九年级数学下册第二十九章投影与视图知识点总结新版新人教版
第29章 投影与视图小结 人教版数学九年级下册课时1课件(17张)
知识梳理
1. 投影、平行投影、中心投影 (1) 投影:物体在光线的照射下,会在某个平面 (地面或 墙壁)上留下它的影子,这就是投影现象. 如下图:
知识梳理
(2) 平行投影: 太阳光线可以看成平行光线,像这样的光线所形成的投 影,称为平行投影,如下图:
知识梳理
(3) 中心投影: 手电筒、路灯和台灯的光线可以看成是从一点发出的, 像这样的光线所形成的投影称为中心投影,如下图:
深化练习
1.小华拿一个矩形木框在阳光下玩,矩形木框在地面上 形成的投影不可能是( A )
A
B
C
D
深化练习
2. 如图是一根电线杆在一天中不同时刻的影长图,试按
其一天中发生的先后顺序排列,正确的是( D )
A. ①②③④
B. ②①③④
C. ④①③②
D. ②③①④
北 东
北 东
北 东
北 东
①
②
③
④
重点解析
人教版-数学-九年级-下册
投影与视图
29 小结课
知识梳理-重点解析-深化练习
知识梳理
投 影
概念
一般地,用光线照射物体,在某个平面 (地 面、墙壁等) 上得到的影子叫做物体的投影
分类
平行投影 中心投影
投影作图
光线是平行的
同一时刻,不同物体的高度 与其影长成正比
光线是相交的, 交点为点光源
影子随物体位置 的变化而改变
知识梳理
(4) 平行投影与中心投影的区别与联系:
区别
联系
平行投影 中心投影
投影线互相平行, 都是物体在光线的
形成平行投影
照射下,在某个平
投影线集中于一点, 形成中心投影
九年级数学下册第二十九章《投影与视图》综合知识点总结
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.“圆柱与球的组合体”如下图所示,则它的三视图是()A.B.C.D.2.如图所示的几何体的俯视图是()A.B.C.D.3.如图是某个几何体的三视图,则该几何体是()A.圆锥B.三棱柱C.圆柱D.三棱锥4.桌面上放着长方体和圆柱体各1个,按下图所示的方式摆放在一起,其左视图是()A.B.C.D.5.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A.9 B.10 C.11 D.126.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.57.从上面看下图能看到的结果是图形()A.B.C.D.8.一个几何体由若干大小相同的小立方块搭成,从它的正面、左面看到的形状图完全相同(如下图所示),则组成该几何体的小立方块的个数至少有()A.3个B.4个C.5个D.6个9.下列几何体中,三视图有两个相同而另一个不同的是()A.(1)(2)B.(2)(3)C.(2)(4)D.(3)(4)10.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形11.下列几何体中,其主视图、俯视图和左视图分别是图中三个图形的是()A.B.C.D.12.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m13.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A.B.C.D.14.如图所示的几何体的俯视图为( )A.B.C.D.二、填空题15.一个几何体是由一些大小相同的小正方块摆成的,从正面看与从上面看得到的形状图如图所示,则组成这个几何体的小正方体的个数n的所有可能值的和是______________16.已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是_______.17.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为_____.18.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的底面边长是__________.19.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.20.如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为_____.21.如图是由几个小立方块搭成的几何体的主视图与左视图,这个几何体最多可能有________个小立方块.22.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于___米.23.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是_____.24.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.25.如图,在A时测得旗杆的影长是4米,B时测得旗杆的影长是16米,若两次的日照光线恰好垂直,则旗杆的高度是______米.26.如图,将19个棱长为a的正方体按如图摆放,则这个几何体的表面积是_____.三、解答题27.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)28.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D 不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.29.