控制系统状态空间设计

合集下载

控制系统的状态空间表达式

控制系统的状态空间表达式

第一章 控制系统的状态空间表达式Chapter 1 State space representation of control systems本章内容• 状态变量及状态空间表达式 • 状态空间表达式的模拟结构图 • 状态空间表达式的建立(1) • 状态空间表达式的建立(2) • 状态矢量的线性变换 • 由传递函数求状态方程• 由状态空间表达式求传递函数阵 • 离散系统的状态空间表达式• 时变系统和非线性系统的状态空间表达式系统的动态特性由状态变量构成的一阶微分方程组来描述,能同时给出系统全部独立变量的响应,因而能同时确定系统的全部内部运动状态。

1.1 状态变量及状态空间表达式1.1 State space representation of control systems 状态变量 (State variables)状态:表征系统运动的信息和行为状态变量:能完全表示系统运动状态的最小个数的一组变量x 1(t ), x 2(t ), …, x n (t ) 状态向量(State vectors)由状态变量构成的向量 x (t )T 123()(),(),()...()n x t x t x t x t x t =⎡⎤⎣⎦状态空间 (State space) • 以各状态变量x 1(t ),x 2(t ),…… x n (t )为坐标轴组的几维空间。

•状态轨迹:在特定时刻t ,状态向量可用状态空间的一个点来表示,随着时间的推移,x (t )将在状态空间描绘出一条轨迹线。

状态方程 (State equations)• 由系统的状态变量与输入变量之间的关系构成的一阶微分方程组。

例1.1 设有一质量弹簧阻尼系统。

试确定其状态变量和状态方程。

解:系统动态方程2()().()().()()()d yF t ky t f yt m dt my t f yt ky t F t ⎧--=⎪⎨⎪++=⎩ 设1()()y t x t =,2()()yt x t = 12()()............................................(1)1()()()()........(2)x t y t f k x t y t y t F t m m m =⎧⎪⎨=--+⎪⎩12212()()1()()()()xt x t k f x t x t x t F t m m m =⎧⎪⎨=--+⎪⎩1122010()()()1()()xt x t F t f k x t x t m m m ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ = 状态方程的标准形式:()()()xt Ax t Bu t =+ (A :系统矩阵 B :输入矩阵) 输出方程 (O u t p u t e q u a t i o n )系统的输出量与状态变量之间的关系[]112()()()10 ()x t y t x t x t ⎡⎤==⎢⎥⎣⎦()()y t Cx t =(C:输出矩阵)状态方程和输出方程的总和即称为状态空间表达式。

控制系统的状态空间分析与综合

控制系统的状态空间分析与综合

第8章控制系统的状态空间分析与综合第1~7章涉及的内容属于经典控制理论的范畴,系统的数学模型是线性定常微分方程和传递函数,主要的分析与综合方法是时域法、根轨迹法和频域法。

经典控制理论通常用于单输入-单输出线性定常系统,其缺点是只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态,不能有效处理多输入-多输出系统、非线性系统、时变系统等复杂系统的控制问题。

随着科学技术的发展,对控制系统速度、精度、适应能力的要求越来越高,经典控制理论已不能满足要求。

1960年前后,在航天技术和计算机技术的推动下,现代控制理论开始发展,一个重要的标志就是美国学者卡尔曼引入了状态空间的概念。

它是以系统内部状态为基础进行分析与综合的控制理论,两个重要的内容如下。

(1)最优控制:在给定的限制条件和评价函数下,寻求使系统性能指标最优的控制规律。

(2)最优估计与滤波:在有随机干扰的情况下,根据测量数据对系统的状态进行最优估计。

本章讨论控制系统的状态空间分析与综合,它是现代控制理论的基础。

8.1 控制系统的状态空间描述8.1.1 系统数学描述的两种基本方法统的内部结构和内部变量,如传递函数;另一种是状态空间描述(内部描述),它是基于系统内部结构的一种数学模型,由两个方程组成。

