2018年二次函数压轴题题型归纳

合集下载

2018中考数学专题复习课件 怎样秒杀二次函数压轴题(共24张)

2018中考数学专题复习课件 怎样秒杀二次函数压轴题(共24张)
第十一页,共25页。
“开锁法”基本( jīběn)步骤
此问题(wèntí)分三种情况: 若两定点已知,可直接通过“开锁法”确定第三点坐标; 一定点一动点,可直接通过“开锁法”确定第三点参数坐标; 同一参数两动点,可直接通过“开锁法”确定第三点参数坐标。
【开锁过程】 第一步,将钥匙平移至锁眼位置; 第二步,将钥匙绕锁眼旋转90°;
线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长为d,求d
与t之间的函数关系式(不要求写出自变量t的取值范围).
解 : 依 题 意 : EF EP,EF EP
△ PEF为 等 腰 直 角 三 角 形
点 F 可 视 为 点 P绕 点 E逆 时 针 旋 转 900而 成
(2)当EF=MN.时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明);
(3)若二次函数L2 的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程 的解.
点:E、F、M、N 线:EF=MN; 式:两点距离(jùlí)公式,求a 点:A、M、N 线:AM=AN,AM=MN,AN=MN 式:两点距离(jùlí)公式,求m
•点:Bn,An,Bn+1, •线:AnBn, BnBn+1
•式: AnBn= BnBn+1
•点: Ak,Bk, Bk+1,Am,Bm, Bm+1 •线: AkBk, Bk Bk+1, AmBm, BmBm+1
•式:
A kB k B kB k 1或 者 A kB k B kB k 1
A m B m B m B m 1
“开锁法”示例(shìlì)_1

2018年中考二次函数压轴题汇编

2018年中考二次函数压轴题汇编

2018年中考二次函数压轴题汇编2.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.3.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.4.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.5.如图,点P为抛物线y=x2上一动点.(1)若抛物线y=x2是由抛物线y=(x+2)2﹣1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M.①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图二,若点Q的坐标为(1,5),求QP+PF的最小值.6.已知直线y=x+3与x轴、y轴分别相交于A、B两点,抛物线y=x2+bx+c经过A、B两点,点M在线段OA上,从O点出发,向点A以每秒1个单位的速度匀速运动;同时点N在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接MN,设运动时间为t秒(1)求抛物线解析式;(2)当t为何值时,△AMN为直角三角形;(3)过N作NH∥y轴交抛物线于H,连接MH,是否存在点H使MH∥AB,若存在,求出点H的坐标,若不存在,请说明理由.7.如图,抛物线经过原点O(0,0),点A(1,1),点.(1)求抛物线解析式;(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.8.如图,已知二次函数y=ax2+1(a≠0,a为实数)的图象过点A(﹣2,2),一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2).(1)求a值并写出二次函数表达式;(2)求b值;(3)设直线l与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,试证明:MB=MC;(4)在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说明理由.9.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B 两点(B点在A点右侧)与y轴交于C点.(1)求抛物线的解折式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.10.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.11.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.12.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.13.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.14.如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A 与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5).(1)求出这条抛物线的表达式;的值;(2)当t=0时,求S△OBN(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时,S有最大值,最大值是多少?15.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D 与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.16.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.18.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.19.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.20.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM 为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN 的值;若不存在,请说明理由.21.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.22.已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.23.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.24.如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.25.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C (0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.26.如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).(1)求此抛物线的解析式;(2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.27.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.28.已知:如图,一次函数y=kx﹣1的图象经过点A(3,m)(m>0),与y 轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD.(1)求这个一次函数的表达式;(2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(﹣,0),求这条抛物线的函数表达式.29.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得S△AOC =S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.30.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x 轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N 的坐标:若不存在,请说明理由.31.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D (4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.32.如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B 两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.33.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B (3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.34.已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.35.抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.36.如图,抛物线y=ax2+4x+c(a≠0)经过点A(﹣1,0),点E(4,5),与y 轴交于点B,连接AB.(1)求该抛物线的解析式;(2)将△ABO绕点O旋转,点B的对应点为点F.①当点F落在直线AE上时,求点F的坐标和△ABF的面积;②当点F到直线AE的距离为时,过点F作直线AE的平行线与抛物线相交,请直接写出交点的坐标.37.如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.38.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=)39.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.40.如图1,经过原点O的抛物线y=ax2+bx(a、b为常数,a≠0)与x轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B(5,t),与抛物线的对称轴相交于点C.(1)求抛物线的解析式;(2)在x轴上找一点P,使以点P、O、C为顶点的三角形与以点A、O、B为顶点的三角形相似,求满足条件的点P的坐标;(3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x轴下方的抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E恰好落在抛物线上时(图2),求直线l′的解析式;(4)在(3)问的条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O 顺时针旋转90°得到△M′OK′,点F为直线l′上的动点.当△M'FK′为等腰三角形时,求满足条件的点F的坐标.2018年07月10日139****3005的初中数学组卷参考答案与试题解析一.选择题(共1小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A.B.2 C.4 D.3【解答】解:点C在双曲线y=上,AC∥y轴,BC∥x轴,设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故选:B.二.解答题(共39小题)2.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,,解得:,∴抛物线的表达式为y=﹣x2+2x+3.(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1.当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形.∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2.又∵t≠2,∴不存在.(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,,解得:,∴直线BC的解析式为y=﹣x+3.∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=PF•OB=﹣t2+t=﹣(t﹣)2+.②∵﹣<0,∴当t=时,S取最大值,最大值为.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC==3,∴P点到直线BC的距离的最大值为=,此时点P的坐标为(,).3.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)由题可知当y=0时,a(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,即A(1,0),B(3,0),∴OA=1,OB=3∵△OCA∽△OBC,∴OC:OB=OA:OC,∴OC2=OA•OB=3,则OC=;(2)∵C是BM的中点,即OC为斜边BM的中线,∴OC=BC,∴点C的横坐标为,又OC=,点C在x轴下方,∴C(,﹣),设直线BM的解析式为y=kx+b,把点B(3,0),C(,﹣)代入得:,解得:b=﹣,k=,∴y=x﹣,又∵点C(,﹣)在抛物线上,代入抛物线解析式,解得:a=,∴抛物线解析式为y=x2﹣x+2;(3)点P存在,设点P坐标为(x,x2﹣x+2),过点P作PQ⊥x轴交直线BM于点Q,则Q(x,x﹣),∴PQ=x﹣﹣(x2﹣x+2)=﹣x2+3x﹣3,当△BCP面积最大时,四边形ABPC的面积最大,S△BCP=PQ(3﹣x)+PQ(x﹣)=PQ=﹣x2+x﹣,有最大值,四边形ABPC的面积最大,此时点P的坐标为当x=﹣=时,S△BCP(,﹣).4.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P,必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.5.如图,点P为抛物线y=x2上一动点.(1)若抛物线y=x2是由抛物线y=(x+2)2﹣1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M.①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图二,若点Q的坐标为(1,5),求QP+PF的最小值.【解答】解:(1)∵抛物线y=(x+2)2﹣1的顶点为(﹣2,﹣1)∴抛物线y=(x+2)2﹣1的图象向上平移1个单位,再向右2个单位得到抛物线y=x2的图象.(2)①存在一定点F,使得PM=PF恒成立.如图一,过点P作PB⊥y轴于点B设点P坐标为(a,a2)∴PM=PF=a2+1∵PB=a∴Rt△PBF中BF=∴OF=1∴点F坐标为(0,1)②由①,PM=PFQP+PF的最小值为QP+PM的最小值当Q、P、M三点共线时,QP+PM有最小值,最小值为点Q纵坐标加M纵坐标的绝对值.∴QP+PF的最小值为6.6.已知直线y=x+3与x轴、y轴分别相交于A、B两点,抛物线y=x2+bx+c经过A、B两点,点M在线段OA上,从O点出发,向点A以每秒1个单位的速度匀速运动;同时点N在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接MN,设运动时间为t秒(1)求抛物线解析式;(2)当t为何值时,△AMN为直角三角形;(3)过N作NH∥y轴交抛物线于H,连接MH,是否存在点H使MH∥AB,若存在,求出点H的坐标,若不存在,请说明理由.【解答】解:(1)∵直线y=x+3与x轴、y轴分别相交于A、B两点,∴点A的坐标为(﹣3,0),点B的坐标为(0,3).将A(﹣3,0)、B(0,3)代入y=x2+bx+c,得:,解得:,∴抛物线解析式为y=x2+4x+3.(2)当运动时间为t秒时,点M的坐标为(﹣t,0),点N的坐标为(t﹣3,t),∴AM=3﹣t,AN=t.∵△AMN为直角三角形,∠MAN=45°,∴△AMN为等腰直角三角形(如图1).当∠ANM=90°时,有AM=AN,即3﹣t=2t,解得:t=1;当∠AMN=90°时,有t﹣3=﹣t,解得:t=.综上所述:当t为1秒或秒时,△AMN为直角三角形.(3)设NH与x轴交于点E,如图2所示.当运动时间为t秒时,点M的坐标为(﹣t,0),点N的坐标为(t﹣3,t),∴点E的坐标为(t﹣3,0),点H的坐标为(t﹣3,t2﹣2t).∵MH∥AB,∴∠EMH=45°,∴△EMH为等腰直角三角形,∴ME=HE,即|2t﹣3|=|t2﹣2t|,解得:t1=1,t2=3(舍去),t3=,t4=﹣(舍去).当t=时,点E在点M的右边,点H在x轴下方,∴此时MH⊥AB,∴t=1.∴存在点H使MH∥AB,点H的坐标为(﹣2,﹣1).7.如图,抛物线经过原点O(0,0),点A(1,1),点.(1)求抛物线解析式;(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.【解答】解:(1)设抛物线解析式为y=ax(x﹣),把A(1,1)代入得a•1(1﹣)=1,解得a=﹣,∴抛物线解析式为y=﹣x(x﹣),即y=﹣x2+x;(2)延长CA交y轴于D,如图1,∵A(1,1),∴OA=,∠DOA=45°,∴△AOD为等腰直角三角形,∵OA⊥AC,∴OD=OA=2,∴D(0,2),易得直线AD的解析式为y=﹣x+2,解方程组得或,则C(5,﹣3),∴S△AOC =S△COD﹣S△AOD=×2×5﹣×2×1=4;(3)存在.如图2,作MH⊥x轴于H,AC==4,OA=,设M(x,﹣x2+x)(x>0),∵∠OHM=∠OAC,∴当=时,△OHM∽△OAC,即=,解方程﹣x2+x=4x得x1=0(舍去),x2=﹣(舍去),解方程﹣x2+x=﹣4x得x1=0(舍去),x2=,此时M点坐标为(,﹣54);当=时,△OHM∽△CAO,即=,解方程﹣x2+x=x得x1=0(舍去),x2=,此时M点的坐标为(,),解方程﹣x2+x=﹣x得x1=0(舍去),x2=﹣,此时M点坐标为(,﹣);∵MN⊥OM,∴∠OMN=90°,∴∠MON=∠HOM,∴△OMH∽△ONM,∴当M点的坐标为(,﹣54)或(,)或(,﹣)时,以点O,M,N为顶点的三角形与(2)中的△AOC相似.8.如图,已知二次函数y=ax2+1(a≠0,a为实数)的图象过点A(﹣2,2),一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2).(1)求a值并写出二次函数表达式;(2)求b值;(3)设直线l与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,试证明:MB=MC;(4)在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说明理由.【解答】解:(1)∵二次函数y=ax2+1(a≠0,a为实数)的图象过点A(﹣2,2),∴2=4a+1,解得:a=,∴二次函数表达式为y=x2+1.(2)∵一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2),∴2=k×0+b,∴b=2.(3)证明:过点M作ME⊥y轴于点E,如图1所示.设点M的坐标为(x,x2+1),则MC=x2+1,∴ME=|x|,EB=|x2+1﹣2|=|x2﹣1|,∴MB=,=,=,=,=x2+1.∴MB=MC.(4)相切,理由如下:过点N作ND⊥x轴于D,取MN的中点为P,过点P作PF⊥x轴于点F,过点N 作NH⊥MC于点H,交PF于点Q,如图2所示.由(3)知NB=ND,∴MN=NB+MB=ND+MC.∵点P为MN的中点,PQ∥MH,∴PQ=MH.∵ND∥HC,NH∥DC,且四个角均为直角,∴四边形NDCH为矩形,∴QF=ND,∴PF=PQ+QF=MH+ND=(ND+MH+HC)=(ND+MC)=MN.∴以MN为直径的圆与x轴相切.9.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B 两点(B点在A点右侧)与y轴交于C点.(1)求抛物线的解折式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.【解答】解:(1)∵抛物线y=ax2+x+4的对称轴是直线x=3,∴﹣=3,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+4.当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).(2)当x=0时,y=﹣x2+x+4=4,∴点C的坐标为(0,4).设直线BC的解析式为y=kx+b(k≠0).将B(8,0)、C(0,4)代入y=kx+b,,解得:,∴直线BC的解析式为y=﹣x+4.假设存在,设点P的坐标为(x,﹣x2+x+4),过点P作PD∥y轴,交直线BC 于点D,则点D的坐标为(x,﹣x+4),如图所示.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴S=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.△PBC∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.∵0<x<8,∴存在点P,使△PBC的面积最大,最大面积是16.(3)设点M的坐标为(m,﹣m2+m+4),则点N的坐标为(m,﹣m+4),∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.。

