叫做蓄电池充电。

蓄电池的充电方式有恒流充电和恒压充电两种方式。

蓄电池的充电电压必须高于蓄电池的总电动势。

其充电方法是:将蓄电池负极与电源负极相连,蓄电池正极与电源正极相连。

二、电动车充电器的工作原理充电器主要由塑料外壳、输出插头、输入插头等组成。

充电器上有指示灯,同时作为电源指示和充电指示使用,使用时先插上充电的输出插头,再插上输入插头即可进行充电。

蓄电池的充电并不是随意接上电源就能充的,如交流电不变成直流电不能充,电压和电流的大小不适当不能充,不能过充电等,这些都需要充电器来完成。

充电器的结构形式有两种:一种是变压器式普通充电器,另一种是开关电源式充电器,两种充电器各具有不同的特点。

TYPE C接口定义

TYPE C接口定义

TYPE-C工作原理一、Type-C简介以及历史自1998年以来,USB发布至今,USB已经走过20个年头有余了。

在这20年间,USB-IF组织发布N种接口状态,包括A口、B口、MINI-A、MINI-B、Micro-A、Micro-B等等接口形态,由于各家产品的喜好不同,不同产品使用不同类型的插座,因此悲剧来了,我们也要常备N中不明用途的接口转接线材。

图1 USB协议发布时间节点而对于Type-C来说,看起来USB标准化组织也是意识到统一和标准化问题,在定义标准时,除了硬件接口定义上,还增加了一部分“个性化”特点。

分别是什么呢?1.1 定义了全新的接口形态接口大小跟Micro USB相近,约为8.3mm x 2.5mm,支持正反插,同时也规范了对应的线材,接口定义如下(线材端只有一对USB2.0 DATA):在插座定义上,定义了如下两种插座:a)全功能的Type-C插座,可以用于支持USB2.0、USB3.1、等特性的平台和设备。

