人教版初三数学下册第26章反比例函数数学活动

合集下载

人教版数学九年级下册第26章《反比例函数》课堂教学设计

人教版数学九年级下册第26章《反比例函数》课堂教学设计

人教版数学九年级下册第26章《反比例函数》课堂教学设计一. 教材分析人教版数学九年级下册第26章《反比例函数》是学生在学习了正比例函数和一次函数的基础上,进一步深化对函数概念的理解。

本章通过反比例函数的概念、图像和性质的学习,使学生掌握反比例函数的基本知识,提高学生解决实际问题的能力。

二. 学情分析学生在学习本章内容前,已经掌握了正比例函数和一次函数的知识,具备一定的函数观念。

但反比例函数的概念和性质与前两者的差异较大,学生可能存在理解上的困难。

因此,在教学过程中,要注重引导学生发现反比例函数与正比例函数、一次函数的联系和区别,激发学生学习兴趣,提高学生自主学习能力。

三. 教学目标1.了解反比例函数的概念,理解反比例函数的性质。

2.能够运用反比例函数解决实际问题。

3.培养学生的抽象思维能力和创新能力。

四. 教学重难点1.反比例函数的概念。

2.反比例函数的性质。

3.反比例函数在实际问题中的应用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究,发现反比例函数的性质,提高学生的动手实践能力和团队协作能力。

六. 教学准备1.教学课件。

2.反比例函数的实际问题案例。

3.小组合作学习材料。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考反比例函数的概念。

例如:一辆汽车以60公里/小时的速度行驶,行驶1小时后,距离是多少?当速度一定时,行驶的时间和距离之间的关系是什么?2.呈现(10分钟)讲解反比例函数的定义,引导学生发现反比例函数与正比例函数、一次函数的联系和区别。

通过多媒体课件,展示反比例函数的图像,使学生直观地理解反比例函数的性质。

3.操练(10分钟)让学生通过自主探究,发现反比例函数的性质。

教师提供几个实际问题,引导学生运用反比例函数解决问题。

例如:一个矩形的长和宽成反比例,长为8厘米,求矩形的面积。

4.巩固(10分钟)通过小组合作学习,让学生进一步巩固反比例函数的知识。

人教版九年级数学下第26章反比例函数26.1《反比例函数的图象和性质》的(教案)

人教版九年级数学下第26章反比例函数26.1《反比例函数的图象和性质》的(教案)
在今后的教学中,我还需要注意以下几点:
1.加强对学生的个别辅导,针对他们在学习过程中遇到的问题,提供有针对性的指导;
2.注重培养学生的直观想象能力,通过丰富的实例和图象,帮助他们更好地理解反比例函数的性质;
3.持续关注学生的反馈,调整教学方法和节奏,确保教学效果;
4.增加课堂互动,鼓励学生提问和发表观点,提高他们的课堂参与度。
2.教学难点
-理解反比例函数图象的双曲线特征,以及如何从数学表达式中理解这一特征。
-理解反比例函数在不同象限内y随x变化的规律,特别是当k<0时,函数值随x的增大而增大。
-将反比例函数的图象和性质应用到实际问题中,尤其是涉及多个反比例函数比较的问题。
举例:
-难点1:解释为何反比例函数的图象是双曲线,可以通过几何画板或动态软件展示,当x接近0时,y值如何变化,从而帮助学生形象理解。
3.重点难点解析:在讲授过程中,我会特别强调反比例函数的定义和图象性质这两个重点。对于难点部分,如反比例函数图象的双曲线形状和y随x变化的规律,我会通过图象展示和实际例题来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数相关的实际问题,如速度与时间的反比关系。
首先,我发现学生在初次接触反比例函数时,对于k≠0这个条件容易忽视。在今后的教学中,我需要更加明确地强调这一点,并设计一些相关的练习题,让学生在实际操作中加深理解。
其次,反比例函数的图象和性质是本章节的教学重点,也是学生学习的难点。在讲授过程中,我尝试运用了图象展示、实例分析和对比等方法,帮助学生理解反比例函数的图象特征和性质。但从学生的反馈来看,这部分内容仍然需要进一步加强。我打算在下一节课中增加一些互动环节,让学生自己动手绘制反比例函数图象,以便更好地掌握这些知识点。

人教版九年级数学第26.1:反比例函数(教案)

人教版九年级数学第26.1:反比例函数(教案)
.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y=k/x(k≠0)的函数,它描述了一种变量之间的反比关系。反比例函数在生活中的应用非常广泛,如速度与时间、浓度与体积等。
2.案例分析:接下来,我们来看一个具体的案例。假设一辆汽车以固定的速度行驶,那么行驶的距离与时间成反比。这个案例展示了反比例函数在实际中的应用,以及它如何帮助我们解决问题。
突破方法:结合生活实例,引导学生学会从实际问题中提炼反比例函数模型,并运用模型解决问题。
(4)反比例函数与一次函数、二次函数的关系:理解反比例函数与其他函数之间的联系,提高学生对函数体系的整体认识。
突破方法:通过比较、分析反比例函数与一次函数、二次函数的图像和性质,使学生理解它们之间的关系。
四、教学流程
突破方法:引导学生通过对称性理解图像在第二、四象限的分布,并利用数形结合的方法加深理解。
(2)反比例函数性质的运用:如何将反比例函数的性质应用于解决具体问题,是学生需要突破的难点。
突破方法:通过大量典型例题,让学生掌握反比例函数性质的应用方法,培养学生的逻辑思维和推理能力。
(3)实际问题中的反比例函数建模:在解决实际问题时,学生可能难以从问题中抽象出反比例函数模型。
举例:探讨y=k/x的增减性和奇偶性,解释为何反比例函数在第一、三象限内具有相反的增减性。
(4)反比例函数的应用:学会将反比例函数应用于实际问题,构建数学模型并解决问题。
举例:根据速度和时间的关系,构建反比例函数模型,解决行程问题。
2.教学难点
(1)反比例函数图像的绘制:对于部分学生来说,绘制反比例函数图像可能存在困难,尤其是图像在第二、四象限的部分。
在实践活动环节,学生们分组讨论反比例函数在实际生活中的应用,并进行了实验操作。从成果展示来看,学生们能够将反比例函数的知识运用到实际问题中,但仍有部分学生在建立模型时感到困惑。为此,我计划在今后的教学中,多提供一些实际案例,让学生们有更多的实践机会,提高他们解决问题的能力。

