6.3工程中常见超静定结构简介

合集下载

6-简单超静定问题

6-简单超静定问题
4、补充方程
FN 1l FN 3l cos EA cos EA FN 1 FN 3 cos 2
5、求解方程组得
FN 1 FN 2
F cos 2 1 2 cos 3
FN 3
F 1 2 cos 3
目 录
二、装配应力
构件的加工误差是难以避免的。对静定结构,加工误 差只是引起结构几何形状的微小变化,而不会在构件内引 起应力。但对静不定结构,加工误差就要在构件内引起应 力。这种由于装配而引起的应力称为装配应力。 装配应力是结构构件在载荷作用之前已具有的应力, 因而是一种初应力。
超静定结构中才有温度应力。
目 录
解题思路: 平衡方程:RA = RB 变形几何关系: 物理关系:
(t 时)
lT lF
lT l t
RB L
RB l lF EA
EA Lt
补充方程:
联立求解: RA RB EAt
EAt t Et A
目 录
一静定问题及超静定问题三基本静定系或相当系统是一个静定结构该结构上作用有荷载和多余约束力61超静定问题及其解法61超静定问题及其解法二多余约束及多余约束力在静定结构的基础上增加的约束
第六章
简单的超静定问题
§6–1 概述
§6–2 §6–3 §6–4 拉压超静定问题 扭转超静定问题 简单超静定梁
目的与要求:
M
max
WZ

32 M
d
max 3
76.4MPa
目 录
例题
结构如图示,设梁AB和CD的弯曲刚度EIz相同. 拉杆BC的拉压刚度EA为已知,求拉杆BC的轴力.
a
C
将杆CB移除,则AB,CD均为静定结构, 杆CB的未知轴力FN作用在AB,CD梁上。为1 D 次超静定。

静定结构和超静定结构

静定结构和超静定结构

第十章静定结构和超静定结构课题:第一节结构的计算简图[教学目标]一、知识目标:1、理解结构计算简图的作用和意义。

2、掌握结构计算简图基本的简化方法。

二、能力目标:通过对结构计算简图的讲解,提高学生分析问题的能力。

三、素质目标:培养学生善于区分事物的主要矛盾和次要矛盾[教学重点]1、支座的简化和节点的简化。

2、计算简图的概念和要求。

[难点分析]计算简图简化的原理。

[学生分析]学生由于缺乏实际工程知识,不太理解计算简图的作用以及这种分析方法。

[辅助教学手段]理论联系实际、分析、讨论的方法[课时安排]1课时[教学内容]一、导入新课何谓结构?结构的举例。

通过启发学生联系工程实例,理解结构的概念。

二、新课讲解1.结构的计算简图2.结构的计算简图应满足的要求(1)基本上反映结构的实际工作性能(2)计算简便3.实际结构的计算简图的简化(1)支座的简化三种形式;简支梁、阳台、柱的实例。

(2)节点的简化铰节点和刚节点的特点及其应用(3)构件的简化实际上是力学中杆件的简化(4)荷载的简化集中荷载和均布荷载三、讨论1 牛腿柱的计算简图2 雨蓬的计算简图四、小结在结构设计中,选定了结构的计算简图后,在按简图计算的同时,还必须采取相应的措施,以保证实际结构的受力和变形特点与计算简图相符。