2018年中考二次函数压轴题汇编

2018年中考二次函数压轴题汇编

2018年中考二次函数压轴题汇编2.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.3.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.4.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.5.如图,点P为抛物线y=x2上一动点.(1)若抛物线y=x2是由抛物线y=(x+2)2﹣1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M.①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图二,若点Q的坐标为(1,5),求QP+PF的最小值.6.已知直线y=x+3与x轴、y轴分别相交于A、B两点,抛物线y=x2+bx+c经过A、B两点,点M在线段OA上,从O点出发,向点A以每秒1个单位的速度匀速运动;同时点N在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接MN,设运动时间为t秒(1)求抛物线解析式;(2)当t为何值时,△AMN为直角三角形;(3)过N作NH∥y轴交抛物线于H,连接MH,是否存在点H使MH∥AB,若存在,求出点H的坐标,若不存在,请说明理由.7.如图,抛物线经过原点O(0,0),点A(1,1),点.(1)求抛物线解析式;(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.8.如图,已知二次函数y=ax2+1(a≠0,a为实数)的图象过点A(﹣2,2),一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2).(1)求a值并写出二次函数表达式;(2)求b值;(3)设直线l与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,试证明:MB=MC;(4)在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说明理由.9.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B 两点(B点在A点右侧)与y轴交于C点.(1)求抛物线的解折式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.10.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.11.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的倍?若存在,求点M的坐标;若不存在,请说明理由.12.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.13.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.14.如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A 与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5).(1)求出这条抛物线的表达式;的值;(2)当t=0时,求S△OBN(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时,S有最大值,最大值是多少?15.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D 与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.16.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.18.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.19.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.20.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM 为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN 的值;若不存在,请说明理由.21.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.22.已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.23.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.24.如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.25.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C (0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.26.如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).(1)求此抛物线的解析式;(2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.27.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.28.已知:如图,一次函数y=kx﹣1的图象经过点A(3,m)(m>0),与y 轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD.(1)求这个一次函数的表达式;(2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(﹣,0),求这条抛物线的函数表达式.29.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得S△AOC =S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.30.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x 轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N 的坐标:若不存在,请说明理由.31.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D (4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.32.如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B 两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.33.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B (3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.34.已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.35.抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.36.如图,抛物线y=ax2+4x+c(a≠0)经过点A(﹣1,0),点E(4,5),与y 轴交于点B,连接AB.(1)求该抛物线的解析式;(2)将△ABO绕点O旋转,点B的对应点为点F.①当点F落在直线AE上时,求点F的坐标和△ABF的面积;②当点F到直线AE的距离为时,过点F作直线AE的平行线与抛物线相交,请直接写出交点的坐标.37.如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.38.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=)39.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.40.如图1,经过原点O的抛物线y=ax2+bx(a、b为常数,a≠0)与x轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B(5,t),与抛物线的对称轴相交于点C.(1)求抛物线的解析式;(2)在x轴上找一点P,使以点P、O、C为顶点的三角形与以点A、O、B为顶点的三角形相似,求满足条件的点P的坐标;(3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x轴下方的抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E恰好落在抛物线上时(图2),求直线l′的解析式;(4)在(3)问的条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O 顺时针旋转90°得到△M′OK′,点F为直线l′上的动点.当△M'FK′为等腰三角形时,求满足条件的点F的坐标.2018年07月10日139****3005的初中数学组卷参考答案与试题解析一.选择题(共1小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A.B.2 C.4 D.3【解答】解:点C在双曲线y=上,AC∥y轴,BC∥x轴,设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故选:B.二.解答题(共39小题)2.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,,解得:,∴抛物线的表达式为y=﹣x2+2x+3.(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1.当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形.∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2.又∵t≠2,∴不存在.(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,,解得:,∴直线BC的解析式为y=﹣x+3.∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=PF•OB=﹣t2+t=﹣(t﹣)2+.②∵﹣<0,∴当t=时,S取最大值,最大值为.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC==3,∴P点到直线BC的距离的最大值为=,此时点P的坐标为(,).3.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)由题可知当y=0时,a(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,即A(1,0),B(3,0),∴OA=1,OB=3∵△OCA∽△OBC,∴OC:OB=OA:OC,∴OC2=OA•OB=3,则OC=;(2)∵C是BM的中点,即OC为斜边BM的中线,∴OC=BC,∴点C的横坐标为,又OC=,点C在x轴下方,∴C(,﹣),设直线BM的解析式为y=kx+b,把点B(3,0),C(,﹣)代入得:,解得:b=﹣,k=,∴y=x﹣,又∵点C(,﹣)在抛物线上,代入抛物线解析式,解得:a=,∴抛物线解析式为y=x2﹣x+2;(3)点P存在,设点P坐标为(x,x2﹣x+2),过点P作PQ⊥x轴交直线BM于点Q,则Q(x,x﹣),∴PQ=x﹣﹣(x2﹣x+2)=﹣x2+3x﹣3,当△BCP面积最大时,四边形ABPC的面积最大,S△BCP=PQ(3﹣x)+PQ(x﹣)=PQ=﹣x2+x﹣,有最大值,四边形ABPC的面积最大,此时点P的坐标为当x=﹣=时,S△BCP(,﹣).4.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P,必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.5.如图,点P为抛物线y=x2上一动点.(1)若抛物线y=x2是由抛物线y=(x+2)2﹣1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M.①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图二,若点Q的坐标为(1,5),求QP+PF的最小值.【解答】解:(1)∵抛物线y=(x+2)2﹣1的顶点为(﹣2,﹣1)∴抛物线y=(x+2)2﹣1的图象向上平移1个单位,再向右2个单位得到抛物线y=x2的图象.(2)①存在一定点F,使得PM=PF恒成立.如图一,过点P作PB⊥y轴于点B设点P坐标为(a,a2)∴PM=PF=a2+1∵PB=a∴Rt△PBF中BF=∴OF=1∴点F坐标为(0,1)②由①,PM=PFQP+PF的最小值为QP+PM的最小值当Q、P、M三点共线时,QP+PM有最小值,最小值为点Q纵坐标加M纵坐标的绝对值.∴QP+PF的最小值为6.6.已知直线y=x+3与x轴、y轴分别相交于A、B两点,抛物线y=x2+bx+c经过A、B两点,点M在线段OA上,从O点出发,向点A以每秒1个单位的速度匀速运动;同时点N在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接MN,设运动时间为t秒(1)求抛物线解析式;(2)当t为何值时,△AMN为直角三角形;(3)过N作NH∥y轴交抛物线于H,连接MH,是否存在点H使MH∥AB,若存在,求出点H的坐标,若不存在,请说明理由.【解答】解:(1)∵直线y=x+3与x轴、y轴分别相交于A、B两点,∴点A的坐标为(﹣3,0),点B的坐标为(0,3).将A(﹣3,0)、B(0,3)代入y=x2+bx+c,得:,解得:,∴抛物线解析式为y=x2+4x+3.(2)当运动时间为t秒时,点M的坐标为(﹣t,0),点N的坐标为(t﹣3,t),∴AM=3﹣t,AN=t.∵△AMN为直角三角形,∠MAN=45°,∴△AMN为等腰直角三角形(如图1).当∠ANM=90°时,有AM=AN,即3﹣t=2t,解得:t=1;当∠AMN=90°时,有t﹣3=﹣t,解得:t=.综上所述:当t为1秒或秒时,△AMN为直角三角形.(3)设NH与x轴交于点E,如图2所示.当运动时间为t秒时,点M的坐标为(﹣t,0),点N的坐标为(t﹣3,t),∴点E的坐标为(t﹣3,0),点H的坐标为(t﹣3,t2﹣2t).∵MH∥AB,∴∠EMH=45°,∴△EMH为等腰直角三角形,∴ME=HE,即|2t﹣3|=|t2﹣2t|,解得:t1=1,t2=3(舍去),t3=,t4=﹣(舍去).当t=时,点E在点M的右边,点H在x轴下方,∴此时MH⊥AB,∴t=1.∴存在点H使MH∥AB,点H的坐标为(﹣2,﹣1).7.如图,抛物线经过原点O(0,0),点A(1,1),点.(1)求抛物线解析式;(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.【解答】解:(1)设抛物线解析式为y=ax(x﹣),把A(1,1)代入得a•1(1﹣)=1,解得a=﹣,∴抛物线解析式为y=﹣x(x﹣),即y=﹣x2+x;(2)延长CA交y轴于D,如图1,∵A(1,1),∴OA=,∠DOA=45°,∴△AOD为等腰直角三角形,∵OA⊥AC,∴OD=OA=2,∴D(0,2),易得直线AD的解析式为y=﹣x+2,解方程组得或,则C(5,﹣3),∴S△AOC =S△COD﹣S△AOD=×2×5﹣×2×1=4;(3)存在.如图2,作MH⊥x轴于H,AC==4,OA=,设M(x,﹣x2+x)(x>0),∵∠OHM=∠OAC,∴当=时,△OHM∽△OAC,即=,解方程﹣x2+x=4x得x1=0(舍去),x2=﹣(舍去),解方程﹣x2+x=﹣4x得x1=0(舍去),x2=,此时M点坐标为(,﹣54);当=时,△OHM∽△CAO,即=,解方程﹣x2+x=x得x1=0(舍去),x2=,此时M点的坐标为(,),解方程﹣x2+x=﹣x得x1=0(舍去),x2=﹣,此时M点坐标为(,﹣);∵MN⊥OM,∴∠OMN=90°,∴∠MON=∠HOM,∴△OMH∽△ONM,∴当M点的坐标为(,﹣54)或(,)或(,﹣)时,以点O,M,N为顶点的三角形与(2)中的△AOC相似.8.如图,已知二次函数y=ax2+1(a≠0,a为实数)的图象过点A(﹣2,2),一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2).(1)求a值并写出二次函数表达式;(2)求b值;(3)设直线l与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,试证明:MB=MC;(4)在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说明理由.【解答】解:(1)∵二次函数y=ax2+1(a≠0,a为实数)的图象过点A(﹣2,2),∴2=4a+1,解得:a=,∴二次函数表达式为y=x2+1.(2)∵一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2),∴2=k×0+b,∴b=2.(3)证明:过点M作ME⊥y轴于点E,如图1所示.设点M的坐标为(x,x2+1),则MC=x2+1,∴ME=|x|,EB=|x2+1﹣2|=|x2﹣1|,∴MB=,=,=,=,=x2+1.∴MB=MC.(4)相切,理由如下:过点N作ND⊥x轴于D,取MN的中点为P,过点P作PF⊥x轴于点F,过点N 作NH⊥MC于点H,交PF于点Q,如图2所示.由(3)知NB=ND,∴MN=NB+MB=ND+MC.∵点P为MN的中点,PQ∥MH,∴PQ=MH.∵ND∥HC,NH∥DC,且四个角均为直角,∴四边形NDCH为矩形,∴QF=ND,∴PF=PQ+QF=MH+ND=(ND+MH+HC)=(ND+MC)=MN.∴以MN为直径的圆与x轴相切.9.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B 两点(B点在A点右侧)与y轴交于C点.(1)求抛物线的解折式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.【解答】解:(1)∵抛物线y=ax2+x+4的对称轴是直线x=3,∴﹣=3,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+4.当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).(2)当x=0时,y=﹣x2+x+4=4,∴点C的坐标为(0,4).设直线BC的解析式为y=kx+b(k≠0).将B(8,0)、C(0,4)代入y=kx+b,,解得:,∴直线BC的解析式为y=﹣x+4.假设存在,设点P的坐标为(x,﹣x2+x+4),过点P作PD∥y轴,交直线BC 于点D,则点D的坐标为(x,﹣x+4),如图所示.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴S=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.△PBC∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.∵0<x<8,∴存在点P,使△PBC的面积最大,最大面积是16.(3)设点M的坐标为(m,﹣m2+m+4),则点N的坐标为(m,﹣m+4),∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.。

