等腰三角形练习题(含答案)

合集下载

等腰三角形练习题(含答案)

等腰三角形练习题(含答案)

等腰三角形练习题(含答案)等腰三角形第1课时:等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为80°。

2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=3cm。

3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为45°。

4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为80°。

5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数为100°。

6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF。

证明:DE=DF。

第2课时:等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为钝角三角形。

2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=5cm。

3.如图,在△ABC中,AD⊥BC于点D,且BD=DC,则△ABC为等腰三角形。

4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有2个等腰三角形。

5.如图,D是△XXX的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF。

证明:AB=AC。

6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G。

证明:△EFG是等腰三角形。

等边三角形第1课时:等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为60°。

2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B。

能判定△ABC为等边三角形的有条件①、②、③。

3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=2.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD的度数为75°。

等腰三角形的性质练习(含答案)

等腰三角形的性质练习(含答案)

等腰三角形的性质练习(含答案)等腰三角形的性质1.选择题:1) 等腰三角形的底角与相邻外角的关系是()A。

底角大于相邻外角 B。

底角小于相邻外角C。

底角大于或等于相邻外角 D。

底角小于或等于相邻外角2) 等腰三角形的一个内角等于100°,则另两个内角的度数分别为()A。

40°,40° B。

100°,20°C。

50°,50° D。

40°,40°或100°,20°3) 等腰三角形中的一个外角等于100°,则这个三角形的三个内角分别为()A。

50°,50°,80° B。

80°,80°,20°C。

100°,100°,20° D。

50°,50°,80°或80°,80°,20°4) 如果一个等腰三角形的一个底角比顶角大15°,那么顶角为()A。

45° B。

40° C。

55° D。

50°5) 等腰三角形一腰上的高与底边所成的角等于()A。

顶角 B。

顶角的一半C。

顶角的2倍 D。

底角的一半6) 已知:如图1所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为()A。

30° B。

45° C。

36° D。

72°2.填空题:1) 如图2所示,在△ABC中,①因为AB=AC,所以∠A=∠C;②因为AB=AC,∠1=∠2,所以BD=BC,BD⊥AC.2) 若等腰三角形的顶角与一个底角之和为110°,则顶角的度数为70°.3) 已知等腰三角形的一个角是80°,则顶角为20°.4) 在等腰三角形ABC中,一腰上的高是1cm,这条高与底边的夹角是45°,则△ABC的面积为1/2 cm².5) 如图3所示,O为△ABC内一点,且OA=OB=OC,∠ABO=20°,∠BCO=30°,则∠CAO=30°.3.等腰三角形两个内角的度数比为4:1,求其各个角的度数.设两个内角的度数为4x和x,则三角形的第三个角的度数为180°-5x.因为三角形内角和为180°,所以4x+4x+180°-5x=180°,解得x=36°,因此两个内角的度数分别为144°和36°,第三个角的度数为100°.4.如图,已知线段a和c,用圆规和直尺作等腰三角形ABC,使等腰三角形△ABC以a和c为两边,这样的三角形能作无数个.5.如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.连接AD和AC,因为AD=BD,AB=AC,所以△ABD≌△ACD,故∠ABD=∠ACD.又因为AB=CD,所以△ABC为等腰三角形,所以∠BAC=180°-∠ABC=180°-2∠ABD=80°.6.如图所示,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.1) AF与CD不垂直.因为∠ABC=∠AED,所以△ABC≌△AED,故AB=AE,又因为BC=ED,所以AC=AD,所以AF垂直于BC的中点,而CD的中点是F,所以AF与CD不垂直.二、拓展延伸训练右下图是人字型层架的设计图,由AB、AC、BC、AD四根钢条焊接而成,其中A、B、C、D均为焊接点,且AB=AC,D为BC的中点,现在焊接所需的四根钢条已截好,且已标出BC的中点D。

等腰三角形练习题及答案

等腰三角形练习题及答案

等腰三角形一、选择题1.如图1,已知OC 平分∠AOB ,CD ∥OB ,若OD=3cm ,则CD 等于( )A .3cmB .4cmC .D .2cmD C A 0(1) (3)2.△ABC 中AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有( )E D ABF(2)A .1个B .2个C .3个D .4个3.如图2,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;•③△ADE 的周长等于AB 与AC 的和;④BF=CF .其中正确的有( )ED C BHFA .①②③B .①②③④C .①②D .①4.如图3,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( )A .∠ACD=∠B B .CH=CE=EFC .CH=HD D .AC=AF 二、填空题5.△ABC 中,∠A=65°,∠B=50°,则AB :BC=_________.6.已知AD 是△ABC 的外角∠EAC 的平分线,要使AD•∥BC ,•则△ABC•的边一定满足________. 7.△ABC 中,∠C=∠B ,D 、E 分别是AB 、AC 上的点,•AE=•2cm ,•且DE•∥BC ,•则AD=________. 三、解答题9.如图,已知AB=AC ,E 、D 分别在AB 、AC 上,BD 与CE 交于点F ,•且∠ABD=•∠ACE , 求证:BF=CF .10.如图,△ABC 中BA=BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 交BC 于E ,• 求证:△DBE 是等腰三角形.ED CABF答案:1.A 2.C 3.A 4.C 5.1 6.AB=AC 7.2cm 9.连接BC ,∵AB=AC ,∴∠ABC=∠ACB ,又∵∠ABD=∠ACE ,∴∠FBC=∠FCB ,∴FB=FC 10.证明∠D=∠BED。

等腰三角形练习题(含答案)

等腰三角形练习题(含答案)

等腰三角形第1课时等腰三角形的性质1.已知等腰三角形的一个底角为50。

,则其顶角为________ ・2.如图,HABC中…13=∕C, BC=6cm, JD 平分ZBAC.则BD= _________________ c m.第3题图3.如图,'ABC中,-lδ=FC, D为EC中点,ZBAD=35。

,则ZC的度数为()A.35oB. 45。

C・ 55。

D・ 60o4.已知等腰三角形的一个内角为50。

,则这个等腰三角形的顶角为()A・ 50o B. 80oC. 50。

或80。

D・ 40。

或65。

5.如图,在Z∖J5C 中,D 是BC 边上一点,^AB=.-ID=DC, ZAW=40°,求ZC 的度数.6.如图,ΔJBCΦ, .IB=AC9 D 是EC 的中点,E, F分别是.1B. JC±的点,且AE=AF. 求证:DE=DF.1. 在 ∕∖ABC 中,ZJ=40% Z5 = 70o ,则 MBC 为()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形2. 已知ΔJPC 中,Z5=50% ZJ = 80c , -lδ=5cm.则 AC= _________________ ・3. 如图,在ΛABC 中,-Q 丄BC 于点Zh 请你再添加一个条件,使苴可以确定AlSC 为等腰三角形,则添加的条件是 ________ ・第3题图4. 如图,已知NlBC 中,ZJ = 36% AB=AC, BD 为ZABC 的平分线,则图中共有 _______________ 个等腰三角形.5. 如图,D 是ZXJ5C 的BC 边上的中点,DE 丄AC. DFLAB.垂足分别是E, F,且DE=DF 求证:AB=AC.6.如图,肋〃 CZ λ直线/交,松于点E,交CD 于点F, FG 平分ZEFD 交直线曲于点G 求证:ZLEFG 是等腰三角形.第4题图13・3.2等边三角形第1课时等边三角形的性质与判定1. ____________________________________________________________ 如图,a∕∕b.等边MBC的顶点D C在直线b上,则Zl的度数为_______________________第1题图第3题图2.在∕∖ABC中,ZJ=60°,现有下面三个条件:®ZB=ZC;③ZA=ZB.能判定Z∖J5C为等边三角形的有____________________________ .3・如图,在等边AABC中,BD丄AC于D∙若,松=4,则AD= ________________ ・4.如图,ΔJ J9C是等边三角形,ZCBD=90°. BD=BC.连接.10交BC于点求ZBAD 的度数.5・如图,E是等边AABC中JC边上的点,Z1 = Z2, BE=CD.求证: (I)ZUEE 竺ZUS⑵AADE为等边三角形.第2课时含30。