一个反映系统内部变量x和输入变量u间的关系,具有一阶微分方程组或一阶差分方程组的形式;另一个是表征系统输出向量y与内部变量及输入变量间的关系,具有代数方程的形式。

外部描述虽能反映系统的外部特性,却不能反映系统内部的结构与运行过程,内部结构不同的两个系统也可能具有相同的外部特性,因此外部描述通常是不完整的;内部描述则能全面完整地反映出系统的动力学特征。

8.1.2 状态空间描述常用的基本概念 1.输入和输出由外部施加到系统上的激励称为输入,若输入是按需要人为施加的,又称为控制;系统的被控量或从外部测量到的系统信息称为输出,若输出是由传感器测量得到的,又称为观测。

自动控制原理状态空间法

自动控制原理状态空间法
自动控制原理状态空间法
目录
• 引言 • 状态空间法基础 • 线性系统的状态空间表示 • 状态反馈与极点配置 • 最优控制理论 • 离散系Biblioteka 的状态空间表示01引言
状态空间法的定义
状态空间法是一种基于状态变量描述线性时不变系统的方法,通过建立系 统的状态方程和输出方程来描述系统的动态行为。
状态变量是能够完全描述系统内部状态的变量,可以是系统的物理量或抽 象的数学变量。
最优控制问题
在满足一定约束条件下,寻找一个控制输入, 使得被控系统的某个性能指标达到最优。
性能指标
通常为系统状态或输出函数的积分,如时间加 权或能量加权等。
约束条件
包括系统动态方程、初始状态、控制输入和终端状态等。
线性二次调节器问题
线性二次调节器问题是最优控制问题的一个特例, 其性能指标为系统状态向量的二次范数。
THANKS
状态方程描述了系统内部状态变量之间的动态关系,而输出方程则描述了 系统输出与状态变量之间的关系。
状态空间法的重要性
1
状态空间法提供了系统分析和设计的统一框架, 可以用于线性时不变系统的各种分析和设计问题。
2
通过状态空间法,可以方便地实现系统的状态反 馈控制、最优控制、鲁棒控制等控制策略。
3
状态空间法具有直观性和易于实现的特点,能够 直接反映系统的动态行为,便于理解和分析。
02
状态空间法基础
状态与状态变量
状态
系统在某一时刻的状态是由系统 的所有内部变量共同决定的。
状态变量
描述系统状态的变量,通常选择 系统的输入、输出和内部变量作 为状态变量。
状态方程的建立
根据系统的物理或数学模型,通过适 当的方法建立状态方程。