2018中考数学专题复习 二次函数压轴题节选 ( PDF含答案)

2018中考数学专题复习   二次函数压轴题节选 ( PDF含答案)

二次函数综合题节选1.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c的对称轴为直线x=1,抛物线与x轴交于A、B两点(点A在点B的左侧),且AB=4,又P是抛物线上位于第一象限的点,直线AP与y轴交于点D,与对称轴交于点E,设点P的横坐标为t.(1)求点A的坐标和抛物线的表达式;(2)当AE:EP=1:2时,求点E的坐标;(3)记抛物线的顶点为M,与y轴的交点为C,当四边形CDEM是等腰梯形时,求t的值.【分析】(1)依据抛物线的对称性可得到A、B的坐标,利用抛物线的交点式可得到抛物线的解析式;(2)过点P作PF∥y轴,交x轴与点F,则△AEG∽△APF,从而可得到AF =6,然后可求得PF的长,从而可得到EG的长,故此可得到点E的坐标;(3)先证明∠ADO=∠CME,然后,再求得点C和点M的坐标,从而可得到tan∠ADO=1,于是可得到OD=AO=1,故此可得到AP的解析式,最后求得直线AP与抛物线的交点坐标即可.【解答】解:(1)∵AB=4,抛物线y=x2+bx+c的对称轴为直线x=1,∴点A到对称轴的距离为2,∴A(-1,0),B(3,0),∴y=(x+1)(x-3)整理得:y=x2-2x-3;(2)如下图所示:过点P作PF⊥x轴,垂足为F.∵EG∥PF,AE:EP=1:2,∴==.又∵AG=2,∴AF=6,∴F(5,0).当x=5时,y=12,∴EG=4,∴E(1,4).(3)∵CD∥EM,∴∠ADO=∠AEM.又∵四边形CDEM是等腰梯形,∴∠ADO=∠CME.∴∠ADO=∠CME.∵y=x2-2x-3,∴C(0,-3),M(1,-4)∴tan∠DAO=tan∠CME=1.∴OA=OD=1.∴直线AP的解析式为y=x+1.把y=x+1代入y=x2-2x-3得:x+1=x2-2x-3,解得:x=4或x=-1(舍去)∴点P的横坐标为4,即t=4.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,相似三角形的性质和判定、等腰梯形的性质、求得AF 的长是解答问题(2)的关键;求得AP的解析式是解答问题(3)的关键.2.抛物线y=ax2+bx+3(a≠0)经过点A(-1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【分析】(1)先求得点C(0,3)的坐标,然后设抛物线的解析式为y=a(x+1)(x-),最后,将点C的坐标代入求得a的值即可;(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.先求得AC的解析式,然后再求得BM的解析式,从而可求得点M的坐标,依据两点间的距离公式可求得MC=BM,最后,依据等腰直角三角形的性质可得到∠ACB的度数;(3)如图2所示:延长CD,交x轴与点E.依据题意可得到∠ECD>45°,然后依据相似三角形的性质可得到∠CAO=∠ECD,则CE=AE,设点E的坐标为(a,0),依据两点间的距离公式可得到(a+1)2=32+a2,从而可得到点E 的坐标,然后再求得CE的解析式,最后求得CE与抛物线的交点坐标即可.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x-).将C(0,3)代入得:-a=3,解得:a=-2,∴抛物线的解析式为y=-2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为-.设BM的解析式为y=-x+b,将点B的坐标代入得:-×+b=0,解得b =.∴BM的解析式为y=-x+.将y=3x+3与y=-x+联立解得:x=-,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=-.∴CF的解析式为y=-x+3.将y=-x+3与y=-2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=-x+3得:y=.∴D(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、两点间距离公式的应用、相似三角形的性质、等腰三角形的判定,依据相似三角形的性质、等腰三角形的判定定理得到CE=AE是解题的关键.3.如图1,抛物线y=ax2+bx-2与x轴交于点A(-1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).(1)求该抛物线的解析式;(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.【分析】(1)利用待定系数法即可解决问题;(2)因为△ADE的面积为定值,所以△APD的面积最大时,四边形EAPD面积的最大,过点P作PG⊥x轴交AD于点G,当PG的值最大时,△APD的面积最大,构建二次函数利用二次函数的性质即可解决问题;(3)分四种情形分别求解即可解决问题;【解答】解:(1)∵A(-1,0),B(4,0)在抛物线y=ax2+bx-2上,∴,解得,∴抛物线的解析式为y=x2-x-2.(2)过点P作PG⊥x轴交AD于点G,∵B(4,0),E(0,2),∴直线BE的解析式为y=-x+2,∵AD∥BE,设直线AD的解析式为y=-x+b,代入A(-1,0),可得b=-,∴直线AD的解析式为y=-x-,设G(m,-m-),则P(m,m2-m-2),则PG=(-m-)-(m2-m-2)=-(m-1)2+2,∴当x=1时,PG的值最大,最大值为2,由,解得或,∴D(3,-2),∴S△ADP最大值=×PG×|x D-xA|=×2×4=4,S△ADB=×5×2=5,∵AD∥BE,∴S△ADE=S△ADB=5,∴S四边形APDE最大=S△ADP最大+S△ADB=4+5=9.(3)①如图3-1中,当OQ=OB时,作O T⊥BE于T.∵OB=E,OE=2,∴BE=2,O T===,∴B T=T Q=,∴BQ=,可得Q(-,);②如图3-2中,当BO=BQ1时,Q1(4-,),当OQ2=BQ2时,Q2(2,1),当BO=BQ3时,Q3(4+,-),综上所述,满足条件点点Q坐标为(-,)或(4-,)或(2,1)或(4+,-);【点评】本题考查二次函数综合题、四边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.4.已知:二次函数y=ax2+2ax-4(a≠0)的图象与x轴交于点A,B(A点在B点的左侧),与y轴交于点C,△ABC的面积为12.(1)求二次函数图象的对称轴与它的解析式;(2)点D在y轴上,当以A、O、D为顶点的三角形与△BOC相似时,求点D 的坐标;(3)点D的坐标为(-2,1),点P在二次函数图象上,∠ADP为锐角,且tan∠ADP=2,求点P的横坐标.【分析】(1)根据对称轴坐标公式可求二次函数图象的对称轴;当x=0时,y =-4,可求点C的坐标为(0,-4),根据三角形面积公式可求AB=6.进一步得到A点和B点的坐标分别为(-4,0),(2,0).待定系数法可求二次函数的解析式;(2)分两种情况:∠BOC=∠AOD=90°,①当△AOD∽△COB时,②当△AOD∽△BOC时,列比例式可得OD的长,确定点D的坐标;(3)根据tan∠ADP=2,分两种情况:①当点P在直线AD的下方时,延长DF与抛物线的交点就是P1,并确定P1的坐标;②当点P在直线AD的上方时,作辅助线,构建三角形全等和等腰三角形,最后运用两函数的交点确定P2的坐标.【解答】解:(1)该二次函数的对称轴是:直线x=-=-1;(1分)∵当x=0时,y=-4,∴C(0,-4),∴OC=4,连接AC,BC,∵S△ABC=AB•OC=12,AB=6,∵A、B关于直线x=-1对称,∴A(-4,0),B(2,0),把B(2,0)代入y=ax2+2ax-4中得:4a+4a-4=0,a=,∴二次函数的解析式为:y=x2+x-4;(2分)(2)如图1,∵∠BOC=∠AOD=90°,且OB=2,OC=OA=4,∴=,分两种情况:①当△AOD∽△COB时,=2,∴OD=2,即D1(0,2)或D2(0,-2);②当△AOD∽△BOC时,,∴OD=2OA=8,即D3(0,8)或D4(0,-8);综上所述,点D的坐标为(0,2)或(0,-2)或(0,8)或(0,-8);(6分)(3)如图2,过D作DF⊥x轴于F,分两种情况:①当点P在直线AD的下方时,由(1)得:A(-4,0),∵D(-2,1),∴AF=2,DF=1,在Rt△ADF中,∠AFD=90°,得tan∠ADF==2,延长DF交抛物线于P1,则P1就是所求,∴P1(-2,-4);(8分)②当点P在直线AD的上方时,延长P1A至点G,使得AG=AP1,连接DG,作GH⊥x轴于H,∴△GHA≌△P1FA,∴HA=AF,GH=P1F,∵A(-4,0),P1(-2,-4),∴G(-6,4),易得DG的解析式为:y=-x-,在△ADP1中,DA=,DP1=5,AP1=2,∴,∴∠DAP1=90°,∴DA⊥GP1,∴DG=DP1,∴∠ADG=∠ADP1,∴tan∠ADG=tan∠ADP1=2,设DG与抛物线的交点为P2,则P2点为所求,设P2(x,+x-4),代入DG的解析式中,-x-=+x-4,解得x=,∵P2点在第二象限,∴P2点的横坐标为x=(舍正)(11分)综上,P点的横坐标为-2或.