人教版数学九年级下册第26章反比例函数教学设计

人教版数学九年级下册第26章反比例函数教学设计
3.鼓励学生提出疑问,解答学生在学习过程中遇到的问题。
4.布置课后作业,要求学生在课后进一步巩固反比例函数的知识。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
1.完成课本第26章课后习题,包括基础题和拓展题,特别是与反比例函数性质相关的问题,要求学生通过自主练习,进一步掌握反比例函数的定义和性质。
-基础题:选择2-3题,重点考查反比例函数的基本概念和图像绘制。
-拓展题:选择1-2题,旨在提高学生运用反比例函数解决实际问题的能力。
2.结合生活实际,自行设计一个反比例关系的情境问题,并运用反比例函数的知识进行解答。
-要求学生将情境问题清晰地描述出来,并展示出解题思路和过程。
-鼓励学生进行创新设计,可以将问题与个人兴趣或社会热点相结合。
-设计互动环节,让学生分享自己对反比例关系的理解,增强课堂的趣味性。
2.自主探究,合作交流
-采用小组合作的形式,引导学生自主探究反比例函数的性质,通过讨论、交流,共同解决问题。
-教师巡回指导,针对学生的疑问提供及时解答,帮助学生突破重难点。
3.分层教学,关注个体差异
-针对不同学生的学习基础和接受能力,设计难易程度不同的练习题,使每个学生都能在课堂上得到有效训练。
2.学生独立完成练习题,巩固所学知识。
3.教师对学生的练习结果进行点评,针对错误较多的题目,进行讲解和解答。
4.鼓励学生分享解题思路,提高学生的解题能力。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结反比例函数的定义、性质、图像等方面的知识点。
2.强调反比例函数在实际问题中的应用,让学生认识到数学知识的重要性。
-教师以生动形象的语言、丰富多样的教学手段,引导学生感受数学的乐趣。

新人教版九年级下册第二十六章“反比例函数”教材分析简介

新人教版九年级下册第二十六章“反比例函数”教材分析简介

重点难点
重点
反比例函数的概念、图像和性质 ;反比例函数在实际问题中的应 用。
难点
理解反比例函数的本质特征;掌 握反比例函数图像的绘制方法; 灵活运用反比例函数解决实际问 题。
03
教学方法与手段
教学方法
激活学生的前知
通过回顾和讨论学生已经 学过的相关概念和技能, 为学习反比例函数打下基 础。
教学策略多样化
02
03
反比例函数的性质
通过探究反比例函数的增减性、 对称性、取值范围等性质,进一 步加深对反比例函数的理解。
04
02
知识结构与特点
知识结构
反比例函数的概念和性质
01
包括反比例函数的定义、图像、单调性等基本性质。
反比例函数的应用
02
涉及实际问题中反比例关系的建立、模型的构建和问题的解决

反比例函数与一次函数的综合应用
采用讲解、示范、小组讨 论、案例分析等多种教学 方法,以适应不同学生的 学习需求。
引导学生主动探究
鼓励学生提出问题、解决 问题,培养他们的探究精 神和自主学习能力。
教学手段
多媒体辅助教学
利用投影仪、电脑等多媒体设备,展 示反比例函数的图像、性质等,使教 学更加直观、生动。
小组合作与交流
组织学生进行小组合作学习和交流, 促进彼此之间的思维碰撞和知识共享 。
新人教版九年级下册第二 十六章“反比例函数”教
材分析简介
汇报人:XXX 2024-01-27
目录
• 教材背景与目标 • 知识结构与特点 • 教学方法与手段 • 学情分析与应对策略 • 评价方式与标准 • 资源开发与利用 • 教师发展与学生成长
01
教材背景与目标

人教版九年级数学下册第26章:反比例函数相关的规律探究题优秀教学案例

人教版九年级数学下册第26章:反比例函数相关的规律探究题优秀教学案例
(五)作业小结
1.设计具有挑战性和实际意义的作业:布置一些与反比例函数相关的习题,让学生在作业中巩固所学知识,提高解决实际问题的能力。
2.引导学生进行作业反思:鼓励学生在完成作业后进行反思,发现自己的优点和不足,提高自我认知。
3.教师批改作业:教师及时批改学生的作业,给予评价和反馈,帮助学生纠正错误,提高学生的学习效果。
五、案例亮点
1.生活情境的创设:通过引入真实的生活情境,如购物、交通等,使学生能够更加直观地理解反比例函数的实际意义,增强了学生对知识点的兴趣和记忆。这种情境创设不仅能够激发学生的学习兴趣,还能够提高学生运用数学知识解决实际问题的能力。
2.问题导向的教学策略:在教学过程中,我设计了一系列具有启发性和探究性的问题,引导学生主动思考、探究反比例函数的性质和应用。这种问题导向的教学策略能够有效激发学生的思维,培养学生的探究意识和解决问题的能力。
四、教学内容与过程
(一)导入新课
1.利用生活情境导入:通过展示一幅交通流量图,引导学生观察和分析图中的反比例关系,引发学生对反比例函数的思考。
2.利用问题导入:提出一个问题:“如果一辆汽车的油耗与行驶速度成反比例关系,那么当速度增加时,油耗会如何变化?”引发学生的思考和探究欲望。
3.利用复习导入:回顾已学过的正比例函数知识,引导学生发现正比例函数与反比例函数的关系,为学生学习反比例函数打下基础。
三、教学策略
(一)情景创设
1.生活情境:结合学生的生活实际,创设与反比例函数相关的情境,如购物、交通、生产等,让学生在情境中感受到反比例函数的实际意义。
2.问题情境:设计一系列具有挑战性和探究性的问题,引导学生主动思考、探究反比例函数的性质和应用。
3.互动情境:通过师生互动、生生互动,营造轻松愉快的课堂氛围,激发学生的学习兴趣,促进学生对反比例函数知识的理解。