等腰三角形专项练习30题(有答案)OK

等腰三角形专项练习30题(有答案)OK

等腰三角形专项练习30题1.已知,如图,△ABC中,AB=AC,DE是AB的中垂线,点D在AB上,点E在AC上,若△ABC的周长为25cm,△EBC的周长为16cm,则AC的长度为()A.16cm B.9cm C.8cm D.7cm2.在△ABC中,∠ABC=120°,若DE、FG分别垂直平分AB、BC,那么∠EBF为()A.75°B.60°C.45°D.30°3.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2 B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°4.如图,已知∠AOB=40°,点P关于OA、OB的对称点分别为C、D,CD交OA、OB于M、N两点,则∠MPN的度数是()A.70°B.80°C.90°D.100°5.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与线段AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是()A.45°B.50°C.55°D.60°6.如图所示,△ABC为正三角形,P是BC上的一点,PM⊥AB,PN⊥AC,设四边形AMPN,△ABC的周长分别为m、n,则有()A.B.C.D.7.如图所示,AB=AD,∠ABC=∠ADC=90°,则①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正确的结论有()A.①②B.①②③C.①②③④D.②③8.下列说法正确的是()A.两个能重合的图形一定关于某条直线对称B.若两个图形关于某直线对称,则它们的对应点一定位于对称轴的两侧C.到角两边距离相等的点在这个角的平分线上D.如果三角形一边的垂直平分线经过它的一个顶点,那么这个三角形一定是等腰三角形9.用一根长为a米的线围成一个等边三角形,测知这个等边三角形的面积为b平方米.现在这个等边三角形内任取一点P,则点P到等边三角形三边距离之和为()米.A.B.C.D.10.在等腰直角△ABC(AB=AC≠BC)所在的三角形边上有一点P,使得△PAB,△PAC都是等腰三角形,则满足此条件的点有()A.1个B.3个C.6个D.7个11.如图所示,在△ABC中,AB=AC,腰AB的垂直平分线交另一腰AC于点D,BD+CD=10cm,则AB的长为_________.12.如图,若等腰△ABC的腰长AB=10cm,AB的垂直平分线交另一腰AC于D,△BCD的周长为16cm,则底边BC是_________cm.13.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是_________.14.如图所示,将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上,则图中等腰三角形有_________个.15.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=8,BC=5,则BD的长为_________.16.等腰△ABC的底边上高AD与底角平分线CE交于点P,EF⊥AD,F为垂足,则线段EB与线段EF的数量关系为_________.17.如图,在等腰在△ABC中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若在△BCE的周长为50,则底边BC的长为_________.18.等腰△ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分成15和6两部分,则这个三角形的腰长为_________.19.如图,已知D为等边三角形纸片ABC的边AB上的点,过点D作DG∥BC交AC于点G,DE⊥BC于点E,过点G作GF⊥BC于点F.把三角形纸片ABC分别沿DG,DE,GF按图示方式折叠,则图中阴影部分是_________三角形.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):_________.21.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.22.如图所示,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过点D作DE∥BC交AB于点E,过点D作DF⊥AB于点F,说明:BC=DE+EF成立的理由.23.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.24.已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.25.如图,∠1=∠2,AB=AD,∠B=∠D=90°,请判断△AEC的形状,并说明理由.26.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD;②求证:CF=CH;③判断△CFH的形状并说明理由.27.如图:△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1,求AD的长.28.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF.29.如图,在△ABC中,已知AB=BC=CA,AE=CD,AD与BE交于点P,BQ⊥AD于点Q,求证:BP=2PQ.30.如图,△ABE和△BCD都是等边三角形,且每个角是60°,那么线段AD与EC有何数量关系?请说明理由.参考答案:1.解:∵DE是AB的垂直平分线,∴AE=BE,∵△ABC的周长为25cm,△EBC的周长为16cm,AC=AB,∴2AC+BC=25cm,BE+CE+BC=AE+EC+BC=AC+BC=16cm,即,解得:AC=9cm,故选B2.解:∵DE、FG分别垂直平分AB、BC,∴AE=BE,BF=CF,∴∠A=∠ABE,∠C=∠CBF,∵∠A+∠C+∠ABC=180°,∠ABC=120°,∴∠A+∠C=60°,∴∠ABE+∠CBF=60°,∴∠EBF=120°﹣60°=60°,故选B3.解:∵AB=BC,∴∠1=∠BCA,∵AB=AD,∴∠B=∠2,∵∠1+∠B+∠ACB=180°,∴2∠1+∠2=180°.故选B4.解:∵P关于OA、OB的对称∴OA垂直平分PC,OB垂直平分PD∴CM=PM,PN=DN∴∠PMN=2∠C,∠PNM=2∠D,∵∠PRM=∠PTN=90°,∴在四边形OTPR中,∴∠CPD+∠O=180°,∴∠CPD=180°﹣40°=140°∴∠C+∠D=40°∴∠MPN=180°﹣40°×2=100°故选D.5.解:如图,延长AO交BC于点M,连接BO,∵等腰△ABC中,AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°﹣50°)÷2=65°,∵AO是∠BAC的平分线,∴∠BAO=25°,又∵OD是AB的中垂线,∴∠OBA=∠OAB=25°,∴∠OBM=∠OCM=60°﹣25°=40°,∴∠BOM=∠COM=90°﹣40°=50°,由折叠性可知,∠OCM=∠COE,∴∠MOE=∠COM﹣∠COE=50°﹣40°=10°,∴∠OEM=90°﹣10°=80°,∵由折叠性可知,∠OEF=∠CEF,∴∠CEF=(180°﹣80°)÷2=50°.故选:B6.解:设BM=x,CN=y则BP=2x,PC=2y,PM=x,PN=yAM+AN=2BC﹣(BM+CN)=3(x+y),故==≈0.7887.故选D7.解:在Rt△ABC和Rt△ADC中,AB=AD,AC=AC,所以Rt△ABC≌Rt△ADC(HL).所以∠ACB=∠ACD,∠BAC=∠DAC,即AC平分∠BAD,CA平分∠BCD.故①②正确;在△ABD中,AB=AD,∠BAO=∠DAO,所以BO=DO,AO⊥BD,即AC垂直平分BD.故③正确;不能推出∠ABO=∠CBO,故④不正确.故选B8.解:A、两个能重合的图形不一定关于某条直线对称,故错误;B、两个图形关于某条直线对称,它们的对应点有可能位于对称轴上,故错误;C、同一平面内,到角的两边距离相等的点在角的平分线上,故错误;D,正确,故选D9.解:等边三角形周长为a,则边长为,设P到等边三角形的三边分别为x、y、z,则等边三角形的面积为b=××(x+y+z)解得x+y+z=,故选C10.解:∵△ABC是等腰直角三角形,(AB=AC≠BC)所在的三角形边上有一点P,使得△PAB,△PAC都是等腰三角形,∴有一个满足条件的点﹣斜边中点,∴符合条件的点有1个.故选A.11.解:∵ED是边AB边上的中垂线,∴AD=BD;又∵BD+CD=10cm,AB=AC,∴BD+CD=AD+DC=AC=AB=10cm,即AB=10cm.故答案是:10cm12.解:∵DE是线段AB的垂直平分线,∴AD=BD,∴BD+CD=AC,∵AB=AC=10cm,BD+CD+BC=AB+BC=16cm,∴BC=16﹣AB=16﹣10=6cm.故答案为:6cm13.解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:2014.解:∵将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上.∴EF∥DG,∠E=∠D=60°,∴∠ENM=∠D=60°,∠MGD=∠E=60°,∴EM=NM=EN,DM=GM=DG,∴△MEN,△MDG是等边三角形.∵∠A=∠B=30°,∴MA=MB,∴△ABM是等腰三角形.∴图中等腰三角形有3个15.解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=8,BC=5,∴CE=5,∴AE=AC﹣EC=8﹣5=3,∴BE=3,∴BD=1.5.故选A.16.解:延长EF交AC于点Q,∵EF⊥AD,AD⊥BC∴EQ∥BC∴∠QEC=∠ECB∵CE平分∠ACB∴∠ECB=QCE∴∠QEC=∠QCE∴QE=QC∵QE∥BC,且△ABC为等腰三角形∴△AQE为等腰三角形∴AQ=AE,QE=2EF∴BE=CQ=2EF.故答案为:BE=2EF.17.解:∵DE垂直且平分AB,∴BE=AE.由BE+CE=AC=AB=27,∴BC=50﹣27=2318.解:设AB=AC=2X,BC=Y,则AD=CD=X,∵AC上的中线BD将这个三角形的周长分成15和6两部分,∴有两种情况:1、当3X=15,且X+Y=6,解得,X=5,Y=1,∴三边长分别为10,10,1;2、当X+Y=15且3X=6时,解得,X=2,Y=13,此时腰为4,根据三角形三边关系,任意两边之和大于第三边,而4+4=8<13,故这种情况不存在.∴腰长只能是10.故答案为1019.解:∵三角形ABC为等边三角形,∴∠A=∠B=∠C=60°,∵根据题意知道点B和点C经过折叠后分别落在了点I和点H处,∴∠DIH=∠B=60°,∠GHI=∠C=60°,∴∠HJI=60°,∴∠DIH=∠GHI=∠HJI=60°,∴阴影部分是等边三角形,故答案为:等边.20.答:由①③条件可判定△ABC是等腰三角形.证明:∵∠EBO=∠DCO,∠EOB=∠DOC,(对顶角相等)BE=CD,∴△EBO≌△DCO,∴OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形21.解:延长AC到E,使CE=BM,连接DE,(如图)∵BD=DC,∠BDC=120°,∴∠CBD=∠BCD=30°,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACD=∠DCE=90°,∴△BMD≌△CDE,∴∠BDM=∠CDE,DM=DE,又∵∠MDN=60°,∴∠BDM+∠NDC=60°,∴∠EDC+∠NDC=∠NDE=60°=∠NDM,又∵DN=DN,∴△MDN≌△EDN(SAS),∴MN=NE=NC+CE=NC+BM,所以△AMN周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2.22.解:∵BD平分∠ABC,DF⊥AB,∠C是直角,∴CD=DF,∠DBC=∠DBE,∠DFB=∠C,∴△BCD≌△BFD,∴BC=BF,∵DE∥BC,∴∠DBC=∠EDB,即∠DBC=∠DBE,∴△BDE是等腰三角形,∴BE=DE,∴BF=BC=DE+EF23.(1)证明:在等腰直角三角形ABC中,∵∠ACB=90°,∴∠CBA=∠CAB=45°.又∵DE⊥AB,∴∠DEB=90°.∴∠BDE=45°.又∵BF∥AC,∴∠CBF=90°.∴∠BFD=45°=∠BDE.∴BF=DB.又∵D为BC的中点,∴CD=DB.即BF=CD.在△CBF和△ACD中,,∴△CBF≌△ACD(SAS).∴∠BCF=∠CAD.又∵∠BCF+∠GCA=90°,∴∠CAD+∠GCA=90°.即AD⊥CF.(2)△ACF是等腰三角形,理由为:连接AF,如图所示,由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线,∴BE垂直平分DF,∴AF=AD,∵CF=AD,∴CF=AF,∴△ACF是等腰三角形.24.解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠BAP=∠CAQ=30°.∴∠BAC=120°.故∠BAC的度数是120°25.解:△AEC是等腰三角形.理由如下:∵∠1=∠2,∴∠1+∠3=∠2+∠3,即∠BAC=∠DAE,又∵AB=AD,∠B=∠D,∴△ABC≌△ADE(ASA),∴AC=AE.即△AEC是等腰三角形26.①证明:∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS);②∵△BCE≌△ACD,∴∠CBF=∠CAH.∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH,在△BCF和△ACH中,,∴△BCF≌△ACH(ASA),∴CF=CH;③∵CF=CH,∠ACH=60°,∴△CFH是等边三角形27.解:∵△ABC为等边三角形,∴AB=CA,∠BAE=∠ACD=60°;又∵AE=CD,在△ABE和△CAD中,∴△ABE≌△CAD;∴BE=AD,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,则∠PBQ=90°﹣60°=30°;∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6;又∵PE=1,∴AD=BE=BP+PE=728.(1)证明:在等腰△ABC中,∵CH是底边上的高线,∴∠ACH=∠BCH,在△ACP和△BCP中,,∴△ACP≌△BCP(SAS),∴∠CAE=∠CBF(全等三角形对应角相等);(2)在△AEC和△BFC中,∴△AEC≌△BFC(ASA),∴AE=BF(全等三角形对应边相等).29.证明:∵AB=BC=CA,∴△ABC为等边三角形,∴∠BAC=∠C=60°,在△ABE和△CAD中∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,∵∠BPQ=∠ABE+∠BAP,∴∠BPQ=∠CAD+∠BAP=∠CAB=60°,∵BQ⊥AD∴∠BQP=90°,∴∠PBQ=30°,∴BP=2PQ.30.解:AD=EC.证明如下:∵△ABC和△BCD都是等边三角形,每个角是60°∴AB=EB,DB=BC,∠ABE=∠DBC=60°,∴∠ABE+∠EBC=∠DBC+∠EBC即∠ABD=∠EBC在△ABD和△EBC中∴△ABD≌△EBC(SAS)∴AD=EC。