(12分)【点评】本题是二次函数综合题,涉及的知识点有:对称轴坐标公式,坐标轴上点的坐标特征,三角形相似的判定,待定系数法可求一次函数和二次函数的解析式,分类思想,三角函数.综合性较强,有一定的难度.5.如图,抛物线y=-x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D,连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与B,C两点重合),过点P作x轴的垂线交抛物线于点F,设点P的横坐标为m(0<m<3)(Ⅰ)当m为何值时,四边形PEDF为平行四边形;(Ⅱ)设△BCF的面积为S,求S的最大值.【分析】(I)对于抛物线解析式,令y=0求出x的值,确定出A与B坐标,令x =0求出y的值确定出C的坐标,根据B与C坐标,利用待定系数法确定出直线BC解析式,进而表示出E与P坐标,根据抛物线解析式确定出D与F坐标,表示出PF,利用平行四边形的判定方法确定出m的值即可;(II)先求出OB的长,三角形BCF面积等于铅直高度FP与水平宽度OB的积,列出S关于m的二次函数解析式,利用二次函数性质确定出S的最大值即可.【解答】解:(I)对于抛物线y=-x2+2x+3=-(x-1)2+4,∴顶点D(1,4)令x=0,得到y=3;令y=0,得到-x2+2x+3=0,即(x-3)(x+1)=0,解得:x=-1或x=3,则A(-1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;设直线BC的函数解析式为y=kx+b,把B(3,0),C(0,3)分别代入得:,解得:k=-1,b=3,∴直线BC的解析式为y=-x+3,当x=1时,y=-1+3=2,∴E(1,2),∴DE=4-2=2,∵PF⊥x轴,∴P(m,-m+3),F(m,-m2+2m+3),∴线段PF=-m2+2m+3-(-m+3)=-m2+3m,连接DF,由PF∥DE,得到当PF=DE时,四边形PEDF为平行四边形,由-m2+3m=2,得到m=2或m=1(不合题意,舍去),当m=2时,四边形PEDF为平行四边形;(II)∵B(3,0),∴OB=3,∴S=PF•OB=×3(-m2+3m)=-(m-)2+(0<m<3),则当m=时,S取得最大值为.【点评】此题属于二次函数综合题,涉及的知识有:抛物线与坐标轴的交点,二次函数的图象与性质,待定系数法确定一次函数解析式,坐标与图形性质,熟练掌握二次函数性质是解本题的关键.6.在直角坐标平面内,直线y=x+2分别与x轴、y轴交于点A、C.抛物线y=-+bx+c经过点A与点C,且与x轴的另一个交点为点B.点D在该抛物线上,且位于直线AC的上方.(1)求上述抛物线的表达式;(2)联结BC、BD,且BD交AC于点E,如果△ABE的面积与△ABC的面积之比为4:5,求∠DBA的余切值;(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D的坐标.【分析】(1)先利用一次函数解析式确定A(-4,0),C(0,2),然后利用待定系数法求抛物线解析式;(2)过点E作EH⊥AB于点H,如图1,先解方程--x+2=0得B(1,0),设E(x,x+2),再计算出△ABC的面积为5,则△ABE的面积为4,所以•(1+4)•(x+2)=4,解得x=-,则E(-,),然后利用余切的定义求解;(3)利用∠AOC=∠DFC=90°进行讨论:若∠DCF=∠ACO时,△DCF∽△ACO,如图2,过点D作DG⊥y轴于点G,过点C作CQ⊥DC交x轴于点Q,先证明QA=QC,设Q(m,0),解方程m+4=可确定Q(-,0),再证明Rt△DCG∽Rt△CQO,利用相似比得到=,设DG=4t,CG=3t,可表示出D(-4t,3t+2),然后把D(-4t,3t+2)代入抛物线解析式得到-8t2+6t+2=3t+2,解方程求出t即可得到此时D点坐标;当∠DCF=∠CAO时,△DCF∽△CAO,则CD∥AO,利用D点的纵坐标与C点的纵坐标相同可确定此时点D的纵坐标.【解答】解:(1)当y=0时,x+2=0,解得x=-4,则A(-4,0);当x=0时,y=x+2=2,则C(0,2),把A(-4,0),C(0,2)代入y=-+bx+c得,解得,∴抛物线的解析式为y=--x+2;(2)过点E作EH⊥AB于点H,如图1,当y=0时,--x+2=0,解得x1=-4,x2=1,则B(1,0)设E(x,x+2),∵S△ABC=•(1+4)•2=5,而△ABE的面积与△ABC的面积之比为4:5,∴S△AEB=4,∴•(1+4)•(x+2)=4,解得x=-,∴E(-,),∴BH=1+=,在Rt△BHE中,cot∠EBH===,即∠DBA的余切值为;(3)∠AOC=∠DFC=90°,若∠DCF=∠ACO时,△DCF∽△ACO,如图2,过点D作DG⊥y轴于点G,过点C作CQ⊥DC交x轴于点Q,∵∠DCQ=∠AOC,∴∠DCF+∠ACQ=90°,即∠ACO+∠ACQ=90°,而∠ACO+∠CAO=90°,∴∠ACQ=∠CAO,∴QA=QC,设Q(m,0),则m+4=,解得m=-,∴Q(-,0),∵∠QCO+∠DCG=90°,∠QCO+∠CQO=90°,∴∠DCG=∠CQO,∴Rt△DCG∽Rt△CQO,∴=,即===,设DG=4t,CG=3t,则D(-4t,3t+2),把D(-4t,3t+2)代入y=--x+2得-8t2+6t+2=3t+2,整理得8t2-3t=0,解得t1=0(舍去),t2=,∴D(-,);当∠DCF=∠CAO时,△DCF∽△CAO,则CD∥AO,∴点D的纵坐标为2,把y=2代入y=--x+2得--x+2=2,解得x1=-3,x2=0(舍去),∴D(-3,2),综上所述,点D的坐标为(-,)或(-3,2).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定与性质;会利用待定系数法求函数解析式;灵活应用相似比表示线段之间的关系;理解坐标与图形的性质;会利用分类讨论的思想解决数学问题.7.如图,在平面直角坐标系中,抛物线y=x2+bx+c的图象与x轴交于点A(2,0)、B(-4,0),与y轴交于点D.(1)求抛物线的解析式;(2)连接BD,点P在抛物线的对称轴上,以Q为平面内一点,四边形PBQD 能否成为矩形?若能,请求出点P的坐标;若不能,请说明理由;(3)在抛物线上有一点M,过点M、A的直线MA交y轴于点C,连接BC,若∠MBO=∠BCO,请直接写出点M的坐标.【分析】(1)利用待定系数法即可解决问题;(2)分两种情形讨论求解即可解决问题,当BD为矩形的边时,当BD为矩形的对角线时;(3)设M(m,m2+m-4),可得直线AM的解析式为y=x-m-4,推出C(0,-m-4).①点M在第二象限显然不可能,当点M在第三象限时,如图2中,作MN⊥OB于N.利用相似三角形的性质,构建方程即可解决问题;用类似的方法求出点M在第一象限时的坐标即可;【解答】解:(1)由题意,解得,∴抛物线的解析式为y=x2+x-4.(2)如图1中,当BD为矩形的边时,∵直线BD的解析式为y=-x-4,∴直线BP的解析式为y=x=4,直线DP′的解析式为y=x-4,可得P(-1,3),P′(-1,-5).当BD为矩形的对角线时,设P(-1,m),BD的中点N(-2,-2),由BN =P″N,可得12+(m+2)2=(2)2,解得m=-2+或-2-,∴P″(-1,-2+),或(-1.-2-),综上所述,满足条件的P的坐标为(-1,3)或(-1,-5)或(-1,-2+)或(-1.-2-).(3)设M(m,m2+m-4),设直线AM的解析式为y=kx+b,则有,解得,∴直线AM的解析式为y=x-m-4,∴C(0,-m-4).①点M在第二象限显然不可能,当点M在第三象限时,如图2中,作MN⊥OB于N.∵∠MBN=∠BCO,∠MNB=∠BOC=90°,∴△MNB∽△BOC,∴=,∴=,∴m=-2或0.∴M(-2,-4)或(0,-4)②当点M在第一象限时,同法可得=,整理得:m2+2m-16=0,∴m=-1+或-1-(舍弃),∴M(-1+,4),③当点M在第三象限时,不存在,综上所述,满足条件的点M坐标(-2,-4)或(0,-4)或(-1+,4).【点评】本题考查二次函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.8.如图,二次函数y=x2+bx+c的图象经过A(-1,0)和B(3,0)两点,且交y轴于点C,M为抛物线的顶点.