人教版九年级数学下册26.1.1反比例函数优秀教学案例

人教版九年级数学下册26.1.1反比例函数优秀教学案例
4.教师引导学生掌握反比例函数的表达式,并学会运用反比例函数解决实际问题。
(三)学生小组讨论
1.教师给出几个有关反比例函数的实际问题,让学生分组讨论,寻找解决方法。
2.学生通过小组讨论,共同探索反比例函数的性质,提高学生的团队合作能力。
3.各小组汇报讨论成果,教师给予评价和指导,帮助学生巩固反比例函数的知识。
人教版九年级数学下册26.1.1反比例函数优秀教学案例
一、案例背景
本案例背景基于人教版九年级数学下册26.1.1反比例函数章节内容,旨在通过实际教学情境,引导学生理解和掌握反比例函数的定义、性质及其应用。在案例中,我担任特级教师,以班级为单位进行教学,学生年龄均为14-15岁,具备一定的数学基础。
根据教材内容,本节课的主要目标是让学生了解反比例函数的概念,能够运用反比例函数解决实际问题。在教学过程中,我充分运用人性化的教学语言,注重激发学生的学习兴趣,提高他们的自主学习能力,培养他们分析问题、解决问题的能力。
2.学生能够理解反比例函数在实际生活中的应用,认识到数学的重要性,培养学生的数学素养。
3.学生通过反比例函数的学习,能够感受到数学的美丽和逻辑性,培养学生的审美观念。
4.学生能够克服学习中的困难,勇于面对挑战,培养学生的自信心和坚韧性。
三、教学策略
(一)情景创设
1.结合生活实际,创设情境,引发学生对反比例函数的思考。例如,通过展示图片,如商场打折、人口增长等,让学生感受到反比例函数在现实生活中的存在。
(四)总结归纳
1.教师引导学生总结反比例函数的定义、性质及其应用,使学生对反比例函数有一个全面的认识。
2.教师强调反比例函数在实际生活中的重要性,激发学生学习反比例函数的积极性。
3.教师对学生的学习情况进行评价,关注学生的个体差异,给予鼓励和指导。