用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是立方单位,表面积是平方单位(包括底面积);(2)请在方格纸中用实线画出它的三个视图.30.如图是由6个相同的小正方体组成的几何体,请在指定的位置画出从正面、左面、上面看得到的这个几何体的形状图.【参考答案】一、选择题1.A2.B3.B4.C5.C6.A7.D8.B9.B10.A11.A12.A13.C14.C二、填空题15.11【分析】易得这个几何体共有2层由主视图和俯视图可得第一层最多正方体的个数为3块第二层最多正方体的个数为3块相加即可【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=55+616.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几17.3cm2【分析】由三视图想象几何体的形状首先应分别根据主视图俯视图和左视图想象几何体的前面上面和左侧面的形状然后综合起来考虑整体形状【详解】解:该几何体是一个三棱柱底面等边三角形边长为2cm底面三角18.2【解析】考点:由三视图判断几何体分析:由主视图可得长方体的高和底面正方形的对角线长利用勾股定理即可求得长方体的底面边长解答:解:∵主视图的长为2俯视图为正方形∴长方体的底面边长为2÷=2∵主视图的19.75【解析】试题20.90π【分析】根据圆锥侧面积公式首先求出圆锥的侧面积再求出底面圆的面积为即可得出表面积【详解】解:∵如图所示可知圆锥的高为12底面圆的直径为10∴圆锥的母线为:13∴根据圆锥的侧面积公式:πrl=π21.9【解析】试题22.10【解析】试题23.5【解析】试题24.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何25.8【分析】如图∠CPD=90°QC=4mQD=9m利用等角的余角相等得到∠QPC=∠D则可判断Rt△PCQ∽Rt△DPQ然后利用相似比可计算出PQ【详解】解:如图∠CPD=90°QC=4mQD=1626.54a2【分析】求这个几何体的表面积就要数出这个几何体中小正方体漏在外面的面的个数从前后左右上下方向上来数然后用一个面的面积乘面的个数即可【详解】解:从前后左右上下方向看到的面数分别为:101088三、解答题27.28.29.30.【参考解析】一、选择题1.A解析:A【分析】根据几何体三视图的定义即可得.【详解】从正面看和从左面看得到的平面图形都是一个圆和一个矩形的组合图形,从上面看得到的平面图形是一个圆环,观察四个选项可知,只有选项A符合,故选:A.【点睛】本题考查了几何体的三视图,熟练掌握定义是解题关键.2.B解析:B【分析】根据俯视图的概念逐一判断即可得.【详解】解:图中几何体的俯视图如图所示:故答案为:B.【点睛】本题考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.3.B解析:B【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱,故选B.4.C解析:C【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查三视图的知识,左视图是从物体的左面看得到的视图.5.C解析:C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据主视图与俯视图得出答案.【详解】解:根据几何体的主视图和俯视图,可以得出那个主视图看最少5个,那个俯视图看,最左边正方形前后可以有三列,分别有三个⨯+个.故最多有332=11故选C.【点睛】本题考查了三视图的应用,根据从俯视图看,最左边正方形前后可以有三列,分别有三个从而得出答案是解决问题的关键.6.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.【详解】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A.【点睛】此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.7.D解析:D【分析】先细心观察原立体图形中的圆锥体和长方体的位置关系,结合四个选项选出答案.【详解】从上面往下看到左边一个长方形,右边一个圆,因此只有D的图形符合这个条件.故选:D.【点睛】本题考查了三视图的知识,解题的关键是熟知俯视图是从上面往下的视图.8.B解析:B【分析】从主视图上弄清物体的上下和左右形状,从左视图上弄清楚物体的上下和前后形状,综合分析,即可得出答案.【详解】解:根据主视图和左视图可得:搭这样的几何体最少需要4个小正方体;故选:B.【点睛】此题考查三视图,解题关键在于掌握其定义.9.B解析:B【解析】【分析】根据三视图的定义即可解答.【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B.【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.10.A解析:A【分析】根据平行投影的性质进行分析即可得出答案.【详解】将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选A.【点睛】本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.11.A解析:A【解析】分析:根据三视图想象立体图形,从主视图可以看出左边的一列有两个,左视图可以看出右边一列有两个,俯视图中左边的一列有两个,综合起来可得解.