状态空间分析与设计

状态空间分析与设计

状态空间分析与设计状态空间分析与设计是系统工程与控制工程中常用的分析和设计方法。

它通过建立系统的状态空间模型,对系统的动态行为进行定性和定量分析,并在此基础上进行系统设计和优化。

本文将深入介绍状态空间分析与设计的相关概念、原理和应用。

一、状态空间分析与设计概述状态空间是系统在任意时刻的状态所组成的集合。

在状态空间中,系统的每个状态都可以由一组状态变量完全描述。

因此,状态空间分析与设计的核心是建立系统的状态方程和输出方程,并利用这些方程进行性能分析和控制器设计。

二、状态方程与输出方程状态方程描述了系统状态的演变规律。

它是一个一阶微分方程,用矩阵形式表示为:x' = Ax + Bu其中,x是状态向量,A是系统的状态转移矩阵,B是输入矩阵,u 是外部输入。

状态方程描述了系统状态变量随时间的变化规律,可以用来分析系统的稳定性、响应速度等性能指标。

输出方程描述了系统输出与状态之间的关系。

它是一个线性方程,用矩阵形式表示为:y = Cx + Du其中,y是输出向量,C是输出矩阵,D是直接传递矩阵。

输出方程可以用来分析系统的可控性和可观性,以及设计满足特定输出要求的控制器。

三、状态空间分析方法1. 稳定性分析利用状态方程,可以通过特征值分析判断系统的稳定性。

对于线性时不变系统,当所有特征值的实部小于零时,系统是稳定的。

通过分析系统的特征值,可以设计出稳定性更好的控制器。

2. 响应分析利用状态方程和输出方程,可以分析系统的响应特性。

包括阶跃响应、脉冲响应、频率响应等。

通过分析系统的响应,可以评估系统的性能,并设计出满足要求的控制器。

3. 控制器设计状态空间方法可以直接用于控制器设计。

常见的控制器设计方法包括状态反馈控制、最优控制和鲁棒控制等。

这些方法都是基于状态空间模型进行的,可以根据系统的要求选择合适的控制器设计方法。

四、状态空间分析与设计应用状态空间分析与设计在工程实践中得到广泛应用。

例如,它可以用于电力系统的稳定性分析和控制、飞行器的自动控制系统设计、机械振动控制等。

控制系统的状态空间分析与设计

控制系统的状态空间分析与设计

控制系统的状态空间分析与设计控制系统的状态空间分析与设计是现代控制理论的重要内容之一,它提供了一种描述和分析控制系统动态行为的数学模型。

状态空间方法是一种广泛应用于系统建模和控制设计的理论工具,其基本思想是通过描述系统内部状态的变化来揭示系统的特性。

一、状态空间模型的基本概念状态空间模型描述了系统在不同时间点的状态,包括系统的状态变量和输入输出关系。

在控制系统中,状态变量是指影响系统行为的内部变量,如电压、速度、位置等。

通过状态空间模型,可以将系统行为转化为线性代数方程组,从而进行分析和设计。

1. 状态方程控制系统的状态方程是描述系统状态演化的数学表达式。

一般形式的状态方程可以表示为:x(t) = Ax(t-1) + Bu(t)y(t) = Cx(t) + Du(t)其中,x(t)是系统在时刻t的状态向量,A是系统的状态转移矩阵,B是控制输入矩阵,u(t)是系统的控制输入,y(t)是系统的输出,C是输出矩阵,D是直接传递矩阵。

2. 状态空间矩阵状态空间矩阵包括系统的状态转移矩阵A、控制输入矩阵B、输出矩阵C和直接传递矩阵D。

通过这些矩阵,可以准确描述系统的状态变化与输入输出之间的关系。

3. 系统的可控性和可观性在状态空间分析中,可控性和可观性是评估系统控制性能和观测性能的重要指标。

可控性是指通过调节控制输入u(t),系统的状态可以在有限时间内从任意初始状态x(0)到达任意预期状态x(t)。

可控性可以通过系统的状态转移矩阵A和控制输入矩阵B来判定。

可观性是指通过系统的输出y(t)可以完全确定系统的状态。

可观性可以通过系统的状态转移矩阵A和输出矩阵C来判定。

二、状态空间分析方法状态空间分析方法包括了系统响应分析、系统稳定性分析和系统性能指标分析。

1. 系统响应分析系统的响应分析可以通过状态方程进行。

主要分析包括零输入响应和零状态响应。

零输入响应是指当控制输入u(t)为零时,系统的输出y(t)变化情况。

2019-§2控制系统的状态空间模型-文档资料

2019-§2控制系统的状态空间模型-文档资料
弹簧平移运动是一个二阶线性系统。
(3)定义状态向量、控制向量和输出向量
x1 y
d2y dy m d2tfd tk yF i
x2 y x1
uFi ,
yy,
整理(2-2-2)式
mdd dxd2t 2yt2 f dxd2 ytkxy1 F u i (2-2-2)
(4)可将2阶微分方程表示的系统写成2个一阶微分
(2)状态变量可以测量或不可测量。
2.2 状态空间方程的建立
例2-2-1 力学系统 弹簧-质量-阻尼器系统如图示。 列出以拉力Fi为输入,以质量单元的位移y为输出的 状态方程。
k
M
y Fi
Ff Fk
M
y Fi
图 2-5 弹簧-质量-阻尼器系统
(1)确定输入变量:
系统入: Fi, 出:y
(2)基本定理:
§2 控制系统的状态空间模型
微分方程 → 单输入、单输出线性定常系统 状态空间方程 → 多变量系统,现代控制理 论的数学描述方法
两种表示方法可以互相转换。
2.1 状态空间的基本概念
被控对象的变量可以分为三类:
n 输入变量(控制变量和干扰变量)
u[u1,u2 ur]T
n 输出变量(被控变量)
y[y1,y2,ym]T


