立体几何大题线面平行与垂直的证明题
空间中的平行与垂直例题和知识点总结
空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。
理解和掌握这些关系,对于解决相关的几何问题具有关键作用。
下面我们通过一些例题来深入探讨,并对相关知识点进行总结。
一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。
2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。
证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。
又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。
(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。
2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。
证明:连接 AC 交 BD 于 O,连接 MO。
因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。
又因为 M 是 PC 的中点,所以MO∥PA。
因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。
(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。
2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。
证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。
二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。
高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)
立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。
高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)
【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP .►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF .[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG .►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H .【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH .3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F .题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE .►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离.【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB. (1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC.[例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a ⊂α,b ⊂α,且l ⊥a ,l ⊥b ,则l ⊥αD.若a ⊥α,a ∥β,则α⊥β 6.(2015·山东二模)设m ,n 是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( ) A.当n ⊥α时,“n ⊥β”是“α∥β”的充要条件B.当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件C.当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件D.当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件 7.(2016·浙江)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 8.(2013北京)如图,四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .9.[2014·山东文]如图,四棱锥P -ABCD 中,AP ⊥平面PCD , AD ∥BC ,AB =BC=12AD ,E ,F 分别为线段AD ,PC 的中点. (1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面P AC .10.(2013全国Ⅱ文)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.11.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点. (1)求证:BC ⊥平面P AC ; (2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .12.[2014·课标Ⅱ文]如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =34,求A到平面PBC 的距离.13.(2015江苏)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.14.(2015广东文)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.15.(2015课标Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD 中,AD ∥B C,∠BAD =π2, AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图2中△A 1BE 的位置,得到四棱锥A 1﹣BCDE . (Ⅰ)证明:CD ⊥平面A 1OC ;(Ⅱ)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1﹣BCDE 的体积为362,求a 的值.17.(2016·课标Ⅱ文)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.18.(2016·课标Ⅲ文)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.19.[2017全国I 文]如图,在四棱锥P-ABCD 中,AB//CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,∠ADP =90°,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.20.[2017全国II 文]如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为27,求四棱锥P-ABCD 的体积.21.[2017全国III 文]在正方体ABCD-A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A.A 1E ⊥DC 1B.A 1E ⊥BDC.A 1E ⊥BC 1D.A 1E ⊥AC22.[2017全国III 文]如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.。
专题20立体几何中的平行与垂直问题(解析版)
专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。
直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M, N分别为棱PA, PD的中点.已知侧面PAD丄底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN〃平面PBC;MD丄平面PAB.【证明】(1)在四棱锥P-ABCD中,M, N分别为棱PA, PD的中点,所以MN〃AD.(2分)又底面ABCD是矩形,所以BC〃AD.所以MN〃BC.(4分)又BC U平面PBC,MN Q平面PBC,所以MN〃平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB丄AD.又侧面PAD丄底面ABCD,侧面PAD n底面ABCD=AD, AB U底面ABCD,所以AB丄侧面PAD.(8分)又MD U侧面PAD,所以AB丄MD.(10分)因为DA=DP,又M为AP的中点,从而MD丄PA. (12分)又PA,AB在平面PAB内,PA n AB=A,所以MD丄平面PAB.(14分)例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B丄平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1)求证:EF〃平面ABC;(2)求证:BB]丄AC.规范解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E, F分别是侧面AA1B1B, BB1C1C对角线的交点,所以E, F分别是AB1,CB1的中点,所以EF〃AC.(4分)因为EF Q平面ABC, AC U平面ABC,所以EF〃平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1丄AB.因为平面AA1B1B丄平面ABC,且平面AA1B1B n平面ABC=AB, BB1U平面AA1B1B, 所以BB1丄平面ABC.(12分)因为AC U平面ABC,所以BB1丄AC.(14分)例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,AB=AC, A1C丄BC], AB]丄BC1,D, E 分别是AB1和BC的中点.求证:(1)DE〃平面ACC1A1;(2)AE丄平面BCC1B1.A _________ c,规范解答⑴连结A1B,在三棱柱ABCA1B1C1中,AA1#BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在厶BA1C中,D和E分别是BA1和BC的中点,所以DE〃A]C.又因为DE G平面ACC1A1,A1C U平面ACC1A1,所以DE〃平面ACC1A1.(6分)(2)由(1)知DE〃A]C,因为A1C丄BC” 所以BC]丄DE.(8 分)又因为BC]丄AB1,AB1H DE=D,AB1,DE U平面ADE,所以BC1丄平面ADE.又因为AE U平在ADE,所以AE丄BC1.(10分)在厶ABC中,AB=AC,E是BC的中点,所以AE丄BC.(12分)因为AE丄BC1,AE丄BC,BC1H BC=B,BC1,BC U平面BCC1B1,所以AE丄平面BCC1B1. (14 分)例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知AC丄BC,AC丄DC,BC=DC,E,F 分别为BD,CD 的中点.求证:(1)EF〃平面ABC;(2)BD丄平面ACE.所以EF 〃平面ABC.(6分)(2)因为AC丄BC,AC丄DC,BC H DC = C,BC,DC U平面BCD所以AC丄平面BCD,(8分)因为BD U平面BCD,所以AC丄BD,(10分)因为DC=BC,E为BD的中点,所以CE丄BD,(12分)因为AC n CE = C, AC,CE U平面ACE,所以BD丄平面ACE.(14分)例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1 丄B1C1•设A1C与AC1交于点D, B1C与BC1交于点E.求证:(1) DE〃平面ABB1A1;(2) BC]丄平面A1B1C.规范解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C 与AC1 交于点D,所以D为AC]的中点,同理,E为BC]的中点•所以DE〃AB.(3分)又AB U平面ABB]A], DE G平面ABB]A], 所以DE〃平面ABB]A].(6分)(2)因为三棱柱ABCA]B]C]为直三棱柱,所以BB]丄平面A]B]C]. 又因为A]B]U平面A]B]C],所以BB]丄A]B i.(8分)又A]B]丄B]C], BB], B]C] U 平面BCC]B], BB]n B]C1=B1,所以A]B]丄平面BCC]B].(10 分)又因为BC]U平面BCC]B1,所以A]B丄BC].(12分)又因为侧面BCC]B1为正方形,所以BC]丄BQ.又A1B1n B1C=B1,A1B1,B1C U平面A1B1C, 所以BC1丄平面A1B1C.(14分)例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D, E分别为BC, B1C1的中点,点F 在棱CC1上,且EF丄CD.求证:(1)直线A1E〃平面ADC1;⑴证法1连结ED,因为D, E分别为BC, B1C1的中点,所以B&/BD且B1E=BD, 所以四边形BBDE是平行四边形,(2分)所以BB/DE且BB1=DE. 又BB]〃AA]且BB]=AA], 所以AA/DE且AA1=DE, 所以四边形AA]ED是平行四边形,所以A]E〃AD.(4分)又因为AE G平面ADC, AD U平面ADC,所以直线AE〃平面ADC.(7分)1 1 1畀 ------ 1B证法2连结ED,连结A1C, EC分别交AC” DC1于点M, N,连结MM,则因为D, E分别为BC,B1C1的中点,所以C1E^CD且C、E=CD,所以四边形C1EDC是平行四边形,所以N是CE的中点.(2分)因为A1ACC1为平行四边形,所以M是A1C的中点,(4分)所以MN//A\E.又因为A]E G平面ADC,MN U平面ADC,,所以直线Af〃平面ADC、.(7分)(2)在正三棱柱ABCA1B1C1中,BB]丄平面ABC.又AD U平面ABC,所以AD丄BB、.又A ABC是正三角形,且D为BC的中点,所以AD丄BC.(9分)又BB,,BC U 平面BBCC,,BB1A BC=B,所以AD丄平面B,BCC,,又EF U平面BBCC,所以AD丄EF.(11分)又EF丄CD,CD,AD U平面ADC,,C,D A AD=D,所以直线EF丄平面ADC,.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
平行线证明题 → 垂直线证明题
平行线证明题→ 垂直线证明题
介绍:
本文档将通过证明题的形式,说明平行线与垂直线之间的关系。
证明题一:平行线
已知:线段AB与线段CD平行。
要证明:直线AB与直线CD平行。
证明过程:
1. 连接线段AB和线段CD,并标出交点E。
2. 假设直线AB与直线CD不平行,因此它们将会相交于某一
点F。
3. 引用平行线的定义,平行线不会相交。
4. 由于AB与CD平行,所以AB的延长线上的点E与CD上
的点F将会相交,与假设矛盾。
5. 结论:直线AB与直线CD平行。
证明题二:垂直线
已知:线段AB与线段CD垂直。
要证明:直线AB与直线CD垂直。
证明过程:
1. 连接线段AB和线段CD,并标出交点E。