详解:从主视图可以看出左边的一列有两个,右边的两列只有一行(第二行);从左视图可以看出右边的一列有两个,左边的一列只有一行(第二行);从俯视图可以看出左边的一列有两个,右边的两列只有一行(第一行).故选A..做这类题时要借助三种视图表示物体的特点,从主点睛:本题考查由三视图想象立体图形视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.12.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 13.C解析:C【解析】【分析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C .【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键. 14.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看外面是一个矩形,里面是一个圆形,故选C .【点睛】考查了简单组合体的三视图,从上边看得到的图形是俯视图.二、填空题15.11【分析】易得这个几何体共有2层由主视图和俯视图可得第一层最多正方体的个数为3块第二层最多正方体的个数为3块相加即可【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=55+6解析:11【分析】易得这个几何体共有2层,由主视图和俯视图可得第一层最多正方体的个数为3块,第二层最多正方体的个数为3块,相加即可.【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=5,5+6=11,故答案为:11.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.16.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几解析:6【分析】根据主视图和俯视图判断几何体的底层的正方体的个数,根据主视图和左视图判断几何体的第二和第三层的正方体的个数,计算即可.【详解】解:从主视图和俯视图可知,几何体的底层有4个正方体,从主视图和左视图可知,几何体的第二和第三层各一个正方体,则搭成这个几何体的小正方体的个数为:4+1+1=6,故答案为:6.【点睛】本题考查的是由三视图判断几何体,掌握几何体的主视图、左视图和俯视图的概念是解题的关键.17.3cm2【分析】由三视图想象几何体的形状首先应分别根据主视图俯视图和左视图想象几何体的前面上面和左侧面的形状然后综合起来考虑整体形状【详解】解:该几何体是一个三棱柱底面等边三角形边长为2cm底面三角解析:2.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【详解】解:该几何体是一个三棱柱,底面等边三角形边长为2cm cm,三棱柱的高为3cm,∴其左视图为长方形,长为3cm,宽为3cm,∴面积为:3×3=33(cm2),故答案为:33cm2.【点睛】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.18.2【解析】考点:由三视图判断几何体分析:由主视图可得长方体的高和底面正方形的对角线长利用勾股定理即可求得长方体的底面边长解答:解:∵主视图的长为2俯视图为正方形∴长方体的底面边长为2÷=2∵主视图的解析:2【解析】考点:由三视图判断几何体.分析:由主视图可得长方体的高和底面正方形的对角线长,利用勾股定理即可求得长方体的底面边长.解答:解:∵主视图的长为22,俯视图为正方形,∴长方体的底面边长为22÷2=2,∵主视图的高就是几何体的高,∴这个长方体的高和底面边长分别是3,2.点评:用到的知识点为:主视图反映几何体的长与高,注意物体摆放位置的不同得到主视图的形状也不同.19.75【解析】试题解析:7.5【解析】试题当旋转到达地面时,为最短影长,等于AB,∵最小值3m,∴AB=3m,∵影长最大时,木杆与光线垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴BC AB,EC EF∵AE=5m,∴43,10EF解得:EF=7.5m.故答案为7.5.点睛:相似三角形的性质:相似三角形的对应边成比例.20.90π【分析】根据圆锥侧面积公式首先求出圆锥的侧面积再求出底面圆的面积为即可得出表面积【详解】解:∵如图所示可知圆锥的高为12底面圆的直径为10∴圆锥的母线为:13∴根据圆锥的侧面积公式:πrl=π解析:90π【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积为,即可得出表面积.【详解】解:∵如图所示可知,圆锥的高为12,底面圆的直径为10,∴圆锥的母线为:13,∴根据圆锥的侧面积公式:πrl=π×5×13=65π,底面圆的面积为:πr2=25π,∴该几何体的表面积为90π.故答案为90π.21.9【解析】试题解析:9【解析】试题∵由主视图可得组合几何体的底层有3列,由左视图可得该几何体有2行,∴最底层最多有3×2=6个正方体,主视图和左视图可得第2层最多有1+1=2个正方体,最上一层最多有1个正方体,∴组成该几何体的正方体最多有6+2+1=9个.所以本题的正确答案应为9个.22.10【解析】试题解析:10【解析】试题如图所示,作DH⊥AB与H,则DH=BC=8 m,CD=BH=2 m,根据题意得∠ADH = 45°,所以△ADH为等腰直角三角形,所以AH=DH=8 m,所以AB=AH+BH=8+2=10 m.