中考数学复习 《等腰三角形》练习题含答案

中考数学复习 《等腰三角形》练习题含答案

中考数学复习等腰三角形一、选择题1.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( C )A.5B.6C.8D.10【解析】∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∴BD=AB2-AD2=4,∴BC=2BD=8,故选C.,第1题图),第2题图) 2.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于( A ) A.20°B.25°C.28°D.30°3.如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是( D ) A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°,第3题图),第4题图) 4.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( B )A.40°B.36°C.80°D.25°5.如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是( C )A.6 B.3 C.2.5 D.2【解析】如图,以BC 为边作等腰直角三角形△EBC ,延长BE 交AD 于F ,得△ABF 是等腰直角三角形,作EG ⊥CD 于G ,得△EGC 是等腰直角三角形,在矩形ABCD 中剪去△ABF ,△BCE ,△ECG 得到四边形EFDG ,此时剩余部分的面积最小,最小值为4×6-12×4×4-12×3×6-12×3×3=2.5,故选C. 二、填空题6.等腰三角形两边长分别为3和7,则这个等腰三角形的周长为__17__.【解析】腰只能为7,故周长为7+7+3=17.7.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,EF =BF ,则∠E FC 的度数是__45°__.,第7题图) ,第8题图)8.如图,在△ABC 中,AB =AC ,BD =12BC ,等边△BEF 的顶点F 在BC 上,边EF 交AD 于点P ,若BE =10,BC =14,则PE 的长为__4__.9.如图钢架中,焊上等长的13根钢条来加固钢架.若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是__12°__.【解析】设∠A =x ,∵AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,∴∠A =∠AP 2P 1=∠AP 13P 14=x ,∴∠P 2P 1P 3=∠P 13P 14P 12=2x ,∴∠P 3P 2P 4=∠P 12P 13P 11=3x ,……,∠P 7P 6P 8=∠P 8P 9P 7=7x ,∴∠AP 7P 8=7x ,∠AP 8P 7=7x .在△AP 7P 8中,∠A +∠AP 7P 8+∠AP 8P 7=180°,即x +7x +7x =180°,解得x =12°.10.如图,在Rt △ABC 中,∠C =90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E .若BC =3,则DE 的长为__1__.【解析】∵DE 垂直平分AB ,∴DA =DB ,∴∠B =∠DAB ,∵AD 平分∠CAB ,∴∠CAD =∠DAB ,∵∠C =90°,∴3∠CAD =90°,∴∠CAD =30°,∵AD 平分∠CAB ,DE ⊥AB ,CD ⊥AC ,∴CD =DE =12BD ,∵BC =3,∴CD =DE =1. 三、解答题11.如图,在△ABC 中,AB ,AC 的垂直平分线分别交BC 于E ,F 两点,∠B +∠C =60°.(1)求∠EAF 的度数;(2)若BC =13,求△AEF 的周长.解:(1)∵DE 是AB 的垂直平分线,∴AE =BE ,∴∠DAE =∠B.∵GF 是AC 的垂直平分线,∴AF =CF ,∴∠CAF =∠C.∵∠B +∠C =60°,∴∠BAE +∠CAF =60°.∵∠BAC =120°,∴∠EAF =∠BAC -(∠BAE +∠CAF )=60°(2)由(1)知AE =BE ,AF =FC.∴C △AEF =AE +AF +EF =BE +EF +FC =BC =1312.如图,已知△ABC 为等腰直角三角形,∠BAC =90°,BE 是∠ABC 的平分线,DE ⊥BC ,垂足为D .(1)写出图中所有的等腰三角形,不需证明;(2)请你判断AD 与BE 是否垂直,并说明理由;(3)如果BC =12,求AB +AE 的长.解:(1)△ABD ,△EAD ,△CDE ,△ABC(2)AD ⊥BE.理由:∵∠BAE =∠BDE ,∠ABE =∠DBE ,BE =BE ,∴△ABE ≌△DBE (AAS ),∴AB =BD ,又∠ABE =∠DBE, AD ⊥BE(3)∵∠C =∠DEC =45°,∴CD =DE ,∴AE =DE =DC ,∴AB +AE =BD +DC =BC =1214.有一面积为53的等腰三角形,它的一个内角是30°,求以它的腰长为边的正方形的面积. 解:如图1中,当∠A =30°,AB =AC 时,设AB =AC =a ,作BD ⊥AC 于D ,∵∠A=30°,∴BD =12AB =12a ,∴12·a·12a =53,∴a 2=203,∴以△ABC 的腰长为边的正方形的面积为20 3.如图2中,当∠ABC =30°,AB =AC 时,作BD ⊥CA 交CA 的延长线于D ,设AB =AC =a ,∵AB =AC ,∴∠ABC =∠C =30°,∴∠BAC =120°,∠BAD =60°,在Rt △ABD 中,∵∠D =90°,∠BAD =60°,∴BD =32a ,∴12·a·32a =53,∴a 2=20,∴以△ABC 的腰长为边的正方形的面积为2014.如图,△ABC 是边长为6的等边三角形,P 是AC 边上一动点,由A 向C 运动(与A ,C 不重合),Q 是CB 延长线上一点,由B 向CB 延长线方向运动(Q 不与B 重合),连结PQ 交AB 于D .若两点同时出发,以相同的速度每秒1个单位运动,运动时间为t .(1)当∠PQC =30°时,求t 的值;(2)过P 作PE ⊥AB 于E ,过Q 作QF ⊥AB ,交AB 的延长线于F ,请找出图中在运动过程中的一对全等三角形,并加以证明;(3)在(2)的条件下,当P ,Q 在运动过程中线段ED 的长是否发生变化?如果不变,求出线段ED 的长;如果变化,请说明理由.解:(1)t=2(2)△APE≌△BQF或△EPD≌△FQD,证明略(3)ED的长度不变,ED=3。

等腰三角形经典试题综合训练(含解析)

等腰三角形经典试题综合训练(含解析)