(1)求这个二次函数的表达式;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△BOC的内部(不包含边界),求m的取值范围;(3)点P是抛物线上一动点,PQ∥BC交x轴于点Q,当以点B,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标.【分析】(1)将点A和点B的坐标代入抛物线的解析式求得b、c的值即可;(2)先求得抛物线的顶点M的坐标,然后再求得点C的坐标,接下来,再求得直线CB的解析式,将x=1代入直线BC的解析式求得对应的y值为-2,由平移后的抛物线的顶点坐标在△△BOC的内部,可得到-2<-4+m<0,最后解不等组即可;(3)当点P在Q的上时,由平行四边形的性质可知点P的纵坐标为3,当点P 在点Q的下方时,由平行四边形的性质可知点P的纵坐标为-3,然后分别将y =3和y=-3代入抛物线的解析式求得对应的x的值即可.【解答】解:(1)将点A和点B的坐标代入得:,解得:b=-2,c=-3.∴抛物线的解析式为y=x2-2x-3.(2)∵y=x2-2x-3=(x-1)2-4,∴M(1,-4).把x=0代入抛物线的解析式得:y=-3,∴C(0,-3).设直线BC的解析式为y=kx+b,则,解得:k=1,b=-3.∴直线BC的解析式为y=x-3.把x=1代入y=x-3得:y=-2,∵平移后的抛物线的顶点坐标在△△BOC的内部,∴-2<-4+m<0,解得2<m<4.(3)当点P在Q的上时,由平行四边形的性质可知点P的纵坐标为3.把y=3代入抛物的解析式x2-2x-3=3,解得:x=1+或x=1-.∴点P的坐标为(1+,3)或(1-,3).当点P在点Q的下方时,由平行四边形的性质可知点P的纵坐标为-3.把y=-3代入抛物的解析式x2-2x-3=-3,解得:x=2或x=0(舍去)∴点P的坐标为(2,-3).综上所述,当点P的坐标为(1-,3)或(1+,3)或(2,-3)时,以点B,C,P,Q为顶点的四边形是平行四边形.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、平行四边形的性质,依据平移后的抛物线的顶点坐标在△△BOC的内部列出关于m的不等式是解答问题(2)的关键,依据平行四边形的性质求得P的纵坐标是解答问题(3)的关键.9.如图①,在平面直角坐标系中,抛物线y=x2-2mx+m2+m的顶点为A,与y轴交于点B.当抛物线不经过坐标原点时,分别作点A、B关于原点的对称点C、D,连结AB、BC、CD、DA.(1)分别用含有m的代数式表示点A、B的坐标.(2)判断点B能否落在y轴负半轴上,并说明理由.(3)连结AC,设l=AC+BD,求l与m之间的函数关系式.(4)过点A作y轴的垂线,交y轴于点P,以AP为边作正方形APMN,MN在AP上方,如图②,当正方形APMN与四边形ABCD重叠部分图形为四边形时,直接写出m的取值范围.【分析】(1)根据配方法,可得顶点坐标,根据自变量与函数值得对应关系,可得B点坐标,(2)根据B点的纵坐标小于零,可得不等式,根据解不等式,可得答案;(3)根据平行四边形的性质,可得答案;(4)根据正方形的边长小于BP,可得不等式,根据解不等式,可得答案.【解答】解:(1)配方,得y=(x-m)2+m,顶点A的坐标为(m,m)当x=0时,y=m2+m,B点坐标为(0,m2+m)(2)点B能落在y轴负半轴上,理由如下:由顶点坐标,得m<0,B点的纵坐标小于零,得m2+m=m(m+)<0,由m<0,得m+>0,得-<m<0,当-<m<0时,点B能落在y轴负半轴上;(3)OB=m2+m,OA=-m,l=AC+BD=2OB+2OA=2(m2+m)+2×(-m)即l=2m2-m;(4)由题意,得AP<BP,即-m<m2+m-m解得m(m+1)>0,由m<0,得m<-1,当m<-1时,AP<BP,正方形APMN与四边形ABCD重叠部分图形为四边形时,m的范围是m<-1.【点评】本题考查了二次函数综合题,解(1)的关键是配方法;解(2)的关键是解不等式;解(3)的关键是利用平行四边形的性质得出AC+BD=2OB+2O A;解(4)的关键是由四边形得出AP<BP.10.在平面直角坐标系xOy中,抛物线y=-x2+2mx-m2-m+1交y轴于点为A,顶点为D,对称轴与x轴交于点H.(1)求顶点D的坐标(用含m的代数式表示);(2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线y =-x2+2x的位置,求平移的方向和距离;(3)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,求m的值.【分析】(1)利用配方法将函数关系式变形为y=-(x-m)2-m+1,从而可得到点D的坐标;(2)将点(1,-2)代入抛物线的解析式可求得m的值,然后求得平移前后的抛物线的顶点坐标,从而可得到抛物线平移的方向和距离;(3)分为点A在y轴的正半轴上和负半轴上两种情况画出图形,然后过点A作AG⊥DH,垂足为G,由∠ADH=∠AHO可得到=,然后依据比例关系列出关于m的方程求解即可.【解答】解:(1)∵y=-x2+2mx-m2-m+1=-(x-m)2-m+1,∴顶点D(m,1-m).(2)∵抛物线y=-x2+2mx-m2-m+1过点(1,-2),∴-2=-1+2m-m2-m+1.整理得:m2-m-2=0.∴m=-1或m=2(舍去).∴抛物线的顶点是(-1,2).∵抛物线y=-x2+2x的顶点是(1,1),∴向右平移了2个单位,向下平移了1个单位.(3)∵顶点D在第二象限,∴m<0.当点A在y轴的正半轴上,如图(1)作AG⊥DH于点G,∵A(0,-m2-m+1),D(m,-m+1),∴H(m,0),G(m,-m2-m+1)∵∠ADH=∠AHO,∴tan∠ADH=tan∠AHO,∴=.∴=.整理得:m2+m=0.∴m=-1或m=0(舍).当点A在y轴的负半轴上,如图(2).作AG⊥DH于点G,∵A(0,-m2-m+1),D(m,-m+1),∴H(m,0),G(m,-m2-m+1)∵∠ADH=∠AHO,∴tan∠ADH=tan∠AHO,∴=.∴=.整理得:m2+m-2=0.∴m=-2或m=1(舍).综上所述,m的值为-1或-2.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的顶点坐标,平移与坐标变换、二次函数的性质,锐角三角函数的定义,依据锐角三角函数的定义列出关于m的方程是解题的关键.11.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由.【分析】(1)把点A、B的坐标代入二次函数解析式,利用待定系数法求二次函数解析式解答;(2)先求出点C的坐标,再利用待定系数法求出直线AC的解析式,然后判断出平行于AC的直线与二次函数图象只有一个交点时△ACP的面积最大,再联立直线与二次函数解析式,消掉y,利用根的判别式△=0时方程只有一个根求解即可;(3)设点E的横坐标为c,表示出BE、QE,然后根据相似三角形对应边成比例,分OA和BE,OA和QE是对应边两种情况列出比例式求解即可.【解答】解:(1)∵二次函数y=ax2+bx+2的图象与x轴交于A(-3,0),B (1,0)两点,∴,解得,∴二次函数的解析式为y=-x2-x+2;(2)令x=0,则y=2,∴点C(0,2),设直线AC的解析式为y=kx+m(k≠0),则,解得,∴直线AC的解析式为y=x+2,由三角形的面积可知,平行于AC的直线与二次函数图象只有一个交点时△ACP 的面积最大,此时设过点P的直线为y=x+n,联立,消掉y得,-x2-x+2=x+n,整理得,2x2+6x-6+3n=0,△=62-4×2×(-6+3n)=0,解得n=,此时x1=x2=-=-,y=×(-)+=,∴点P(-,)时,△ACP的面积最大;(3)存在点Q(-2,2)或(-,)使以点B、Q、E为顶点的三角形与△AOC相似.理由如下:设点E的横坐标为c,则点Q的坐标为(c,-c2-c+2),BE=1-c,①OA和BE是对应边时,∵△BEQ∽△AOC,∴=,即=,整理得,c2+c-2=0,解得c1=-2,c2=1(舍去),此时,-×(-2)2-×(-2)+2=2,点Q(-2,2);②OA和QE是对应边时,∵△QEB∽△AOC,∴=,即=,整理得,4c2-c-3=0,解得c1=-,c2=1(舍去),此时,-×(-)2-×(-)+2=,点Q(-,),综上所述,存在点Q(-2,2)或(-,)使以点B、Q、E为顶点的三角形与△AOC相似.【点评】本题考查了二次函数综合题型,主要利用了待定系数法求二次函数解析式,待定系数法求一次函数解析式,三角形的面积,相似三角形对应边成比例的性质,(2)判断出与AC平行的直线与二次函数图象只有一个交点时三角形的面积最大是解题的关键,(3)要分情况讨论.12.如图,抛物线y=x2+bx+c过点A(0,-6)、B(-2,0),与x轴的另一交点为点C.(1)求此抛物线的解析式;(2)将直线AC向下平移m个单位,使平移后的直线与抛物线有且只有一个公共点M,求m的值及点M的坐标;(3)抛物线上是否存在点P,使△PAC为直角三角形?