2. 假设直线AB与直线CD不垂直,因此它们将会形成非垂直的交角。
3. 引用垂直线的定义,垂直线的交角为90度。
4. 由于AB与CD垂直,所以AB上的点E与CD上的点F将会形成90度的交角,与假设矛盾。
5. 结论:直线AB与直线CD垂直。
总结:
证明题的过程中通过推理和假设来判断给定的线段或直线之间的关系。
在证明平行线时,可以利用平行线的定义来得出结论;而在证明垂直线时,则可以借助垂直线的定义来得出结论。
在证明过程中应注重简洁且避免使用无法确认的引用内容。
高中数学平行与垂直地证明练习
D BDABCE1A C 立体几何中平行与垂直的证明1.已知正方体ABCD —A 1B 1C 1D 1,O 是底ABCD 对角线的交点. 求证:(1)C 1O//平面AB 1D 1; (2)A 1C ⊥平面AB 1D 1.2.如图,在长方体1111D C B A ABCD -中,1,11>==AB AA AD , 点E 在棱AB 上移动。
求证:E D 1⊥D A 1; D 1ODBA C 1B 1A 1C3.如图平面ABCD ⊥平面ABEF , ABCD 是正方形,ABEF 是矩形, 且,221==AD AF G 是EF 的中点, (1)求证平面AGC ⊥平面BGC ; (2)求空间四边形AGBC 的体积。
4.如图,在直三棱柱(侧棱与底面垂直的三棱柱)111ABC A B C -中,8AB =,6AC =,10BC =,D 是BC 边的中点.(Ⅰ)求证:1AB A C ⊥; (Ⅱ)求证:1A C ∥ 面1ABD ;5.如图组合体中,三棱柱111ABC A B C -的侧面11ABB A 是圆柱的轴截面,C 是圆柱底面圆周上不与A 、B 重合一个点. (Ⅰ)求证:无论点C 如何运动,平面1A BC ⊥平面1A AC ;(Ⅱ)当点C 是弧AB 的中点时,求四棱锥111A BCC B -与圆柱的体积比.6.如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE上确定一点N ,使得MN ∥平面DAE.7.如图,在棱长为1的正方体1111D C B A ABCD -中: (1) 求异面直线1BC 与1AA 所成的角的大小;(2) 求三棱锥B C A B 111-的体积;。
(3) 求证:B C A D B 111平面⊥8. 如图:S 是平行四边形ABCD 平面外一点,,M N 分别是,SA BD 上的点,且SM AM =NDBN, 求证://MN 平面SBC9. 如图,在底面为平行四边形的四棱锥P -ABCD 中,AB ⊥AC ,PA ⊥平面ABCD ,点E 是PD 的中点.(Ⅰ)求证:AC ⊥PB ; (Ⅱ)求证:PB ∥平面AEC .10.在多面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,平面CDE 是等边三角形,棱EF//BC 且EF =BC 21. (I )证明:FO ∥平面CDE ;(II )设BC =,3CD 证明EO ⊥平面CDF . PBC DEABACDOEFEDCBAP11. 如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱 PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .(Ⅰ)证明PA //平面EDB ; (Ⅱ)证明PB ⊥平面EFD .12.如图,四棱锥ABCD P -中,⊥PA 底面ABCD ,AD AB ⊥,CD AC ⊥,︒=∠60ABC ,BC AB PA ==, E 是PC 的中点.(1)求证:AE CD ⊥; (2)求证:⊥PD 面ABE . PABCDEF13. 如图在三棱锥P ABC -中,PA ⊥平面ABC ,3AB BC CA ===,M 为AB 的中点,四点P 、A 、M 、C都在球O 的球面上。
高考数学立体几何平行与垂直精品30题
立体几何-平行与垂直练习题1. 空间四边形SABC中,SO⊥平面ABC,O为∆ABC的垂心,求证:(1)AB⊥平面SOC(2)平面SOC⊥平面SABO D CA2. 如图所示,在正三棱柱ABC- A1B1C1中,E,M分别为BB1,A1C的中点,求证:(1)EM⊥平面A A1C1C; (2)平面A1EC⊥平面AA1C1C;EMA1B1C1ABC"3. 如图,矩形ABCD中,AD⊥平面ABE,BE=BC,F为CE上的点,且BF⊥平面ACE,G为AC与BD的交点.(1)求证:AE⊥平面BCE.(2)求证:AE∥平面BFD.4. 设P,Q是边长为a的正方体AC1的面AA1D1D,面A1B1C1D1的中心,如图,(1)证明PQ∥平面AA1B1B;(2)求线段PQ的长.`5. 如图,在四棱锥P-ABCD 中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=.(Ⅰ)当主视图方向与向量AD 的方向相同时,画出四棱锥P ABCD -的三视图.(要求标出尺寸);(Ⅱ)若M 为PA 的中点,求证:DM //面PBC .6. 已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,且∠DAB=60°,AD=AA 1,F 为棱BB 1的中点,M 为线段AC 1的中点. 求证:(1)直线MF ∥平面ABCD ;(2)平面AFC 1⊥平面ACC 1A 1.7. 如图,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点. (1)求证:MN ∥平面PAD ;(2)求证:MN ⊥CD ;(3)若二面角P-DC-A=45°,求证:MN ⊥平面PDC.|8. 如图,在三棱柱ABC -A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M ,N 分别是AB ,A1C 的中点.(1)求证:MN ∥平面BCC1B1;(2)求证:MN ⊥平面A1B1C ;(3)求三棱锥M-A1B1C的体积.9. 如图所示,在四棱锥S—ABCD中,底面ABCD是矩形,侧面SDC⊥底面ABCD,且AB=2,SC=SD=2. 求证:平面SAD⊥平面SBC.10. 如图所示,在直.三棱柱...ABC-A1B1C1中,AC⊥BC.(1) 求证:平面AB1C1⊥平面AC1;(2) 若AB1⊥A1C,求线段AC与AA1长度之比;(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1若存在,试确定点E的位置;若不存在,请说明理由..11. 如图,把等腰Rt△ABC沿斜边AB旋转至△ABD的位置,使CD=AC,(1)求证:平面ABD⊥平面ABC;(2)求二面角C-BD-A的余弦值.12. 如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCDA1C D1B1是边长为2的菱形,∠BAD=60°,N是PB中点,过A、D、N三点的平面交PC于M,E为AD的中点.(1)求证:EN∥平面PCD;(2)求证:平面PBC⊥平面ADMN;(3)求平面PAB 与平面ABCD所成二面角的正切值.:13.如图,AB为⊙O直径,C为⊙O上一点,PA⊥平面ABC,A在PB,PC上的射影分别为E,F,求证:PB⊥平面AFE.14.在四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,AB=BC=1,DC=2,点E在PB上.(1)求证:平面AEC⊥平面PAD.(2)当PD∥平面AEC时,求PE∶EB的值.|15. 如图,已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=12AB,N为AB上一点,AB=4AN,M,D,S分别为PB,AB,BC的中点.(1)求证:PA∥平面CDM;(2)求证:SN⊥平面CDM.16. 一个多面体的直观图和三视图如图所示,其中M,G分别是AB,DF的中点.(1)求证:CM⊥平面FDM;(2)在线段AD上(含A,D端点)确定一点P,使得GP∥平面FMC,并给出证明.|1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.2.(2014•四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;?(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC请证明你的结论.3.(2014•湖北)在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.(Ⅰ)求证:BE∥平面PAD;(Ⅱ)求证:BC⊥平面PBD;(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°."4.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.5.(2014•黄山一模)如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F 分别是AB、PD的中点.(1)求证:AF∥平面PCE;…(2)求证:平面PCE⊥平面PCD;(3)求四面体PEFC的体积.6.(2014•南海区模拟)如图,四棱锥P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB 和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求证:OE∥平面PDC;(Ⅲ)求直线CB与平面PDC所成角的正弦值.~7.(2014•天津模拟)如图,在四棱台ABCD﹣A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.(1)求证:B1B∥平面D1AC;(2)求证:平面D1AC⊥平面B1BDD1.8.(2013•北京)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:?(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.9.(2013•天津)如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明:EF∥平面A1CD;(Ⅱ)证明:平面A1CD⊥平面A1ABB1;"(Ⅲ)求直线BC与平面A1CD所成角的正弦值.10.(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.!11.(2013•湖南)如图.在直棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.(1)证明:AD⊥C1E;(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1﹣A1B1E的体积.12.(2012•山东)如图,几何体E﹣ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;?(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.13.(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.)14.(2011•天津)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)证明:AD⊥平面PAC;(Ⅲ)求直线AM与平面ABCD所成角的正切值.15.(2011•北京)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.16.(2010•深圳模拟)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.17.(2010•重庆)如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.(1)求证:AB⊥平面PCB;(2)求二面角C﹣PA﹣B的大小的余弦值.。
立体几何专题复习(自己精心整理)
专题一证明平行垂直问题题型一证明平行关系(1)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD。
(2)在正方体AC1中,M,N,E,F分别是A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.思考题1(1)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点,求证:平面EFG∥平面PBC.(2)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.求证:PQ∥平面BCD。
题型二证明垂直关系(微专题)微专题1:证明线线垂直(1)已知空间四边形OABC中,M为BC中点,N为AC中点,P为OA中点,Q为OB中点,若AB=OC。
求证:PM⊥QN.(2)(2019·山西太原检测)如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点,求证:DF⊥AE。
微专题2:证明线面垂直(3)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1.(4)(2019·河南六市一模)在如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.若AA1=AC,求证:AC1⊥平面A1B1CD。
微专题3:证明面面垂直(5)已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证:平面DEA⊥平面A1FD1.(6)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=错误!PD,求证:平面PQC⊥平面DCQ。
思考题2(1)(2019·北京东城区模拟)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥BP交BP于点F,求证:PB⊥平面EFD。
高考大题专项(四) 立体几何
| || |
所以异面直线 PC 与 BQ
=
2
,
3
2
所成角的余弦值为 3 .
解题心得用向量法求异面直线所成角的一般步骤
(1)选择三条两两垂直的直线建立空间直角坐标系.
(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量.
(3)利用向量的夹角公式求出向量夹角的余弦值.
(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.
高考大题专项(四) 立体几何
【考情分析】
从近五年的高考试题来看,立体几何是历年高考的重点,约占整个试卷的
15%,通常以一大两小的模式命题,以中、低档难度为主.简单几何体的表面
积与体积、点、线、面位置关系的判定与证明以及空间角的计算是考查
的重点内容,前者多以客观题的形式命题,后者主要以解答题的形式命题考
【例题】 (2020安徽高三三模)如图,边长为2的等边三角形ABC所在平面与
菱形A1ACC1所在平面互相垂直,且BC∥B1C1,BC=2B1C1,A1C=
(1)求证:A1B1∥平面ABC;
(2)求多面体ABC-A1B1C1的体积.
3 1.
AC
(1)证明∵四边形A1ACC1是菱形,
∴AC∥A1C1.
对点训练2(2020辽宁高三三模)如图,在直棱柱ABCDA1B1C1D1中,底面ABCD为菱形,AB=BD=2,BB1=2,BD
与AC相交于点E,A1D与AD1相交于点O.
(1)求证:AC⊥平面BB1D1D;
(2)求直线OB与平面OB1D1所成的角的正弦值.
(1)证明∵底面ABCD为菱形,∴AC⊥BD.