等腰三角形经典试题综合训练(含解析)一.选择题(共18小题)1.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm2.等腰三角形腰长为5,则其底边长a的取值范围为()A.0<a≤5 B.5≤a≤10 C.0<a<10 D.0<a<53.等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°4.等腰三角形一腰上的高于另一腰的夹角为50°,那么这个三角形的顶角为()A.40°B.100°C.140°D.40°或140°5.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形是轴对称图形.A.1个B.2个C.3个D.4个6.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°7.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE8.如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC 于M、N,则△AMN的周长为()A.12 B.4 C.8 D.不确定9.如图,在△ABC中,AB=AC,AD平分∠BAC,交BC于点D,DE⊥AB于点E,DF⊥AC于点F,对于下列结论:①AD⊥BC;②AE=AF;③AD上任意一点到AB,AC的距离相等;④AD上任意一点到点B,点C 的距离相等.其中正确结论的个数是()A.1 B.2 C.3 D.410.如图,在△ABC中,AB=AC,D、E、F分别在三边上,且BE=CD,BD=CF,G为EF的中点,则∠DGE 的度数是()A.45°B.60°C.90°D.120°11.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有()A.1个B.2个C.3个D.4个12.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.2个B.3个C.4个D.无数个13.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°14.如图,在△ABC中,AB=AC=8,点D在BC上,DE∥AB,DF∥AC,则四边形AFDE的周长是()A.24 B.18 C.16 D.1215.如图,△ABC中,∠ABC=63°,点D,E分别是△ABC的边BC,AC上的点,且AB=AD=DE=EC,则∠C 的度数是()A.21°B.19°C.18°D.17°16.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n﹣1A n B n﹣1(n>2)的度数为()A.B.C.D.17.如图钢架中,∠A=10°,焊上等长的钢条来加固钢架,若P1A=P1P2,则这样的钢条至多需要()A.5根B.6根C.7根D.8根18.如图,已知△ABC是等腰三角形,AC=BC=5,AB=8,D为底边AB上的一个动点(不与A、B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,则DE+DF的值为()A.3 B.4 C.D.二.填空题(共8小题)19.如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A=度.20.如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=度.21.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b 的代数式表示△ABC的周长为.22.如图,在△ABC中,AB=AC,D为BC上一点,且AB=BD,AD=DC,则∠C=度.23.如图,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED=°.24.如图所示,三角形ABC的面积为1cm2.AP垂直∠B的平分线BP于点P.则三角形PBC的面积是.25.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm 每秒的速度运动,设运动时间为t秒,当t为时,△ACP是等腰三角形.26.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N 构成等腰三角形的点P恰好有三个,则x的值是.三.解答题(共9小题)27.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=42°,求∠BED的度数.28.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.求证:OE=OF.29.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.(1)求证:∠CBE=∠BAD;(2)当△ABC满足什么条件时,AE=CE.直接写出条件.30.文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下:文文:“过点A作BC的中垂线AD,垂足为D”;彬彬:“作△ABC的角平分线AD”.数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”(1)请你简要说明文文的辅助线作法错在哪里;(2)根据彬彬的辅助线作法,完成证明过程.31.如图,△ABC中,AB=AC,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:DF=EF.32.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.33.如图1,△ABC中,AB=AC,∠A=36°,我们发现这个三角形有一种特性,即经过它某一顶点的一条射线可把它分成两个小等腰三角形.为此,请你解答问题;如图2,△ABC中,AB=AC,∠A=108°,请你在图中画一条射线(不必写画法),把它分成两个小等腰三角形,并写出底角的大小.34.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PE∥AB 交BC于点D,交AC于点F.(1)若点P在BC上(如图一),此时PD=0,可得结论:PD+PE+PF AB(填“>”“<”或“=”)(2)当点P在△ABC内(如图二)时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请直接写出你的猜想,不需要证明.35.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?等腰三角形综合训练参考答案与试题解析一.选择题(共18小题)1.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【分析】分为两种情况:2cm是等腰三角形的腰或2cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:若2cm为等腰三角形的腰长,则底边长为10﹣2﹣2=6(cm),2+2<6,不符合三角形的三边关系;若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选A.2.等腰三角形腰长为5,则其底边长a的取值范围为()A.0<a≤5 B.5≤a≤10 C.0<a<10 D.0<a<5【分析】由已知条件腰长是5,底边长为a,根据三角形三边关系列出不等式,通过解不等式即可得到答案.【解答】解:根据三边关系可知:5﹣5<a<5+5,即0<a<10.故选C.3.等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°【分析】因为题中没有指明该角是顶角还是底角,则应该分两种情况进行分析.【解答】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选C.4.等腰三角形一腰上的高于另一腰的夹角为50°,那么这个三角形的顶角为()A.40°B.100°C.140°D.40°或140°【分析】分三角形是锐角三角形时,利用直角三角形两锐角互余求解;三角形是钝角三角形时,利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图1,三角形是锐角三角时,∵∠ACD=50°,∴顶角∠A=90°﹣50°=40°;如图2,三角形是钝角时,∵∠ACD=50°,∴顶角∠BAC=50°+90°=140°,综上所述,顶角等于40°或140°.故答案为:40°或140°.5.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形是轴对称图形.A.1个B.2个C.3个D.4个【分析】认真阅读每一问题给出的已知条件,根据等腰三角形的概念、性质判断正误.【解答】解:①等腰三角形的两腰相等,正确;②等腰三角形的两底角相等,正确;③等腰三角形底边上的中线与底边上的高相等,正确;④等腰三角形是轴对称图形,对称轴就是底边上的高所在的直线,正确.故选D.6.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°【分析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故选B.7.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选C.8.如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC 于M、N,则△AMN的周长为()A.12 B.4 C.8 D.不确定【分析】根据角平分线的定义可得∠ABE=∠CBE,∠ACE=∠BCE,再根据两直线平行,内错角相等可得∠CBE=∠BEM,∠BCE=∠CEN,然后求出∠ABE=∠BEM,∠ACE=∠CEN,根据等角对等边可得BM=ME,CN=NE,然后求出△AMN的周长=AB+AC.【解答】解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN∥BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=4+4=8.故选C.9.如图,在△ABC中,AB=AC,AD平分∠BAC,交BC于点D,DE⊥AB于点E,DF⊥AC于点F,对于下列结论:①AD⊥BC;②AE=AF;③AD上任意一点到AB,AC的距离相等;④AD上任意一点到点B,点C 的距离相等.其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】首先根据角平分线的性质可得AD上任意一点到AB,AC的距离相等,根据等腰三角形的性质得到AD⊥BC,根据全等三角形的性质得到AE=AF,根据线段垂直平分线的性质得到AD上任意一点到点B,点C的距离相等.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,AD上任意一点到AB,AC的距离相等,故①③正确;∵DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△ADE与Rt△AFD中,∴Rt△ADE≌Rt△AFD,∴AE=AF;故②正确;∵AB=AC,AD平分∠BAC,∴AD垂直平分BD,∴AD上任意一点到点B,点C的距离相等,故④正确;故选D.10.如图,在△ABC中,AB=AC,D、E、F分别在三边上,且BE=CD,BD=CF,G为EF的中点,则∠DGE 的度数是()A.45°B.60°C.90°D.120°【分析】首先连接DE,DF,由AB=AC,可得∠B=∠C,又由BE=CD,BD=CF,利用SAS可判定△BDE≌△CFD,即可得DE=DF,然后由三线合一的性质,证得DG⊥EF,继而求得答案.【解答】解:连接DE,DF,∵AB=AC,∴∠B=∠C,在△BDE和△CFD中,,∴△BDE≌△CFD(SAS),∴DE=DF,∵G为EF的中点,∴DG⊥EF,即∠DGE=90°.故选C.11.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有()A.1个B.2个C.3个D.4个【分析】根据△OAB为等腰三角形,分三种情况讨论:①当OB=AB时,②当OA=AB时,③当OA=OB时,分别求得符合的点B,即可得解.【解答】解:要使△OAB为等腰三角形分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个;②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个;③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个,1+1+2=4,故选:D.12.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.2个B.3个C.4个D.无数个【分析】如图在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要证明△PEM≌△PON即可推出△PMN是等边三角形,由此即可对称结论.【解答】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON.∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个,故选D13.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.14.如图,在△ABC中,AB=AC=8,点D在BC上,DE∥AB,DF∥AC,则四边形AFDE的周长是()A.24 B.18 C.16 D.12【分析】因为AB=AC,所以△ABC为等腰三角形,由DE∥AB,可证△CDE为等腰三角形,同理△BDF也为等腰三角形,根据腰长相等,将线段长转化,求周长.【解答】解:∵AB=AC=15,∴∠B=∠C,由DF∥AC,得∠FDB=∠C=∠B,∴FD=FB,同理,得DE=EC.∴四边形AFDE的周长=AF+AE+FD+DE=AF+FB+AE+EC=AB+AC=8+8=16.故四边形AFDE的周长是16.故选C.15.如图,△ABC中,∠ABC=63°,点D,E分别是△ABC的边BC,AC上的点,且AB=AD=DE=EC,则∠C 的度数是()A.21°B.19°C.18°D.17°【分析】设∠C=x.由DE=EC,根据等边对等角得出∠C=∠EDC=x,根据三角形外角的性质得出∠AED=∠C+∠EDC=2x.同理表示出∠ADB=∠ABC=3x,则3x=63°,求出x即可.【解答】解:设∠C=x.∵DE=EC,∴∠C=∠EDC=x,∴∠AED=∠C+∠EDC=2x.∵AD=DE,∴∠AED=∠DAE=2x,∴∠ADB=∠DAE+∠C=3x.∵AB=AD,∴∠ADB=∠ABC=3x,∴3x=63°,∴x=21°.故选A.16.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n﹣1A n B n﹣1(n>2)的度数为()A.B.C.D.【分析】根据三角形外角的性质及等腰三角形的性质分别求出∠B1A2A1,∠B2A3A2及∠B3A4A3的度数,找出规律即可得出∠A n﹣1A n B n﹣1的度数.【解答】解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1==35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3=×17.5°=,∴∠A n﹣1A n B n﹣1=.故选:C.17.如图钢架中,∠A=10°,焊上等长的钢条来加固钢架,若P1A=P1P2,则这样的钢条至多需要()A.5根B.6根C.7根D.8根【分析】由于焊上的钢条长度相等,并且AP1=P1P2,所以∠A=∠P1P2A,则可算出∠P2P1P3的度数,并且和∠P1P3P2度数相等,根据平角的度数为180度和三角形内角和为180度,结合等腰三角形底角度数不大于90度即可求出最多能焊上的钢条数.【解答】解:如图:∵∠A=∠P1P2A=10°,∴∠P2P1P3=20°,∠P1P3P2=20°,∴∠P1P2P3=140°,∴∠P3P2P4=30°∴∠P3P4P2=30°∴∠P2P3P4=120°∴∠P4P3P5=40°∴∠P3P5P4=40°∴∠P3P4P5=100°∴∠P5P4P6=50°∴∠P4P6P5=50°∴∠P4P5P6=80°∴∠P6P5P7=60°,∴∠P6P7P5=60°,∴∠P5P6P7=60°,∴∠P8P6P7=70°,∴∠P6P8P7=70°,∴∠P6P7P8=40°,∴∠P8P7P9=80°,∴∠P7P9P8=80°,∴∠P9P8P7=20°,∴∠P9P8C=90°,此时就不能在往上焊接了,综上所述总共可焊上8条.故选D.18.如图,已知△ABC是等腰三角形,AC=BC=5,AB=8,D为底边AB上的一个动点(不与A、B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,则DE+DF的值为()A.3 B.4 C.D.【分析】连接AD,过点C作CE⊥AB于点E,根据勾股定理求出CE的长,再由三角形的面积公式即可得出结论.【解答】解:连接AD,过点C作CE⊥AB于点E,∵AC=BC=5,AB=8,∴AE=4,∴CE==3,∴S△ABC=AB•CE=×8×3=12.∵DE⊥AC,DF⊥BC,∴S△ABC=S△ACD+S△BDC=AC•DE+BC•DF=×5×(DE+DF)=12,∴DE+DF=.二.填空题(共8小题)19.如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A=75度.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵OA=OB,∠AOB=30°,∴∠A=(180°﹣30°)=75°,故答案为:75.20.如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=55度.【分析】首先求出∠C的度数,再根据等腰三角形的性质求出∠A,从而利用四边形内角和定理求出∠EDF.【解答】解:∵∠AFD=145°,∴∠CFD=35°又∵FD⊥BC于D,DE⊥AB于E ∴∠C=180°﹣(∠CFD+∠FDC)=55°∵AB=AC ∴∠B=∠C=55°,∴∠A=70°根据四边形内角和为360°可得:∠EDF=360°﹣(∠AED+∠AFD+∠A)=55°∴∠EDF为55°.故填55.21.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b 的代数式表示△ABC的周长为2a+3b.【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长;【解答】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是线段AC的垂直平分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB﹣∠ECA=36°,∴∠BEC=180°﹣∠ABC﹣∠ECB=72°,∴CE=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b 故答案为:2a+3b.22.如图,在△ABC中,AB=AC,D为BC上一点,且AB=BD,AD=DC,则∠C=36度.【分析】根据已知题目中所给的等量关系,用一个角分别表示出其他的角,利用三角形内角和等于180°,便可得出∠C的度数.【解答】解:由题意知,在△ABC中,AB=AC,所以∠B=∠C,又AB=BD,AD=DC,所以∠C=∠DAC,∠BAD=∠BDA=2∠C,由三角形内角和为180°可得,∠C+∠C+3∠C=180°,得∠C=36°.故填36.23.如图,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED=80°.【分析】先利用SSS证明△ABD≌△EBD,再根据全等三角形对应角相等即可求出∠BED.【解答】解:在△ABD与△EBD中,,∴△ABD≌△EBD,∴∠BED=∠A=80°.故答案为80.24.如图所示,三角形ABC的面积为1cm2.AP垂直∠B的平分线BP于点P.则三角形PBC的面积是cm2.【分析】过点P作PE⊥BP,垂足为P,交BC于点E,由角平分线的定义可知∠ABP=∠EBP,结合BP=BP 以及∠APB=∠EPB=90°即可证出△ABP≌△EBP(ASA),进而可得出AP=EP,根据三角形的面积即可得出S=S EPC,再根据S△PBC=S△BPE+S EPC=S△ABC即可得出结论.△APC【解答】解:过点P作PE⊥BP,垂足为P,交BC于点E,如图所示.∵AP垂直∠B的平分线BP于点P,∴∠ABP=∠EBP.在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=EP.∵△APC和△EPC等底同高,∴S△APC=S EPC,∴S△PBC=S△BPE+S EPC=S△ABC=cm2.故答案为:cm2.25.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm 每秒的速度运动,设运动时间为t秒,当t为3或6或6.5或5.4时,△ACP是等腰三角形.【分析】由于没有说明哪一条边是腰,故需要分情况讨论.【解答】解:∵AC=6,BC=8,∴由勾股定理可知:AB=10,当点P在CB上运动时,由于∠ACP=90°,∴只能有AC=CP,如图1,∴CP=6,∴t==3,当点P在AB上运动时,①AC=AP时,如图2,∴AP=6,PB=AB﹣CP=10﹣6=4,∴t==6,②当AP=CP时,如图3,此时点P在线段AC的垂直平分线上,过点P作PD⊥AC于点D,∴CD=AC=3,PD是△ACB的中位线,∴PD=BC=4,∴由勾股定理可知:AP=5,∴PB=5,∴t==6.5;③AC=PC时,如图4,过点C作CF⊥AB于点F,∴cos∠A==,∴AF=3.6,∴AP=2AF=7.2,∴PB=10﹣7.2=2.8,∴t==5.4;综上所述,当t为3或6或6.5或5.4时,△ACP是等腰三角形.故答案为:3或6或6.5或5.4.26.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N 构成等腰三角形的点P恰好有三个,则x的值是x=0或x=4﹣4或4<x<4.【分析】分三种情况讨论:先确定特殊位置时成立的x值,①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;③如图3,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.【解答】解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4,当M与D重合时,即x=OM﹣DM=4﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4﹣4或4.故答案为:x=0或x=4﹣4或4.三.解答题(共9小题)27.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=42°,求∠BED的度数.【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行同旁内角互补,可求得∠DEA的度数,再由三角形外角和为360°求得∠BED度数.【解答】解:∵BE⊥AE∴∠AEB=90°∵AE平分∠BAC∴∠CAE=∠BAE=42°又∵ED∥AC∴∠AED=180°﹣∠CAE=180°﹣42°=138°∴∠BED=360°﹣∠AEB﹣∠AED=132°28.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.求证:OE=OF.【分析】根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.【解答】证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF.29.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.(1)求证:∠CBE=∠BAD;(2)当△ABC满足什么条件时,AE=CE.直接写出条件.【分析】(1)根据三角形三线合一的性质可得∠CAD=∠BAD,根据同角的余角相等可得:∠CBE=∠CAD,再根据等量关系得到∠CBE=∠BAD.(2)根据等边三角形的性质即可求解.【解答】(1)证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.(2)当△ABC满足是等边三角形的条件时,AE=CE.30.文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下:文文:“过点A作BC的中垂线AD,垂足为D”;彬彬:“作△ABC的角平分线AD”.数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”(1)请你简要说明文文的辅助线作法错在哪里;(2)根据彬彬的辅助线作法,完成证明过程.【分析】(1)线段BC的中垂线可以直接作出的,不需要附带“过点A作”;(2)根据已知条件利用AAS可证△ABD≌△ACD,得出AB=AC.【解答】(1)解:作辅助线不能同时满足两个条件;(2)证明:作△ABC的角平分线AD.∴∠BAD=∠CAD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(AAS).∴AB=AC.31.如图,△ABC中,AB=AC,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:DF=EF.【分析】首先过点D作DM∥AC交BC于M,易证得△DMF≌△ECF,继而证得DF=EF.【解答】证明:过点D作DM∥AC交BC于M,∴∠DMB=∠ACB,∠FDM=∠E,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DMB,∴BD=MD,∵BD=CE,∴MD=CE,在△DMF和△ECF中,,∴△DMF≌△ECF(AAS),∴DF=EF.32.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=25°;点D从B向C运动时,∠BDA逐渐变小(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.【分析】(1)根据三角形内角和定理,将已知数值代入即可求出∠BAD,根据点D的运动方向可判定∠BDA的变化情况.(2)假设△ABD≌△DCE,利用全等三角形的对应边相等得出AB=DC=2,即可求得答案.(3)假设△ADE是等腰三角形,分为三种情况:①当AD=AE时,∠ADE=∠AED=40°,根据∠AED>∠C,得出此时不符合;②当DA=DE时,求出∠DAE=∠DEA=70°,求出∠BAC,根据三角形的内角和定理求出∠BAD,根据三角形的内角和定理求出∠BDA即可;③当EA=ED时,求出∠DAC,求出∠BAD,根据三角形的内角和定理求出∠ADB.【解答】解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2)当△ABD≌△DCE时.DC=AB,∵AB=2,∴DC=2,∴当DC等于2时,△ABD≌△DCE;(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.33.如图1,△ABC中,AB=AC,∠A=36°,我们发现这个三角形有一种特性,即经过它某一顶点的一条射线可把它分成两个小等腰三角形.为此,请你解答问题;如图2,△ABC中,AB=AC,∠A=108°,请你在图中画一条射线(不必写画法),把它分成两个小等腰三角形,并写出底角的大小.【分析】先根据AB=AC,∠A=108°,求得∠C=36°,再过点A作∠DAC=36°,则△ACD和△ABD均为等腰三角形.【解答】解:如图2所示,由AB=AC,∠A=108°,可知∠C=36°,过点A在∠BAC内部作射线AD,使得∠DAC=36°,则△ABD中,∠BAD=72°,∠ADB=72°,△ACD中,∠DAC=∠C=36°,故△ACD和△ABD均为等腰三角形,故射线AD即为所求.34.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PE∥AB 交BC于点D,交AC于点F.(1)若点P在BC上(如图一),此时PD=0,可得结论:PD+PE+PF=AB(填“>”“<”或“=”)(2)当点P在△ABC内(如图二)时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请直接写出你的猜想,不需要证明.【分析】(1)先求出四边形PFAE是平行四边形,根据平行四边形对边相等可得PF=AE,再根据两直线平行,同位角相等可得∠BPE=∠C,然后求出∠B=∠BPE,利用等角对等边求出PE=BE,然后求解即可;(2)根据平行四边形的判定得出四边形AEPF为平行四边形,根据平行四边形的性质,平行线的性质即可得证.【解答】解:(1)答:PD+PE+PF=AB.证明如下:∵点P在BC上,∴PD=0,∵PE∥AC,PF∥AB,∴四边形PFAE是平行四边形,∴PF=AE,∵PE∥AC,∴∠BPE=∠C,∴∠B=∠BPE,∴PE=BE,∴PE+PF=BE+AE=AB,∵PD=0,∴PD+PE+PF=AB;(2)当点P在△ABC内时,结论PD+PE+PF=AB仍然成立.证明:∵PE∥AC,PF∥AB,∴四边形AEPF为平行四边形,∴PE∥AF ∵PF∥AB,∴∠FDC=∠B,又∵AB=AC,∴∠B=∠C,∴∠FDC=∠C,∴DF=CF,∴DF+PE=CF+AF,即DF+PE=AC,又∵DF=PD+PF,AC=AB,∴PD+PF+PE=AB,即上述结论成立.35.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?【分析】(1)当点D在BC的中点时,DE=DF,根据AAS证△BED≌△CFD,根据全等三角形的性质推出即可;(2)连接AD,根据三角形ABC的面积=三角形ABD的面积+三角形ACD的面积,进行分析证明;(3)类似(2)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC的面积=三角形ABD的面积﹣三角形ACD的面积.【解答】解:(1)当点D在BC的中点时,DE=DF,理由如下:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(3)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.。