0
1
m
u

y1
0

x1 x2

得到
0 xm k
1m f xx1 2m 1 0u
y 1
0

x1 x2

状态方程 xAxBu 输出方程
y Cx
系数矩阵
0 1
A

1.控制系统的状态空间模型

1.控制系统的状态空间模型

Chapter1控制系统的状态空间模型1.1 状态空间模型在经典控制理论中,采用n 阶微分方程作为对控制系统输入量)(t u 和输出量)(t y 之间的时域描述,或者在零初始条件下,对n 阶微分方程进行Laplace 变换,得到传递函数作为对控制系统的频域描述,“传递函数”建立了系统输入量)]([)(t u L s U =和输出量)]([)(t y L s Y =之间的关系。

传递函数只能描述系统的外部特性,不能完全反映系统内部的动态特征,并且由于只考虑零初始条件,难以反映系统非零初始条件对系统的影响。

现代控制理论是建立在“状态空间”基础上的控制系统分析和设计理论,它用“状态变量”来刻画系统的内部特征,用“一阶微分方程组”来描述系统的动态特性。

系统的状态空间模型描述了系统输入、输出与内部状态之间的关系,揭示了系统内部状态的运动规律,反映了控制系统动态特性的全部信息。

1.1.1 状态空间模型的表示法例1-1(6P 例1.1.1) 如下面RLC (电路)系统。

试以电压u 为输入,以电容上的电压C u 为输出变量,列写其状态空间表达式。

例1-1图 RLC 电路图解:由电路理论可知,他们满足如下关系⎪⎩⎪⎨⎧==++)(d )(d )()()(d )(d t i t t u C t u t u t Ri t t i L C C 经典控制理论:消去变量)(t i ,得到关于)(t u C 的2=n 阶微分方程:)(1)(1d )(d d )(d 22t u LCt u LC t t u L R t t u C C C =++ 对上述方程进行Laplace 变换:)()()2(20202s U s U s s C ωωζ=++得到传递函数:202202)(ωζω++=s s s G ,LC10=ω,L R 2=ζ 现代控制理论:选择⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛)()(21t u t i x x C 流过电容的电流)(t i 和电容上的电压)(t u C 作为2个状态变量,2=n (2个储能元件);1个输入为)(t u ,1=m ;1个输出C u y =,1=r 。

控制系统的状态空间描述

控制系统的状态空间描述
解: 方法一、直接根据微分方程求解
03
方法二、根据传递函数求解
状态方程的标准形式
状态方程的定义 状态方程 所谓状态方程,就是描述系统的状态之间以及输入和状态之间动态关系的一阶微分方程组。
3.2.2 状态空间表达式
向量矩阵形式为
状态向量
输入向量
维的函数向量
3、线性定常系统的状态方程
向量矩阵形式为
维的系数矩阵
维的系数矩阵
输出方程
输出方程的标准形式
解:列写回路的电压方程和节点的电流方程
选取 为状态变量,输出 ,得系统的状态空间表达式为
消去 并整理得
设初始条件为零,对上式两端进行拉普拉斯变换,得
写成向量矩阵形式为
其中
输入变量的Laplace变换象函数
2)数目最小的含义:是指这个变量组中的每个变量都是相互独立的。
二、状态向量
若一个系统有n个状态变量: ,用这n个状态变量作为分量所构成的向量 ,就称为该系统的状态向量,用 表示。
例 试建立下图所示电路网络的状态方程和输出方程。
01
考虑标量的一阶微分方程
02
用拉氏变换解有:
3.2.2 状态微分方程的解
定义矩阵指数函数为:
上式也经常写做状态转移矩阵的形式
系统的零输入响应为:
1.3 传递函数矩阵
例:系统如下图所示,输入为 和 ,输出为 。
较之传递函数,状态空间描述的优点有:
3、状态空间分析是一种时域分析方法,可用计算机直接在时域中进行数值计算。
2、由前面的分析可以看出,对于不同维数的系统,可以采用同一表达方式来进行描述,由此可见从低维系统得到的结论可以方便地推广到高维系统,只是计算复杂一些而已。