查.着重考查推理论证能力和空间想象能力,而且对数学运算的要求有加强
立体几何练习题
立体几何题型一、平行与垂直的证明例1.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F . (1)证明PA //平面EDB ;(2)证明PB ⊥平面EFD例2.四棱锥S A B C D -中,底面ABCD 为平行四边形,侧面SB C ⊥底面ABCD ,已知45A B C ∠=︒,2A B =,BC =SA SB ==(Ⅰ)证明:SA B C ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小. 变式:已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且PA =AD =DC =21AB =1,M 是PB 的中点.(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小.ACDBCASOE A DCBNM EP题型二、空间角与距离例3.如图,在四棱锥O A B C D -中,底面A B C D 四边长为1的 菱形,4A B C π∠=, OA ABCD ⊥底面, 2O A =,M 为O A 的中点。
(Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离。
例4. 如图,四面体ABCD 中,O 、E 分别BD 、BC 的中点,CA =CB =CD =BD =2 (Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的大小; (Ⅲ)求点E 到平面的距离. 变式:如图,正三棱锥O A B C -的三条侧棱O A 、O B 、O C 两两垂直,且长度均为2.E 、F 分别是A B 、A C 的中点,H 是E F 的中点,过E F 的平面与侧棱O A 、O B 、O C 或其延长线分别相交于1A 、1B 、1C ,已知132O A =.(1)求证:11B C ⊥面O A H ; (2)求二面角111O A BC --的大小.1C 1A题型三、探索性问题例5.在四棱锥P-ABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,E 、F 分别是AB 、PC 的中点.(1)求证://EF 平面PAD ;(2)当平面PCD 与平面ABCD 成多大二面角时,⊥EF 平面PCD ?变式:如图,在三棱锥A -BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD ,BD =CD =1,另一个侧面是正三角形 (1)求证:AD ⊥BC(2)求二面角B -AC -D 的大小(3)在直线AC 上是否存在一点E ,使ED 与面BCD 成30︒角?若存在,确定E 的位置;若不存在,说明理由.DC题型四、折叠、展开问题例6.已知正方形A B C D E 、F 分别是A B 、C D 的中点,将AD E 沿D E 折起,如图所示,记二面角A D E C --的大小为(0)θθπ<< (1) 证明//B F 平面ADE ;(2)若A C D 为正三角形,试判断点A 在平面B C D E 内的射影G 是否在直线E F 上,证明你的结论,并求角θ的余弦值。
高中数学知识点总结(第八章 立体几何 第六节 直线、平面平行与垂直的综合问题) -
第六节 直线、平面平行与垂直的综合问题考点一 立体几何中的探索性问题[典例] (2018·全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC .(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.[解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC .因为DM ⊂平面AMD ,所以平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD . 证明如下: 连接AC 交BD 于O . 因为四边形ABCD 为矩形, 所以O 为AC 的中点.连接OP ,因为P 为AM 的中点, 所以MC ∥OP .又MC ⊄平面PBD ,OP ⊂平面PBD , 所以MC ∥平面PBD . [题组训练]1.如图,三棱锥P ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P ABC 的体积;(2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PMMC 的值.解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P ABC 的高,又P A =1,所以三棱锥P ABC 的体积V =13·S △ABC ·P A =36.(2)在线段PC 上存在点M ,使得AC ⊥BM ,证明如下:如图,在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM .由P A ⊥平面ABC ,知P A ⊥AC , 所以MN ⊥AC .因为BN ∩MN =N ,所以AC ⊥平面MBN , 又BM ⊂平面MBN , 所以AC ⊥BM .在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32,由MN ∥P A ,得PM MC =AN NC =13.2.如图,在四棱锥P ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG .(1)求证:PC ⊥BC ;(2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由.解:(1)证明:因为PD ⊥平面ABCD ,BC ⊂平面ABCD , 所以PD ⊥BC .因为四边形ABCD 是正方形,所以BC ⊥CD . 又PD ∩CD =D ,PD ⊂平面PCD ,CD ⊂平面PCD , 所以BC ⊥平面PCD .因为PC ⊂平面PCD ,所以PC ⊥BC .(2)连接AC ,BD 交于点O ,连接EO ,GO ,延长GO 交AD 于点M ,连接EM ,则P A ∥平面MEG . 证明如下:因为E 为PC 的中点,O 是AC 的中点, 所以EO ∥P A .因为EO ⊂平面MEG ,P A ⊄平面MEG ,所以P A ∥平面MEG . 因为△OCG ≌△OAM ,所以AM =CG =23,所以AM 的长为23.考点二 平面图形的翻折问题[典例] (2018·全国卷Ⅲ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =D Q =23DA ,求三棱锥QABP 的体积.解:(1)证明:由已知可得,∠BAC =90°,即BA ⊥AC . 又因为BA ⊥AD ,AC ∩AD =A , 所以AB ⊥平面ACD . 因为AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =3 2. 又BP =D Q =23DA ,所以BP =2 2.如图,过点Q 作Q E ⊥AC ,垂足为E ,则Q E 平行且等于13DC .由已知及(1)可得,DC ⊥平面ABC , 所以Q E ⊥平面ABC ,Q E =1.因此,三棱锥QABP 的体积为V QABP =13×S △ABP ×Q E =13×12×3×22sin 45°×1=1.[题组训练]1.(2019·湖北五校联考)如图1所示,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,得到如图2所示的几何体D ABC .(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F BCE 的体积. 解:(1)证明:∵AC =AD 2+CD 2=22, ∠BAC =∠ACD =45°,AB =4,∴在△ABC 中,BC 2=AC 2+AB 2-2AC ×AB ×cos 45°=8, ∴AB 2=AC 2+BC 2=16,∴AC ⊥BC .∵平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC , ∴BC ⊥平面ACD .(2)∵AD ∥平面BEF ,AD ⊂平面ACD ,平面ACD ∩平面BEF =EF ,∴AD ∥EF , ∵E 为AC 的中点,∴EF 为△ACD 的中位线,由(1)知,几何体F BCE 的体积V F BCE =V B CEF =13×S △CEF ×BC ,S △CEF =14S △ACD =14×12×2×2=12,∴V F BCE =13×12×22=23.2.(2018·合肥二检)如图1,在平面五边形ABCDE 中,AB ∥CE ,且AE =2,∠AEC =60°,CD =ED =7,cos ∠EDC =57.将△CDE 沿CE 折起,使点D 到P 的位置,且AP =3,得到如图2所示的四棱锥P ABCE .(1)求证:AP ⊥平面ABCE ;(2)记平面P AB 与平面PCE 相交于直线l ,求证:AB ∥l . 证明:(1)在△CDE 中,∵CD =ED =7,cos ∠EDC =57,由余弦定理得CE = 72+72-2×7×7×57=2.连接AC ,∵AE =2,∠AEC =60°, ∴AC =2. 又AP =3,∴在△P AE 中,AP 2+AE 2=PE 2, 即AP ⊥AE . 同理,AP ⊥AC .∵AC ∩AE =A ,AC ⊂平面ABCE ,AE ⊂平面ABCE , ∴AP ⊥平面ABCE .(2)∵AB ∥CE ,且CE ⊂平面PCE ,AB ⊄平面PCE , ∴AB ∥平面PCE .又平面P AB ∩平面PCE =l ,∴AB ∥l .[课时跟踪检测]1.如图,四棱锥P ABCD 的底面ABCD 是圆内接四边形(记此圆为W ),且P A ⊥平面ABCD .(1)当BD 是圆W 的直径时,P A =BD =2,AD =CD =3,求四棱锥P ABCD 的体积.(2)在(1)的条件下,判断在棱P A 上是否存在一点Q ,使得B Q ∥平面PCD ?若存在,求出A Q 的长;若不存在,请说明理由.解:(1)因为BD 是圆W 的直径,所以BA ⊥AD , 因为BD =2,AD =3,所以AB =1. 同理BC =1,所以S 四边形ABCD =AB ·AD = 3. 因为P A ⊥平面ABCD ,P A =2,所以四棱锥P ABCD 的体积V =13S 四边形ABCD ·P A =233.(2)存在,A Q =23.理由如下.延长AB ,DC 交于点E ,连接PE ,则平面P AB 与平面PCD 的交线是PE . 假设在棱P A 上存在一点Q ,使得B Q ∥平面PCD , 则B Q ∥PE ,所以A Q P A =ABAE.经计算可得BE =2,所以AE =AB +BE =3,所以A Q =23.故存在这样的点Q ,使B Q ∥平面PCD ,且A Q =23.2.如图,侧棱与底面垂直的四棱柱ABCD A 1B 1C 1D 1的底面是梯形,AB ∥CD ,AB ⊥AD ,AA 1=4,DC =2AB ,AB =AD =3,点M 在棱A 1B 1上,且A 1M =13A 1B 1.已知点E 是直线CD 上的一点,AM ∥平面BC 1E .(1)试确定点E 的位置,并说明理由; (2)求三棱锥M BC 1E 的体积.解:(1)点E 在线段CD 上且EC =1,理由如下:在棱C 1D 1上取点N ,使得D 1N =A 1M =1,连接MN ,DN , 因为D 1N ∥A 1M ,所以四边形D 1NMA 1为平行四边形, 所以MN 平行且等于A 1D 1平行且等于AD .所以四边形AMND 为平行四边形,所以AM ∥DN . 因为CE =1,所以易知DN ∥EC 1,所以AM ∥EC 1, 又AM ⊄平面BC 1E ,EC 1⊂平面BC 1E ,所以AM ∥平面BC 1E . 故点E 在线段CD 上且EC =1. (2)由(1)知,AM ∥平面BC 1E ,所以V M BC 1E =V A BC 1E =V C 1ABE =13×⎝⎛⎭⎫12×3×3×4=6. 3.(2019·湖北武汉部分学校调研)如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1ABCE ,其中平面D 1AE ⊥平面ABCE .(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AMAB的值;若不存在,请说明理由.