初中数学:等腰三角形测试题(含答案)

初中数学:等腰三角形测试题(含答案)

初中数学:等腰三角形测试题(含答案)时间40分钟总分100分一、选择题(每题5分)1、若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为()A、75°或15°B、30°或60°C、75°D、30°【答案】A【解析】试题分析:分等腰三角形的顶角是锐角和钝角两种情况求解.解:当等腰三角形的顶角是锐角时,如图所示,∵BD=12 AB,∴∠A=30°,∴∠ABC=∠C=75°;当等腰三角形的顶角是钝角时,如图所示,∵BD=12 AB,∴∠BAD=30°,∴∠BAC=150°,∴∠ABC=∠C=15°.故应选A.考点:等腰三角形的性质.2、等腰三角形的底边为7cm,一边上的中线把其周长分为两部分的差为3cm,则腰长为()A.20cm B.10cm C.10cm或4cm D.4cm 【答案】C【解析】试题分析:解:等腰三角形底边上的中线把等腰三角形分成的两部分的长度相等,∴把等腰三角形的周长分成差为3cm的两部分的中线是腰上的中线,设等腰三角形的腰长是2xcm,则被分成的两部分的长度分别是3xcm和(7+x)cm,当3x-(7+x)=3时,解得:x=5,则2x=10,∴等腰三角形的腰长为5cm;当(7+x)-3x=3时,解得:x=2,则2x=4,∴等腰三角形的腰长是4cm或10cm.故应选C考点:等腰三角形的性质.3、如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A. 2 B. 3 C. 4 D. 5【答案】C【解析】试题分析:根据等腰三角形的定义分情况讨论.解:如下图所示,当OA为等腰三角形的底边时,点P是线段OA的垂直平分线与x轴的交点;当AP为等腰三角形的底边时,符合条件的点P有2个;当OP为等腰三角形的底边时,符合条件的点P有1个.符合条件的点共有4个.故应选C考点:等腰三角形的定义.4、如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于点O,给出四个条件:①OB=OC;②∠EBO=∠DCO;③∠BEO=∠CDO;④BE=CD.上述四个条件中,选择两个可以判定△ABC是等腰三角形的方法有()A.2种B.3种C.4种D.6种【答案】C【解析】试题分析:利用等腰三角形的定义和判定定理进行判断.解:可以证明△ABC是等腰三角形的方法有:①②①③②④③④,所以共有4种,故应选C.考点:等腰三角形的判定5、下列说法中:(1)顶角相等,并且有一腰相等的两个等腰三角形全等;(2)底边相等,且周长相等的两个等腰三角形全等;(3)腰长相等,且有一角是50°的两个等腰三角形全等;(4)两条直角边对应相等的两个直角三角形全等;错误的有()A.1个B. 2个C.3个D.4个【答案】A【解析】试题分析:根据等腰三角形的性质和全等三角形的判定定理进行判断.解:(1)顶角相等,并且有一腰相等的两个等腰三角形,根据SAS可证全等,故(1)正确;(2) 底边相等,且周长相等的两个等腰三角形,根据SSS可证全等,故(2)正确;(3)腰长相等,且有一角是50°的两个等腰三角形,50°角可能是等腰三角形的顶角也可能是等腰三角形的底角,所以这两个等腰三角形不一定全等,故(3)错误;(4) 两条直角边对应相等的两个直角三角形,根据SAS可证全等,故(4)正确.所以错误的有1个.故应选A.考点:1.等腰三角形的性质;2.全等三角形的判定6、已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③【答案】A【解析】试题分析:根据三角形各内角的度数进行划分.解:如下图所示,所以①③④都可以.故应选A.考点:等腰三角形的判定二、填空题(每题6分)7、若一个等腰三角形的周长是20cm,一边长是5cm,则另两边的长是__________。

等腰三角形经典练习题(5套)附带详细答案

等腰三角形经典练习题(5套)附带详细答案

练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50°B.65°C.70°D.75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数一、选择题1.B2.B3.C二、填空题4.底角,等边对等角5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各边中点,则图中共.有正三角形( )A.2个B.3个C.4个D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于( )A.2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗?试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题1.D2.B二、填空题3.2㎝4.120°5.等边6.6㎝三、解答题7.△ABC是等边三角形.理由是∵△ABC是等边三角形AQ CPB∴∠A =∠B =∠C=60° ∵DE ∥AC ,∴∠BED =∠A=60°,∠BDE =∠C =60° ∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余) ∴∠B= 90°-∠A= 90°-30°=60° ∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。

等腰三角形习题(含答案)

等腰三角形习题(含答案)

等腰三角形1. 选择题:等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为( )A. 2cmB. 8cmC. 2cm 或8cmD. 以上都不对 2. 如图,ABC ∆是等边三角形,BC BD 90CBD ==∠,,则1∠的度数是________。

CA 1DB2 33. ABC ∆中,120A AC AB =∠=,,AB 的中垂线交AB 于D ,交CA 延长线于E ,求证:BC 21DE =。

AE DO BC1 24. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。

求证:M 是BE 的中点。

A D 1B MC E5. 如图,已知:ABC ∆中,AC AB =,D 是BC 上一点,且CA DC DB AD ==,,求BAC ∠的度数。

AB C D6. 已知:如图,ABC ∆中,AB CD AC AB ⊥=,于D 。

求证:DCB 2BAC ∠=∠。

A 1 2D BCE 37、已知:如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E 、F 分别是垂足。

求证:AE =AF 。

AE FBDC8、如图,ABC ∆中,100=∠=A AC AB ,,BD 平分ABC ∠。

求证:BC BD AD =+。

AD1 B 2E FC等腰三角形答案:1. B2. 分析:结合三角形内角和定理,计算图形中角的度数是等边三角形性质的重要应用。

解:因为ABC ∆是等边三角形 所以60ABC BC AB =∠=,因为BC BD =,所以BD AB = 所以23∠=∠在ABD ∆中,因为 60ABC 90CBD =∠=∠, 所以 150ABD =∠,所以152=∠ 所以75ABC 21=∠+∠=∠3.分析:此题没有给出图形,那么依题意,应先画出图形。