b)USB 2.0 Type-C插座,只可以用在支持USB2.0的平台和设备上。

在插头定义上,定义了如下三种插头:a)全功能的Type-C插头,可以用于支持USB2.0、USB3.1、等特性的平台和设备。

b)USB 2.0 Type-C插头,只可以用在支持USB2.0的平台和设备上。

c)USB Type-C Power-Only插头,用在那些只需要供电设备上(如充电器)。

在线缆定义上,定义了如下三种线缆:a)两端都是全功能Type-C插头的全功能Type-C线缆。

b)两端都是USB 2.0 Type-C插头的USB 2.0 Type-C线缆。

c)只有一端是Type-C插头(全功能Type-C插头或者USB 2.0 Type-C插头)的线缆。

还定义了N种为了兼容旧设备的线缆:a)一种线缆,一端是全功能的Type-C插头,另一端是USB 3.1 Type-A插头。

b)一种线缆,一端是USB 2.0 Type-C插头,另一端是USB 2.0 Type-A插头。

电动车充电器原理及带电路图维修

电动车充电器原理及带电路图维修

常用电动车充电器根据电路结构可大致分为两种。

第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。

其电原理图和元件参数见图表1)图表 1220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。

U1 为TL3842脉宽调制集成电路。

其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25欧姆)的阻值可以调整充电器的最大电流。

2脚为电压反馈,可以调节充电器的输出电压。

4脚外接振荡电阻R1,和振荡电容C1。

T1为高频脉冲变压器,其作用有三个。

第一是把高压脉冲将压为低压脉冲。

第二是起到隔离高压的作用,以防触电。

第三是为uc3842提供工作电源。

D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。

调整w2(微调电阻)可以细调充电器的电压。

D10是电源指示灯。

D6为充电指示灯。

R27是电流取样电阻(欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。

通电开始时,C11上有300v左右电压。

此电压一路经T1加载到Q1。

第二路经R5,C8,C3, 达到U1的第7脚。

强迫U1启动。

U1的6脚输出方波脉冲,Q1工作,电流经R25到地。

同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。

T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。

此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。

第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。

D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。

正常充电时,R27上端有-左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压。

电动车充电器电源原理图与解析

电动车充电器电源原理图与解析

常用电动车充电器根据电路结构可大致分为两种。

第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。

其电原理图和元件参数见(图表1)220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。

U1 为TL3842脉宽调制集成电路。

其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。

2脚为电压反馈,可以调节充电器的输出电压。

4脚外接振荡电阻R1,和振荡电容C1。

T1为高频脉冲变压器,其作用有三个。

第一是把高压脉冲将压为低压脉冲。

第二是起到隔离高压的作用,以防触电。

第三是为uc3842提供工作电源。

D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。

调整w2(微调电阻)可以细调充电器的电压。

D10是电源指示灯。

D6为充电指示灯。

R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。

通电开始时,C11上有300v左右电压。

此电压一路经T1加载到Q1。

第二路经R5,C8,C3, 达到U1的第7脚。

强迫U1启动。

U1的6脚输出方波脉冲,Q1工作,电流经R25到地。

同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。

T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。

此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。

第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。

D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。

type-c接口原理

type-c接口原理

type-c接口原理Type-C接口原理随着科技的发展,移动设备的接口也在不断升级。

Type-C接口作为一种新型的通用接口,逐渐取代了传统的Micro USB接口,成为了目前手机、平板电脑等移动设备的主流接口之一。

那么,Type-C接口的原理是什么呢?Type-C接口的原理主要涉及到两个方面,即物理层和协议层。

物理层是指Type-C接口的硬件设计和连接方式。

Type-C接口采用了反插设计,即插头可以正反两个方向插入,避免了传统接口插入时的困扰。

这一点使得Type-C接口在使用上更加方便,同时也减少了因插入不当而导致的接口磨损。

此外,Type-C接口的连接器采用了24个引脚设计,其中12个引脚用于数据传输,另外12个引脚用于供电。

这样的设计保证了Type-C接口可以同时实现数据传输和快速充电的功能。

协议层是指Type-C接口的数据传输协议。

Type-C接口支持多种协议,包括USB 2.0、USB 3.0、DisplayPort等。

其中,USB 3.0是一种高速数据传输协议,可以实现最高5Gbps的传输速率,比传统的USB 2.0接口快10倍以上。

而DisplayPort则是一种视频输出协议,可以将移动设备的画面传输到外接显示器上,实现高清的影音体验。

除此之外,Type-C接口还支持一种双向供电的功能,即设备可以通过Type-C接口给其他设备供电,也可以从其他设备获得供电。

这使得Type-C接口成为了一种多功能的接口,不仅可以实现数据传输和充电,还可以连接外接显示器和其他外设。

总结一下,Type-C接口的原理主要包括物理层和协议层。

物理层采用了反插设计和24个引脚连接,确保了接口的方便使用和稳定连接。

协议层支持多种协议,包括USB 2.0、USB 3.0、DisplayPort等,实现了高速数据传输、视频输出和双向供电的功能。

通过这些设计,Type-C接口成为了一种功能强大、使用方便的通用接口,为移动设备的使用体验带来了极大的改进。

电动车充电器原理及带电路图维修

电动车充电器原理及带电路图维修

常用电动车充电器根据电路结构可大致分为两种。

第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。

其电原理图和元件参数见图表1)图表 1220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。

U1 为TL3842脉宽调制集成电路。

其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。

2脚为电压反馈,可以调节充电器的输出电压。

4脚外接振荡电阻R1,和振荡电容C1。

T1为高频脉冲变压器,其作用有三个。

第一是把高压脉冲将压为低压脉冲。

第二是起到隔离高压的作用,以防触电。

第三是为uc3842提供工作电源。

D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V 稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。