人教版九年级数学下第26章《反比例函数》全套教案

人教版九年级数学下第26章《反比例函数》全套教案

26.1.1《反比例函数》教案课标要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式.教学目标知识与技能:1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解;2.使学生理解并掌握反比例函数的概念;3.能判断一个函数是否为反比例函数,并用待定系数法求函数解析式.过程与方法:1.经历对两个变量之间相依关系的讨论,培养学生的辩证唯物主义观点;2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识;3.经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会函数的建模思想.情感、态度与价值观:1.经历抽象反比例概念的过程,体会数学学习的重要性,提高学生学习数学的兴趣;2.通过分组讨论,培养学生合作交流意识和探索精神.教学重点理解反比例函数的概念,能根据已知条件写出函数解析式.教学难点理解反比例函数的概念.教学流程一、情境引入复习:什么是函数?问题:京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化.你能写出关于t的解析式吗?1463vt引出课题:今天,我们就来研究这种形式的函数.二、探究归纳下列问题中,变量间具有函数关系吗?如果有,请直接写出解析式.(1)某住宅小区要种植一块面积为1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.(2)已知北京市的总面积为1.68×104km 2,人均占有面积S (单位:km 2/人)随全市总人口n (单位:人)的变化而变化.1000y x=,41.6810S n ⨯= 归纳概念:一般地,形如ky x=(k 为常数,且k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.强调:自变量x 的取值范围是不等于0的一切实数. 例题指引:例:已知y 是x 的反比例函数,并且当x =2时,y =6. (1)写出y 关于x 的函数解析式; (2)当x =4时,求y 的值.分析:因为y 是x 的反比例函数,所以设ky x=,把x =2和y =6代入上式,就可求出常数k 的值. 解:(1)设ky x=,因为当x =2 时,y =6, 所以有62=.k 解得:k =2. 因此12=.y x(2)把x =4代入12y x=,得 1234y == 三、应用提高1.用函数解析式表示下列问题中变量间的对应关系:(1)一个游泳池的容积为2000m 3,游泳池注满水所用时间t (单位:h )随注水速度v (单位:m 3/h )的变化而变化;(2)某长方体的体积为1000cm 3,长方体的高h (单位:cm )随底面积S (单位:cm 2)的变化而变化;(3)一个物体重100N ,物体对地面的压强p (单位:Pa )随物体与地面的接触面积S (单位:m 2)的变化而变化.2.下列哪些关系式中的y 是x 的反比例函数?4y x =,3y x =,2y x =-,61y x =+,21y x =-,21y x=,123xy =. 3.已知y 与x 2成反比例,并且当x =3时,y =4.(1)写出y 关于x 的函数解析式; (2)当x =1.5时,求y 的值; (3)当 y =6 时,求x 的值. 四、体验收获 说一说你的收获.1.今天我们学习了哪些知识? 2.我们是如何形成反比例函数概念的? 3.如何根据已知条件确定反比例函数的解析式? 五、拓展提升1.关系式xy +4=0中y 是x 的反比例函数吗?若是,比例系数k 等于多少?若不是,请说明理由. 2.如果y 是z 的反比例函数,z 是x 的反比例函数,那么y 与x 具有怎样的函数关系? 六、课内检测1.在下列函数中,y 是x 的反比例函数的是( ) A .85y x =+ B .37y x =+ C .5xy = D .22y x= 2.已知函数7m y x-=是正比例函数,则m = . 3.已知函数75m y x-=是反比例函数,则m = .4.已知y 是x 的反比例函数,并且当x =3时,y =-8. (1)写出y 与x 之间的函数关系式; (2)求y =2时x 的值. 七、布置作业必做题:教材8页习题26.1第1、2题. 选做题:教材9页习题26.1第7题. 附:板书设计教学反思:26.1.2《反比例函数的图象和性质》教案课标要求能画出反比例函数的图像,根据图像和表达式y =xk(k ≠0)探索并理解k >0和k <0时,图像的变化情况.教学目标知识与技能:1.会用描点法画反比例函数的图象; 2.结合图象分析并掌握其性质;3.能灵活运用反比例函数的图象和性质求函数的解析式,进而解决一些较综合的数学问题. 过程与方法:1.经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征;2.经历观察、分析、交流的过程,逐步提高从函数图象中感受其规律的能力; 3.从较综合的题目的解答中学会使用数形结合的方法. 情感、态度与价值观:1.由图象的画法和分析,体验数学活动中的探索和创造性,感受数学美,并通过图象的直观教学激发学习兴趣;2.深刻领会函数解析式与和函数图象之间的联系,体会数形结合及转化的思想方法; 3.通过解决综合题,增强学生的自信心,涵育学生学习数学的兴趣.教学重点正确地进行描点、画出图象,理解并掌握反比例的图象和性质,能灵活运用反比例函数的性质解决一些综合问题.教学难点1.图象的对称性选点,归纳反比例函数的性质.2.利用数形结合思想比较大小以及对反比例函数几何意义的理解学会利用图象分析、解决问题.教学流程一、情境引入问题:我们知道一次函数y =kx +b (k ≠0)的图象是一条直线、二次函数y =ax 2 +bx +c (a ≠0)的图象是一条抛物线,反比例函数(0)=≠ky k x的图象是什么样呢? 我们用什么方法画反比例函数的图象呢? 有哪些步骤?根据k 的取值,应该如何分类讨论呢?引出课题:今天,我们就来研究反比例函数的图象和性质.二、探究归纳例1:画出反比例函数6=y x 和12=y x的图象. 解:列表思考:请观察反比例函数6=y x 与12=y x的图象,它们有哪些特征? (1)每个函数的图象分别位于哪些象限?(2)在每一个象限内,随着x 的增大,y 如何变化?你能由它们的解析式说明理由吗? (3)对于反比例函数(0)=>ky k x,考虑问题(1)(2),你能得出同样的结论吗? 归纳1:当k ﹥0时,反比例函数=ky x的图象: (1)函数图象分别位于第一、第三象限; (2)在每一个象限内,y 随x 的增大而减小. 追问:你能由函数的解析式说明这些结论吗?探究:回顾上面我们利用函数图象,从特殊到一般研究反比例(0)=>ky k x的性质的过程,你能用类似的方法研究反比例(0)=<ky k x的图象和性质吗? 归纳2:当k ﹤0时,反比例函数=ky x的图象: (1)函数图象分别位于第二、第四象限; (2)在每一个象限内,y 随x 的增大而增大.强调:反比例函数的图象由两条曲线组成,它是双曲线.归纳:一般地,反比例函数=kyx的图象是双曲线,它具有以下性质:(1)当k﹥0时,双曲线的两支分别位于第一、第三象限,在每一个象限内,y随x的增大而减小;(2)当k﹤0时,双曲线的两支分别位于第二、第四象限,在每一个象限内,y随x的增大而增大. 例2:已知反比例函数的图象经过点A(2,6).(1)这个函数的图象位于哪些象限?y随x的增大如何变化?(2)点B(3,4),14(24)25,C--,D(2,5)是否在这个函数的图象上?解:(1)∵点A(2,6)在第一象限,∴这个函数的图象位于第一、第三象限,在每一个象限内,y随x的增大而减小;(2)设这个反比例函数的解析式为=kyx.∵点A(2,6)在其图象上,62,k∴=解得:k=12.∴这个反比例函数的解析式为12 =yx.当x=3时,y=4,所以点B在这个函数的图像上;当x=122-时,y=445-,所以点C在这个函数的图像上;当x=2时,y=6≠5,所以点D不在这个函数的图像上.例3:如图,它是反比例函数5-=myx图象的一支,根据图象,回答下列问题:(1)图象的另一支位于哪个象限?常数m的取值范围是什么?(2)在这个函数图象的某一支上任取点A(x1,y1)和点B(x2,y2),如果x1>x2,那么y1和y2有怎样的关系?解:(1)反比例函数的图象只有两种可能:位于第一、第三象限,或者位于第二、第四象限.∵这个函数的图象的一支位于第一象限,∴另一支必位于第三象限.∵这个函数的图象位于第一、第三象限, ∴m -5﹥0, 解得m ﹥5. (2)∵m -5﹥0,∴在这个函数图象的任一支上,y 随x 的增大而减小, ∴当x 1>x 2时,y 1﹤y 2 . 三、应用提高1.下列图象中是反比例函数图象的是( )2.已知反比例函数=ky x的图象如图所示,则k 0,且在图象的每一支上,y 随x 的增大而 .3.已知反比例函数=ky x的图象过点(2,1),则它的图象在________象限,k ___0. 4.点A (x 1,y 1)和点B (x 2,y 2)在反比例函数1y x=的图象上.