题目中是求线段的倍半关系,观察图形,考虑取BC 的中点。

初中数学:等腰三角形练习(含答案)

初中数学:等腰三角形练习(含答案)

初中数学:等腰三角形练习(含答案)一、选择题1、等腰三角形一底角为50°,则顶角的度数为()A、65B、70C、80D、40【答案】C【解析】试题分析:根据三角形的内角和定理求解.解:等腰三角形的顶角度数=180°-50°-50°=80°.故应选C考点:等腰三角形的性质2、如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有()A. 5个B. 6个C.7个D.8个【答案】D【解析】试题分析:根据等腰三角形两底角相等和∠A=36°,求出∠ABC和∠ACB的度数,再根据角平分线的定义求出∠ABD、∠CBD、∠ACE、∠BCE的度数,利用三角形外角定理求出∠BOE、∠COD的度数,根据等角对等边进行判断.解:如下图所示,∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠C BD=∠ACE=∠BCE=∠A=36°,∴△ABD、△BCD、△ACE、△BCE、△OBC是等腰三角形;∴∠BEC=∠A+∠ACE=72°,∠BOE=∠BCE+∠CBD=72°,∴∠BEC=∠BOE,同理可得:∠CDO=∠COD,∴△BOE、△COD是等腰三角形;又△ABC是等腰三角形,∴共有8个等腰三角形.故应选D.考点:1.等腰三角形的性质;2.等腰三角形的判定3、下列条件中不能确定是等腰三角形的是()A.三条边都相等的三角形B.一条中线把面积分成相等的两部分的三角形C.有一个锐角是45°的直角三角形D.一个外角的平分线平行于三角形一边的三角形【答案】D【解析】试题分析:根据等腰三角形的定义和等腰三角形的判定定理进行判断.解:A选项、三条边都相等的三角形是特殊的等腰三角形,故A选项正确;B选项、三角形任何一条边上的中线都能把三角形分成面积相等的两个三角形,故B选项错误;C选项、有一个锐角是45°的直角三角形的另一个锐角也是45°,根据等角对等边可得这是一个等腰三角形,故C选项正确;D选项、如果一个外角的平分线平行于三角形一边,利用平行线的性质可证三角形的两个角相等,根据等角对等边可证这是一个等腰三角形,故D选项正确.故应选B考点:等腰三角形的判定4、下列能断定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C. AB=AC=2,BC=4 D.AB=3,BC=7,周长为13【答案】B【解析】试题分析:根据等腰三角形的判定定理进行判断.解:A选项、若∠A=30°,∠B=60°,则∠C=90°,不能判定△ABC为等腰三角形;B选项、若∠A=50°,∠B=80°,则∠C=50°,根据等角对等边能判定△ABC为等腰三角形;C选项、若AB=AC=2,BC=4,因为2+2=4,所以不能构成三角形;D选项、若AB=3,BC=7,周长为13,则AC=3,因为3+3<7,所以不能构成三角形.故应选B.考点:等腰三角形的判定5、已知下列各组数据,可以构成等腰三角形的是()A. 1,2,1 B.2,2,1 C. 1,3,1 D.2,2,5【答案】B【解析】试题分析:根据三角形三边的关系进行判断.解:A选项、因为1+1=2,所以不能构成三角形;B选项、因为2+1>2,能构成三角形,所以可以构成等腰三角形;C选项、因为1+1<3,所以不能构成三角形;D选项、因为2+2<5,所以不能构成三角形.故应选B.考点:三角形三边关系6、小明将两个全等且有一个角为60°的直角三角形拼成如图所示的图形,其中两条较长直角边在同一直线上,则图中等腰三角形的个数是()A.4 B.3 C.2 D.1【答案】B【解析】试题分析:根据直角三角形的性质求出各角的度数,根据等角对等边进行判断. 解:∵∠B=∠E=60°,∴∠A=∠D=30°,∴△MAD是等腰三角形;∵∠EMG-∠A+∠D=60°,∴△EGM是等腰三角形;同理可证△BHM是等腰三角形.∴共有三个等腰三角形.故应选B考点:1.直角三角形的性质;2.等腰三角形的判定二、填空题7、一个等腰三角形的两边分别为3cm和4cm,则它的周长为_________;【答案】10cm或11cm【解析】试题分析:根据三角形的周长公式分情况进行计算.解:当三角形三边分别是3cm、3cm、4cm时,三角形的周长是3+3+4=10cm;当三角形三边分别是3cm、4cm、4cm时,三角形的周长是3+4+4=11cm.故答案是10cm或11cm.考点:等腰三角形的性质8、在方格纸上有一个△ABC,它的顶点位置如图所示,则这个三角形是三角形.【答案】等腰【解析】试题分析:根据点A在BC的垂直平分线上,可证AB=AC,所以这个三角形是等腰三角形.解:∵点A在BC的垂直平分线上,∴AB=AC,∴△ABC是等腰三角形.故答案是等腰.考点:1.线段垂直平分线的性质;2.等腰三角形的定义9、如果一个三角形有两个角分别为80°,50°,则这个三角形是_________三角形.【答案】等腰【解析】试题分析:根据三角形内角和求出三角形的另一个内角,根据等角对等边进行判断.解:∵第三个角=180°-50°-80°=50°.∴这个三角形是等腰三角形.故答案是等腰.考点:等腰三角形的判定10、用若干根火柴(不折断)紧接着摆成一个等腰三角形,一边用了10根火柴,则至少还要用_________根火柴.【答案】11【解析】试题分析:根据用10根火柴组成的边是等腰三角形的底边和腰,分两种情况进行讨论.解:当用10根火柴组成的边是等腰三角形的底边时,则每个腰上至少用6根火柴棍,∴共需要12根火柴棍;当用10根火柴组成的边是等腰三角形的腰时,则另一个腰上需要用10根火柴棍,底边至少用1根火柴,∴共需要11根火柴棍.∴至少还要用11根火柴.故答案是11.考点:1.等腰三角形的定义;2.三角形三边关系11、如图,△ABC是等腰三角形,且AB=AC,BM,CM分别平分∠ABC,∠ACB,DE 经过点M,且DE∥BC,则图中有_________个等腰三角形.【答案】5【解析】试题分析:根据等腰三角形的性质可得∠ABC=∠ACB,根据平行线的性质可证∠ADE=∠AED,根据角平分线的性质可证∠DBM=∠MBC=∠DMB=∠EMC=∠ECM=∠BCM,根据等角对等边进行证明.解:∵△ABC是等腰三角形,∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠AED,∴△ADE是等腰三角形;∵BM平分∠ABC,∴∠DBM=∠CBM,∵BC∥DE,∴∠DMB=∠CBM,∴∠DBM=∠DMB,∴△DBM是等腰三角形,同理可得△EMC是等腰三角形;又∵∠ABC=∠ACB,∴∠MBC=∠MCB,∴△MBC是等腰三角形.∵△ABC是等腰三角形.∴共有5个等腰三角形.故答案是5.考点:1.等腰三角形的性质;2.等腰三角形的判定三、解答题12、已知:如图,OA平分∠BAC,∠1=∠2.求证:△ABC是等腰三角形.【答案】证明见解析【解析】试题分析:首先过点O作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质可证OE=OF,根据HL可证Rt△OBE≌Rt△OCF,利用全等三角形的性质可证∠5=∠6,所以可证∠ABC=∠ACB,根据等角对等边可证结论成立.证明:如下图所示,过点O作OE⊥AB于E,OF⊥AC于F,∵AO平分∠BAC,∴OE=OF(角平分线上的点到角两边的距离相等).∵∠1=∠2,∴OB=OC.∴Rt△OBE≌Rt△OCF(HL).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形.考点:1.角平分线的性质;2.等腰三角形的判定定理;3.全等三角形的判定和性质13、如图,△ABC中,∠A=36°,AB=AC,CD平分∠ACB,试说明△BCD是等腰三角形.【答案】证明见解析【解析】试题分析:根据等腰三角形的性质求出∠B=∠ACB=72°,根据角平分线的定义可以求出∠ACD=∠A=36°,根据三角形外角的性质可以求出∠ADB=72°,再根据等角对等边可证结论成立.证明:∵∠A=36°,AB=AC,∴∠B=∠ACB=72°,∵CD平分∠ACB,∴∠ACD=∠A=36°,∴∠BDC=∠A+∠ACD,∴∠BDC=∠B=72°,∴△BCD是等腰三角形.考点:1.等腰三角形的性质;2.等腰三角形的判定14、如图,ABC△中,∠ABC、∠ACB的平分线交于点F,过点F作DE∥BC分别交AB、AC于D、E,已知△ADE的周长为20cm,且BC=12cm,求△ABC的周长【答案】32cm.【解析】试题分析:首先根据角平分线的性质可证∠DBF=∠FBC,根据平行线的性质可证∠DFB=∠DBF,所以可证BD=DF,同理可证EC=EF,所以可证AD+AE+DF+EF=20cm,再根据BC的长度求出△ABC的周长.解:∵∠ABC、∠ACB的平分线交于点F,∴∠DBF=∠FBC,又∵DE∥BC,∴∠DFB=∠FBC,∴∠DFB=∠DBF,∴BD=DF,同理EC=EF,∵△ADE的周长为20cm,∴AD+AE+DF+EF=20cm,∴AD+AE+BD+EC=AB+AC=20cm又∵BC=12cm,∴AB+AC+BC=32cm即△ABC的周长为32cm.考点:1.等腰三角形的判定;2.等腰三角形的性质。

初中数学等腰三角形练习题(附答案)

初中数学等腰三角形练习题(附答案)