调整w2(微调电阻)可以细调充电器的电压。

D10是电源指示灯。

D6为充电指示灯。

R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。

通电开始时,C11上有300v左右电压。

此电压一路经T1加载到Q1。

第二路经R5,C8,C3, 达到U1的第7脚。

强迫U1启动。

U1的6脚输出方波脉冲,Q1工作,电流经R25到地。

同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。

T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。

此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。

第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。

D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。

TYPE C接口定义

TYPE C接口定义

TYPE-C工作原理一、Type-C简介以及历史自1998年以来,USB发布至今,USB已经走过20个年头有余了。

在这20年间,USB-IF 组织发布N种接口状态,包括A口、B口、MINI-A、MINI-B、Micro-A、Micro-B等等接口形态,由于各家产品的喜好不同,不同产品使用不同类型的插座,因此悲剧来了,我们也要常备N中不明用途的接口转接线材。

图1 USB协议发布时间节点而对于Type-C来说,看起来USB标准化组织也是意识到统一和标准化问题,在定义标准时,除了硬件接口定义上,还增加了一部分“个性化”特点。

分别是什么呢?1.1 定义了全新的接口形态接口大小跟Micro USB相近,约为8.3mm x 2.5mm,支持正反插,同时也规范了对应的线材,接口定义如下(线材端只有一对USB2.0 DATA):在插座定义上,定义了如下两种插座:a)全功能的Type-C插座,可以用于支持USB2.0、USB3.1、等特性的平台和设备。

b)USB 2.0 Type-C插座,只可以用在支持USB2.0的平台和设备上。

在插头定义上,定义了如下三种插头:a)全功能的Type-C插头,可以用于支持USB2.0、USB3.1、等特性的平台和设备。

b)USB 2.0 Type-C插头,只可以用在支持USB2.0的平台和设备上。

c)USB Type-C Power-Only插头,用在那些只需要供电设备上(如充电器)。

在线缆定义上,定义了如下三种线缆:a)两端都是全功能Type-C插头的全功能Type-C线缆。

b)两端都是USB 2.0 Type-C插头的USB 2.0 Type-C线缆。

c)只有一端是Type-C插头(全功能Type-C插头或者USB 2.0 Type-C插头)的线缆。

还定义了N种为了兼容旧设备的线缆:a)一种线缆,一端是全功能的Type-C插头,另一端是USB 3.1 Type-A插头。

b)一种线缆,一端是USB 2.0 Type-C插头,另一端是USB 2.0 Type-A插头。

手机充电器电路工作原理PPT(35张)

手机充电器电路工作原理PPT(35张)