如果x 1﹤x 2,而且x 1,x 2同号,那么y 1,y 2有怎样的大小关系?为什么?四、体验收获 说一说你的收获.1.反比例函数的图象是怎样得到的?画图时要注意什么问题? 2.反比例函数的性质是怎样的?为什么要强调在每一个象限内的性质? 3.在反比例函数图象及性质的应用中体现了数形结合思想,能否谈谈你的体会? 五、拓展提升1.在同一直角坐标系中,函数=y kx 与(0)=≠ky k x的图象大致是( ). A .(1)(2) B .(1)(3) C .(2)(4) D .(3)(4)2.点A (x 1,y 1)和点B (x 2,y 2)在反比例函数(0)=≠ky k x的图象上,如果x 1>0>x 2,那么y 1和y 2有怎样的关系?六、课内检测1.如图所示的图象对应的函数解析式为( ). A .5y x = B .23y x =+ C .4y x =D .3y x=-2.反比例函数5y x=的图象在第 象限. 3.已知一个反比例函数的图象经过点A (3,-4).(1)这个函数的图象位于哪些象限?在图象的每一支上,y 随 x 的增大如何变化? (2)点B (-3,4),C (-2,6),D (3,4)是否在这个函数的图象上?为什么? 七、布置作业必做题:教材8页习题26.1第3、5题. 选做题:教材9页习题26.1第9题. 附:板书设计教学反思:26.2《实际问题与反比例函数》教案课标要求能用反比例函数解决简单实际问题.教学目标知识与技能:1.能灵活列出表达式解决一些实际问题;2.能综合利用几何、方程、反比例函数的知识解决实际问题.过程与方法:1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题;2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力;3.初步形成自己构建数学模型的能力.情感、态度与价值观:1.积极参与交流,并积极发表自己的见解,相互促进;2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具,体验数学的实用性.教学重点综合运用反比例函数的解析式、图象和性质解决实际问题.教学难点综合运用反比例函数的知识解决较复杂的实际问题.教学流程一、情境引入问题:反比例函数kyx=的图象是什么样的?它有什么性质?引出课题:前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决实际问题中的作用.今天,我们进一步探讨如何利用反比例函数解决实际问题.二、探究归纳例1:市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15 m时,公司临时改变计划,把储存室的深度改为15 m.相应地,储存室的底面积应改为多少(结果保留小数点后两位)?解:(1)根据圆柱的体积公式,得Sd =104,所以S关于d的函数解析式为410Sd =.(2)把S=500代入410Sd=,得410 500d=解得:d=20(m)答:如果把储存室的底面积定为500 m2,施工时应向地下掘进20 m深.(3)把d=15代入410Sd=,得41015S=解得:S≈666.67(m2)答:当储存室的深度为15 m时,底面积约为666.67 m2.例2:码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?解:设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数解析式为240vt=.(2)把t=5代入240vt=,得240485v==(吨).∴如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.∵对于函数240vt=,当t>0时,t越小,v越大.∴若货物不超过5天卸载完,则平均每天至少要卸载48吨.问题1:公元前 3 世纪,有一位科学家说了这样一句名言:“给我一个支点,我可以撬动地球!”你们知道这位科学家是谁吗?这里蕴含什么样的原理呢?杠杆原理:阻力×阻力臂=动力×动力臂例3:小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200 N 和0.5 m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?解:(1)根据“杠杆原理”,得Fl=1200×0.5,所以F关于l的函数解析式为600Fl=.当l=1.5 m时,6004001.5F==(N).对于函数600Fl=,当l=1.5 m 时,F=400N,此时杠杆平衡.因此,撬动石头至少需要400N的力.(2)当14002002F=⨯=时,由600 200l=得6003 200l==(m),3-1.5=1.5(m).对于函数600Fl=,当l>0时,l越大,F越小.因此,若想用力不超过400N的一半,则动力臂至少要加长1.5m.追问:在我们使用撬棍时,为什么动力臂越长越省力?问题2:电学知识告诉我们,用电器的功率P(单位:W)、两端的电压U(单位:V)以及用电器的电阻R(单位:Ω)有如下关系:PR=U2.这个关系也可写为P=2UR,或R=2UP.例4:一个用电器的电阻是可调节的,其范围为110~220 Ω.已知电压为220 V,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围多少?解:(1)根据电学知识,当U=220时,得2220PR=.(2)根据反比例函数的性质可知,电阻越大,功率越小.把电阻R最小值=110代入2220PR=,得P最大值=2220440110=(W);把电阻R最大值=220代入2220PR=,得P最小值=2220220220=(W);因此用电器功率的范围为220~440W.追问:想一想为什么收音机的音量、某些台灯的亮度以及电风扇的转速可以调节.三、应用提高1.如图,某玻璃器皿制造公司要制造一种容积为1L(1L=1dm3)的圆锥形漏斗.(1)漏斗口的面积S(单位:dm2)与漏斗的深度d有怎样的函数关系?(2)如果漏斗口的面积为100cm2,则漏斗的深为多少?答案:(1)3Sd=(2)30 cm2.一司机驾驶汽车从甲地去乙地,他以80 km/h的平均速度用6 h到达目的地.(1)当他按原路匀速返回时,汽车的速度v与时间t有怎样的函数关系?(2)如果该司机必须在4h之内回到甲地,那么返程时的平均速度不能小于多少?答案:(1)480Vt=(2)120 km/h3.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103m2.(1)所需的瓷砖块数n与每块瓷砖的面积S(单位:m2)有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,建筑师决定采用灰、白和蓝三种颜色的瓷砖,每块瓷砖的面积都是80cm2,且灰、白、蓝瓷砖使用数量的比为2∶2∶1,需要三种瓷砖各多少块?答案:(1)3510nS⨯=(2)250000块,250000块,125000块四、体验收获说一说你的收获.1.我们如何建立反比例函数模型,并解决实际问题?2.在这个过程中要注意什么问题?五、拓展提升1.某校科技小组进行野外考察,途中遇到一片十几米宽的湿地.为了安全、迅速通过这片湿地,他们沿着路线铺了若干块木板,构筑成一条临时通道.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么(1)木板面积S 与人和木板对地面的压强p 有怎样的函数关系?(2)当木板面积为0.2 m2时,压强是多少?(3)要求压强不超过6000 Pa,木板面积至少要多大?答案:(1)600(0)p SS=>(2)3000 Pa(3)至少0.1m22.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)请写出这个反比例函数的解析式.(2)蓄电池的电压是多少?(3)完成下表:范围?答案:(1)36IR=(2)36V(3)12,9,7.2,6,5.14,4.5,4,3.6(4)R≥3.6六、课内检测1.已知甲、乙两地相距s(单位:km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:h)关于行驶速度v(单位:km/h)的函数图象是()答案:C2.在某一电路中,电源电压U 保持不变,电流I (A )与电阻R (Ω)之间的函数关系如图所示. (1)写出I 与R 之间的函数解析式;(2)结合图象回答当电路中的电流不超过12 A 时,电路中电阻R 的取值范围是多少Ω?答案:(1)36I R=(2)电阻R 大于或等于3 Ω 3.密闭容器内有一定质量的二氧化碳,当容器的体积V (单位:m 3)变化时,气体的密度ρ(单位:kg /m 3)也会随之变化.已知密度ρ与体积V 是反比例函数关系,它的图象如图所示.(1)求密度ρ关于体积V 的函数解析式; (2)求V =9 m 3时,二氧化碳的密度ρ.答案:(1)9.9Vρ=(2)1.1 kg /m 3 七、布置作业必做题:教材16页习题26.2第2、3、4、7题. 选做题:教材17页习题26.2第9题. 附:板书设计教学反思:。