五、作业思考题:1课题:第二节平面结构的几何组成分析[教学目标]一、知识目标:1、理解几何组成分析的作用和意义。

2、了解结构从几何组成的观点的分类。

3、了解结构几何组成分析的规则和方法。

4、了解静定结构和超静定结构的概念。

5、会对简单结构进行几何组成分析。

二、能力目标:通过对结构几何组成分析的讲解,提高学生分析问题的能力。

三、质目标:培养学生善于区分事物的主要矛盾和次要矛盾[教学重点]1、几何组成分析的意义和结果。

2、几何组成分析的方法。

[难点分析]结构几何组成分析的概念和方法都比较抽象,尤其是方法,学生学习起来比较困难。

讲解时,淡化理论,结合例题讲解。

超静定

超静定

l A
1)解除B端约束,建立相当系统 解除B端约束, 2)由正则方程 d11 X 1 + D 1P = 0 3)求系数和常数项
4l 4l 3 d11 = 3EI D 1F - Fl 3 = 2 EI
F X1
F
l 1
4)带入正则方程求解 3 X1 = F 8 4)做弯矩图
M = M 1 ?X 1 MF
例1, 试求图示梁的约束反力,设EI为常数. 试求图示梁的约束反力, EI为常数 为常数.
q A l B
1)解除B端约束,建立相当系统 解除B端约束, 2)由正则方程 d11 X 1 + D 1P = 0 3)求系数和常数项
骣 1 骣 鼢2 1 l3 珑l l = d11 = 珑 l鼢 桫 桫 EI 珑 鼢3 2 3EI D 1F
二,正则方程的建立
1,一次超静定问题的正则方程 力法求解静不定问题的关键——建立正则方程. 力法求解静不定问题的关键——建立正则方程.下 建立正则方程 面通过一例说明建立正则方程的步骤. 面通过一例说明建立正则方程的步骤. 图为车削工件安有尾顶针的简化模型. 图为车削工件安有尾顶针的简化模型.
力法求解过程如下: 力法求解过程如下:
第二节
用力法解超静定结构
一,力法
力法——以多余约束力为基本未知量 力法——以多余约束力为基本未知量,将变形或位移表 为基本未知量, 示为未知力的函数,通过变形协调条件作为补充方程求 示为未知力的函数, 来解未知约束力,这种方法称为力法 又叫柔度法 力法, 柔度法. 来解未知约束力,这种方法称为力法,又叫柔度法. 力法的基本思路: 力法的基本思路: 1,结构静定化 2,在未知力处 3,变形条件 4,正则方程 解除多余约束 建立 借助莫尔积分 解线性方程 静定基与相当系统 变形协调条件 补充方程(正则方程) 补充方程(正则方程) 未知力

静定超静定判断及计算

静定超静定判断及计算

目的和意义
目的
理解静定与超静定的概念,掌握判断方法,能够进行相应的计算。
意义
在实际工程中,正确判断结构和系统的静定或超静定状态对于确保结构安全、节约材料和降低成本具有重要意义。
02
静定与超静定的基本概念
静定结构的定义
静定结构
在任何外界影响下,其平衡位置都是稳定的 ,且在受到微小扰动后能自动恢复到原来的 平衡状态。
内力计算的方法
静定结构的内力计算通常采用截面法或节点法进行。截面法是通过 截取结构的一部分进行分析,节点法则是对结构的节点进行受力分 析。
内力的表示方法
内力可以用实线和虚线表示,实线表示实际受力方向,虚线表示实际 受力反方向。
静定结构的位移计算
1
位移计算的意义
在结构分析中,位移是一个重要的参数 。通过计算位移,可以了解结构的变形 情况,从而评估结构的稳定性和安全性 。
本文的研究成果已被广泛应用于建筑、机械、航空航天等工程领 域,解决了众多实际工程问题,取得了显著的经济和社会效益。
对未来研究的展望
深入研究复杂结构体系
随着科技的发展,复杂结构体系在工程中越来越常见,未 来研究可进一步探讨复杂结构体系的静定与超静定问题, 提高工程结构的稳定性和安全性。
引入先进计算技术
计算公式
自由度数 = 刚片数 - 约束数。
判断标准
若自由度数等于0,则结构为静定;若自由度数不等于0,则结 构为超静定。
几何法判断
定义
几何法判断是指通过分析结构的几何形状来判断结构是否为静定或超静定的一种方法。
判断标准
若结构的几何形状满足静定结构的条件(即所有刚片都是相互平行的),则结构为静定;否则为超静 定。
01