解:(1)证明:∵四边形ABCD 为矩形且AD =DE =EC =BC =2, ∴∠AEB =90°,即BE ⊥AE ,又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE , ∴BE ⊥平面D 1AE . (2)当AM AB =14时,MF ∥平面D 1AE ,理由如下: 取D 1E 的中点L ,连接FL ,AL , ∴FL ∥EC ,又EC ∥AB , ∴FL ∥AB ,且FL =14AB ,∴M ,F ,L ,A 四点共面, 又MF ∥平面AD 1E ,∴MF ∥AL . ∴四边形AMFL 为平行四边形, ∴AM =FL =14AB ,AM AB =14.4.如图1所示,在Rt △ABC 中,∠ABC =90°,D 为AC 的中点,AE ⊥BD 于点E (不同于点D ),延长AE 交BC 于点F ,将△ABD 沿BD 折起,得到三棱锥A 1BCD ,如图2所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?请说明理由.解:(1)证明:∵D,M分别为AC,FC的中点,∴DM∥EF,又∵EF⊂平面A1EF,DM⊄平面A1EF,∴DM∥平面A1EF.(2)证明:∵EF⊥BD,A1E⊥BD,A1E∩EF=E,A1E⊂平面A1EF,EF⊂平面A1EF,∴BD⊥平面A1EF,又A1F⊂平面A1EF,∴BD⊥A1F.(3)直线A1B与直线CD不能垂直.理由如下:∵平面BCD⊥平面A1BD,平面BCD∩平面A1BD=BD,EF⊥BD,EF⊂平面BCD,∴EF⊥平面A1BD,又∵A1B⊂平面A1BD,∴A1B⊥EF,又∵DM∥EF,∴A1B⊥DM.假设A1B⊥CD,∵DM∩CD=D,∴A1B⊥平面BCD,∴A1B⊥BD,与∠A1BD为锐角矛盾,∴直线A1B与直线CD不能垂直.5.(2019·河南名校联考)如图,在多面体ABCDEF中,四边形ABCD是梯形,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.(1)求证:BC⊥平面ACFE;(2)当EM为何值时,AM∥平面BDF?证明你的结论.解:(1)证明:在梯形ABCD中,因为AB∥CD,AD=DC=CB=a,∠ABC=60°,所以四边形ABCD是等腰梯形,且∠DCA=∠DAC=30°,∠DCB=120°,所以∠ACB=∠DCB-∠DCA=90°,所以AC⊥BC.又平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,BC⊂平面ABCD,所以BC⊥平面ACFE.(2)当EM =33a 时,AM ∥平面BDF ,理由如下: 如图,在梯形ABCD 中,设AC ∩BD =N ,连接FN .由(1)知四边形ABCD 为等腰梯形,且∠ABC =60°,所以AB =2DC ,则CN ∶NA =1∶2.易知EF =AC =3a ,所以AN =233a .因为EM =33a , 所以MF =23EF =233a ,所以MF 平行且等于AN , 所以四边形ANFM 是平行四边形, 所以AM ∥NF ,又NF ⊂平面BDF ,AM ⊄平面BDF , 所以AM ∥平面BDF .6.如图所示的五面体ABEDFC 中,四边形ACFD 是等腰梯形,AD ∥FC ,∠DAC =60°,BC ⊥平面ACFD ,CA =CB =CF =1,AD =2CF ,点G 为AC 的中点.(1)在AD 上是否存在一点H ,使GH ∥平面BCD ?若存在,指出点H 的位置并给出证明;若不存在,说明理由;(2)求三棱锥G ECD 的体积.解:(1)存在点H 使GH ∥平面BCD ,此时H 为AD 的中点.证明如下. 取点H 为AD 的中点,连接GH , 因为点G 为AC 的中点,所以在△ACD 中,由三角形中位线定理可知GH ∥CD , 又GH ⊄平面BCD ,CD ⊂平面BCD , 所以GH ∥平面BCD .(2)因为AD ∥CF ,AD ⊂平面ADEB ,CF ⊄平面ADEB , 所以CF ∥平面ADEB ,因为CF ⊂平面CFEB ,平面CFEB ∩平面ADEB =BE , 所以CF ∥BE ,又CF ⊂平面ACFD ,BE ⊄平面ACFD , 所以BE ∥平面ACFD , 所以V G ECD =V E GCD =V B GCD .因为四边形ACFD 是等腰梯形,∠DAC =60°,AD =2CF =2AC ,所以∠ACD =90°,又CA =CB =CF =1,所以CD =3,CG =12,又BC ⊥平面ACFD ,所以V B GCD =13×12CG ×CD ×BC =13×12×12×3×1=312.所以三棱锥G ECD 的体积为312.。
必修2-2.2线面平行面面平行的经典7道证明题
D CA 1A For personal use only in study and research; not for commercial use必修2 —2.2线面平行、面面平行的证明经典练习1.直三棱柱111C B A ABC -中,D 是AB 的中点,证明:1BC //平面1ACD 2.如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点。
求证:直线EF ∥平面PCD ;3.4.5.如图,在四棱锥P —ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F 。
证明PA//平面EDB ;6.正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点。
求证://1C B 平面BD A 1;7.两个边长均为3的正方形ABCD 和ABEF 所在平面垂直相交于AB ,,AC M∈FB N ∈,且FN AM =.(1)证明://MN 平面BCE ;仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.以下无正文。
2018届高考数学复习—立体几何:(二)空间直线、平面关系的判断与证明—2.平行与垂直关系的证明(试题版)
【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP.►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC. ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF.[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG.►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H. 【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F.题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE.►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离. 【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB.(1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC. [例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a⊂α,b⊂α,且l⊥a,l⊥b,则l⊥αD.若a⊥α,a∥β,则α⊥β6.(2015·山东二模)设m,n是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是()A.当n⊥α时,“n⊥β”是“α∥β”的充要条件B.当m⊂α时,“m⊥β”是“α⊥β”的充分不必要条件C.当m⊂α时,“n∥α”是“m∥n”的必要不充分条件D.当m⊂α时,“n⊥α”是“m⊥n”的充分不必要条件7.(2016·浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n8.(2013北京)如图,四棱锥P-ABCD中,AB∥CD,AB⊥AD, CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.9.[2014·山东文]如图,四棱锥P-ABCD中,AP⊥平面PCD, AD∥BC,AB=BC=12AD,E,F分别为线段AD,PC的中点.(1)求证:AP∥平面BEF;(2)求证:BE⊥平面P AC.10.(2013全国Ⅱ文)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=22,求三棱锥C-A1DE的体积. 11.(2013·辽宁)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.12.[2014·课标Ⅱ文]如图,四棱锥P-ABCD中,底面ABCD 为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P -ABD的体积V=34,求A 到平面PBC的距离.13.(2015江苏)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.14.(2015广东文)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.15.(2015课标Ⅱ)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD中,AD∥B C,∠BAD=π2,AB=BC=12AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1﹣BCDE.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1﹣BCDE的体积为362,求a的值.17.(2016·课标Ⅱ文)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′(2)若AB=5,AC=6,AE=54,OD′=22,求五棱锥D′ABCFE的体积.18.(2016·课标Ⅲ文)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面P AB;(2)求四面体N-BCM的体积.19.[2017全国I文]如图,在四棱锥P-ABCD中,AB//CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠ADP=90°,且四棱锥P-ABCD的体积为83,求该四棱锥的侧面积.20.[2017全国II文]如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为27,求四棱锥P-ABCD的体积.21.[2017全国III文]在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC22.[2017全国III文]如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D 不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE 的体积比.。
立体几何最典型的平行与垂直题型归纳(带答案)(1)