九年级春季数学下册听课笔记:第二十六章反比例函数-数学活动

九年级春季数学下册听课笔记:第二十六章反比例函数-数学活动

2024九年级春季数学下册听课笔记:第二十六章反比例函数- 数学活动1.1 教师行为导入环节:•实例引入:教师以一个贴近学生生活的实例开始,比如“如果你驾驶一辆汽车,在油箱容量一定的情况下,汽车的行驶里程与油耗之间有什么关系?这种关系能否用我们学过的函数来表示?”通过这样的实例,激发学生的好奇心,引导他们思考反比例函数在实际生活中的应用。

•概念回顾:随后,教师简要回顾反比例函数的基本定义和性质,为接下来的数学活动做铺垫。

教学过程:•活动设计:•活动一:绘制反比例函数图像•教师给出几个具体的反比例函数表达式(如y = 1/x, y = -2/x等),要求学生分组使用计算器或图形软件绘制这些函数的图像,并观察图像的特点(如双曲线形状,两支曲线关于原点对称等)。

•学生完成绘制后,教师组织小组分享,引导学生总结反比例函数图像的共同特征。

•活动二:探索反比例函数性质•教师设计一系列问题,如“当x增大时,y如何变化?”“反比例函数的图像是否会经过坐标轴?”“如何判断反比例函数图像的增减性?”等,让学生分组讨论并尝试给出答案。

•教师鼓励学生利用之前绘制的图像和已知性质进行推理,同时适时给予提示和纠正。

•活动三:应用反比例函数解决问题•教师提供几个实际问题(如“某工厂生产一种产品,其总成本C 与产量Q成反比,已知当产量为100单位时,总成本为2000元,求产量Q与总成本C之间的函数关系,并计算产量为200单位时的总成本”),让学生分组尝试用反比例函数的知识进行求解。

•学生完成后,教师选取几个小组进行展示,并引导学生对解题思路和方法进行点评和总结。

板书设计(提纲式):作业布置:•完成课后相关练习题,特别是涉及反比例函数图像绘制、性质探索和应用解题的题目,以巩固所学内容。

•预习下一节内容,思考反比例函数与一次函数、二次函数等其他类型函数之间的区别和联系,为深入学习做好准备。

课堂小结:•教师总结本节课的数学活动内容和学生的表现,强调反比例函数的重要性和应用价值。

新人教版数学九年级下册第二十六章 反比例函数教案

新人教版数学九年级下册第二十六章 反比例函数教案

新人教版数学九年级下册第二十六章反比例函数教案第26章反比例函数26.1.1反比例函数的意义【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。

从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。

因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。

【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定26.1.2 反比例函数的图象和性质知能准备【学习目标】1、画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质.2、能用反比例函数的定义和性质解决实际问题.【学情分析】前面已经学习了一次函数和二次函数,对研究函数有了一定的方法;即画出图像并根据图像研究其性质【学思指导】教法:讲授法、对比法学法:类比法、数形结合法学科素养:通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征.【【课前预习】1.若y=(21)(1)n nx-+是反比例函数,则n必须满足条件 n≠12或n≠-1 .2.用描点法画图象的步骤简单地说是列表、描点、连线. 3.试用描点法画出下列函数的图象:(1)y=2x;(2)y=1-2x.设计意图:通过回忆,学会用描点法画函数的图象课堂引讨——【展示互动】问题:我们已知道,一次函数y=kx+b(k≠0)的图象是一条直线,•那么反比例函数y=k x(k为常数且k≠0)的图象是什么样呢?[尝试]用描点法来画出反比例函数的图象.画出反比例函数y=6x和y=-6x的图象.解:列表思考:取什么值更易描出来x …-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …y=6x-1 -1.5 -2 -6 3 1y=-6x1 1.23 6 -1.5(请把表中空白处填好)描点,以表中各对应值为坐标,在直角坐标系中描出各点.连线,用平滑的曲线把所描的点依次(从大到小或从小到大的顺序)连接起来探究反比例函数y=6x和y=-6x的图象有什么共同特征?它们之间有什么关系?做一做把y=6x和y=-6x的图象放到同一坐标系中,观察一下,看它们是否对称.归纳:反比例函数y=6x和y=-6x的图象的共同特征:(1)它们都由两条曲线组成.(2)随着x的不断增大(或减小),曲线越来越接近坐标轴(x轴、y轴).(3)反比例函数的图象属于双曲线.此外,y=6x的图象和y=-6x的图象关于x轴对称,也关于y轴对称.做一做在平面直角坐标系中画出反比例函数y=3x和y=-3x的图象.交流两个函数图象都用描点法画出?【分析】由y=6x和y=-6x的图象及y=3x和y=-3x的图象知道,(1)它们有什么共同特征和不同点?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y随x的变化而如何变化?猜想反比例函数y=kx(k≠0)的图象在哪些象限由什么因素决定?•在每一个象限内,y随x的变化情况如何?它可能与坐标轴相交吗?【归纳】(1)反比例函数y=kx(k为常数,k≠0)的图象是双曲线.(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y•值随x值的增大而减小.(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y•值随x值的增大而增大.设计意图:通过画图并研究:得到反比例函数图像的形状及其增减性精编精练例题指出当k>0时,下列图象中哪些可能是y=kx与y=kx(k≠0)在同一坐标系中的图象()【分析】对于y=kx来说,当k>0时,图象经过一、三象限,当k<0时,图象经过二、四象限;对于y=kx来说,当k>0时,图象在一、三象限,当k<0时,图象在二、四象限,所以应选B.备选例题1.请你写出一个反比例函数的解析式,使它的图象在第一、三象限.2.如图所示的函数图象的关系式可能是(• )A.y=x B.y=1xC.y=x2 D.y=1||x设计意图:通过具体的习题使学生加深对本部分知识的理解能解决具体问题。