结构力学 力法计算超静定结构

结构力学 力法计算超静定结构
项目三 超静定结构的内力计算
子项目一 力法计算超静定结构
情景一 超静定结构的基本特征
学习能力目标
1. 能够解释力法的基本概念。 2. 能够确定超静定的次数,得到静定的基本结构。 3. 了解超静定结构的特点。
项目表述
试分析如图 3 – 1 所示超静定结构,确定它的超静定次数。
情景一 超静定结构的基本特征 学习进程
情景一 超静定结构的基本特征 知识链接
② 去掉一个固定铰支座(图 3 – 6a)或拆去一个单铰相当于去掉两个约束(图 3 – 6b),可用两个多余未知力代替。
情景一 超静定结构的基本特征 知识链接
③ 去掉一个固定支座(图 3 – 7b)或切断一刚性杆(图 3 – 7c),相当于去掉 三链接
③ 超静定结构的内力和各杆的刚度比有关,而静定结构则不然。在计算超静定 结构时,除了用静力平衡条件外,还要用到结构的变形条件建立补充方程。而 结构的变形条件与各杆的刚度有关,在各杆的刚度比值发生变化时,结构各部 分的变形也相应变化,从而影响各杆的内力重新分布。利用在超静定结构中, 刚度大的部分将产生较大的内力,刚度较小的部分内力也较小的特点,可以通 过改变杆件刚度的方法来达到调整内力数值的目的。 ④ 在局部荷载作用下,超静定结构与静定结构相比,具有内力分布范围大,内 力分布较均匀,峰值小,且变形小、刚度大的特点。如图 3 – 9a 所示是三跨连 续梁在荷载 F 作用下的弯矩图和变形曲线,由于梁的连续性,两边跨也产生内 力和变形,最大弯矩在跨中为 0.175Fl。图 3 – 9b 所示是多跨静定梁在荷载 F 作用下的弯矩图和变形曲线,由于铰的作用,两边跨不产生内力和变形,最大 弯矩在跨中为 0.25Fl,约为前者的 1.4 倍。
情景一 超静定结构的基本特征 知识链接

超静定结构的概念及超静定次数的确定(PPT)

超静定结构的概念及超静定次数的确定(PPT)

04 超静定结构的实际应用
桥梁工程
桥梁工程中,超静定结构的应用可以增加结构的稳定性和安全性,提高桥梁的承 载能力。例如,连续梁桥采用超静定结构形式,可以减小梁体的振动和变形,提 高行车舒适性和安全性。
此外,超静定结构在桥梁工程中还可以用于抵抗风、地震等自然灾害的影响,提 高桥梁的抗震性能和抗风能力。
ቤተ መጻሕፍቲ ባይዱ
渐进法
总结词
通过逐步逼近的方法求解超静定结构的位移和内力的方法。
详细描述
渐进法是一种基于迭代思想的求解方法,通过逐步逼近的方法求解超静定结构的位移和内力。该方法首先假设一 组初始解,然后逐步修正解的近似值,直到满足精度要求或达到预设的迭代次数为止。渐进法可以处理复杂的超 静定结构问题,具有较高的计算效率和精度。
建筑工程
在建筑工程中,超静定结构的应用可以提高结构的稳定性和 刚度,增强建筑物的承载能力和抗震性能。例如,高层建筑 采用超静定结构形式,可以减小风力、地震等外部荷载对建 筑物的影响,保证建筑物的安全性和稳定性。
此外,超静定结构在建筑工程中还可以用于优化建筑物的空 间布局和结构形式,提高建筑物的美观性和实用性。
超静定结构
在任何一组确定的平衡力系作用 下,需要用多余的约束条件才能 确定结构的平衡状态的体系。
超静定结构的特性
具有多余的约束
超静定结构有多余的约束,这些 多余的约束可以提供额外的稳定 性,使结构在受到外力作用时具
有更好的抵抗变形的能力。
存在内力
由于超静定结构的约束多余,当 受到外力作用时,会在结构内部 产生内力,这些内力有助于抵抗
判别准则二
如果一个结构的支座反力数目小于其约束数目, 则该结构为超静定结构。
判别准则三
如果一个结构的受力状态不能由静力平衡方程完 全确定,则该结构为超静定结构。