初中数学等腰三角形练习题一、单选题1.如图,在ABC △中,,40AB AC A =∠=︒ ,//CD AB ,则BCD ∠=( )A.40︒B.50︒C.60︒D.70︒2.一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若120∠=︒,则2∠的度数是( )A.15︒B.20︒C.25︒D.40︒3.如图,在ABC △中,,36AB AC A =∠=°, ABC △的角平分线,则图中的等腰三角形共有( ).A.8个B.7个C.6个D.5个4.若等腰三角形的一个外角等于140°,则这个等腰三角形的顶角度数为( ).A.40°B.100°C.40︒或70°D.40︒或100°5.如图,在等腰三角形ABC △中,AB AC =,BD 平分ABC ∠,在BC 的延长线上取一点E ,使CE CD =,连接DE ,求证:BD DE =.6.如图,ABC △中,AB AC =,D 是BC 中点,下列结论中不正确的是( )A .BC ∠=∠B .AD BC ⊥C .AD 平分BAC ∠D .2AB BD = 7.如图:15EAF ∠=︒,AB BC CD ==,则ECD ∠等于 ︒. 8.如图,在ABC △中,AB AC =,12∠=∠,则下列结论不一定成立的是( )A.B C ∠=∠B. BD CD =C.AD BC ⊥D.AD BD =二、证明题9.如图,在ABC △中,AB AC =,点D E F ,,分别在AB BC AC ,,边上,且BE CF BD CE ==,.(1)求证:DEF △是等腰三角形;(2)当40A ∠=︒时,求DEF ∠的度数.10.已知:如图,在ABC △中,D 为边BC 上一点, AB AD CD ==.1.求证:2ABC C ∠=∠;2.过点B 作AD 的平行线交CA 的延长线于点E ,若AD 平分BAC ∠,求证:AE AB =.11.如图,AD 平分BAC ∠,AD BD ⊥,垂足为点D ,//DE AC .求证:BDE △是等腰三角形.12.如图,在ABC △中,已知,90AB AC BAC =∠=︒,D 是BC 上一点,,,EC BC EC BD DF FE ⊥==.求证:(1)ABD ACE ≅△△;(2)AF DE ⊥.三、解答题13.已知:如图,在Rt ABC △中,90C ∠=° ,点D 在CB 边上,DAB B ∠=∠ ,点E 在AB 边上且满足CAB BDE ∠=∠.求证:AE BE =.四、操作题14.如图,在平面直角坐标系xOy 中,点A 的坐标为()43,-,且5OA =,在x 轴上确定一点P ,使AOP △为等腰三角形.1.写出一个符合题意的点P 的坐标 ;2.请在图中画出所有符合条件的AOP △.五、填空题15.如图,60BOC ∠=°,点A 是BO 延长线上的一点,10cm OA =.动点P 从点A 出发沿AB 以2 cm /s 的速度移动,动点Q 从点O 出发沿OC 以1cm /s 的速度移动,如果,P Q 同时出发,用(s)t 表示移动的时间,当t =_________时,POQ △是等腰三角形.16.等腰三角形的边长分别为6和8,则周长为___________________.17.如果等腰三角形的一个角为50°,那么它的顶角为________.18.如图,在ABC △中,20cm 12cm AB AC ==,,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动,其中一个动点到达端点,另一个动点19.如图,在ABC △中,AB AC =,AD BC ⊥于点D .若64AB CD ==,,则ABC △的周长是 .20.如图1是一把园林剪刀,把它抽象为图2,其中OA OB =.若剪刀张开的角为30°,则A ∠= 度。

等腰三角形经典练习题(5套)附带详细答案

等腰三角形经典练习题(5套)附带详细答案

练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50° B.65° C.70° D. 75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线/二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)[9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.一、选择题1.B2.B3.C二、填空题4.底角,等边对等角~5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)|∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各@边中点,则图中共.有正三角形( )A.2个 B.3个C.4个 D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于 ( )A. 2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为 ________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.—三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.《9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题[AQ CPB1.D 2.B二、填空题 3.2㎝ 4.120° 5.等边 6.6㎝ 三、解答题7.△ABC 是等边三角形.理由是 ∵△ABC 是等边三角形;∴∠A =∠B =∠C=60° ∵DE ∥AC ,∴∠BED =∠A=60°,∠BDE =∠C =60° ∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余)》∴∠B= 90°-∠A= 90°-30°=60°∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。

中考数学专题复习等腰三角形练习(含答案)

中考数学专题复习等腰三角形练习(含答案)