新人教版九年级数学下册《二十六章反比例函数数学活动》教案_2

新人教版九年级数学下册《二十六章反比例函数数学活动》教案_2

26.1.2反比例函数的图象和性质教学课时:新人教版九年级下册第二十六章《反比例函数》第一节第二课时材分析反比例函数的图象和性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。

本节课是全章的核心,学习的主要内容是画反比例函数的图象,让学生结合图象实例,通过列表、描点、连线等手段经历画图、观察、猜想、思考、归纳等数学活动,初步认识反比例函数的图象的特征,逐步明确反比例函数的直观形象,为学生探索反比例函数的图象的性质提供思维活动的空间。

反比例函数图象具有自身的特殊性,不与坐标轴相交,故对位置及增减性理解和掌握,需用分类讨论的数学思想体会和运用,学生会存在一定的困难。

教学中,先从“数”到“形”分析坐标特点、再由“形”到“数”的归纳图象性质,以“数”与“形”的互相转化为途径,展开探究活动。

教学目标知识技能1.进一步熟悉画函数图象的主要步骤,会画反比例函数的图象。

2.体会函数三种表示方法的相互转换,对函数进行认识上整合。

3.理解反比例函数的性质。

数学思考1.经历画图、观察、猜想、思考、归纳等数学活动,向学生渗透数形结合的思想方法。

2.通过观察反比例函数的图象,分析、探究反比例函数的图象的性质,培养学生的探究、归纳及概括能力。

情感态度与价值观1.让学生体会事物是有规律的变化着的观点。

2.由图象的画法和分析,体验数学活动中的探索性和创造性,感受数学美,并通过图象的直观教学激发学生的学习兴趣。

3.培养学生交流合作的能力,通过学生在学习过程中获得成功的体验,增强学生学习数学的自信心。

教学重点正确地进行描点,画出图象,理解并掌握反比例函数的图象和性质。

教学难点 1.图象的位置及增减性理解。

2.“数”与“形”之间灵活转换。

教学方法1.画反比例函数图像重在积累活动经验,所以采用体验式教学。

2.观察、探究反比例函数性质重在发散与归纳的过程,采用小组合作学习方法。

3.由浅到深,由特殊到一般地提出问题,“引导探索法”引导学生自主探索。

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计一. 教材分析人教版数学九年级下册26.1.2《反比例函数的图象和性质》是反比例函数部分的重要内容。

本节内容是在学生已经掌握了比例函数的知识基础上进行学习的,通过本节课的学习,使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质,并能运用反比例函数解决一些实际问题。

二. 学情分析九年级的学生已经具备了一定的函数知识,对于比例函数有一定的了解,但反比例函数作为一种新的函数形式,对学生来说还比较陌生。

因此,在教学过程中,需要引导学生通过观察、分析、归纳等方法,自主探究反比例函数的图象和性质,提高学生的动手操作能力和思维能力。

三. 教学目标1.知识与技能:使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质。

2.过程与方法:通过观察、分析、归纳等方法,培养学生自主探究的能力。

3.情感态度与价值观:激发学生学习函数的兴趣,培养学生的团队协作精神。

四. 教学重难点1.反比例函数的概念及其图象的画法。

2.反比例函数的性质及其运用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手操作能力和思维能力。

六. 教学准备1.教学课件:制作反比例函数的图象和性质的课件,用于辅助教学。

2.学生活动材料:反比例函数图象和性质的练习题,用于巩固所学知识。

3.教学设备:投影仪、计算机等。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾比例函数的知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过课件展示反比例函数的图象和性质,引导学生观察、分析,并总结反比例函数的特点。

3.操练(10分钟)教师布置练习题,学生独立完成,巩固所学知识。

教师选取部分学生的作业进行讲解和点评。

4.巩固(5分钟)教师通过提问方式检查学生对反比例函数图象和性质的掌握情况,并对学生的回答进行指导和纠正。

数学人教版九年级下册第26章 反比例函数 数学活动

数学人教版九年级下册第26章    反比例函数   数学活动
【教师活动】出示问题
【学生活动】记录作业
【媒体应用分析】
提供练习,拓展学生视野。分层布置,区别对待,让所有学生都能收获数学体验。
【设计意图】增强学生对数学价值的认识,发展学好数学的兴趣。




第26章反比例函数数学活动
活动1
y=
活动2
在此活动中,弹簧秤的示数F就是距离L反比例函数,
即 F=
结论:
演练空间
反比例函数数学活动
旬阳县仁河口镇中心学校汪延俊
教材
义务教育教科书(人教版)《数学》九年级下册第26章活动:1.能把现实中的实际问题转化为反比例函数模型。2.数学与物理学科间的知识整合。学生对“杠杆原理”的理解。
设计理念
遵照“数学化”思想,将教学模式整合其中,按照“三部五环”教学模式,组织教学活动,设计教学流程,提出要求、明确任务----分项落实、分组承担----分头行动、分组汇总----课堂交流、评价反思----反思矫正、总结提升。引导学生自探、自悟、自得、从而生成知识、生成智慧,把教室变为“学室”,把课堂变成“学堂”,让学生在操做中联系实际,使数学学习生活化、活动化、多样化。