超静定结构名词解释

超静定结构名词解释

超静定结构名词解释超静定结构是指结构中的支座数超过了所需的最小支座数,即具有超过两个支座。

在工程实践中,超静定结构通常用于需要更高的刚度和稳定性的场合。

本文将对超静定结构中的一些重要名词进行解释。

一、超静定结构超静定结构是指结构中的支座数超过了所需的最小支座数,即具有超过两个支座。

超静定结构的刚度和稳定性高于静定结构,但也带来了一些挑战,如设计和施工难度增加、应力集中等问题。

二、支座反力支座反力是指结构中支座所产生的反力。

在超静定结构中,支座反力的计算需要考虑结构的刚度和支座的位置等因素。

支座反力的大小和方向对结构的稳定性和安全性具有重要影响,因此需要进行准确的计算和分析。

三、弯矩分配弯矩分配是指在超静定结构中,支座反力的大小和方向不足以确定所有构件的内力分布,需要通过弯矩分配来解决。

弯矩分配的目的是使得结构中的每个构件都满足力学平衡条件和变形兼容条件,从而得到合理的内力分布。

四、刚度矩阵法刚度矩阵法是一种用于求解超静定结构内力的常用方法。

该方法将结构划分为若干个单元,每个单元的刚度矩阵可以通过杆件或板单元的刚度矩阵求得。

通过组装单元的刚度矩阵,可以得到整个结构的刚度矩阵,再结合支座反力和边界条件,可以求解出结构的内力分布。

五、剪力墙剪力墙是一种常用的超静定结构形式。

它是由墙体和框架构件组成的结构体系,通过墙体的承载作用来提高整个结构的刚度和稳定性。

剪力墙的设计需要考虑墙体的位置、厚度和槽口的大小等因素,同时也需要考虑墙体与框架构件的连接方式和布置方式等因素。

六、预应力混凝土预应力混凝土是一种常用于超静定结构中的材料。

它通过在混凝土中引入预应力,可以提高混凝土的刚度和承载能力。

预应力混凝土的设计需要考虑预应力的大小、方向和位置等因素,同时也需要考虑混凝土的强度和变形等因素。

七、局部加劲局部加劲是一种常用于超静定结构中的加固措施。

它通过在结构中加入附加构件或加强现有构件的截面,来提高结构的刚度和稳定性。

超静定

超静定

等截面圆环,半径为 , 等截面圆环,半径为r,沿其水平和铅垂直径各作用一对 力P,如图所示。试作此刚架的弯矩图。 ,如图所示。试作此刚架的弯矩图。 P A B
Fs = 2P
P C
2
P D
O
P
习题: 习题: 12—5 、 6、 7 (b) (c)、 、 、 8
1
力 法
求解超静定问题的步骤: 求解超静定问题的步骤:
1.判断结构是否超静定, 1.判断结构是否超静定,如为超静定结构确定超 判断结构是否超静定 静定次数; 静定次数; 2.选择适当的静定基和相当系统; 2.选择适当的静定基和相当系统; 选择适当的静定基和相当系统 3.比较相当系统和原超静定结构, 3.比较相当系统和原超静定结构,根据变形协调 比较相当系统和原超静定结构 条件建立正则方程: 条件建立正则方程:
P
P
对 对称结构、 对称结构、反对称载荷 称 与 反 对 称 的 利 用
P P
反 、
反对称
对称结构、正对称载荷: 3.1 对称结构、正对称载荷:p84 在对称面上: 在对称面上: 对称性内力FN、M不为零 反对称内力Fs=0; 轴向位移和转角为零, 轴向位移和转角为零, 横向位移不为零。 横向位移不为零。