在Q2导通期间,L3中的感应电动势极性为上 负下正,D7截止;在Q2截止期间,L3中的 感应电动势极性为上正下负,D7导通,向 外供电。 图1中,VD1、Q1等元件组成稳压 电压。若输出电压过高,则L2绕组的感应 电压也将升高,D1整流、C4滤波所得电压 升高。由于VD1两端始终保持5.6V的稳压值, 则Q1 b极电压升高,Q1导通程序加深,即 对Q2 b极电流的分流作用增强,Q2提前截 止,输出电压下降 若输出电压降低,其稳 压控制过程与上述相反。
VD17的导通/截止直接受电网电压和负载的 影响。电网电压越低或负载电流越大,VD17 的导通时间越短,V2的导通时间越长,反之, 电网电压越高或负载电流越小,VD5的整流 电压越高,VD17的导通时间越长,V2的导通 时间越短。V1是过流保护管,R5是V2 Ie的 取样电阻。当V2 Ie过大时,R5上的电压降 使V1导通,V2截止,可有效消除开机瞬间的 冲击电流,同时对VD17的控制功能也是一种 补偿。VD17以电压取样来控制V2的振荡时间, 而V1是以电流取样来控制V2振荡时间的。
按下SW2,V5基极瞬间得一低电平而导通,可 充电池上的残余电压通过V5的ec极在R17上 放电,同时放电指示灯VD14点亮。在按下 SW2后会随即释放,这时可充电池上的残余 电压通过R16、R13分压,C9滤波后为V4的基 极提供一个高电平,V4导通,这相当于短接 SW2。随着放电时间的延长,可充电池上的 残余电压也越来越低,当V4基极上的电压不 能维持其继续导通时,V4截止,放电终止, 充电器随即转入充电状态。
由于集成块IC1 的2、3、4脚和电容C4共同组成振荡 谐振电路,其2脚输出的振荡脉冲经电阻R16送至 充电指示灯LED--发光二极管(绿)的正极,其负 极接到集成块IC1的8脚。 在电池刚接人电路时, 集成块IC1的8脚输出的电平越低,充电指示灯 LED1闪烁发光强。随着充电时间延长,电池所充 的电压慢慢升高,集成块IC1的8脚 输出电压慢慢 升高,充电指示灯LED1闪烁发光逐渐变弱。当电 池E慢慢充到4.2V左右时,集成块IC1的6脚电位也 达到其内部的参考电压1.8V.此时,集成块IC1内 部电路动作,使其8脚电压输出高电平,三极管 VT3截止,充电指示灯LED1不再闪烁发光而熄灭, 充满指极管VT2及开关变压器1等组 成。接通源后,交流220V经二极管VD2半波整 流,形成100V左右的直流电压。该电压经开 关变压器T的1初级绕组加到了三极管VT2的c 极,同时该电压经启动电阻R4为VT2的b极提 供一个正向偏置电压,使VT2导通。此时,三 极管VT2和开关变压器 T1组成的间歇振荡电 路开始工作,开关变压器T的1-1初级绕组中 有电流通过。

快充技术芯片详解十分钟让你的手机满血复活

快充技术芯片详解十分钟让你的手机满血复活

快充技术芯⽚详解⼗分钟让你的⼿机满⾎复活 快充技术 悉数市⾯上的产品,快充技术⼤致有四种,即⾼通的QuickCharge版(如QC2.0、QC3.0),联发科版(Pump Express和Pump Express plus)、OPPO 的VOOC技术以及兼容QC2.0协议和海思快充协议华为快充技术。

也有⼈说快充技术是5种、6种、甚⾄7种,但在⽬前也就上⾯这四种,是在原有USB 5V充电技术上有所突破的技术。

常规USB 5V充电技术的瓶颈,充电环路⽰意图如图-1,充电环路阻抗约0.32Ω,那对于4.2V和4.35V电池最⼤充电电流有以下公式:(5-4.2)/0.32=2.5A (5V input source, BatteryCV=4.2V)(5-4.35)/0.32=2.03A. (5V input source,Battery CV=4.35V) 因此,⼿机的常规充电⽅式,⽆法再提⾼充电电流,不能满⾜现在⼿机电池越来越⼤后,对⼤充电电流的要求。

⼀、⾼通QC版快充技术这是⼀个市⾯上采⽤较多的快充技术,⼩⽶4C,⼩⽶note,三星等主流品牌均在采⽤此充电技术。

这与⽬前⾼端智能⼿机所采⽤的平台有相当关系。

另外,这种技术相对简单,实现起来相对容易,成本提升不明显,市场较容易接受。

⾼通QC充电技术有两个版本,分别是QC2.0和QC3.0,现在QC3.0的⼿机还很少,普遍还是QC2.0。

快充技术的原理,通过USB端⼝的D+与D-的不同电压给合,来向充电器申请相应的输出电压供⼿机充电。

QC2.0并不是简单的D+与D-的组合就可以让充电器输出所需的电压,⽽是还有⼀些协议在⾥⾯,需要先发送握⼿信号,⽐如1.5s的握⼿电压组合,才能进⾏下⼀步的输出,否则,直接按图-4将D+与D-电平设置好是不会改变充电器的输出电压的,这也是为了更好的保护⾮QC2.0技术的⼿机,不会因为误触发了充电器的升压机制⽽烧毁⼿机,图3是QC2.0充电器原理图的调压部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档