第9章 控制系统的状态空间描述

第9章 控制系统的状态空间描述

第9章 控制系统的状态空间描述
2.状态变量 能够完全表征系统运动状态的最小变量组中的每个变量 xi(t)(i=1,2,…,n)称为状态变量。 3.状态向量 系统有n 个状态变量x1(t),…,xn(t),用这n 个状态变量作为 分量所构成的向量(通常以列向量表示)称为系统的状态向 量:x(t)=(x1(t)…xn(t))T。
第9章 控制系统的状态空间描述 和
第9章 控制系统的状态空间描述
将上两式用矩 阵方程的形式表示, 可得出线性时变系 统的状态空间表达 式为
第9章 控制系统的状态空间描述 或者,状态空间表达式也可以表示为
式中,A(t)为n×n 系统矩阵,即
第9章 控制系统的状态空间描述 B(t)为n×r 输入矩阵,即
第9章 控制系统的状态空间描述
图9-3 系统结构图
第9章 控制系统的状态空间描述 (1)输入引起系统内部状态发生变化,其变化方程式称为
状态方程,其一般形式为
(2)系统内部状态及输入变化引起系统输出的变化,其变 化方程式称为输出方程,其一般形式为
第9章 控制系统的状态空间描述
பைடு நூலகம்
第9章 控制系统的状态空间描述
第9章 控制系统的状态空间描述
第9章 控制系统的状态空间描述
9.1 控制系统中状态的基本概念 9.2控制系统的状态空间表达式 9.3根据系统的物理机理建立状态空间表达式 9.4根据系统的微分方程建立状态空间表达式 9.5根据系统的方框图或传递函数建立状态空 间表达式 9.6从状态空间表达式求取传递函数矩阵 9.7系统状态空间表达式的特征标准型
状态方程和输出方程组合起来,构成对系统动态行为的 完整描述,称为系统的状态空间表达式,又称动态方程,其一般 形式为

现代控制理论-第二章 控制系统的状态空间描述

现代控制理论-第二章  控制系统的状态空间描述
12 中南大学信息学院自动化系
DgXu
2.2.1.由物理机理直接建立状态空间表达式: 例2.2.1 系统如图所示
L
R2
u
iL
R1
uc
选择状态变量:
x1 iL , x2 uC ,
13 中南大C diL 1 iL (u L ) C dt R1 dt duC diL L uC C R2 u dt dt
y(s) [C(sI A) B D]U (s)
1
1

9
G(s) C (sI A) B D
命题得证
中南大学信息学院自动化系
1
DgXu
例2.1.3
已知系统的状态空间描述为
x1 0 1 0 x1 0 x 0 1 1 x 1 u 2 2 x3 0 0 3 x3 1
28 中南大学信息学院自动化系
DgXu
故有(n-1) 个状态方程:
对xl求导数且考虑式 (2.3.12),经整理有:
则式 (2.3.12) bn=0 时的动态方程为:
(2.3.16)
式中:
29 中南大学信息学院自动化系
DgXu
30 中南大学信息学院自动化系
DgXu
3)
化输入-输出描述为状态空间描述
11 中南大学信息学院自动化系
DgXu
2.3. 线性定常连续系统状态空间表达式的建立
建立状态空间表达式的方法主要有两种: 一是直接根据系统的机理建立相应的微分方程或差分方 程,继而选择有关的物理量作为状态变量,从而导出其状态 空间表达式; 二是由已知的系统其它数学模型经过转化而得到状态达 式。由于微分方程和传递函数是描述线性定常连续系统常用 的数学模型,故我们将介绍已知 n 阶系统微分方程或传递函 数时导出状态空间表达式的一般方法,以便建立统一的研究 理论,揭示系统内部固有的重要结构特性。