所以本题的正确答案应为10米.23.5【解析】试题解析:5【解析】试题综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.24.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个.点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.25.8【分析】如图∠CPD=90°QC=4mQD=9m利用等角的余角相等得到∠QPC=∠D则可判断Rt△PCQ∽Rt△DPQ然后利用相似比可计算出PQ【详解】解:如图∠CPD=90°QC=4mQD=16解析:8【分析】如图,∠CPD=90°,QC=4m,QD=9m,利用等角的余角相等得到∠QPC=∠D,则可判断Rt△PCQ∽Rt△DPQ,然后利用相似比可计算出PQ.【详解】解:如图,∠CPD=90°,QC=4m,QD=16m,∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴PQ QCQD PQ=,即416PQPQ=,∴PQ=8,即旗杆的高度为8m.故答案为8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.也考查了相似三角形的判定与性质.26.54a2【分析】求这个几何体的表面积就要数出这个几何体中小正方体漏在外面的面的个数从前后左右上下方向上来数然后用一个面的面积乘面的个数即可【详解】解:从前后左右上下方向看到的面数分别为:101088解析:54a2【分析】求这个几何体的表面积,就要数出这个几何体中小正方体漏在外面的面的个数,从前、后、左、右、上、下方向上来数,然后用一个面的面积乘面的个数即可.【详解】解:从前、后、左、右、上、下方向看到的面数分别为:10,10,8,8,9,9所以表面积为(10+10+8+8+9+9 )a2=54a2,故答案为:54a2.【点睛】本题主要考查组合体的表面积,分析图形,掌握表面积的计算公式是解题的关键.三、解答题27.(1)主,俯;(2)207.36cm2【分析】(1)根据三视图的定义解答即可;(2)所求组合几何体的表面积=长方体的表面积+圆柱的侧面积,据此代入数据计算即可.【详解】解:(1)如图所示:;故答案为:主,俯;(2)组合几何体的表面积=2×(8×5+8×2+5×2)+4×π×6=2×66+24×3.14=207.36(cm2).【点睛】本题考查了几何体的三视图和几何体表面积的计算,正确理解题意、熟练掌握基本知识是关键.28.(1)证明见试题解析;(2)5;(3)50 13.【解析】试题分析:(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BD=x,CD,BD,BO用x表示出来,所以可得BD长.(3)同(2)原理,BD=B′D=x,A B′,B′O,BO用x表示,利用等腰三角形求BD长.试题(1)证明:∵DO⊥AB,∴∠DOB=90°,∴∠ACB=∠DOB=90°,又∵∠B=∠B.∴△DOB∽△ACB.(2)∵AD 平分∠CAB,DC⊥AC,DO⊥AB,∴DO=DC,在 Rt△ABC 中,AC=6,BC=,8,∴AB=10,∵△DOB∽△ACB,∴DO∶BO∶BD=AC∶BC∶AB=3∶4∶5,设BD=x,则DO=DC=35x,BO=45x,∵CD+BD=8,∴35x+x=8,解得x=,5,即:BD=5.(3)∵点B 与点B′关于直线DO 对称,∴∠B=∠OB′D,BO=B′O=45x,BD=B′D=x,∵∠B 为锐角,∴∠OB′D 也为锐角,∴∠AB′D 为钝角,∴当△AB′D是等腰三角形时,AB′=DB′,∵AB′+B′O+BO=10,∴x +45x +45x =10,解得x =5013,即BD =5013, ∴当△AB′D 为等腰三角形时,BD =5013. 点睛:角平分线问题的辅助线添加及其解题模型.①垂两边:如图(1),已知BP 平分ABC ∠,过点P 作PA AB ⊥,PC BC ⊥,则PA PC =.②截两边:如图(2),已知BP 平分MBN ∠,点A BM 上,在BN 上截取BC BA =,则ABP ∆≌CBP ∆.③角平分线+平行线→等腰三角形:如图(3),已知BP 平分ABC ∠,//PA AC ,则AB AP =;如图(4),已知BP 平分ABC ∠,//EF PB ,则BE BF =.(1) (2) (3) (4)④三线合一(利用角平分线+垂线→等腰三角形):如图(5),已知AD 平分BAC ∠,且AD BC ⊥,则AB AC =,BD CD =.(5)29.(1)5;22;(2)见解析.【分析】(1)根据几何体的形状得出立方体的体积和表面积即可;(2)主视图有3列,从左往右每一列小正方形的数量为2,1,1;左视图有2列,小正方形的个数为2,1;俯视图有3列,从左往右小正方形的个数为1,2,1.【详解】解:(1)几何体的体积:1×1×1×5=5(立方单位),表面积:小正方体被遮住的面有8个,所以表面积为:1×1×22=22(平方单位); (2)如图所示:【点睛】此题主要考查了画几何体的三视图,关键是掌握三视图所看位置.30.见解析.【分析】根据三视图的定义画出图形即可.【详解】该几何体的三视图如图所示:【点睛】此题考查三视图的定义,解题的关键是学会观察和想象,再画它的三视图.。
九年级数学人教版第二学期第29章视图与投影整章知识详解
长对正:主视图和俯视图共同反映了物体左右方向的尺寸.
九年级数学第29章投影与视图
画出如图所示一些基本几何体的三视图.