例题:图示杆系各杆材料相同, 相同 相同。 例题:图示杆系各杆材料相同,A相同。用 力法求各杆内力。 力法求各杆内力。 解:δ 11 X 1 + ∆1P
法 解 超 静 定
=0
∆1 P
FNi FNi li =∑ =0 EA
X1 = − ∆1 p
FNi FNi li 1 1 δ 11 = ∑ = + 1 3 EA EA 2 cos α
外静不定结构: 外静不定结构:

静定结构和超静定结构的优缺点及工程应用

静定结构和超静定结构的优缺点及工程应用

静定结构和超静定结构优缺点及工程应用一、静定结构和超静定结构概念静定结构与超静定结构都是几何不变体系。

在几何结构方面, 二者不一样在于: 静定结构无多出联络, 而超静定结构则含有多出联络。

有多出约束( n > 0)几何不变体系——超静定结构;无多出约束( n = 0)几何不变体系——静定结构。

静定结构──几何特征为无多出约束几何不变, 是实际结构基础。

因为静定结构撤销约束或不合适更改约束配置能够使其变成可变体系, 而增加约束又能够使其成为有多出约束不变体系(即超静定结构)。

静定结构约束反力或内力均能经过静力平衡方程求解, 也就是说, 其未知约束反力或内力数目等于独立静力平衡方程数目。

静定结构在工程中被广泛应用, 同时是超静定结构分析基础。

超静定结构——几何特征为几何不变但存在多出约束结构体系, 是实际工程常常采取结构体系。

因为多出约束存在, 使得该类结构在部分约束或连接失效后仍能够负担外荷载, 但需要注意是, 此时超静定结构受力状态与以前是大不一样, 假如需要话, 要重新核实。

因为其结构中有不需要多出联络, 所以所受约束反力或内力仅凭静力平衡方程不能全部求解, 也就是未知力数目多于独立静力平衡方程个数。

二、静定结构基础特征及优缺点1、静定结构是几何不变体系, 无多出约束, 全部支座反力和内力只要用静力平衡条件就能确定, 而且解答是唯一。

2、静定结构支座反力和内力与结构所用材料性质、截面大小和形状都没相关系。

3、静定结构在温度改变、支座移动、材料伸缩和制造误差等原因影响下, 都不产温度变化(自由地产生弯曲变形,不产生内力)支座移动(刚体位移,不产生内力)制造误差生制作反力和内力。

即没有荷载作用在静定结构上时, 支座反力均为零, 所以内力也均为零。

4、静定结构局部平衡特征在一组平衡力系作用下, 假如静定结构中某一几何不变部分能够与荷载平衡, 则只会是该部分产生内力, 其它部分支座反力和内力均为零。

6.3工程中常见超静定结构简介

6.3工程中常见超静定结构简介

《工程中常见超静定结构简介》教学设计
图二
图三三、归纳比较
设计意图
本课题教学采用“前置作业导学+简介”相结合的教学形式,以“自主学习、组内交流、小组展示、自我检测、反思提高”为基本教学环节,构建“阳光、自主、高效”课堂。