专题:立体几何最典型的平行与垂直题型归纳1.四面体ABCD 中,△ ABC 是正三角形,△ ACD 是直角三角形,∠ ABD =∠ CBD,AB=BD ,则四面体的四个表面中互相垂直的平面有()对.2.如图,在四棱锥P﹣ABCD 中,PA⊥底面ABCD ,四边形ABCD 为长方形,AD=2AB,点E、F 分别是线段PD、PC 的中点.(Ⅰ)证明:EF∥平面PAB;(Ⅱ)在线段AD 上是否存在一点O,使得BO⊥平面PAC,若存在,请指出点O 的位置,⊥底面ABCD ,且PA=AD=2,AB=BC=1,M 为PD 的中点.Ⅰ)求证:CM ∥平面PAB;Ⅱ)求证:CD ⊥平面PAC.AD ∥BC ,∠ BAD =90°,PA4.如图,△ ABC 为正三角形,AE 和CD 都垂直于平而ABC,F 是BE 中点,AE=AB=2,CD=1.1)求证:DF ∥平面ABC;2)求证:AF ⊥DE;3)求异面直线AF 与BC 所成角的余弦值.5.如图,在四棱锥A﹣BCDE 中,平面ABC⊥平面BCDE ,∠ CDE =∠ BED =90°,AB=CD=2,DE=BE=1,AC=.(1)证明:D E⊥平面ACD ;2)求棱锥C﹣ABD 的体积.6.如图,在四棱锥P﹣ABCD 中,底面ABCD 是矩形,PA⊥平面ABCD,PA=AD=2,AB =1,M 为线段PD 的中点.I)求证:BM ⊥PDII )求直线CM 与PB 所成角的余弦值.7.如图,在正三棱柱ABC﹣A1B1C1 中,所有棱长都等于2.(1)当点M 是BC 的中点时,求异面直线AB1和MC1所成角的余弦值;专题 :立体几何最容易错的最难的平行与垂直问题汇编1.如图,在三棱柱 ABC ﹣A 1B 1C 1中,侧棱垂直于底面,∠ ACB =90°, 2AC =AA 1,D ,M 分别是棱 AA 1, BC 的中点.证明:2)若∠ ABC =120°,AE ⊥EC ,AB =2,求点 G 到平面 AED 的距离.3.如图,在四棱锥 P ﹣ ABCD 中,平面 PAD ⊥平面 ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD , AB =1,AD =2,AC =CD = .( 1)求证: PD ⊥平面 PAB ;1)证明:平面 PAB ⊥平面 PAD;AB ∥CD ,且∠ BAP =∠ CDP =90BE ⊥平面 ABCD .1)证明:平面 AEC ⊥平面 BED .2)若 PA =PD =AB =DC ,∠APD =90°,且四棱锥 P ﹣ABCD 的体积为 ,求该四棱 1)证明: AC ⊥BD ;(2)已知△ ACD 是直角三角形, AB =BD ,若 E 为棱 BD 上与 D6.如图,在四棱锥 A ﹣EFCB 中,△ AEF 为等边三角形,平面 AEF ⊥平面 EFCB ,EF = 2,四边形 EFCB 是高为 的等腰梯形, EF ∥BC ,O 为 EF 的中点.AD =CD . 求 O 到平面 ABC 的距离.专题:立体几何最典型的平行与垂直题型归纳1.四面体ABCD 中,△ ABC 是正三角形,△ ACD 是直角三角形,∠ ABD =∠ CBD,AB=BD ,则四面体的四个表面中互相垂直的平面有()对.A .0 B.1 C. 2 D. 3【解答】解:取AC 的中点E,连接BE,DE,∵∠ ABD=∠ CBD ,∴ BD 在平面ABC 上的射影在直线BE 上,∵△ ACD 是直角三角形,∴∠ ADC=90°,设 AB = 2,则 BE = ,DE = AC =1,BD =2,2 2 2∴DE 2+BE 2= BD 2,即 DE ⊥BE ,又 BE ⊥ AC ,DE ∩AC =E ,∴ BE ⊥平面 ACD ,∴平面 ABC ⊥平面 ACD .∵ D 在平面 ABC 上的射影为 E , B 在平面 ACD 上的射影为 E ,∴平面 ABD 与平面 ABC 不垂直,平面 BCD 与平面 ABC 不垂直,平面 ABD 与平面 ACD 不垂直,平面 BCD 与平面 ACD 不垂直, 过A 作 AF ⊥BD ,垂足为 F ,连接 CF ,由△ ABD ≌△ CBD 可得 CF ⊥BD ,故而∠ AFC 为二面角 A ﹣BD ﹣C 的平面角, ∵ AD == , ∴ cos ∠ ABD ∴ CF = AF =∴ cos ∠ AFC =∴∠ AFC ≠ 90°,∴平面 ABD 与平面 BCD 不垂直.F 分别是线段 PD 、PC 的中点.证明: EF ∥平面 PAB ;BO ⊥平面 PAC ,若存在,请指出点 O 的位置, 并证明 BO ⊥平面 PAC ;若不存在,请说明理由.2.如图, 在四棱锥 P ﹣ABCD 中, PA ⊥底面 ABCD ,四边形 ABCD 为长方形, AD = 2AB ,在线段 AD 上是否存在一点 O ,使得,∴ sin ∠ ABD=∵EF ∥CD ,∴ EF ∥AB ,∴ EF ∥平面 PAB . ⋯(6 分)此时点 O 为线段 AD 的四等分点,满足 ,⋯( 8 分) ∵长方形ABCD 中,∴△ ABO ∽△ ADC , ∴∠ ABO+∠CAB =∠ DAC + ∠CAB =90°,∴AC ⊥BO ,(10 分) 又∵ PA ⊥底面 ABCD ,BO? 底面ABCD , ∴PA ⊥BO , ∵PA ∩AC =A ,PA 、AC? 平面 PACABCD 为长方形,∴CD ∥AB ,∠ BAO =∠ ADC = 90°,四边形 ABCD 为直角梯形, AD∥BC ,∠ BAD=,PA 又∵ EF? 平面 PAB , AB? 平面 PAB ,Ⅱ) 在线段 AD 上存在一点 O ,使得 BO ⊥平面 PAC ,⊥底面ABCD ,且PA=AD=2,AB=BC=1,M为PD 的中点.(Ⅰ)求证:CM ∥平面PAB;(Ⅱ)求证:CD ⊥平面PAC.解答】证明:(I )取PA 的中点E,连接ME 、BE,∵ ME ∥AD,ME AD,∴ ME ∥BC,ME=BC,∴四边形BCME 为平行四边形,∴ BE∥CM ,∵BE? 平面PAB,CM?平面PAB,∴ CM∥平面PAB;(II )在梯形ABCD 中,AB=BC=1,AD=2,∠ BAD=90° 过C作CH⊥AD于H,∴AC =CD=2 2 2∵AC2+CD2=AD2,∴ CD⊥AC又∵ PA⊥平面ABCD ,CD ?平面ABCD,∴ CD⊥PA∵PA∩AC=A,∴CD ⊥平面PAC4.如图,在三棱柱ABC﹣A1B1C1中,AB=AC,A1在底面ABC的射影为BC的中点,D是B1C1 的中点,证明:A1D⊥平面A1BC.解答】 证明:设 E 为 BC 的中点,连接 A 1E , DE ,AE ,由题意得 A 1E ⊥平面 ABC ,∴ A 1E ⊥AE .∵ AB = AC , AE ⊥BC ,∴ AE ⊥平面 A 1BC . 由 D ,E 分别为 B 1C 1,BC 的中点,得 DE ∥B 1B 且 DE =B 1B , 从而 DE ∥A 1A 且 DE =A 1A ,∴四边形 A 1AED 为平行四边形,∴ A 1D ∥AE .5.如图,△ ABC 为正三角形, AE 和 CD 都垂直于平而 ABC ,F 是 BE 中点, AE =AB = 2,CD = 1.(1)求证: DF ∥平面 ABC ;(2)求证: AF ⊥DE ;(3)求异面直线 AF 与 BC 所成角的余弦值.【解答】(1)证明:取 AC 中点 O ,过 O 作平面 ABC 的垂线交 DE连结 OB ,则 OG ⊥OB , OG ⊥ OC ,∵△ ABC 是正三角形, O 是 AC 中点,∴ OB ⊥ OC ,以 O 为原点, OB 、OC 、OG 所在直线分别为 x 、y 、z轴,建立空间直角坐标系,又∵ AE ⊥平面 A 1BC , ∴ A 1D ⊥平面 A 1BC∵F 是 BE 中点, AE =AB = 2,CD =1,=(﹣ , 1, 0), =( 0,0, 1),∵CD ⊥平面 ABC ,∴ =(0,0,1)是平面 ABC 的一个法向量,又 DF? 平面 ABC ,∴ DF ∥平面 ABC .2)证明:∵ =( ), =( 0,﹣2,1),∴ = 0﹣ 1+1=0,∴AF ⊥DE .(3)解:∵ =( ), =(﹣ ,1, 0),设 AF 、 BC 所成角为 θ,cos θ= ∴异面直线 AF 与 BC 所成角的余弦值6.如图,在四棱锥 P ﹣ABCD 中,底面 ABCD 是矩形, PA ⊥平面 ABCD ,PA =AD =2,AB = 1,M 为线段 PD 的中点.( I )求证: BM ⊥PD( II )求直线 CM 与 PB 所成角的余弦值.∴ =( ,0), =( ), =(0,﹣ 2,1),∵ = , ∴,D (0,1,1),E (0,﹣1,∴A (0,﹣ 1,0),B(| | =【解答】( I )证明:连接 BD ,∵四棱锥 P ﹣ABCD 中,底面 ABCD 是矩形, PA ⊥平面 ABCD ,PA =AD =2,AB =1, ∴PB =BD =∵ M 为线段 PD 的中点,∴BM ⊥PD(II )解:连接 AC ,与 BD 交于 O ,连接 OM ,则∵ M 为线段 PD 的中点,∴MO ∥PB∴直线 CM 与 PB 所成角的余弦值为7.如图,在正三棱柱 ABC ﹣A 1B 1C 1 中,所有棱长都等于 2.( 1)当点 M 是 BC 的中点时,① 求异面直线 AB 1和 MC 1 所成角的余弦值;② 求二面角 M ﹣AB 1﹣C 的正弦值;(2)当点 M 在线段 BC 上(包括两个端点)运动时, 求直线 MC 1与平面 AB 1C 所成角的∴∠ CMO (或其补角)为直线 CM 与 PB 所成角,在△ MOC中, ∴ cos ∠ CMO=CM = = ,. .解答】 解:(1)取 AC 的中点为 O ,建立空间直角坐标系 O ﹣ xyz ,则 ,C ( 0,1,0),当 M 是 BC 的中点时,则 . ①, 设异面直线 AB 1 和 MC 1 所成角为 θ,则 = = .= = .② , , ,,令 x = 2,∴ ,∴ .设二面角 M ﹣ AB 1﹣ C 的平面角为 θ,则=.所以 .( 2)当 M 在 BC 上运动时,设 .设平面 MAB 1的一个法向量为 ,则 .∴ 设平面 AB 1C 的一个法向量为 ,令 ,则 y =﹣ 1,z =﹣ 1,∴,,则正弦值的取值范围.设M(x,y,z),∴,∴ ,则,∴ .设直线MC1 与平面AB1C 所成的角为θ ,则设,设t=λ+1 ∈[1,2],所以,t∈[1,2].设,∴∵ ,∴ ,∴∴直线MC 1与平面AB1C 所成的角的正弦值的取值范围为6.如图,在四棱锥 A ﹣BCDE 中,平面 ABC ⊥平面 BCDE ,∠ CDE =∠ BED =90°, AB =CD = 2,DE =BE =1,AC = .( 1)证明: DE ⊥平面 ACD ;( 2)求棱锥 C ﹣ ABD 的体积.【解答】 解:( 1)在直角梯形 BCDE 中,∵DE = BE = 1, CD = 2,∴ BC == , 又 AB =2, AC = ,∴ AB 2=AC 2+BC 2,即 AC ⊥ BC ,又平面 ABC ⊥平面 BCDE ,平面 ABC ∩平面 BCDE =BC ,AC? 平面 ABC ,∴AC ⊥平面 BCDE ,又 DE? 平面 BCDE ,∴AC ⊥ DE ,又 DE ⊥DC ,AC ∩CD =C ,∴ DE ⊥平面 ACD .1.如图,在三棱柱 ABC ﹣A 1B 1C 1中,侧棱垂直于底面,∠ ACB =90°, 2AC =AA 1,D ,M分别是棱 AA 1, BC 的中点.证明:S △BCD ?AC =V C ﹣ABD =V A ﹣BCD =1)AM∥平面BDC12)DC1⊥平面BDC .∴AD ∥ MN ,且 AD = MN ;∴四边形 ADNM 为平行四边形,∴DN ∥AM ;又 DN? 平面 BDC 1,AM? 平面 BDC 1,∴ AM ∥平面 BDC 1⋯( 6 分)( 2)由已知 BC ⊥CC 1,BC ⊥AC ,又 CC 1∩ AC = C ,∴ BC ⊥平面 ACC 1A 1,又 DC 1? 平面 ACC 1A 1,∴ DC 1⊥BC ;由已知得∠ A 1DC 1=∠ ADC =45°,∴∠ CDC 1= 90°,∴DC 1⊥DC ;又 DC ∩BC =C ,∴ DC 1⊥平面 BDC .⋯( 12分)【解答】 证明:( 1)如图所示,取 BC 1 的中点 N ,连接 DN ,MN .则 MN ∥ CC 1,且 M N = CC 1;又 AD ∥CC 1,且 ADV = ,2.如图,四边形 ABCD 为菱形, G 为 AC 与 BD 的交点, BE ⊥平面 ABCD .( 1)证明:平面 AEC ⊥平面 BED .因为 BE ⊥平面 ABCD , AC? 平面 ABCD ,所以 AC ⊥BE ,⋯( 2 分)又因为 DB ∩BE =B ,所以 AC ⊥平面 BED .⋯( 3分) 又 AC? 平面 AEC ,所以平面 AEC ⊥平面 BED .⋯( 5 分)2)取 AD 中点为 M ,连接 EM .因为∠ ABC = 120°.,AB =2,所以 AB =DB = 2,AG = ,DG = 1,因为 AE ⊥EC ,所以 EG == ,所以 BE = ,⋯( 6 分)所以 AE =DE = ,又所以 AD 中点为 M ,所以 EM ⊥AD 且 EM = .设点 G 到平面 AED 的距离为为 h , 则三棱锥 E ﹣ADG 的体积为求点 G 到平面 AED 的距离.为菱形,所以 AC ⊥BD ,⋯( 1 分)即,解得 h = .PAD ⊥平面 ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,ABCD ,且平面 PAD ∩平面 ABCD =AD ,AB ⊥AD ,AB? 