若存在,请直接写出点P的坐标,若不存在,请说明理由.【分析】(1)利用待定系数法求二次函数的解析式;(2)由直线向下平移m个单位得:y=x-6-m,由直线与抛物线有且只有一个公共点M可知:由解析式列方程组根据△=0,可得结论;(3)分三种情况:①当∠PAC=90°时,如图1,由△EAC是等腰直角三角形,可得E(-6,0),直线AP与抛物线的交点就是P,列方程组可得P的坐标;②当∠ACP=90°时,如图2,由PE=EC,列式:x2-2x-6=-x-6,解出即可;③当APC=90°时,如图3,画圆,根据直径所对的圆周角是直角可知,有两个点符合,设出点P的坐标,然后表示出AC2、PA2、PC2的值,根据勾股定理可得到关于P点横、纵坐标的等量关系式,联立抛物线的解析式,即可求出此时点P的坐标.【解答】解:(1)把点A(0,-6)、B(-2,0)代入抛物线y=x2+bx+c 中得:,解得:,∴抛物线的解析式为:y=x2-2x-6;(2)y=x2-2x-6,当y=0时,x2-2x-6=0,解得:x1=-2,x2=6,∴C(6,0);设直线AC的解析式为:y=kx+b,则,解得:,∴直线AC的解析式为:y=x-6,直线AC向下平移m个单位后的直线关系式为:y=x-6-m,∵平移后的直线与抛物线有且只有一个公共点M,则,得:=0,△=(-3)2-4×m=0,m=,代入得:y=x-6-m=x-,则,解得:,∴M(3,-);(3)分三种情况:①当∠PAC=90°时,如图1,∵OA=OC=6,∠AOC=90°,∴△AOC是等腰直角三角形,∴∠ACO=45°,∴△EAC是等腰直角三角形,∴AE=AC,∴OE=OC=6,∴E(-6,0),设AE:y=kx+b,则,解得:,∴直线AE的解析式为:y=-x-6,则,-2x-6=-x-6,解得:x1=0(舍),x2=2,∴P(2,-8),②当∠ACP=90°时,如图2,∠PCB=90°-45°=45°,过P作PE⊥BC于E,∴△PEC是等腰直角三角形,∴PE=EC,设P(x,x2-2x-6),∴PE=x2-2x-6,EC=-x-6,∴x2-2x-6=-x-6,解得:x1=6,x2=-4,∵P在第二象限,∴x=6不符合题意,舍去,x=-4,∴P(-4,10),③以AC为直径画圆,交抛物线于两点P1、P2,如图3,则∠AP1C=∠AP2C=90°,∵=,=,AC2=62+62=72,由勾股定理得:+=72,化简得:x3-8x2+8x+24=0,x3-2x2-4x-(6x2-12x-24)=0,x(x2-2x-4)-6(x2-2x-4)=0,(x-6)(x2-2x-4)=0,解得:x1=6(舍),x2=1+,x3=1-,∴P(1+,-5-)或(1-,-5+),综上所述,△PAC为直角三角形时,点P的坐标为:(2,-8),(-4,10),(1+,-5-),(1-,-5+).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数的解析式;理解坐标与图形的性质,记住两点间的距离公式;要注意的是(3)题一定要根据不同的直角顶点分类讨论,以免漏解.13.在平面直角坐标系xOy中,对称轴为直线x=1的抛物线y=ax2+bx+8过点(-2,0).(1)求抛物线的表达式,并写出其顶点坐标;(2)现将此抛物线沿y轴方向平移若干个单位,所得抛物线的顶点为D,与y轴的交点为B,与x轴负半轴交于点A,过B作x轴的平行线交所得抛物线于点C,若AC∥BD,试求平移后所得抛物线的表达式.【分析】(1)利用待定系数法求抛物线的表达式,并求其顶点坐标;(2)令平移后抛物线为y=-(x-1)2+k,可得顶点D和B的坐标,证明△C T A∽△DHB,根据C T=AT,即,解方程可得结论.【解答】解:(1)由题意得:,-----------------(2分)解得:,-------------------------(3分)所以抛物线的表达式为y=-x2+2x+8,其顶点为(1,9).-----(5分)(2)令平移后抛物线为y=-(x-1)2+k,--------------(6分)易得顶点D(1,k),B(0,k-1),且k-1>0,由BC平行于x轴,知点C与点B关于对称轴x=1对称,得C(2,k-1).(7分)∴DH=k-(k-1)=1,BH=1,当y=0时,0=-(x-1)2+k,解得:x=1±,即.----(8分)作DH⊥BC于H,C T⊥x轴于T,则在△DBH中,HB=HD=1,∠DHB=90°,∴∠BHD=∠AT C=90°又AC∥BD,∴∠DBC=∠BCA=∠CAT∴△C TA∽△DHB,所以C T=AT,即,----------------(9分)解得k=4,所以平移后抛物线表达式为:y=-(x-1)2+4=-x2+2x+3.-----(10分)【点评】本题考查的是抛物线与x轴的交点、二次函数的平移变换及二次函数的性质,掌握待定系数法求函数解析式的一般步骤、二次函数的性质是解题的关键,第2问有难度.14.如图,在平面直角坐标系xOy中,直线y=kx(k≠0)沿着y轴向上平移3个单位长度后,与x轴交于点B(3,0),与y轴交于点C,抛物线y=x2+bx+c 过点B、C且与x轴的另一个交点为A.(1)求直线BC及该抛物线的表达式;(2)设该抛物线的顶点为D,求△DBC的面积;(3)如果点F在y轴上,且∠CDF=45°,求点F的坐标.【分析】(1)直线y=kx(k≠0)平移后的解析式为y=kx+3,将点B(3,0)代入可求得k的值,从而可得到直线BC的解析式;然后,求得C的坐标,将点B、C的坐标代入抛物线的解析式可求得b、c的值,从而可得到抛物线的解析式;(2)过点C作CE∥x轴,过点B作EF∥y轴,过点D作DF∥x轴.先求得点D的坐标,然后依据S△DBC=S四边形CEFG-S△CDG-S△BFD-S△BCE求解即可;(3)过点F作FG⊥CD,垂足为G.先求得CD的长,然后依据tan∠OCD=tan∠GCF=,可得到CD=3FG,从而可求得FG的长,然后依据勾股定理可求得CF的长,从而可求得点F的坐标.【解答】解:(1)将直线y=kx(k≠0)沿着y轴向上平移3个单位长度,所得直线的解析式为y=kx+3,将点B(3,0)代入得:3k+3=0,解得k=-1,∴直线BC的解析式为y=-x+3.令x=0得:y=3,∴C(0,3).将B(3,0),C(0,3)代入抛物线的解析式得:,解得:b=-4,c=3,∴抛物线的解析式为y=x2-4x+3.(2)如图1所示:过点C作CE∥x轴,过点B作EF∥y轴,过点D作DF∥x 轴.y=x2-4x+3=(x-2)2-1.∴D(2,-1).-S△CDG-S△BFD-S△BCE=12-×2×4-×1×1-×3×3=3.∴S△DBC=S四边形CEFG(3)如图2所示:过点F作FG⊥CD,垂足为G.∵C(0,3),D(2,-1),∴CD==2.∵tan∠OCD=tan∠GCF=,∴CG=2FG.又∵∠GCF=45°,∠FGD=90°,∴△FGD为等腰直角三角形,∴FG=GD.∴CD=3FG,∴FG=.∴CG=2FG=.∴在Rt△CFG中,依据勾股定理可知:CF=.∴OF=CF-OC=.∴F(0,-).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、等腰直角三角形的性质、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解答问题(2)的关键;得到FG与CD的数量关系是解答问题(3)的关键.15.如图,在平面直角坐标系xOy中,A、B、C三点分别为坐标轴上的三个点,且OA=1,OB=3,OC=4.(1)求经过A、B、C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由.(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM-AM|为最大值时点M的坐标,并直接写出|PM-AM|的最大值.【分析】(1)利用待定系数法求二次函数的解析式;(2)当BP=AC且BP∥AC时,四边形ACBP为菱形,根据BP=AC=5,且点P到x轴距离等于OB,则点P的坐标为(5,3),且当点P在第二、三象限时,以A、B、C、P为顶点的四边形只能是平行四边形,不是菱形;(3)求直线PA的解析式为:y=,当M与P、A两点不在同一直线上时,根据三角形三边关系的得|PM-AM|<PA.当点M与P、A两点在同一直线上时,得|PM-AM|=PA,则当点M与P、A两点在同一直线上时.|PM-AM|的值最大,此时点M为直线PA与抛物线的交点,列方程组解出即可.【解答】解:(1)∵OA=1,OB=3,OC=4.∴A(1,0),B(0,3),C(-4,0),设抛物线的解析式为:y=a(x-1)(x+4),把(0,3)代入得:3=-4a,a=-,∴y=-(x-1)(x+4),∴抛物线的解析式为:y=-x+3;(2)在平面直角坐标系xOy中存在一点P,使得A、B、C、P为顶点的四边形为菱形,理由:∵OB=3,OC=4,OA=1,∴BC=AC=5,。