1、前置作业
课前精心预设导学提纲为前置作业,是为了培养学生自主学习能力,彰显学生为主体,教师为主导的思想,实现“先学后教(导)、以学定教”的教改理念。

考虑到当前中职学生的学习现状,教师在引导的基础上,应积极鼓励学生大胆交流与展示,重视课中动态生成。

对于重点内容,教师应结合工程案例进行分析,突出工程应用,培养学生从事土木工程施工的岗位能力。

2、探究与感悟
设置探究与感悟,是为了让学生达到课后反思提高的目的。

探究问题的设计,主要为了知识的扩展,培养学生的创新能力。

感悟问题的设计,主要为了突出工程应用,提高学生解决工程实际问题的能力,增强安全生产的意识。

超静定的概念

超静定的概念

超静定的概念超静定的概念在物理学和工程学中,超静定指的是一个系统的支撑力远远大于它所需的最小支撑力,这样的系统被称为超静定系统。

这些系统常常被用在建筑和桥梁中,因为它们能够更好地抵御外部环境和内部力的干扰,从而保证结构的稳定性和安全性。

下面我们将从多个角度来探讨超静定的概念和它在现实中的应用。

1. 超静定的定义超静定的定义,最初是由一位名叫克劳德·舍纳的瑞士工程师提出的。

他在20世纪初期开始研究桥梁结构,并发现了一种称为“过度设计”的方法,即超静定。

它的基本思想是,系统的支撑力应该远远大于所需的最小支撑力,即使在极端情况下,也能够保证结构的安全性和稳定性。

2. 超静定的应用超静定的应用非常广泛,特别是在建筑和桥梁领域。

世界上许多著名的桥梁,如纽约的布鲁克林大桥、英国伦敦塔桥和法国巴黎的艾菲尔铁塔等,都是超静定系统的经典例子。

这些桥梁之所以能够经受住时间和自然力的考验,就是因为它们的设计采用了超静定的原理。

此外,在机械和航天工程中,超静定的概念也得到了广泛的应用。

例如,在构建传动系统、机翼和卫星结构等方面,越来越多的设计师开始采用超静定的技术,以保证系统的性能和可靠性。

3. 超静定的优点超静定系统的优点是显而易见的。

首先,它能够提高结构的稳定性和安全性,从而保护人员的生命和财产安全。

其次,它能够减少结构的维护和修理成本,因为超静定系统的寿命长,并且更少受到环境和力的干扰。

此外,超静定系统还可以提高生产效率和产品质量,因为它能够减少故障和延迟,并提供更长久的使用寿命。

4. 超静定的未来随着科技和工程学的不断发展,超静定技术在未来将得到更广泛的应用。

尤其是在智能建筑、智能交通和智能制造等领域,超静定系统将发挥更加重要和基础的作用,以推动工业和社会的升级和发展。

因此,学习和掌握超静定概念和技术,对于现代的工程师和科技工作者来说,将成为必不可少的一项素质。

总之,超静定的概念是现代工程学中不可或缺的一个基石。

超静定结构的概念及超静定次数的确定ppt课件

超静定结构的概念及超静定次数的确定ppt课件
➢力法基本未知量与基本结构是一一对应的,基本未知量确定后,对应 的基本结构也就确定了。
➢力法基本未知量数目(超静定次数)是唯一的,而基本结构不唯一。
简支梁作为基本结构
原结构
X2
X1
还可以选择哪些 基本结构?
Strucural Analysis
.
School of Civil Engineering, Tongji8Univ.
➢土木工程专业的力学可分为两大类,即“结构力学类”和“弹性力学 类”。
“结构力学类”包括理论力学、材料力学和结构力学,其分析方法具有 强烈的工程特征,简化模型是有骨架的体系(质点、杆件或杆系), 其力法基本未知量一般是“力”,方程形式一般是线性方程。
“弹性力学类”包括弹塑性力学和岩土力学,其思维方式类似于高等数
§9-1 超静定结构的概念
❖ “力法”的发展
➢法国的纳维于1829年提出了求解超静定结构问题的一般方法(基本方 程)。
➢19世纪30年代,由于桥梁跨度的增长,出现了金属桁架结构。从1847 年开始的数十年间,学者们应用图解法、解析法等研究静定桁架的受 力,这奠定了桁架理论的基础。1894年英国的麦克斯韦创立了单位荷 载法和位移互等定理,并用单位荷载法求出桁架的位移,由此学者们 终于得到了求解超静定问题的方法——力法。
(√)
X2
多体悬臂刚 架作为基本
结构
(√)
瞬变体系不 能作为基本
结构
(×)
一个超静定结构可能有多种形式的基本结构,不同基本结构带来不同的计算工作量。
Strucural Analysis
.
School of Civil Engineering, Tong1ji3Univ.
§9-1 超静定次数和力法基本结构