知识与
技能
学生熟练掌握反比例函数的实际应用。
过程与
方法
培养学生把现实中的实际问题转化为反比例函数的能力。
情感态度与价值观
经历实际问题探索得出结论,发展学生观察、分析、发现问题的能力.在学习探讨的过程中体验数学问题的探索性与创造性,通过学生之间的交流与合作,培养学生独立思考及与他人合作的能力及学生数学类比和数学建模思想。在合作中体验成功的喜悦,树立信心。
3.组建学习小组,确定小组长,明确组内分工,提出活动要求。

数学人教版九年级下册26章数学活动

数学人教版九年级下册26章数学活动

第二十六章数学活动一、内容和内容分析1.内容反比例函数图象和性质的应用.2.内容分析反比例函数是初中函数学习的内容的重要内容,在我们生活中有广泛的应用。

.本次数学活动,通过对一次杠杆实验的观察分析活动的学习,通过观察实验活动中的两个变量之间的关系,利用数学的知识处理数据从而确定函数的关系式,继而解决实际问题。

基于以上分析,本节课的重点是:利用反比例函数的图象和性质解决问题.二、目标和目标解析1.目标(1)根据平滑曲线形状确定函数类型和确定函数的表达式,得到函数的图象和性质.(2)运用反比例函数的图象和性质解决问题,体会数学建模的思想和过程.2.目标解析达成目标(1)的标志是:根据具体的问题情境,利用描点法画出大致的图象,根据图象的特点以及数据特点,判断函数的类型,利用待定系数法确定函数解析式,进而得到根据函数图象和性质.达成目标(2)的标志是:通过本次整个数学活动的经历,掌握数学建模的过程与方法,体会数学在解决实际问题中的作用.三、教学问题诊断分析本章中,学生虽然已经系统地学习了反比例函数的图象与性质,但是,反比例函数关系式的确定主要是通过分析数量关系直接列出,或者利用待定系数法求得。

本次数学活动是从一个物理实验的一系列数据出发,变量间数量关系不明确,函数类型不确定,从而学生建模的过程比较困难.基于以上分析,本节课的难点是:引导学生用数学的方法处理数据,探究数据间的数量关系,通过图象形状确定函数类型.四、教学支持条件分析在实验数据处理的过程中,通过微视频演示杠杆实验,让学生体会该实验两个变量之间的数量关系;在将数据处理成点的坐标后,利用几何画板画出图象,解决了画图中的不精准的问题,便于学生观察图形的形状,对后续学习利.五、教学过程分析1.通过微视频,展示实验操作问题1:观看微视频,并在观看的过程中记录实验的数据.1)请大家设计表格记录实验数据2)实验过程中数据发生了怎样的变化?师生活动:教师播放实验视频,学生观看,通过视频明确实验步骤及目的,整理实验数据.设计意图:通过视频演示实验活动,让学生对实验操作有准确的认识,记录实验数据的过程,切实体验到两者之间的函数对应关系,同时激发学生对确定函数关系的兴趣.2.创设情境,提出问题问题2:取一根长100cm的匀质木杆,用细绳绑在木杆的中点O并将其吊起来.在中点O的左侧距离中点25cm处挂一个重9.8N的物体,在中点O右侧用一个弹簧秤向下拉,使木杆处于水平状态.改变弹簧秤与中点O的距离L(单位:cm),看弹簧秤的示数F(单位:N)有什么变化?师生活动:教师提出问题,学生观看示意图,理解题意.设计意图:创设问题情境,让学生感受量与量之间的关系,体会实验操作中两个变量的函数关系.3.利用数据,数学建模问题3:F是L是函数吗?如果是,是哪一种函数,为什么?(1)如果将这些数据转化为图形能否帮助你解决问题呢?(2)说说你的处理数据的具体方法师生活动:学生先以小组为单位进行数据的处理,学生可以利用纸笔画图,也可以利用电脑中的“几何画板”软件画图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数数学活动旬阳县仁河口镇中心学校汪延俊
2、请全班同学分成几个
小组,合作完成下面的活动:
数学活动2:
如右图,取一根长100厘米的匀质木杆,用细绳绑在木杆的中点0并将其吊起来,在中点的左侧
距离中点25厘米处挂一个重9.8牛顿的物体,在中点右侧用一个弹簧秤与中点0的距离L (单位:厘米),看弹簧秤的
示数 F (单位:牛顿)
有什么变化,填表:
L
5
01
5
1
2
5
2
3
5
3
4
5
F
以L为横坐标,以F为纵坐标建立直角坐标系, 4
【教师活动】师出示多
媒体课件
1.由第一个活动导入第
二个活动。

2.引导学生完成活
动2。

3.师总结:在此活动
中,弹簧秤的示数F就是距
离L反比例函数,
k
即F=-
根据已知条件得
k=9.8x25=245

245
F= _
4.引导学生分享活
动成果。

表格,展示各组探
究结果,总结探究
结论。

在坐标系内描出以上表中的数对为坐标各点, 用平
滑曲线连接这些点。

这条曲线是反比例函数图像的一支吗?为什么?点(50, 4.9 )在这条曲线上吗?
【学生活动】
1.每个小组看弹簧
秤的示数的变化。

【设计意
图】
用数学的眼
光观察事物,常常
能引起“探究”问
题的兴趣;研究解
决问题之前,要设
计方案,并尽量考
虑周全;在解决问
题过程中,又要根
据需要调整原来的
方案;问题得到解
决以后,要总结经
验,相互交流。


时,在过程中,要
学会互相帮助,团
结协作,还要发挥
自己的聪明才智
和创造能力。




自我反思:。

相关文档
最新文档