2018中考专题复习:二次函数压轴题分类训练(1)最大最小问题(含答案)

2018中考专题复习:二次函数压轴题分类训练(1)最大最小问题(含答案)

2018中考专题复习:二次函数压轴题分类训练(1)最大最小问题(含答案) 1 / 16 中考压轴题专练(一)——二次函数综合 考点一:距离之和最小问题 1.如图,抛物线y=21x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0). ⑴求抛物线的解析式及顶点D的坐标; ⑵判断△ABC的形状,证明你的结论; ⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值. 解:(1)b =23 解析式y=21x2-23x-2. 顶点D (23, -825). (2)当x = 0时y = -2, ∴C(0,-2),OC = 2。 ∴B (4,0) ∴OA = 1, OB = 4, AB = 5. △ABC是直角三角形. (3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC + MD的值最小。 解法一:设抛物线的对称轴交x轴于点E. ∵ED∥y轴, ∴∠OC′M=∠EDM,∠C′OM=∠DEM ∴△C′OM∽△DEM.

∴EDCOEMOM ∴825223mm,∴m =4124.

解法二:设直线C′D的解析式为y = kx + n , 则825232nkn,解得n = 2, 1241k .∴21241xy .

∴当y = 0时, 021241x, 4124x . ∴4124m. 2018中考专题复习:二次函数压轴题分类训练(1)最大最小问题(含答案)

2 / 16 2.(2016河池第26题)在平面直角坐标系中,抛物线223yxx与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D. (1)请直接写出点A,C,D的坐标; (2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标; (3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.

重庆初2018届中学考试数学压轴题——二次函数专题(无问题详解)

重庆初2018届中学考试数学压轴题——二次函数专题(无问题详解)

二次函数专项 1.如图1,在平面直角坐标系中,抛物线3332312++-=x x y 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为点E.(1)判断△ABC 的形状,并说明理由;(2)经过B 、C 两点的直线交抛物线的对称轴于点D ,点P 为直线BC 上方抛物线上的一动点,当△PCD 的面积最大时,点Q 从点P 出发,先沿适当的路径运动到抛物线的对称轴上点M 处,再沿垂直于抛物线对称轴的方向运动到y 轴上的点N 处,最后沿适当的路径运动到点A 处停止.点Q 的运动路径最短时,求点N 的坐标及点Q 经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E 在射线AE 上移动,点E 平移后的对应点为点/E ,点A 的对应点为/A .将△AOC 绕点O 顺时针旋转至11OC A ∆的位置,点A 、C 的对应点分别为点11、C A ,且点1A ,恰好落在AC 上,连接/1/1、E C A C ./1/E C A ∆是否能为等腰三角形?若能,请求出所有符合条件的点/E 的坐标;若不能,请说明理由.2.如图,在平面直角坐标系xoy 中, 23391644y x x =-++抛物线,分别交x 轴 于A 与B 点,交y 轴交于C 点,顶点为D ,连接AD 。

(1) 如图1, P 是抛物线的对称轴上的一点,当AP AD ⊥时,求P 的坐标。

(2) 在(1)的条件下,在直线AP 上方、对称轴右侧的抛物线上找一点Q ,过Q 作 QH x ⊥轴,交直线AP 于H,过Q 作,QE PH QHPE 交对称轴于E 当周长最大时,在抛物线的对称轴上找一点M ,使QM AM-最大,并求这个最大值及此时M 点的坐标。

(3)2BD DAB D A B D A B A '''''''∠∠∠如图:连接,把沿x 轴平移到,在平移过程中把绕旋转, D A B D '''∠使的一边始终经过点,另一边交直线DB 于R,是否存在这样的R 点,使DRA '∆ 为等腰三角形,若存在,求出BR 的长;若不存在,说明理由。

2018长沙中考数学二次函数最值问题总结+(压轴)

2018长沙中考数学二次函数最值问题总结+(压轴)

(1)若直线 y = mx +1与抛物线 y = x2 − 2x + n 具有“一带一路”关系,求 m , n 的值;
(2)若某“路线” L 的顶点在反比例函数 y = 6 的ห้องสมุดไป่ตู้象上,它的“带线” l 的解析式为 x
y = 2x − 4 ,求此“路线” L 的解析式;
(3)当常数 k 满足 1 k 2 时,求抛物线 L: y = ax2 + (3k 2 − 2k + 1)x + k 的“带线”l 与 2
x 轴, y 轴所围成的三角形面积的取值范围.
解 (3)(方法一)由(2)的方法二可知 二次函数 y = ax2 + bx + c(abc 0) 的“带线”
l 的解析式为 y = b x + c , 2
设它与 x 轴的交点为点 M ,易求得点 M (− 2c , 0) ,点 P(0, c) b
所以“带线” l 与 x 轴, y 轴所围成的三角形 MOP 面积
令 t= ,p=2
=
∵- <t< 且 t≠-1 或 0
∴ <p< 且 p≠1

且 OP≠1
评注:这题其本质是考察 s = ax2 + bx + c 的最值问题。
补充:求函数 y = x + 1 − 2x 的最大值(中考没考)
令 t = 1− 2x ,( t 0 )则
y = −1t2 +t + 1
2
y
=
3(x2 + x +1) +1 x2 + x +1
=
3+
x2
1 +x
+1
=3+

2018简版二次函数压轴题之面积最值

2018简版二次函数压轴题之面积最值

xO A BC y BOy A Cx 一、知识点睛1. 坐标系中处理面积问题,通常有以下三种思路:①__________________(规则图形);②__________________(分割求和、补形作差); ③__________________(例:同底等高). 2. 处理方法举例①割补求面积(铅垂法):②转化求面积:1()2APB B A S PM x x =⋅⋅-△如图,满足S △ABP =S △ABC 的点P 都在直线l 1,l 2上.二、精讲精练之一次函数面积问题1. 如图,在平面直角坐标系xOy 中,已知A (-1,3),B (3,-2),则△AOB 的面积为___________.2. 如图,直线y =-x +4与x 轴、y 轴分别交于点A 、点B ,点P 的坐标为(-2,2),则S △PAB =___________.3. 如图,在平面直角坐标系xOy 中,已知A (2,4),B (6,6),C (8,2),求四边形OABC 的面积.4. 如图,直线112y x =-+与x 轴、y 轴分别交于A ,B 两点,点C 的坐标为(1,2),坐标轴上是否存在点P ,使S △ABP =S △ABC ?若存在,求出点P 的坐标;若不存在,请说明理由.二、精讲精练之二次函数面积问题二次函数背景下的面积问题,对于两定点一动点的斜三角形面积常利用铅垂法(从动点引竖直的线)分割来求,做题时需要注意自变量的取值范围。

1. 已知二次函数的图象与x 轴交于点A (-3,0)和点B (1,0),与y 轴交于点C (0,-6).如图,P 为第三象限内抛物线上的一个动点,设△APC 的面积为S ,则S 与点P 的横坐标之间的函数关系式及S 的最大值分别为( )hh l 1l 2ABCx B -x Ax B -x ABAMPPM ABxAy BOOBy APxY XE C A D Q B O 2. 已知抛物线经过三点,如图,若P 是第一象限内抛物线上的一个动点,则四边形ABPC 的最大面积为( )3. 如图,直线221-=x y 与x 轴、y 轴分别交于点A ,C ,过A ,C 两点的抛物线与x 轴交于另一点B (1,0).若D 为直线AC 上方的抛物线上一动点,则当点D 到直线AC 的距离DE 最大时,点D 的坐标为( )4. 如图,在平面直角坐标系xOy 中,点A ,B 分别在x 轴、y 轴的正半轴上,且OA=1,tan ∠BAO=3,将Rt △AOB 绕原点O 逆时针旋转90°,得到△DOC ,抛物线2y ax bx c =++经过A ,B ,C 三点.设抛物线上一点P 的横坐标为m ,连接PC ,PB .若452≤≤-m ,且存在△PBC ,则△PBC 的面积最大时m 的值为( )5. 已知:如图,抛物线)0(22≠+-=a c ax ax y 与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q 是线段AB上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018二次函数压轴题题型归纳一、二次函数常考点汇总1、两点间的距离公式:AB y A y B X A X B2、中点坐标:线段AB的中点C的坐标为:X B,匕尘22直线y k1x b1k1 0 )与y k2x b2 ( k2 0) 的位置关系:(1) 两直线平行k[ k?.且b[b2(2)两直线相交(3) 两直线重合k[ k?.且b[b2(4)两直线垂直k? 13、一元二次方程有整数根问题,解题步骤如下:①用和参数的其他要求确定参数的取值范围;②解方程,求出方程的根;(两种形式:分式、二次根式)③分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式例:关于x 的一元二次方程x2—2 m 1 x m2= 0有两个整数根,m v5且m为整数,求m的值。

4、二次函数与x轴的交点为整数点问题。

(方法同上)例:若抛物线y mx2 3m 1 x 3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式。

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。

举例如下:已知关于x的方程mx2 3(m 1)x 2m 3 0 (m为实数),求证:无论m为何值,方程总有一个固定的根。

解:当m 0时,x 1 ;2 3 m 1 i 小3当m 0 时,m3 0,x ,捲 2 、X2 1 ;2m m综上所述:无论m为何值,方程总有一个固定的根是1。

6函数过固定点问题,举例如下:已知抛物线y x2 mx m 2 (m是常数),求证:不论m为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。