现代控制理论基础-第2章-控制系统的状态空间描述精选全文完整版

现代控制理论基础-第2章-控制系统的状态空间描述精选全文完整版

(2-18)
解之,得向量-矩阵形式的状态方程
(2-19)
输出方程为
(2-20)
(5) 列写状态空间表达式
将式(2-19)和式(2-20)合起来即为状态空间表达式,若令
则可得状态空间表达式的一般式,即
(2-21)
例2.2 系统如图
取状态变量:
得:
系统输出方程为:
写成矩阵形式的状态空间表达式为:
1.非线性系统
用状态空间表达式描述非线性系统的动态特性,其状态方程是一组一阶非线性微分方程,输出方程是一组非线性代数方程,即
(2-7)
2. 线性系统的状态空间描述
若向量方程中 和 的所有组成元都是变量 和 的线性函数,则称相应的系统为线性系统。而线性系统的状态空间描述可表示为如下形式: (2-8) 式中,各个系数矩阵分别为 (2-9)
4.线性定常系统的状态空间描述
式中的各个系数矩阵为常数矩阵
当系统的输出与输入无直接关系(即 )时,称为惯性系统;相反,系统的输出与输入有直接关系(即 )时,称为非惯性系统。大多数控制系统为惯性系统,所以,它们的动态方程为
(2-11)
1.系统的基本概念 2. 动态系统的两类数学描述 3. 状态的基本概念
2.2 状态空间模型
2.2.1状态空间的基本概念
1.系统的基本概念
■系统:是由相互制约的各个部分有机结合,且具有一定功能的整体。 ■静态系统:对于任意时刻t,系统的输出惟一地取决于同一时刻的输入,这类系统称为静态系统。静态系统亦称为无记忆系统。静态系统的输入、输出关系为代数方程。 ■动态系统:对任意时刻,系统的输出不仅与t时刻的输入有关,而且与t时刻以前的累积有关(这种累积在t0(t0<t)时刻以初值体现出来),这类系统称为动态系统。由于t0时刻的初值含有过去运动的累积,故动态系统亦称为有记忆系统。动态系统的输入、输出关系为微分方程。

控制系统的状态空间分析

控制系统的状态空间分析

第八章 控制系统的状态空间分析一、状态空间的基本概念1. 状态 反应系统运行状况,并可用一个确定系统未来行为的信息集合。

2. 状态变量 确定系统状态的一组独立(数目最少的)变量,如果给定了0t t =时刻这组变量的值())()()(00201t x t x t x n 和0t t ≥时输入的时间函数)(t u ,则系统在0t t ≥任何时刻())()()(21t x t x t x n 的行为就可完全确定。

3. 状态向量 以状态变量为元素构成的向量,即[])()()()(21t x t x t x t x n =。

4. 状态空间 以状态变量())()()(21t x t x t x n 为坐标的n 维空间。

系统在某时刻的状态,可用状态空间上的点来表示。

5. 状态方程 描述状态变量,输入变量之间关系的一阶微分方程组。

6. 输出方程 描述输出变量与状态变量、输入变量间函数关系的代数方程。

二、状态空间描述(状态空间表达式)1. 状态方程与输出方程合起来称为状态空间描述或状态空间表达式,线性定常系统状态空间描述一般用矩阵形式表示,对于线性定常连续系统有⎩⎨⎧+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x (8-1)对于线性定常离散系统有⎩⎨⎧+=+=+)()()()()()1(k Du k Cx k y k Hu k Gx k x (8-2)2. 状态空间描述的建立:系统的状态空间描述可以由系统的微分方程,结构图(方框图),状态变量图、传递函数或脉冲传递函数(Z 传递函数)等其它形式的数学模型导出。