九年级数学第29章投影与视图
宽相等
主视图
左视图
俯视图 宽相等:俯视图和左视图共同反映了物体前后方向的尺寸.
九年级数学第29章投影与视图
俯
左
球体 主
九年级数学第29章投影与视图
九年级数学第29章投影与视图
九年级数学第29章投影与视图
29.1 投影
第2课时
九年级数学第29章投影与视图
1、能根据正投影的性质画出简单的平面图形的正投影; 2、培养动手实践能力,发展空间想象能力.
九年级数学第29章投影与视图
1.什么叫投影? 一般地,用 光线 照射物体,在 某个平面 上得到 的影子叫做物体的投影. 2.投影的分类: 由 平行光线 形成的投影是平行投影(例如太阳光,探 照灯光); 由 点光源发出的光线 形成的投影是中心投影 (例如灯 泡).
九年级数学第29章投影与视图
(2)下图是两棵小树在同一时刻的影子.请你在图中画出 形成树影的光线.它们是太阳的光线下形成的还是灯光下 形成的?画出同一时刻旗杆的影子,并与同伴交流这样做的 理由.
A
B
线段AB即为旗杆的影子
九年级数学第29章投影与视图
【例2】确定图中路灯灯泡所在的位置.
O
怎样确定一个点?
盆花的影子,树影是路灯灯光形成的.你P能确
定此时路灯光源的位置吗?
九年级数学第29章投影与视图
1.一个人离开灯光的过程中人的影长( C )
A、不变 B、变短 C、变长 D、不确定
2.同一灯光下两个物体的影子可以是( D )
初三数学下册(人教版)第二十九章投影与视图29.2知识点总结含同步练习及答案
描述:例题:初三数学下册(人教版)知识点总结含同步练习题及答案第二十九章 投影与视图 29.2 三视图一、学习任务1. 掌握常见物体的三视图的画法及其作用.二、知识清单三视图三、知识讲解1.三视图三视图定义将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓绘制出来的平面图形称为视图.从物体的前面向后面投射所得的视图称主视图;从物体的上面向下面投射所得的视图称俯视图;从物体的左面向右面投射所得的视图称左视图;三视图就是主视图、俯视图、左视图的总称.常见几何体的三视图 由视图到立体图形① 主视图反映物体的长和高,主要提供正面的形状;② 左视图反映物体的高和宽,主要提供左侧面的形状;③ 俯视图反映物体的长和宽,主要提供上面的形状,由俯视图看不出物体的高.下列几何体,主视图和俯视图都为矩形的是( )四、课后作业(查看更多本章节同步练习题,请到快乐学)解:D.如图是由个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )解:B.6如图是某个几何体的三视图,则该几何体的形状是( )A. 长方体B. 圆锥C. 圆柱D. 三棱柱解:D.根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.答案:1.某几何体的三视图如图所示,则这个几何体是A .圆柱B .正方体C .球D .圆锥D()解析:由主视图和左视图都是三角形可知,这个几何体是圆锥.答案:2.如图是由六个小正方体组合而成的一个立体图形,它的主视图是A.B .C.D .B()3. 将如图所示的绕直角边 旋转一周,所得几何体的左视图是A .B.C .Rt△ABC BC ()高考不提分,赔付1万元,关注快乐学了解详情。
答案:D .A答案:解析:4.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是A.B .C .D .D此类题主要考查学生们的空间想象能力,一般考查常见的简单的几何体有圆柱,正方体及其组合体.应注意看的见的轮廓线与看不见的轮廓线的画法与圆锥与圆柱的视图的区别是否有圆心,相对来说考查的较为简单,此题故选D .()。
人教版初三下学期数学第29章知识点汇总
人教版初三下学期数学第29章知识点汇总
29.1投影
一、知识要点
1、投影 (1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影 (projection),照射光线叫做投影线,投影所在的平面叫做投影面。
(2)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。
由平行光线形成的投影是平行投影(parallel projection).
gt;gt;gt;gt;初三数学知识点总结:投影与视图
29.2三视图
1.光线从几何体的前面向后面正投影得到的投影图,
叫做几何体的正视图.