解:把原解析式变形为关于m的方程y x2 2 m 1 x ;••• y X 2 0,解得:y 1;^抛物线总经过一个固定的点(1,—1)o1 x 0 x 1(题目要求等价于:关于m的方程y x2 2 m 1 x不论m为何值,方程恒成立)小结:关于x的方程ax b有无数解 a 0'' b 07、路径最值问题(待定的点所在的直线就是对称轴)(1) 如图,直线h、J,点A在12上,分别在l i、I2上确定两点M、N,使得AM MN之和最小。

(2) 如图,直线l i、I2相交,两个固定点A、B,分别在l i、I2上确定两点M、N,使得BM MN AN之和最小。

8、在平面直角坐标系中求面积的方法:直接用公式、割补法三角形的面积求解常用方法:如上图,S PAE=F2• PM •△ x=02 • AN •△ y9、函数的交点问题:二次函数(y= ax2+ bx+ c)与一次函数(1)解方程组尸ax2+ bx+c可求出两个图象交点的坐标。

y= kx+ h2(2)解方程组y=ax +bx+ c即ax2+ b—k x+ c—h = 0,通过可判断两个图象的交点的个数y= kx+ h有两个交点>0 仅有一个交点0 没有交点V010、方程法(1)设:设主动点的坐标或基本线段的长度(2)表示:用含同一未知数的式子表示其他相关的数量(3)列方程或关系式11、几何分析法特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图形几何要求几何分析涉及公式应用图形跟平行有关的图形平移l1// l2 k1=k2、k 上_y2x1 x2平行四边形矩形梯形跟直角有关的图形勾股定理逆定理利用相似、全等、平行、对顶角、互余、互补等( 2 2AB屮y A y X A X B直角三角形直角梯形矩形跟线段有关的图形利用几何中的全等、中垂线的性质等。

: 2 2AB V y A y B X A X B等腰三角形全等等腰梯形跟角有关的图形利用相似、全等、平行、对顶角、互余、互补等【例题精讲】基础构图:y=x 2 2x 3 (以下几种分类的函数解析式就是这个)★和最小,差最大1在对称轴上找一点P ,使得PB+PC 勺和最小,求出P 点坐标 2在对称轴上找一点P ,使得PB-PC 的差最大,求出P 点坐标★讨论直角三角 连接AC 在对称轴上找一点P,使得 ACP 为直角三角形, 求出P 坐标或者在抛物线上求点 卩,使厶ACP 是以AC 为直角边的直角三角形.rD.Lu LP,使得 ACP 为等腰三角形,求出P 坐标★讨论平行四边形 1、点E 在抛物线的对称轴上,点F 在抛物线上, 且以B , A , F , E 四点为顶点的四边形为平行四边形,求点 F 的坐标二综合题型例1(中考变式)如图,抛物线yx 2 bx c 与x 轴交与A(1,0),B(-3, 0)两点,顶点为D例2 考点: 关于面积最值如图,在平面直角坐标系中,点 A 、C 的坐标分别为(-1,0)、(0, - .3),点B 在x 轴上•已知某交丫轴于C(1) 求该抛物线的解析式与 △ ABC 的(2) 在抛物线第二象限图象上是否存在一点 在,求出点P 的坐标。

若没有,请说明理由M ,使△ MBC 是以/ BCM 为直角的直角三角形,若存 ⑶若E 为抛物线B 、C 两点间图象上的一个动点(不与A 、B 重合),过E 作EF 与X 轴垂直,交 BC 于F ,设E 点横坐标为的长度为L , 求L 关于X 的函数关系式关写出X 的取值范围 当E 点运动到什么位置时,线段 EF 的值最大,并求此时E 点的坐标(4) 在(5)的情况下直线BC 与抛物线的对称轴交于点 D 为顶点的四边形为平行四边形⑸在(5)的情况下点E 运动到什么位置时,使三角形H 0F 、H 、二次函数的图象经过A、B C三点,且它的对称轴为直线x= 1,点P为直线BC下方的二次函数图象上的一个动点(点P与B C不重合),过点P作y轴的平行线交BC于点F.(1) 求该二次函数的解析式;(2) 若设点P的横坐标为m,试用含m的代数式表示线段(3) 求A PBC面积的最大值,并求此时点P的坐标.考点:讨论等腰如图,已知抛物线y= -x2+ bx+ c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,2点C的坐标为(0,—1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DE丄x轴于点D,连结。

,当厶DCE的面积最大时, 点D的坐标;(3)在直线BC上是否存在一点说明理由.例4考点:讨论直角三角⑴ 如图,已知点A (一1, 0)和点B (1 , 2),在坐标轴上Z/A 01------- 8------------- Vr! I0),求确定点P,使得△ ABP为直角三角形,则满足这样条件的点P共有()⑵已知:如图一次函数戶*1的图象与x轴交于点A,与y轴交于点B;二次函数y=卜2+ bx+ c的图象与一次函数y= l x+ 1的图象交于B、C两点,与x轴交于D、E两点且D点坐标2为(1, 0)(1) 求二次函数的解析式;(2) 求四边形BDEC的面积S;(3) 在x轴上是否存在点P,使得△ PBC是以P为直角顶点的直角三角形若存在,求出所有的点例5考点:讨论四边形已知:如图所示,关于x的抛物线y= ax2+ x+ c (a^ 0)与x轴交于点A ( -2, 0),点B(6, 0),与y轴交于点C. (1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D,使四边形ABDC为等腰梯形,写出点D的坐标,求出直线AD的解析式;(3)在(2)中的直线AD交抛物线的对称轴于点M ,抛物线上有一动点P, x轴上有一动点Q.是否存在以A、M、P、Q为顶点的平行四边形如果存在,请直接写出点Q的坐标;如果不存在,综合练习:1、平面直角坐标系xOy中,抛物线y ax2 4ax 4a c与x轴交于点A、点B,与y轴的正半轴交于点C,点A的坐标为(1, 0), OB= OC,抛物线的顶点为D。

(1) 求此抛物线的解析式;⑵若此抛物线的对称轴上的点P满足/ APB=Z ACB求点P的坐标;(3) Q为线段BD上一点,点A关于/ AQB的平分线的对称点为A,若QA QB 2,求点Q的坐标和此时厶QAA的面积。

(A) 2 个(B)4个(C) 6个(D) 7个请说明理由.P,若不存在,请说明理由.2、在平面直角坐标系xOy 中,已知二次函数y ax 2 +2ax c 的图像与y 轴交于点C 0,3,与x 轴 交于A 、 B 两点,点B 的坐标为 3,0。

(1) 求二次函数的解析式及顶点 D 的坐标;(2) 点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1 : 2的两部分,求出此时点M 的坐标;(3) 点P 是第二象限内抛物线上的一动点,冋:点P 在何处时△ CPB 的面积取大取大面积是多少并求出此时点P 的坐标。

3、如图,在平面直角坐标系xOy 中,抛物线y — x 2 2x 与x 轴负半轴交于点A ,顶点为B ,且m对称轴与x 轴交于点C 。

(1) 求点B 的坐标(用含m 的代数式表示);(2) D 为OB 中点,直线AD 交y 轴于E ,若E (0, 2),求抛物线的解析式;(3) 在(2)的条件下,点M 在直线0B 上,且使得 AMC 的周长最小,P 在抛物线上,Q 在直 线BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点 P 的坐标\ \lT-\1 co \jr~ai\\/\4、已知关于x 的方程(1 m)x 2 (4 m)x 3 0。

(1) 若方程有两个不相等的实数根,求 m 的取值范围;(2)若正整数m满足8 2m 2,设二次函数y (1 m)x2(4 m)x 3的图象与x轴交于A B两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象;请你结合这个新的图象回答:当直线y kx 3与此图象恰好有三个公共点时,求出k 的值(只需要求出两个满足题意的k值即可)。

1:H6 4■■I-2•*■■-2••2 4 J-4■4■■5如图,抛物线y=af+2ax+c( a^0与y轴交于点C (0,4),与x轴交于点A (- 4, 0)和B.(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE// AC,交BC于点E,连接CQ•当△ CEQ的面积最大时,求点Q的坐标;(3)平行于x轴的动直线I与该抛物线交于点P,与直线AC交于点F,点D的坐标为(-2,0) •问是否有直线I,使△ ODF是等腰三角形若存在,请求出点F的坐标;若不存在,请说明理由.三、中考二次函数代数型综合题题型一、抛物线与x轴的两个交点分别位于某定点的两侧例1 •已知二次函数y=x 2+ (m—1)x+ m —2的图象与x轴相交于A (x i, 0), B (x2, 0)两点,且X iV X2.(1)若x i x2V 0,且m为正整数,求该二次函数的表达式;(2)若x i V 1,x2> 1,求m的取值范围;(3)是否存在实数m,使得过A、B两点的圆与y轴相切于点C (0, 2),若存在,求出m的值; 若不存在,请说明理由;1 MD 1(4)若过点D (0,亍)的直线与(1)中的二次函数图象相交于M、N两点,且"DN = 3,求该直线的表达式.题型二、抛物线与x轴两交点之间的距离问题例2已知二次函数y= x2+mx+m-5,(1)求证:不论m取何值时,抛物线总与x轴有两个交点;(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.题型三、抛物线方程的整数解问题例1.已知抛物线y x2 2(m 1)x m2 0与x轴的两个交点的横坐标均为整数,且m V5,则整数m的值为 ______________例2.已知二次函数y=x2—2mx+ 4m —8.(1)当x<2时,函数值y随x的增大而减小,求m的取值范围;(2)以抛物线y=x2—2mx+ 4m —8的顶点A为一个顶点作该抛物线的内接正AMN ( M , N两点在抛物线上),请问:△AMN的面积是与m无关的定值吗若是,请求出这个定值;若不是,请说明理由;(3)若抛物线y=x2—2mx+ 4m —8与x轴交点的横坐标均为整数,求整数m的值.题型四、抛物线与对称,包括:点与点关于原点对称、抛物线的对称性、数形结合例1 .已知抛物线y x2 bx c (其中b>0, C M0)与y轴的交点为A,点A关于抛物线对称轴的对称点为B(m,n),且AB=2.(1)求m,b的值(2) 如果抛物线的顶点位于x轴的下方,且BO= . 20。

相关文档
最新文档