平面 ABCD ,∴ AB ⊥平面 PAD ,∵PD? 平面 PAD ,∴AB ⊥PD ,又 PD ⊥PA ,且 PA ∩AB =A ,∴ PD ⊥平面 PAB ;( 2)解:取 AD 中点 O ,连接 PO ,则 PO ⊥ AD , 又平面 PAD ⊥平面 ABCD , ∴PO ⊥平面 ABCD ,∵PA ⊥PD ,PA =PD ,AD =2,∴ PO =1.10 分) 所以点 G 到平面 AED 的距离为AB =1,AD =2,AC =CD = .1)求证: PD ⊥平面PAB ;在△ ACD 中,由 AD =2,AC =CD = ,可得 .4.如图,在四棱锥 P ﹣ABCD 中, AB ∥CD ,且∠ BAP =∠ CDP =901)证明:平面 PAB ⊥平面 PAD ;P ﹣ABCD 中,∠ BAP =∠ CDP = 90°,∴AB ⊥PA ,CD ⊥PD ,又 AB ∥ CD ,∴ AB ⊥PD ,∵PA ∩PD =P ,∴ AB ⊥平面 PAD ,∵AB? 平面 PAB ,∴平面 PAB ⊥平面 PAD .解:(2)设 PA =PD =AB =DC =a ,取 AD 中点O ,连结 PO ,∵PA =PD =AB =DC ,∠ APD =90°,平面 PAB ⊥平面 PAD ,∵四棱锥 P ﹣ABCD 的体积为由 AB ⊥平面 PAD ,得 AB ⊥ AD ,∴V P ﹣ABCD =2)若 PA =PD = AB = DC ,∠ APD =90°,且四棱锥 P ﹣ ABCD 的体积为求该四棱 ∴ PO ⊥底面ABCD , O P= = = = , 解得 a =2,∴ PA =PD =AB =DC =2,AD =BC =2 ,PO = , ∴ PB = PC = =2 ,∴该四棱锥的侧面积:S 侧= S △PAD +S △PAB +S △PDC +S △PBC=+1)证明: AC ⊥ BD ;2)已知△ ACD 是直角三角形, AB = BD ,若 E 为棱 BD 上与 D 不重合的点, ∵△ ABC 是正三角形, AD =CD ,∴DO ⊥AC ,BO ⊥AC ,∵DO ∩BO =O ,∴ AC ⊥平面 BDO ,∵BD? 平面 BDO ,∴AC ⊥BD . 解:(2)法一:连结 OE ,由( 1)知 AC ⊥平面 OBD , ∵OE? 平面 OBD ,∴ OE ⊥ AC , 设 AD = CD = ,则 OC = OA = 1, EC = EA ,2 2 2 ∵AE ⊥CE ,AC =2,∴ EC 2+EA 2=AC 2,∴ EC = EA = = CD ,∴E 是线段 AC 垂直平分线上的点,∴ EC =EA =CD = ,由余弦定理得:AE ⊥= 6+2 .AD =CD .∵BE<<BD=2,∴BE=1,∴ BE=ED ,∵四面体ABCE 与四面体ACDE 的高都是点 A 到平面BCD 的高h,∵ BE=ED ,∴ S△DCE=S△BCE,∴四面体ABCE 与四面体ACDE 的体积比为1.法二:设AD=CD=,则AC=AB=BC=BD=2,AO=CO=DO=1,∴ BO==,∴ BO2+DO2=BD2,∴ BO⊥DO,以O 为原点,OA 为x 轴,OB 为y 轴,OD 为z 轴,建立空间直角坐标系,则C(﹣1,0,0),D(0,0,1),B(0,,0),A(1,0,0),设E(a,b,c),,(0≤λ≤1),则(a,b,c﹣1)=λ(0,,﹣1),解得E(0,,1﹣λ),∴ =(1,),=(﹣ 1 ,),∵AE⊥EC,∴=﹣1+3λ2+ (1﹣λ)2=0,由λ∈[0 ,1],解得,∴ DE=BE,∵四面体ABCE 与四面体ACDE 的高都是点 A 到平面BCD 的高h,∵DE=BE,∴ S△DCE=S△BCE,∴四面体ABCE 与四面体ACDE 的体积比为1.AEF⊥平面EFCB,EF=2,四边形EFCB 是高为的等腰梯形,EF∥BC,O 为EF 的中点.1)求证:AO⊥CF;O 为EF 的中点,所以AO⊥ EF ⋯( 1 分)又因为平面AEF⊥平面EFCB,AO? 平面AEF,平面AEF ∩平面EFCB =EF ,所以AO ⊥平面EFCB,⋯( 4 分)又CF? 平面EFCB ,所以AO⊥ CF ⋯( 5 分)(2)解:取BC 的中点G,连接OG.由题设知,OG⊥BC ⋯( 6 分)由(1)知AO⊥平面EFCB ,又BC? 平面EFCB ,所以OA⊥BC,因为OG∩OA=O,所以BC⊥平面AOG⋯(8 分)过O 作OH⊥AG,垂足为H,则BC⊥ OH ,因为AG∩BC=G,所以OH⊥平面ABC.⋯(10 分)因为,所以,即O 到平面ABC 的距离为.(另外用等体积法亦可)⋯(12 分)10.直三棱柱ABC﹣A1B1C1 中,若∠ BAC=90°,AB=AC=AA1,则异面直线BA1 与B1C 所成角的余弦值为(A.0 B.C.。
线面垂直判定经典证明题
线面垂直判定经典证明题第一篇:线面垂直判定经典证明题线面垂直判定1、已知:如图,PA⊥AB,PA⊥AC。
求证:PA⊥平面ABC。
2、已知:如图,PA⊥AB,BC⊥平面PAC。
求证:PA⊥BC。
3、如图,在三棱锥V-ABC中,VA=VC,AB=BC。
求证:VB⊥AC4、在正方体ABCD-EFGH中,O为底面ABCD中心。
求证:BD⊥平面AEGC5、如图,AB是圆O的直径,PA⊥AC, PA⊥AB,求证:BC⊥平面PAC6、如图,AD⊥BD, AD⊥DC,AD=BD=CD,∠BAC=60°求证:BD⊥平面ADC7、.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.8、已知:如图,P是棱形ABCD所在平面外一点,且PA=PC 求证:AC⊥平面PBD __C9、已知四面体ABCD中,AB=AC,BD=CD,平面ABC⊥平面BCD,E为棱BC的中点。
(1)求证:AE⊥平面BCD;(2)求证:AD⊥BC;BECD10、三棱锥A-BCD中,AB=1,AD=2,求证:AB⊥平面BCD11、在四棱锥S-ABCD中,SD⊥平面ABCD,底面ABCD是正方形求证:AC⊥平面SBD12、如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,求证:AB⊥平面ADE;AED13、三棱锥P-ABC中,三条侧棱PA,PB,PC两两垂直,H是△ABC的垂心求证:PH 底面ABC14、正方体ABCD-A1B1C1D1中,求证:A1C⊥平面BC1D._A_115、S是△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,求证AB⊥BCSCAB16、如图,直三棱柱ABC—A1B1C1 中,AC =BC =1,∠ACB =90°,AA1 =2,D 是A1B1 中点.求证C1D ⊥平面A1B ;第二篇:线面垂直的判定漯河高中2013—2014高一数学必修二导学案2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质编制人:魏艳丽方玉辉审核人:高一数学组时间:2013.12.03【课前预习】一、预习导学1、直线与平面垂直的性质定理:_________________________________________.2、垂直于同一条直线的两个平面____________.3、平面与平面垂直的性质定理:_________________________________________.4、如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在___________.二、预习检测教材P71、P73【课内探究】[例1]如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面.[例2]如图,已知矩形ABCD,过A作SA⊥平面AC,再过A作AE⊥SB交SB于E,过E作EF⊥SC交SC于F.(1)求证:AF⊥SC;(2)若平面AEF交SD于G,求证:AG⊥SD.我主动,我参与,我体验,我成功第1页(共4页)[例3]10、在三棱锥P—ABC中,△PAB是等边三角形,∠PAC=∠PBC=90º.(1)证明:AB⊥PC;(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P—ABC的体积.[例4]如图所示,在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.(1)若D是BC的中点,求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C;(3)若截面MBC1⊥平面BB1C1C,则AM=MA1吗?请叙述你的判断理由.我主动,我参与,我体验,我成功第2页(共4页)【巩固训练】1.已知两个平面互相垂直,那么下列说法中正确的个数是()①一个平面内的直线必垂直于另一个平面内的无数条直线;②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线;③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上;④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面. A.4B.3C.2D.1()()2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是A.相交B.平行C.异面D.相交或平行3.若m、n表示直线,α表示平面,则下列命题中,正确命题的个数为m∥n⎫m⊥α⎫⎪⎪⎬⎬⇒m∥n;①⇒n⊥α;②⎪⎪m⊥α⎭n⊥α⎭m⊥α⎫m∥α⎫⎪⎪⎬⎬⇒n⊥α.③⇒m⊥n;④⎪⎪n∥α⎭m⊥n⎭A.4B.3C.2D.1D.重心oo4.在△ABC所在的平面α外有一点P,且PA=PB=PC,则P在α内的射影是△ABC的()A.垂心B.外心C.内心5.如图所示,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为45和30.过A、B分别作两平面交线的垂线,垂足分别为A′、B′,则AB∶A′B′等于()A.3∶1B.2∶1C.3∶2D.4∶36.设α-l-β是直二面角,直线a⊂α,直线b⊂β,a,b与l都不垂直,那么()A.a与b可能垂直,但不可能平行B.a与b不可能垂直,但可能平行 C.a与b可能垂直,也可能平行 D.a与b不可能垂直,也不可能平行7.若α⊥β,α∩β=AB,a∥α,a⊥AB,则a与β的关系为________.8.直线a和b在正方体ABCD-A1B1C1D1的两个不同平面内,使a∥b成立的条件是________.①a和b垂直于正方体的同一个面;②a和b在正方体两个相对的面内,且共面;③a和b平行于同一条棱;④a和b在正方体的两个面内,且与正方体的同一条棱垂直.9.如图,在三棱锥P-ABC中,PA⊥平面ABC,平面PAB⊥平面PBC.我主动,我参与,我体验,我成功第3页(共4页)求证:BC⊥AB.10.如图所示,在正方体ABCD—A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.求证:(1)MN∥AD1;(2)M是AB的中点.11.如图所示,在多面体P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4(1)设M是PC上的一点,求证:平面M BD⊥平面PAD;(2)求四棱锥P—ABCD的体积.※12.如图,直三棱柱ABC-A1B1C1中,AC=BC=1,D是棱AA12的中点,DC1⊥BD.(1)证明:DC1⊥BC;(2)求二面角A1-BD-C1的大小.我主动,我参与,我体验,我成功第4页(共4页)第三篇:线面垂直的判定1(模版)深圳市第二课堂文化教育徐老师***直线与平面垂直的判定1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是()A.平行B.垂直C.相交不垂直D.不确定2.直线a与b垂直,b⊥平面α,则a与平面α的位置关系是()A.a∥αB.a⊥αC.a⊂αD.a⊂α或a∥α3.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是()A .m⊂α,n⊂α,m//β,n//β⇒α//βB.α//β,m⊂α,n⊂β⇒m//nC.m⊥α,m⊥n⇒n//αD. m//n,n⊥α⇒m⊥α4.已知两条直线m,n,两个平面α,β,给出下面四个命题:①m//n,m⊥α⇒n⊥α②α//β,m⊂α,n⊂β⇒m//n③m//n,m//α⇒n//α④α//β,m//n,m⊥α⇒n⊥β其中正确命题的序号是()A.①③B.②④C.①④D.②③5.已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦等于()A.BC.D26.如图,已知正三棱柱ABC-A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD 与平面B1DC所成角的正弦值为.7.如图,在正三棱柱ABC-A1B1C1中,侧棱长为2,底面三角形的边长为1,则BC1与侧面ACC1A1所成的角是.(第6题图)(第7题图)8.已知∆ABC所在平面外一点P到∆ABC三顶点的距离都相等,则点P在平面ABC内的射影是∆ABC的。