2.光线从几何体的左面向右面正投影得到的投影图,
叫做几何体的侧视图.
gt;gt;gt;gt;九年级数学《三视图》知识点梳理初三下学期数学第29章知识点就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!!数学知识点帮助大家轻松愉快地总结功课~。
九年级数学下册第二十九章《投影与视图》知识点总结(1)
一、选择题1.如图,是由-些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块最后搭成一个大的长方体,至少还需要添加()个小立方块.A.26 B.38 C.54 D.562.“圆柱与球的组合体”如下图所示,则它的三视图是()A.B.C.D.3.如图,左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.4.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.5.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.36.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个7.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时8.如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m",CA=0.8m,则树的高度为()A .4.8mB .6.4mC .8mD .10m9.如图是由五个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D . 10.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是( )A .B .C .D .11.下面的三视图对应的物体是( )A .B .C .D .12.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x + 13.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )A .B .C .D . 14.下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:915.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是( ).A .主视图的面积为4B .左视图的面积为4C .俯视图的面积为3D .三种视图的面积都是4二、填空题16.一个几何体是由一些大小相同的小正方块摆成的,从正面看与从上面看得到的形状图如图所示,则组成这个几何体的小正方体的个数n 的所有可能值的和是______________17.10个棱长为a cm 的正方体摆放成如图的形状,这个图形的表面积是____________.18.一般把物体从正面看到的视图叫主视图,从左面看到的视图叫左视图,从上面看到的视图叫俯视图,一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为______.19.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图. 已知桌面直径为1.2米,桌面离地面1米. 若灯泡离地面3米,则地面上阴影部分的面积为__________(结果保留π)20.如图,体育兴趣小组选一名身高1.6m的同学直立于旗杆影子的顶端处,其他人分为两部分,一部分同学测得该同学的影长为1.2m,另一部分同学测得同一时刻旗杆影长为9m,那么旗杆的高度是__m.21.图中几何体的主视图是().A BC D22.身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影_________.(填长或短)23.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为________m.24.几个相同的正方体叠合在一起,该组合体的主视图和俯视图如右图所示,那么组合体中正方体的个数至多有________个.25.如图,墙角处有6个棱长为1分米的正方体纸盒,露在外面的面积之和是_____平方分米.26.由一些完全相同的小正方体组成的几何体,从正面看和左面看的图形如图所示,则组成这个几何体的小正方体的个数至少是_____个.三、解答题27.如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.(1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影);(2)图中共有个小正方体.28.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.29.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).30.如图是由一些大小相同的小正方体组合成的简单几何体.(1)请在下面方格中分别画出它的三个视图;(2)如果在这个几何体上再添加一些正方体,并保持主视图和左视图不变,最多可以再添加块小正方体.。
新人教版九年级数学下册第29章投影与视图小结
•
10、低头要有勇气,抬头要有低气。0 9:21:17 09:21:1 709:21 4/4/202 1 9:21:17 AM
•
11、人总是珍惜为得到。21.4.409:21:1 709:21 Apr-214 -Apr-21
•
12、人乱于心,不宽余请。09:21:1709 :21:170 9:21Sunday, April 04, 2021
在实际的生产中,三视图和展开图往往结合在一起使用.由 三视图想象出立体图形的形状,再进一步画出展开图.
对于某些立体图形,沿着其中一些线(例如棱柱的棱)剪开, 可以把立体图形的表面展开成一个平面图形——展开图.
三视图
实物
展开图
•
9、 人的价值,在招收诱惑的一瞬间被决定 。21.4.4 21.4.4S unday, April 04, 2021
形状、大小一样
2. 什么是三视图?它是怎样得到的?画三视图要注意什么?
一个物体(例如一个长方体)在三个投影面内同时进行正投影,在正 面内得到的由前向后观察物体的视图,叫做主视图; 在水平面内得到的由上向下观察物体的视图,叫做俯视图
在侧面内得到由左向右观察物体的视图,叫做左视图.
主视图
投影面
左视图
正面
•
13、生气是拿别人做错的事来惩罚自 己。21. 4.421.4. 409:21: 1709:2 1:17Apr il 4, 2021
•
14、抱最大的希望,作最大的努力。2 021年4 月4日 星期日 上午9时 21分17 秒09:2 1:1721. 4.4
•
15、一个人炫耀什么,说明他内心缺 少什么 。。202 1年4月 上午9 时21分2 1.4.409 :21Apri l 4, 2021
人教版数学九年级下册(课件)第二十九章 投影与视图 小
A.
B.
C.
D.
