二次函数压轴题题型总结(有答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数压轴题解题思路
一、基本知识
1会求解析式以及一些关键点的坐标(如函数图像与坐标轴的交点、两函数图像的交点等)。
2.会利用函数性质和图像
3.相关知识:如一次函数、反比例函数、点的坐标、方程。图形中的三角形、四边形、圆及平行线、垂直。一些方法:如相似、三角函数、解方程。一些转换:如轴对称、平移、旋转。
二、典型例题:
(一)、求解析式
可参考一下部分试题的第一问。
(二)、二次函数的相关应用
第一类:面积问题
例题. (2012•莱芜)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;(抛物线的解析式:y=(x﹣2)2﹣1=x2﹣4x+3.)
(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;
练习:1. (2014•兰州)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴
交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
第二类:.构造问题
(1)构造线段(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;
(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;
(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.
(2)构造相似三角形
(2013•莱芜)如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.
(3)构造平行四边形(2014•莱芜)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D 两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;
(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;
(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.
造等腰三角形(2013•泰安)如图,抛物线y=1
2
x2+bx+c与y轴交于点C(0,-4),
(4)构
与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式.
(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.
(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.
(5)构造直角三角形(2014•四川内江)如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
(6)构造角相等(2014•娄底)如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.(1)求抛物线的解析式;(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.
(7)构造菱形(2013•枣庄)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,
使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和
四边形ABPC的最大面积.
(8)构造对称点(11莱芜)如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形.若存在,求点P的坐标;若不存在,请说明理由.
A
O
B
y
x
(9)构造平行线:
(2014•山东烟台)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,△ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;
(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;
(3)延长BA交抛物线于点E,连接ED,试说明ED△AC的理由.
(10)构造垂直:(2014宜宾市)如图,已知抛物线y= x2+bx+c的顶点坐标为M(0,–1),与x轴交于A、B两点. (1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连结MC、MD,试判断MC、MD是否垂直,并说明理由.
(11)构造圆
(2014年淄博)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标
系内的一个动点.(1)使△APB=30°的点P有个;
(2)若点P在y轴上,且△APB=30°,求满足条件的点P的坐标;
(3)当点P在y轴上移动时,△APB是否有最大值?若有,求点P的坐标,并说明此
时△APB最大的理由;若没有,也请说明理由.
参考答案:
(一)、求解析式
(二)、二次函数的相关应用
第一类:面积问题
(2012•莱芜)解:(1)y=(x﹣2)2﹣1=x2﹣4x+3.
y
x
O
M
D
C
B
A
第24题图