《立体几何中的平行与垂直关系》专题训练
一、单选题1.m 、n 是平面α外的两条直线,在m ∥α的前提下,m ∥n 是n ∥α的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.设α,β为两个平面,则α∥β的充要条件是().A.α内有无数条直线与β平行B.α,β平行与同一个平面C.α内有两条相交直线与β内两条相交直线平行D.α,β垂直与同一个平面4.已知l ,m 是两条不同的直线,m //平面α,则().A.若l //m ,则l //αB.若l //α,则l //mC.若l ⊥m ,则l ⊥αD.若l ⊥α,则l ⊥m5.设α,β为两个平面,则α∥β的充要条件是().A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面6.如果用m ,n 表示不同直线,α,β,γ表示不同平面,下列叙述正确的是().A.若m //α,m //n ,则n //αB.若m //n ,m ⊂α,n ⊂β,则α//βC.若α⊥γ,β⊥γ,则α//βD.若m ⊥α,n ⊥α,则m //n7.如图1,点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则下列四个结论:图1①三棱锥A -D 1PC 的体积不变;②A 1P //平面ACD 1;③DP ⊥BC 1;④平面PDB 1⊥平面ACD 1.其中正确的结论的个数是().A.1个B.2个C.3个D.4个8.如图2,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则().图2A.BM =EN ,且直线BM ,EN 是相交直线B.BM ≠EN ,且直线BM ,EN 是相交直线C.BM =EN ,且直线BM ,EN 是异面直线D.BM ≠EN ,且直线BM ,EN 是异面直线9.如下图所示的四个正方体中,A ,B 正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB //平面MNP 的图形的序号为().59A.①②B.②③C.③④D.①②③10.如图3,在直角梯形ABCD中,BC⊥CD,AB=BC=2,CD=4,E为CD中点,M,N分别为AD,BC的中点,将△ADE沿AE折起,使点D到D1,M到M1,在翻折过程中,有下列命题:图3①||M1M的最小值为1;②M1N//平面CD1E;③存在某个位置,使M1E⊥DE;④无论M1位于何位置,均有M1N⊥AE.其中正确命题的个数为().A.1B.2C.3D.4二、多选题11.已知α,β是两个不重合的平面,m,n是两条不重合的直线,则下列命题正确的是().A.若m//n,m⊥α,则n⊥αB.若m//α,α⋂β=n,则m//nC.若m⊥α,m⊥β,则α//βD.若m⊥α,m//n,n⊥β,则α//β12.已知菱形ABCD中,∠BAD=60°,AC与BD 相交于点O,将△ABD沿BD折起,使顶点A至点M,在折起的过程中,下列结论正确的是().A.BD⊥CMB.存在一个位置,使△CDM为等边三角形C.DM与BC不可能垂直D.直线DM与平面BCD所成的角的最大值为60°13.己知m、n为两条不重合的直线,α、β为两个不重合的平面,则下列说法正确的是().A.若m//α,n//β且α//β,则m//nB.若m//n,m⊥α,n⊥β,则α//βC.若m//n,n⊂α,α//β,m⊄β,则m//βD.若m//n,n⊥α,α⊥β,则m//β14.如图4,在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M为线段AP的中点,则().图4A.CM与PN是异面直线B.CM>PNC.平面PAN⊥平面BDD1B1D.过P,A,C三点的正方体的截面一定是等腰梯形15.已知四棱锥P-ABCD,底面ABCD为矩形,侧面PCD⊥平面ABCD,BC=23,CD=PC=PD=26.若点M为PC的中点,则下列说法正确的为().A.BM⊥平面PCDB.PA//面MBDC.四棱锥M-ABCD外接球的表面积为36πD.四棱锥M-ABCD的体积为6三、填空题16.如图5,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.其中正确的有_______.(把所有正确的序号都填上)图517.已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:_______.18.已知α,β是两个不同的平面,l,m是两条不同的直线,有如下四个命题:①若l⊥α,l⊥β,则α∥β;②若l⊥α,α⊥β,则l∥β;③若l∥α,l⊥β,则α⊥β;④若l∥α,α⊥β,则l⊥β.其中真命题为______(填所有真命题的序号).19.已知α,β是两个不同的平面,l,m是两条不同60,C⊥平面ABB.图622.如图7,在直三棱柱ABC为BC,AC的中点,AB=BC.(1)求证:A1B1∥平面DEC1;(2)求证:BE⊥C1E.23.如图8,在四棱锥P-ABCDPA,PD的中点.已知侧面PAD⊥是矩形,DA=DP.(1)求证:MN∥平面PBC;图8图9图11P-ABCD中,已知底BC=1,E,F分别是AB,;平面PDE.如图13,取PD中点G。
立体几何典型例题(垂直)
立体几何第二讲:(平行与垂直问题)例1在四棱锥P-ABCD中,底面ABCD是平行四边形,M,N分别是AB,PC的中点,求证:MN∥平面P AD.例2在直三棱柱ABC-A1B1C1中,AA1=AC,AB⊥AC,求证:A1C⊥BC1.例3在三棱锥P-ABC中,平面P AB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面P AC⊥平面PBC.例4如图,在斜三棱柱ABC-A1B1C1中,侧面A1ABB1是菱形,且垂直于底面ABC,∠A1AB=60°,E,F分别是AB1,BC的中点.(Ⅰ)求证:直线EF∥平面A1ACC1;(Ⅱ)在线段AB上确定一点G,使平面EFG⊥平面ABC,并给出证明.例题5.,在四面体ABC P -中,已知6==BC PA ,342,8,10====PB AC AB PC .F 是线段PB 上一点,341715=CF ,点E 在线段AB 上,且PB EF ⊥. (Ⅰ)证明:CEF PB 平面⊥;(Ⅱ)求二面角F CE B --的大小.例题6如图,在锥体P ﹣ABCD 中,ABCD 是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2, E ,F 分别是BC ,PC 的中点 ( 1)证明:AD ⊥平面DEF(2)求二面角P ﹣AD ﹣B 的余弦值.AC B PF E 图3例题解答:例题1【分析】要证明“线面平行”,可通过“线线平行”或“面面平行”进行转化;题目中出现了中点的条件,因此可考虑构造(添加)中位线辅助证明.证明:方法一,取PD 中点E ,连接AE ,NE .∵底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,∴MA ∥CD ,.21CD MA = ∵E 是PD 的中点, ∴NE ∥CD ,.21CD NE =∴MA ∥NE ,且MA =NE , ∴AENM 是平行四边形, ∴MN ∥AE .又AE ⊂平面P AD ,MN ⊄平面P AD , ∴MN ∥平面P AD .方法二取CD 中点F ,连接MF ,NF . ∵MF ∥AD ,NF ∥PD , ∴平面MNF ∥平面P AD , ∴MN ∥平面P AD .例2 【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A 1C 垂直于经过BC 1的平面即可.证明:连接AC 1.∵ABC -A 1B 1C 1是直三棱柱, ∴AA 1⊥平面ABC , ∴AB ⊥AA 1. 又AB ⊥AC ,∴AB ⊥平面A 1ACC 1, ∴A 1C ⊥A B .① 又AA 1=AC ,∴侧面A 1ACC 1是正方形, ∴A 1C ⊥AC 1.②由①,②得A 1C ⊥平面ABC 1, ∴A 1C ⊥BC 1.例3 【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又 可以通过“线线垂直”进行转化.证明:∵平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,且AB ⊥BC , ∴BC ⊥平面P AB , ∴AP ⊥BC . 又AP ⊥PB ,∴AP ⊥平面PBC , 又AP ⊂平面P AC ,∴平面P AC ⊥平面PBC .例4 如图,在斜三棱柱ABC -A 1B 1C 1中,侧面A 1ABB 1是菱形,且垂直于底面ABC ,∠A 1AB =60°,E ,F 分别是AB 1,BC 的中点.(Ⅰ)求证:直线EF ∥平面A 1ACC 1;(Ⅱ)在线段AB 上确定一点G ,使平面EFG ⊥平面ABC ,并给出证明. 证明:(Ⅰ)连接A 1C ,A 1E .∵侧面A 1ABB 1是菱形, E 是AB 1的中点, ∴E 也是A 1B 的中点,又F 是BC 的中点,∴EF ∥A 1C .∵A 1C ⊂平面A 1ACC 1,EF ⊄平面A 1ACC 1, ∴直线EF ∥平面A 1ACC 1. (2)解:当31=GA BG 时,平面EFG ⊥平面ABC ,证明如下: 连接EG ,FG .∵侧面A 1ABB 1是菱形,且∠A 1AB =60°,∴△A 1AB 是等边三角形. ∵E 是A 1B 的中点,31=GA BG ,∴EG ⊥AB . ∵平面A 1ABB 1⊥平面ABC ,且平面A 1ABB 1∩平面ABC =AB , ∴EG ⊥平面ABC .又EG ⊂平面EFG ,∴平面EFG ⊥平面ABC . 例题5.,【答案】 (Ⅰ)证明:在ABC ∆中, ∵,6,10,8===BC AB AC∴,222AB BC AC =+∴△PAC 是以∠PAC 为直角的直角三角形, 同理可证,△PAB 是以∠PAB 为直角的直角三角形,△PCB 是以∠PCB 为直角的直角三角形. 在PCB Rt ∆中,∵,341715,342,6,10====CF PB BC PC ∴,CF PB BC PC ⋅=⋅ ∴,CF PB ⊥又∵,,F CF EF PB EF =⊥ ∴.CEF PB 平面⊥ (II )解法一:由(I )知PB ⊥CE ,PA ⊥平面ABC∴AB 是PB 在平面ABC 上的射影,故AB ⊥CE ∴CE ⊥平面PAB ,而EF ⊂平面PAB , ∴EF ⊥EC ,故∠FEB 是二面角B —CE —F 的平面角,∵EFB PAB ∆∆~∴35610cot tan ===∠=∠AP AB PBA FEB , ∴二面角B —CE —F 的大小为35arctan.例6如图,在锥体P ﹣ABCD 中,ABCD 是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E,F分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P﹣AD﹣B的余弦值.解:(1)取AD的中点G,连接PG,BG,在△ABG中,根据余弦定理可以算出BG=,发现AG2+BG2=AB2,可以得出AD⊥BG,又DE∥BG∴DE⊥AD,又PA=PD,可以得出AD⊥PG,而PG∩BG=G,∴AD⊥平面PBG,而PB⊂平面PBG,∴AD⊥PB,又PB∥EF,∴AD⊥EF.又EF∩DE=E,∴AD⊥平面DEF.(2)由(1)知,AD⊥平面PBG,所以∠PGB为二面角P﹣AD﹣B的平面角,在△PBG中,PG=,BG=,PB=2,由余弦定理得cos∠PGB=,因此二面角P﹣AD﹣B的余弦值为.点评:本题考查立体几何中基本的线面关系,考查线面垂直的判定方法,考查二面角的求法,训练了学生基本的空间想象能力,考查学生的转化与化归思想,解三角形的基本知识和学生的运算能力,属于基本的立体几何题.