4、如图,晚上王华由路灯AC走向路
灯BD。当他走到点P时,身后影子的顶
部恰好接触到路灯AC的底部;当他继
续向前步行12m到达点Q时,身前影子
的顶部刚好接触到路灯BD的底部。已
知王华身高1.6m, C
D
两路灯的高度都是
9.6m。(1)求两个路
灯之间的距离;
M
N
AP
QB
(2)求王华走到路灯BD处时,他在路灯AC下的影 子长
义务教育教科书(人教版)九年级数学下册
物体 光照 (立体图形)
投影
点光源 中心投影 平行光线 平行投影
画想 图象ห้องสมุดไป่ตู้
由前向后看 主视图
于光 投线 影垂 面直
三视图
俯视图 由上向下看 左视图 由左向右看
正投影 (视图)
1、什么是中心投影、平行投影?什么是正投影? 2、当平面图形分别平行、倾斜和垂直于投影面 时,它的正投影是什么性质? 3、什么是三视图?它是怎样得到的?画三视图 要注意什么? 4、举例说明立体图形与其三视图、展开图之间 的关系?
1、下列现象属于平行投影的是( ) A. 皮影 B. 灯光下的手影 C. 太阳光下房屋的影子 D. 台灯下铅笔的影子
2、在同一时刻,小明的影子比小强的
影子长,那么在同一路灯下(
)
A. 小明的影子比小强的影子长
B. 小明的影子比小强的影子短
C. 小明和小强的影子一样长
D. 无法判断谁的影子长
3、小华拿一个矩形木框在阳光下玩, 矩形木框在地面上形成的投影不可能 是( )
C
D
M AP
N QB
5、将如图所示的Rt△ABC绕直角边 AC所在的直线旋转一周,所得到的几 何体的主视图是( )
人教版数学九年级下册:第二十九章《投影与视图》知识点
第29章投影与三视图一、目标与要求1.会从投影的角度理解视图的概念2.会画简单几何体的三视图3.通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系4.明确正投影与三视图的关系5.经历探索简单立体图形的三视图的画法,能识别物体的三视图6.培养动手实践能力,发展空间想象能力。
二、知识框架四、重点、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。
难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。
四、中考所占分数及题型分布本章在中考中会出1道选择或者填空,也有可能不出。
在简答题中会在几何题中穿插应用,本章约占3-5分。
第29章 投影与三视图29.1 投影1.投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2.平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。
由平行光线形成的投影是平行投影.3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
例.把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状?通过观察、测量可知:(1)当线段AB 平行于投影面P 时,它的正投影是线段11A B ,线段与它的投影的大小关系为11AB A B =;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段22A B ,线段与它的投影的大小关系为22AB A B =;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点3A .例.把一正方形硬纸板P (记正方形ABCD )放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面。
新人教版九年级数学下册全套PPT课件 第二十九章 投影与视图全章课件汇总
(3)如果上图中小三角形的边长为1,那么对应的多面体的体积和表面 积各是多少?
答案:
√
×
√
2、找出图中三视图所对应的直观图。
(1)
(√2)
(3)
(4)
课堂小结
1. 数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空 间形式是从现实世界中抽象出来的。
(2)正方体的一个面ABCD倾斜于投影面P,上底面ADEF垂直于投影面P,并 且上底面的对角线AE垂直于投影面P。
A’
D’
B’
C’
A
D
B
C
例、画出如图摆放的正方体在投影面P上的正投影。
(1)正方体的一个面ABCD平行于投影面P;
(2)正方体的一个面ABCD倾斜于投影面P,上底面ADEF垂直于投影面P,并 且上底面的对角线AE垂直于投影面P。
二、工具准备 刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯(或萝卜)等.
观察
探究
以上的立体图形,都是通过拼接平面图形得 到的。
如何制作平面图形,从而拼接得到立体图形 呢?
观察三视图,并 综合考虑各视图所表 示的意思以及视图间 的联系,可以想象出 三视图所表示的立体图形的形状,这 是由视图转化为立体图形的过程。
长,且上面正方形位于下面正方形的中间.故选B.
2.下列几何体中,左视图是圆的是( D) 中考链接
解析:图形A的左视图是等腰三角形;图形B的左视图是 长方形;图形C的左视图是梯形;图形D的左视图是圆.故 选D.
中考链接
3.在①长方体、②球、③圆锥、④竖放的圆柱、
⑤竖放的正三棱柱这五种几何体中,其主视图、
九年级数学下册第二十九章投影与视图本章总结提升课件新版新人教版
本章总结提升
第二十九章 投影与视图
本章总结提升
知识框架 整合提升 专题阅读
本章总结提升
知识框架
本章总结提升
整合提升
问题1 投影的应用
什么是中心投影、平行投影?什么是正投影?当平面图形分别平 行、倾斜和垂直于投影面时,它的正投影有什么性质?