常见的超静定结构形式

常见的超静定结构形式

常见的超静定结构形式
1. 平衡树:平衡树是一种特殊的二叉查找树,它在每个节点左右子树的高度最多相差一,也就是说每个节点的子树中叶子节点分布平衡,它可以在O(logN)时间内完成插入,删除,查找操作。

2. AVL树:AVL树也是一种特殊的二叉查找树,它具有以下特性:1)每个节点的左右子树的高度最多相差1;2)每个节点的左右子树的高度最多相差1;3)它可以在O(logN)时间内完成插入,删除,查找操作。

3. 红黑树:红黑树也是一种特殊的二叉查找树,它具有以下特性:1)每个节点的左右子树的高度相等;2)每个节点的子节点不允许相互交叉;3)它可以在
O(logN)时间内完成插入,删除,查找操作。

4. 哈夫曼树:哈夫曼树是一种最优查找树,它的每个节点的权重符合最优性原理。

哈夫曼树的最坏情况的查找时间复杂度是O(logN)。

;。

能量法与超静定结构

能量法与超静定结构

探讨能量法与其他数值方法(如 有限元法、边界元法等)的结合, 以实现更高效、精确的结构分析。
深入研究能量法的理论基础,完 善和发展能量法的理论体系,提 高其在解决复杂工程问题中的可
靠性和精度。
THANKS
感谢观看
变形协调性
超静定结构的各部分之间 存在变形协调关系,即各 部分之间的相对位移受到 约束。
内力分布
超静定结构的内力分布与 静定结构不同,因为多余 约束的存在导致内力的重 新分布。
超静定结构的分类
按多余约束数分类
可分为一次超静定、二次超静定等。
按结构形式分类
可分为连续梁、刚架、拱等。
04
能量法在超静定结构中的应用
05
案例分析

案例一:某桥梁的超静定结构分析
总结词
桥梁的超静定结构分析
详细描述
利用能量法对某桥梁的超静定结构进行分析,包括确定结构的自由度、建立势能函数和动能函数、求 解平衡方程等步骤,以确定结构的稳定性和安全性。
案例二:某高层建筑的超静定结构优化设计
总结词
高层建筑的超静定结构优化设计
VS
详细描述
能量法在超静定结构优化设计中的应用
尺寸优化
利用能量法对超静定结构的尺寸进行优化,通过调整结构 尺寸参数,使结构的总能量最小化,达到最优设计效果。
形状优化
利用能量法对超静定结构的形状进行优化,通过改变结构的几 何形状,使结构的总能量最小化,达到最优设计效果。
拓扑优化
利用能量法对超静定结构的拓扑进行优化,通过改变结构的支 撑方式和连接方式,使结构的总能量最小化,达到最优设计效 果。
能量法在超静定结构分析中的应用
静力分析
利用能量法对超静定结构进行静 力分析,通过计算结构的应变能 和动能,推导出结构的位移和应 力分布。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《工程中常见超静定结构简介》教学设计
图二
图三三、归纳比较
设计意图
本课题教学采用“前置作业导学+简介”相结合的教学形式,以“自主学习、组内交流、小组展示、自我检测、反思提高”为基本教学环节,构建“阳光、自主、高效”课堂。

1、前置作业
课前精心预设导学提纲为前置作业,是为了培养学生自主学习能力,彰显学生为主体,教师为主导的思想,实现“先学后教(导)、以学定教”的教改理念。

考虑到当前中职学生的学习现状,教师在引导的基础上,应积极鼓励学生大胆交流与展示,重视课中动态生成。

对于重点内容,教师应结合工程案例进行分析,突出工程应用,培养学生从事土木工程施工的岗位能力。

2、探究与感悟
设置探究与感悟,是为了让学生达到课后反思提高的目的。

探究问题的设计,主要为了知识的扩展,培养学生的创新能力。

感悟问题的设计,主要为了突出工程应用,提高学生解决工程实际问题的能力,增强安全生产的意识。

相关文档
最新文档