练习一、选择题:1.已知m ,n 是两条不同直线,α ,β ,γ 是三个不同平面,下列命题中正确的是( ) (A)若m ∥α ,n ∥α ,则m ∥n (B)若m ⊥α ,n ⊥α ,则m ∥n (C)若α ⊥γ ,β ⊥γ ,则α ∥β (D)若m ∥α ,m ∥β ,则α ∥β 2.已知直线m ,n 和平面α ,β ,且m ⊥n ,m ⊥α ,α ⊥β ,则( ) (A)n ⊥β (B)n ∥β ,或n ⊂β (C)n ⊥α (D)n ∥α ,或n ⊂α3.设a ,b 是两条直线,α 、β 是两个平面,则a ⊥b 的一个充分条件是( ) (A)a ⊥α ,b ∥β ,α ⊥β (B)a ⊥α ,b ⊥β ,α ∥β (C)a ⊂α ,b ⊥β ,α ∥β (D)a ⊂α ,b ∥β ,α ⊥β 4.设直线m 与平面α 相交但不垂直,则下列说法中正确的是( ) (A)在平面α 内有且只有一条直线与直线m 垂直 (B)过直线m 有且只有一个平面与平面α 垂直 (C)与直线m 垂直的直线不可能与平面α 平行 (D)与直线m 平行的平面不可能与平面α 垂直 二、填空题:5.在三棱锥P -ABC 中,6==PB PA ,平面P AB ⊥平面ABC ,P A ⊥PB ,AB ⊥BC ,∠BAC =30°,则PC =______.6.在直四棱柱ABCD -A 1B 1C 1D 1中,当底面ABCD 满足条件______时,有A 1C ⊥B 1D 1.(只要求写出一种条件即可)7.设α ,β 是两个不同的平面,m ,n 是平面α ,β 之外的两条不同直线,给出四个论断: ①m ⊥n ②α ⊥β ③n ⊥β ④m ⊥α以其中三个论断作为条件,余下的一个论断作为结论,写出正确的一个命题______.8.已知平面α ⊥平面β ,α ∩β =l ,点A ∈α ,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α ,m ∥β ,给出下列四种位置:①AB ∥m ;②AC ⊥m ;③AB ∥β ;④AC ⊥β , 上述四种位置关系中,不一定成立的结论的序号是______. 三、解答题:9.如图,三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,M ,N 分别为P A ,BC 的中点.(Ⅰ)求MN 的长; (Ⅱ)求证:P A ⊥BC .10.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点.求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面BCD .11.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC ∥AD ,AF BE AF BE AD BC 21,//,21==,G ,H 分别为F A ,FD 的中点.(Ⅰ)证明:四边形BCHG 是平行四边形;(Ⅱ)C ,D ,F ,E 四点是否共面?为什么?(Ⅲ)设AB =BE ,证明:平面ADE ⊥平面CDE .例2 如图,正三棱柱ABC -A 1B 1C 1中,E 是AC 的中点.(Ⅰ)求证:平面BEC 1⊥平面ACC 1A 1;(Ⅱ)求证:AB 1∥平面BEC 1.【分析】本题给出的三棱柱不是直立形式的直观图,这种情况下对空间想象能力提出了更高的要求,可以根据几何体自身的性质,适当添加辅助线帮助思考.证明:(Ⅰ)∵ABC -A 1B 1C 1是正三棱柱,∴AA 1⊥平面ABC , ∴BE ⊥AA 1.∵△ABC 是正三角形,E 是AC 的中点,∴BE ⊥AC ,∴BE ⊥平面ACC 1A 1,又BE ⊂平面BEC 1, ∴平面BEC 1⊥平面ACC 1A 1.(Ⅱ)证明:连接B 1C ,设BC 1∩B 1C =D .∵BCC 1B 1是矩形,D 是B 1C 的中点, ∴DE ∥AB 1. 又DE ⊂平面BEC 1,AB 1⊄平面BEC 1, ∴AB 1∥平面BEC 1.例3 【分析】本题中的数量关系较多,可考虑从“算”的角度入手分析,如从M 是PC 上的动点分析知,MB ,MD 随点M 的变动而运动,因此可考虑平面MBD 内“不动”的直线BD 是否垂直平面P AD .证明:(Ⅰ)在△ABD 中,由于AD =4,BD =8,54=AB ,所以AD 2+BD 2=AB 2. 故AD ⊥BD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,BD ⊂平面ABCD , 所以BD ⊥平面P AD ,又BD ⊂平面MBD ,故平面MBD ⊥平面P AD . (Ⅱ)解:过P 作PO ⊥AD 交AD 于O ,由于平面P AD ⊥平面ABCD ,所以PO ⊥平面ABCD . 因此PO 为四棱锥P -ABCD 的高,又△P AD 是边长为4的等边三角形.因此.32423=⨯=PO 在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为5585484=⨯,即为梯形ABCD 的高, 所以四边形ABCD 的面积为.2455825452=⨯+=S 故.316322431=⨯⨯=-ABCD P V立体几何参考答案练习7-1一、选择题:1.B 2.D 3.C 4.B 二、填空题:5.10 6.AC ⊥BD (或能得出此结论的其他条件)7.②、③、④⇒①;或①、③、④⇒② 8.④ 三、解答题:9.(Ⅰ)解:连接MB ,MC .∵三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,∴23==MC MB ,且底面△ABC 也是边长为1的等边三角形. ∵N 为BC 的中点,∴MN ⊥BC . 在Rt △MNB 中,⋅=-=2222BN MB MN (Ⅱ)证明:∵M 是P A 的中点,∴P A ⊥MB ,同理P A ⊥MC .∵MB ∩MC =M ,∴P A ⊥平面MBC , 又BC ⊂平面MBC ,∴P A ⊥BC .10.证明:(Ⅰ)∵E 、F 分别是AB 、BD 的中点,∴EF 是△ABD 的中位线,∴EF ∥AD .又EF ⊄平面ACD ,AD ⊂平面ACD ,∴直线EF ∥平面ACD .(Ⅱ)∵EF ∥AD ,AD ⊥BD ,∴EF ⊥BD .∵CB =CD ,F 是BD 的中点,∴CF ⊥BD .∵CF ∩EF =F ,∴BD ⊥平面CEF .∵BD ⊂平面BCD ,∴平面EFC ⊥平面BCD .11.(Ⅰ)由题意知,FG =GA ,FH =HD ,∴GH ∥AD ,,21AD GH =又BC ∥AD ,AD BC 21=,∴GH ∥BC ,GH =BC , ∴四边形BCHG 是平行四边形. (Ⅱ)C ,D ,F ,E 四点共面.理由如下: 由BE ∥AF ,AF BF 21=,G 是F A 的中点, 得BE ∥FG ,且BE =FG .∴EF ∥BG .由(Ⅰ)知BG ∥CH ,∴EF ∥CH ,故EC ,FH 共面,又点D 在直线FH 上, 所以C ,D ,F ,E 四点共面. (Ⅲ)连结EG ,由AB =BE ,BE ∥AG ,BE =AG 及∠BAG =90°,知ABEG 是正方形,故BG ⊥EA .由题设知F A ,AD ,AB 两两垂直,故AD ⊥平面F ABE ,∴BG ⊥AD . ∴BG ⊥平面EAD ,∴BG ⊥ED . 又ED ∩EA =E ,∴BG ⊥平面ADF . 由(Ⅰ)知CH ∥BG ,∴CH ⊥平面ADE .由(Ⅱ)知F ∈平面CDE ,故CH ⊂平面CDE ,得平面ADE ⊥平面CDE .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线面平行与垂直的证明
1:如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中. (1)求证:AC ⊥平面B 1BDD 1;
(2)求三棱锥B-ACB 1体积.
2:如图,ABCD 是正方形,O 是正方形的中心, PO ⊥底面ABCD ,E 是PC 的中点.
求证:(1)PA∥平面BDE ; (2)平面PAC ⊥平面BDE .
3:如图:在底面是直角梯形的四棱锥S —ABCD 中, ∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,2
1=AD . (Ⅰ)求四棱锥S —ABCD 的体积; (Ⅱ)证明:平面SBC ⊥平面SCD .
4:已知多面体ABCDFE 中, 四边形ABCD 为矩形,AB ∥EF ,AF ⊥BF ,平面ABEF ⊥平面ABCD , O 、M 分别为AB 、FC 的中点,且AB = 2,AD = EF = 1. (Ⅰ)求证:AF ⊥平面FBC ; (Ⅱ)求证:OM ∥平面DAF .
5:.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形, 侧棱PD ⊥底面ABCD ,PD =DC ,E 是P C 的中点,作EF ⊥PB 交PB 于点F .
(1)证明 P A //平面EDB ; (2)证明PB ⊥平面EFD ;
D 1
C 1
B 1 A 1
C D
B
A
D
A
B
C
O
E
P
A
B
C
D
P
E
F
6:已知正方形ABCD 和正方形ABEF 所在的平面相交于AB ,点M ,N 分别在AC 和BF 上,且AM=FN. 求证:MN ‖平面BCE.
7:如图,正方体1111D C B A ABCD -中,棱长为a (1)求证:直线//1B A 平面1ACD (2)求证:平面1ACD ⊥平面D BD 1;
8: 如图,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且EA=AB=2a,DC=a,F 是BE 的中点, 求证:(1) FD ∥平面ABC (2) AF ⊥平面EDB.
9:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是CB 、CD 、CC 1的中点,
(1) 求证:平面A B 1D 1∥平面EFG;
(2) 求证:平面AA 1C ⊥面EFG.
B
C
D
E
F N
M
F
G
E
C1D1
A1
B1
D
C
B
F E
D C
A
M
P
10:如图,PC AB N M ABCD PA 、分别是、所在的平面,矩形⊥的中点. (1)求证:PAD MN 平面//;(2)求证:CD MN ⊥;
11:如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中, 求证:⑴ AC ⊥平面B 1D 1DB;
⑵ 求证:BD 1⊥平面ACB 1 ⑶ 求三棱锥B-ACB 1体积.
12: 四棱锥ABCD 中,底面ABCD 是正方形,O 是正方形ABCD 的中心,PO ⊥底面ABCD ,E 是PC 的中点. 求证:(Ⅰ)PA ∥平面BDE ; (Ⅱ)平面PAC ⊥平面BDE .
13:在三棱锥S ABC -中,已知点D 、E 、F 分别为棱AC 、
SA 、SC 的中点. ①求证:EF ∥平面ABC .
N
M
P
D
C
B
A
D 1 C 1
B 1
A C
D
B
A
B
②若SA SC =,BA BC =,求证:平面SBD ⊥平面ABC .
14:如图, 已知正三角形PAD , 正方形ABCD ,
平面PAD ⊥平面ABCD , E 为PD 的中点.
(Ⅰ)求证:CD AE ⊥; (Ⅱ)求证:AE ⊥平面PCD .
15:四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,M N 、分别是
AB PC 、的中点,PA AO a ==.
(1)求证://MN 平面PAD ; (2)求证:平面PMC ⊥平面PCD . (自己画图)
16:如图,在三棱锥P ABC -中,PC ⊥底面ABC ,
AB BC ⊥, D 、E 分别是AB 、PB 的中点.
(1)求证:DE ∥平面PAC ;(2)求证:AB ⊥PB ;
A
C
P
B
D
E
17:如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,D为AB的中点.
(1)求证:AC1∥平面B1CD;
(2)求二面角B-B1C-D的正弦值.
18:已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+3,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使DE⊥EC.
(1)求证:BC⊥平面CDE;
(2)求证:FG∥平面BCD;
(3)求四棱锥D-ABCE的体积.。