本章总结提升
例1 如图29-T-1(示意图),某同学想测量旗杆的高度,他在某 一时刻测得1米长的竹竿竖直放置时的影长为1.5米,在同一时 刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面 上,有一部分落在墙上,他测得落在地面上的影长为15米,留 在墙上的影高为2米,求旗杆的高度.
本章总结提升
问题5 由三视图求表面积和体积
三视图有何实际应用? 例5 如图29-T-5是一个物体的三视图,根 据设计图纸上标明的尺寸(单位:mm)计算该 物体的表面积和体积.
图29-T-5
本章总结提升
[解析]由三视图可以看出:物体是由上、下两个半径不同的圆柱组成 的,其立体图和展开图如图①,②所示.
[解析] 从正面看到的是正方形且右上角有三角形,从左面看是正方形(不 要忽略看不见的轮廓线),从上面看到的是正方形且右下角有三角形.
解:如图所示.
本章总结提升
【归纳总结】画三视图时要注意“长对正、高平齐、宽相等”, 看得见的轮廓线画成实线,看不见的轮廓线画成虚线.
本章总结提升
问题3 由三视图描述几何体
本章总结提升
【归纳总结】根据设计图纸中的三视图及其上所标尺寸求零件的 表面积和体积,这是三视图在实际生活中的主要应用,也是日常 生活中经常遇到的问题.解决这类问题时,首先由三视图想象出 几何体的形状,再画出其展开图,然后根据图中尺寸利用相应公 式进行计算或解决最优化问题.
最新整理人教版九年级数学下册第二十九章《投影与视图(小结与复习训练)》优质课件
29 小结与复习/
主视图 左视图
Hale Waihona Puke 左视高图
长
宽
宽 俯视图
将三个投影面展开在一个平面内,得到这个物体 的一张三视图.
29 小结与复习/
(2) 三视图的画法:
主视图 左视图
高
①确定主视图的位置,画出主视图;
长
宽
②在主视图正下方画出俯视图,注
宽
意与主视图长对正;
俯视图
③在主视图正右方画出左视图,注意与主视图高平齐,
考点讲练
29 小结与复习/
考点二 三视图
针对训练
1. 下列四个立体图形中,左视图为矩形的是
(B)
A. ①③ C. ②③
B. ①④ D. ③④
29 小结与复习/
2. 由4个相同的小立方体搭成的几何体如图所示,则它
的主视图是
( A)
29 小结与复习/
3. 请根据下面提供的几何图形,画出它的三视图.
(5) 由三视图确定几何体的面积和体积: ①先根据给出的三视图确定立体图形,并确定立体 图形的长、宽、高、底面半径等; ②根据已知数据,求出立体图形的体积(或将立体 图形展开成一个平面图形,求出展开图的面积).
考点讲练
考点一 投影
29 小结与复习/
针对训练 1. 试确定图中路灯的位置,并画出此时小赵在路灯下的
29 小结与复习/
6. 如图是某圆锥的三视图,请根据图中尺寸计算该圆 锥的表面积 (结果保留3位有效数字).
解:由三视图知,圆锥的高为 2 3 cm,底面半径为 2 cm, ∴圆锥的母线长为4cm. ∴圆锥的表面积为π×22+π×2×4=12π ≈37.7(cm2).
课堂小结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点一:三视图内 容
1.三视图
主视图 俯视图 左视图
2.三视图的对应关系
(1)长对正:主视图与俯视图的长相等,且相互对正;
(2)高平齐:主视图与左视图的高相等,且相互平齐;
(3)宽相等:俯视图与左视图的宽相等,且相互平行.
3.常见几何体的三视图常见几何体的三视图
正方体:正方体的三视图都是正方形.
圆柱:圆柱的三视图有两个是矩形,另一个是圆.
圆锥:圆锥的三视图中有两个是三角形,另一个是圆.
球的三视图都是圆.
例:长方体的主视图与俯视图如图所示,则这个长方体的体积是36 .
知识点二 :投影
4.平行投影
由平行光线Leabharlann 成的投影.在平行投影中求影长,一般把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出的影长.
例:小明和他的同学在太阳下行走,小明身高1.4米,他的影长为1.75米,他同学的身高为1.6米,则此时他的同学的影长为2米.
5.中心投影
由同一点(点光源)发出的光线形成的投影.