中考数学专题复习等腰三角形练习一、选择题1. 如图所示,线段AC 的垂直平分线交线段AB 于点D ,∠A=50°,则∠BDC=( )A .50°B .100°C .120°D .130°2. 已知等腰三角形的一个角等于42°,则它的底角为( )A .42°B .69°C .69°或84°D .42°或69°3. 如图,等边三角形OAB 的边长为2,则点B 的坐标为( )A .(1,1)B .(1,) 3C .(,1)D .()33,34.如图,在△ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A .120°B .130°C .145°D .150°CEF5.如图,在△ABC 中,AB =BC ∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A.B.9C.6D.6.如图,等腰直角三角形ABC 中,∠ABC =90°,BA =BC ,将BC 绕点B 顺时针旋转θ(0°<θ<90°),得到BP ,连结CP ,过点A 作AH ⊥CP 交CP 的延长线于点H ,连结AP ,则∠PAH 的度数( )A .随着θ的增大而增大B .随着θ的增大而减小C .不变D .随着θ的增大,先增大后减小7.如图,在中,,观察图中尺规作图的痕迹,可知ABC ∆,40AC BC A =∠=︒的度数为BCG ∠A .B .C .D .40︒45︒50︒60︒8.七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm 的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm 2的是( )A.B.C.D.二、填空题9. 我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是 .10.等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是 .11.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC 是等边三角形,则∠B=________°.12.如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB 的中点.若BC=12,AD=8,则DE的长为.ECB A13.若等腰三角形的一个底角为,则这个等腰三角形的顶角为__________.72 14. 如图,等边三角形ABC 内有一点P ,分别连接AP ,BP ,CP ,若AP=6,BP=8,CP=10,则S △ABP +S △BPC = .15.如图,四边形ABCD 中,AB ∥CD ,∠ABC =60°,AD =BC =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则点M 到直线BC 的距离的最小值为 .MDC BA 16.如图,在直角坐标系中,点A (1,1),B (3,3)是第一象限角平分线上的两点,点C 的纵坐标为1,且CA =CB ,在y 轴上取一点D ,连接AC ,BC ,AD ,BD ,使得四边形ACBD 的周长最小,这个最小周长的值为.三、解答题17. 如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.18. 如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.19.如图,△ABC中,AB=AC,∠B的平分线交AC于D,AE∥BC交BD的延长线于点E,AF⊥AB交BE于点F.(1)若∠BAC=40°,求∠AFE的度数;(2)若AD=DC=2,求AF的长.FDEC AB 20. (12分)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .【问题解决】如图1,若点D 在边BC 上,求证:CE +CF =CD ;【类比探究】如图2,若点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?并说明理由.21. 如图,在△ABC 中,AB =AC =5 cm ,BC =6 cm ,AD 是BC 边上的高.点P 由C 出发沿CA 方向匀速运动.速度为1 cm/s.同时,直线EF 由BC 出发沿DA 方向匀速运动,速度为1 cm/s ,EF //BC ,并且EF 分别交AB 、AD 、AC 于点E ,Q ,F ,连接PQ .若设运动时间为t (s)(0<t <4),解答下列问题:(1)当t为何值时,四边形BDFE是平行四边形?(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.答案一、选择题1. 【答案】B2. 【答案】D [解析] 在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形的底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角为42°或69°.3. 【答案】B [解析]过点B作BH⊥AO于点H,∵△OAB是等边三角形,33∴OH=1,BH=,∴点B的坐标为(1,).4. 【答案】B【解析】可利用三角形的外角性质求∠FEC的度数,结合等腰三角形与平行线的性质,可得∠EDC、∠B均与∠C相等.即:∵AB=AC,∴∠B=∠C=65°.∵DF∥AB,∴∠EDC=∠B=65°.∴∠FEC=∠EDC+∠C=65°+65°=130°.5. 【答案】D【解析】∵分别以点A、C为圆心,AC的长为半径作弧,两弧交于点D,∴AD=AC=CD,∴△ACD是等边三角形,∴∠DAC=60°.∵AB=BC ,AD=CD ,连接BD 交AC 于点E ,∴BD 垂直平分AC ,∴∠AEB=90°.∵∠BAC=30°, AB= ∴,AE=,∴AC=3.32在R t △ADE 中,∵∠DAC=60°,∠AED=90°,AE=,∴∴BD=32=∴四边形ABCD 的面积为:.3333221=⨯⨯6. 【答案】C【解析】本题考查了等腰三角形的性质,三角形的内角和,旋转的性质.由旋转得BC=BP=BA ,∴△BCP 和△ABP 均是等腰三角形.在△BCP 中,∠CBP=θ,BC=BP ,∴∠BPC=90°-θ.在△ABP 中,∠ABP=90°-θ,同理得∠12APB=45°+θ,∴∠APC=∠BPC +∠APB =135°,又∵∠AHC=90°,∴∠12PAH=45°,即其度数是个定值,不变.因此本题选C .7. 【答案】C【解析】由作法得,∵,∴平分,,CG AB ⊥AB AC =CG ACB ∠A B ∠=∠∵,∴.故选C .1804040100ACB ∠=︒-︒-︒=︒1502BCG ACB ∠=∠=︒8. 【答案】最小的等腰直角三角形的面积42=1(cm 2),平行四边形面=18×12×积为2cm 2,中等的等腰直角三角形的面积为2cm 2,最大的等腰直角三角形的面积为4cm 2,则A 、阴影部分的面积为2+2=4(cm 2),不符合题意;B 、阴影部分的面积为1+2=3(cm 2),不符合题意;C 、阴影部分的面积为4+2=6(cm 2),不符合题意;D 、阴影部分的面积为4+1=5(cm 2),符合题意.故选:D .二、填空题9. 【答案】1 [解析]由勾股定理可得,a 2+b 2=13,直角三角形面积=(13-1)÷4=3,即ab=3,所以ab=6,所以(a -b )2=a 2+b 2-2ab=13-12=1. 1210. 【答案】10或11.【解析】分3是腰长与底边长两种情况讨论求解即可.①3是腰长时,三角形的三边分别为3、3、4,∵此时能组成三角形,∴周长=3+3+4=10;②3是底边长时,三角形的三边分别为3、4、4,此时能组成三角形,所以周长=3+4+4=11.综上所述,这个等腰三角形的周长是10或11.故答案为:10或11.11. 【答案】30°【解析】本题考查了等边三角形和等腰三角形以及垂直平分线的性质.因为FE 垂直平分BC ,∴ FC =FB ∴∠B =∠BCF ∵△ACF 是等边三角形,∴∠AFC =60° ,∴ ∠B =30°12. 【答案】5【解析】∵AB =AC ,∠BAC 的平分线AD 交BC 于点D ,∴AD ⊥BC ,BD =CD =BC =6.在R t △ABD 中,由勾股定理,得AB =10.又∵E 12为AB 的中点,∴DE =AB =5.故答案为5.1213. 【答案】36°【解析】∵等腰三角形的一个底角为,∴等腰三角形的顶角72︒,180727236=︒-︒-︒=︒故答案为:.36︒14. 【答案】16+24 [解析]将△ABP 绕点B 顺时针旋转60°到△CBP',连接3PP',所以P'C=PA=6,BP=BP',∠PBP'=60°,所以△BPP'是等边三角形,其边长BP 为8,所以PP'=8,S △BPP'=16,3因为PC=10,所以PP'2+P'C 2=PC 2,所以△PP'C 是直角三角形,S △PP'C =24,所以S △ABP +S △BPC =S △BPP'+S △PP'C =163+24.15. 【答案】-2【解析】延长AD 、BC 交于点P , 作MH ⊥PB 于H .∵AB ∥CD ,∴=,∠ABC =∠DCP =60°.∵AD =BC =CD =4,∴PD =PD AD PC BCPC ,∴△PDC 为等边三角形,∴PD =PC =CD =4,∠P =60°. 由∠AMD =90°,可知点M 在以AD 为直径的⊙E 上,且在四边形ABCD 内的一个动点,根据垂线段最短可知E 、M 、H 三点共线时MH 最小.在R t △PEH 中,EP =6,∠P=60°,∴EH =EP ·sin 60°=∴MH 的最小值=EH -EM =2.16. 【答案】4+25【解析】先求点C 的坐标,再利用最短路径知识确定D 点位置,最后求四边形ACBD 的最小周长即可.由点A 与点C 的纵坐标均为1,可知AC ∥x 轴,又点A ,B 是第一象限角平分线上的两点,∴∠BAC =45°,又∵CA =CB ,∴∠CBA =45°,∴AC ⊥BC ,∴C(3,1),则AC =BC =2.如图,作点A 关于y 轴的对称点E ,连接BE 交y 轴于点D ,此时AD +BD 的值最小,为线段BE 的长.由轴对称性可知AE=2,则EC=4.在R t △BCE 中,根据勾股定理,得BE ===2.∴四边形ACBD 的最小周长为2+2+222EC BC +2242+5=4+2.55三、解答题17. 【答案】解:(1)(方法一):∵AB=AC ,∠C=42°,∴∠B=∠C=42°,∴∠BAC=180°-∠B -∠C=180°-42°-42°=96°.∵AD ⊥BC ,∴∠BAD=∠BAC=×96°=48°.1212(方法二):∵AB=AC ,∠C=42°,∴∠B=∠C=42°.∵AD ⊥BC 于点D ,∴∠ADB=90°,∴∠BAD=180°-90°-42°=48°.(2)证明:∵EF ∥AC ,∴∠CAF=∠F ,∵AB=AC ,AD ⊥BC ,∴∠CAF=∠BAF ,∴∠F=∠BAF ,∴AE=FE.18. 【答案】证明:∵AB =AC ,∴∠ABC =∠C ,∵AD 是BC 边上的中线,∴AD ⊥BC ,∴∠BAD +∠ABC =90°,(3分)∵BE ⊥AC,∴∠CBE +∠C =90°,∴∠CBE =∠BAD.(5分)19. 【答案】解:(1)∵AB =AC ,∠BAC =40°,∴∠ABC =×(180°-40°)=70°.12∵BD 平分∠ABC ,∴∠ABD =∠DBC =×70°=35°.12∵AF ⊥AB ,∴∠BAF =90°.∴∠AFE =∠BAF +∠ABD =90°+35°=125°.(2)∵BD 平分∠ABC ,BD =BD ,AD =CD ,∴△BDA ≌△BDC .∴AB =BC .又AB =AC ,∴AB =BC =AC .∴△ABC 为等边三角形.∴∠ABC =60°,∠ABD =30°.∵AD =DC =2,∴AB =4.在R t △ABF 中,AF =AB ·tan 30°=说明:此题中的条件AE ∥BC 是多余的.【解析】(1)由“等边对等角”求出∠ABC ,由角平分线的定义求出∠ABD ,∠AFE 是△ABF 的外角,因此∠AFE =∠BAF +∠ABD ;(2)由BD 既是△ABC 的角平分线又是中线可知AB =BC ,从而推出△ABC 是边长为2的等边三角形.在R t △ABF 中可解出AF .20. 【答案】【问题解决】在CD 上截取CH =CE ,易证△CEH 是等边三角形,得出EH =EC =CH ,证明△DEH ≌△FEC (SAS ),得出DH =CF ,即可得出结论;【类比探究】过D 作DG ∥AB ,交AC 的延长线于点G ,由平行线的性质易证∠GDC =∠DGC =60°,得出△GCD 为等边三角形,则DG =CD =CG ,证明△EGD ≌△FCD (SAS ),得出EG =FC ,即可得出FC =CD +CE .【问题解决】证明:在CD 上截取CH =CE ,如图1所示:∵△ABC 是等边三角形,∴∠ECH =60°,∴△CEH 是等边三角形,∴EH =EC =CH ,∠CEH =60°,∵△DEF 是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG =FC ,∴FC =EG =CG +CE =CD +CE .21. 【答案】(1)如解图①,连接DF ,解图①∵AB =AC =5,BC =6,AD ⊥BC ,∴BD =CD =3,在Rt △ABD 中AD ==4,52-32∵EF //BC ,∴△AEF ∽△ABC ,∴=,EF BC AQ AD ∴=,∴EF =(4-t ),EF 64-t 432∵EF //BD ,∴当EF =BD 时,四边形EFDB 是平行四边形,∴(4-t )=3,32∴t =2,∴当t =2s 时,四边形EFDB 是平行四边形;(2)如解图②,作PN ⊥AD 于N ,解图②∵PN //DC ,∴=,PN DC AP AC ∴=,PN 35-t 5∴PN =(5-t ),35∴y =DC ·AD -AQ ·PN 1212=6-(4-t ) ·(5-t )1235=6-(t 2-t +6)3102710=-t 2+t (0<t <4);3102710(3)存在.理由如下:如解图③,作QN ⊥AC 于N ,作FH ⊥PQ 于H .解图③∵当QN 为AP 的垂直平分线时QA =QP ,QN ⊥AP ,∴AN =NP =AP =(5-t ),1212由题意cos ∠CAD ==,AD AC AN AQ∴=,∴t =,12(5-t )4-t 4573∴当t =s 时,点Q 在线段AP 的垂直平分线上.73∵sin ∠FPH ==sin ∠CAD =,∵PA =5-=,AF =AQ ÷=,FH PF 357383452512∴PF =,∴FH =.712720∴点F 到直线PQ 的距离h =(cm). 720。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形
第1课时等腰三角形的性质
1.已知等腰三角形的一个底角为50°,则其顶角为________.
2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=________cm.
第2题图第3题图
3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为() A.35° B.45° C.55° D.60°
4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为() A.50° B.80°
C.50°或80° D.40°或65°
5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数.
6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF.
求证:DE=DF.
第2课时等腰三角形的判定
1.在△ABC中,∠A=40°,∠B=70°,则△ABC为()
A.等腰三角形B.直角三角形
C.等腰直角三角形D.钝角三角形
2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=________.
3.如图,在△ABC中,AD⊥BC于点D,请你再添加一个条件,使其可以确定△ABC为等腰三角形,则添加的条件是________.
第3题图第4题图
4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有________个等腰三角形.
5.如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF.求证:AB=AC.
6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G.
求证:△EFG是等腰三角形.
13.3.2等边三角形
第1课时等边三角形的性质与判定
1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为________.
第1题图第3题图
2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B.能判定△ABC为等边三角形的有________.
3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=________.
4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD 的度数.
5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD.求证:
(1)△ABE≌△ACD;
(2)△ADE为等边三角形.
第2课时含30°角的直角三角形的性质
1.如图,在Rt△ABC,∠C=90°,∠A=30°,AB=10,则BC的长度为( ) A.3 B.4 C.5 D.6
第1题图第2题图第3题图
2.如图,在△ABC中,∠C=90°,AC=3,∠B=30°,P是BC边上的动点,则AP的长不可能是( )
A.3.5 B.4.2 C.5.8 D.7
3.如图,△ABC是等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则BE的长为________.
4.如图,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF ⊥AC于点F,求BE+CF的值.
5.如图所示是某种帐篷支架屋顶的侧面示意图,它是底角为30°的等腰三角形.已知中柱BD垂直于底边AC,支柱DE垂直于腰AB,测得BE=1米,求AB的长.
13.4 课题学习最短路径问题
1.已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB 的值最小,则下列作法正确的是( )
2.如图,已知直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是( )
A.转化思想
B.三角形两边之和大于第三边
C.两点之间,线段最短
D.三角形的一个外角大于与它不相邻的一个内角
第2题图第3题图
3.如图,点P是直线l上的一点,线段AB∥l,能使PA+PB取得最小值的点P的位置应满足的条件是( )
A.点P为点A到直线l的垂线的垂足
B.点P为点B到直线l的垂线的垂足
C.PB=PA
D.PB=AB
4.如图,在直线l的两侧分别有A和B两点,试在直线l上确定一点P,使点P到点A和到点B的距离之和最短,并说明理由.
等腰三角形
第1课时 等腰三角形的性质
1.80° 2.3 3.C 4.C
5.解:∵AB =AD ,∴∠B =∠ADB .由∠BAD =40°,得∠B =∠ADB =70°.∵AD =DC ,∴∠DAC =∠C ,∴∠C =1
2
∠ADB =35°.
6.证明:如图,连接AD .∵AB =AC ,D 是BC 的中点,∴AD 平分∠BAC ,∴∠EAD =∠F AD .在△AED 和△AFD 中,⎩⎪⎨⎪
⎧AE =AF ,∠EAD =∠F AD ,AD =AD ,
∴△AED ≌△AFD (SAS),∴DE =DF .
第2课时 等腰三角形的判定
1.A 2.5cm 3.BD =CD (答案不唯一) 4.3
5.证明:∵D 是BC 的中点,∴BD =CD .在Rt △BDE 和Rt △CDF 中,∵DE =DF ,BD =CD ,∴Rt △BDE ≌Rt △CDF (HL),∴∠B =∠C ,∴AB =AC .
6.证明:∵FG 平分∠EFD ,∴∠GFD =∠EFG .∵AB ∥CD ,∴∠EGF =∠GFD ,∴∠EFG
=∠EGF ,∴△EFG 是等腰三角形.
13.3.2 等边三角形
第1课时 等边三角形的性质与判定
1.60° 2.①②③ 3.2 4.解:∵△ABC 是等边三角形,∴AB =BC ,∠ABC =60°.∵BD =BC ,∴AB =BD ,∴∠BAD =∠BDA .∵∠CBD =90°,∴∠ABD =90°+60°=150°,∴∠BAD =1
2×(180°-150°)=15°.
5.证明:(1)∵△ABC 为等边三角形,∴∠BAC =60°,AB =AC .在△ABE 与△ACD 中,⎩⎪⎨⎪
⎧AB =AC ,∠1=∠2,BE =CD ,
∴△ABE ≌△ACD . (2)由(1)知△ABE ≌△ACD ,∴AE =AD ,∠CAD =∠BAE =60°,∴△ADE 是等边三角形.
第2课时 含30°角的直角三角形的性质
1.C 2.D 3.4
4.解:∵△ABC 是边长为20的等边三角形,∴∠B =∠C =60°,∴在Rt △BED 中,∠EDB
=30°,∴BE =12BD .同理可得,CF =12CD ,∴BE +CF =12BD +12CD =1
2
BC =10.
5.解:∵BD ⊥AC ,DE ⊥AB ,∴∠ADB =∠DEB =90°.∵在Rt △ABD 中,∠A =30°,∴∠ABD
=60°,AB =2BD .∴在Rt △BDE 中,∠BDE =30°,∴BD =2BE =2米,∴AB =4米.
13.4 课题学习 最短路径问题
1.D 2.D 3.C
4.解:连接AB 与直线l 的交点即为点P ,图略.因为两点之间,线段最短.。

相关文档
最新文档