3. 状态空间描述的线性变换及规范化(标准型)系统状态变量的选择不是唯一的,状态变量选择不同,状态空间描述也不一样。

利用线性变换可将系统的矩阵A (见式8-1)规范化为四种标准型:能控标准型、能观标准型、对角标准型、约当标准型。

三、传递函数矩阵及其实现1. 传递矩阵)(s G :多输入多输出系统的输出向量的拉氏变换与输入向量的拉氏变换之间的传递关系,称为传递矩阵)(s G ,即)()()(s U s Y s G =(8-3) 式中:)(s U ——系统的输入向量 )(s Y ——系统的输出向量传递函数矩阵与多输入多输出系统状态空间描述的关系是:D B A I C G +-=-1)()(s s (8-4)上式中的A ,B ,C ,D 即为状态空间描述{}D C,B,A,中的矩阵A,B,C,D 。

线性控制系统的状态空间描述

线性控制系统的状态空间描述

§3.3 Matlab 实验
1. 状态空间模型脉冲响应、阶跃响应和任意输入响

(1) [y,x,t]=impulse(a,b,c,d)
(2) [y,x,t]=step(a,b,c,d),其中y、x 和t 是输出、
状态向量和仿真时间。

(3) [y,x]=lsim(a,b,c,d,u,t,x0)。

例求管亠[0* x c£,为
u(t) =sint的状态输出值。

解程序和结果如下
-0.2
-0.4
2. 离散系统的脉冲响应、阶跃响应、任意输入响应
⑴[y, x]=dimpulse(sys);
(2) [y, x] = dstep( nu m,de n);
(3) [y, x]=dlsim(sys,u); 47y、x 和u 分别为输出、
状态和输入,sys可以是num,den或a,b,c,d,不绘图,当无y, x时直接绘图。

3 •连续和离散状态模型的零输入响应(只对初态x0 响应)
(1) [y,x,t]=i nitial(a,b,c,d,xO)
⑵[y,x,t]=dinitial(a,b,c,d,x0) ,y 为输出,x 为状态,
t为指定输出时间。

当不带y、x和t时,直接绘图。

4 •连续系统离散化
(1) [da,db,dc,dd]=c2dm(a,b,c,d,Ts)
⑵[dnum,dden]=c2d(num,den,Ts) , Ts 是采样周期。

5.矩阵指数
expm(a*t),其中t可为符号变量,也可为实值。

0 1
例如设A = 0',则求e At的命令和结果如下:
||-4 -4。

自动控制原理控制系统分析与设计-状态空间方法2——综合与设计

自动控制原理控制系统分析与设计-状态空间方法2——综合与设计
(对偶性)
状态观测器的闭环极点可任意配置的充要条件为
系统状态完全可观测
23
例: 设系统的状态空间表达式为
1 1 0 1 x 1 1 0 x 0u
0 1 3 0
y 0 0 1x
状态方程同前 面极点配置例
求状态观测器,使其特征值为 1 2 3 3
解:
C 0 0 1
Qo
CA
0
1
3
CA2 1 2 9
7
二、状态反馈与闭环极点配置
极点配置条件:
对于 x Ax Bu
y Cx
通过状态反馈 u r Kx
全部闭环极点的充要条件为:
系统状态完全可控
可任意配置
即状态可控的前提下,反馈系统特征方程
det[sI A BK ] ( s 1 )( s 2 ) ( s n )
的根可以任意设置。
8
例: 设系统的状态方程为
41
基于观测器的状态反馈系统结构图 (有输出端扰动)
74 1 B 29 0
12 0
x( t ) xˆ ( t )
程序:ac8no542
状态变量的收敛性1
状态变量的 误差不→0
x1 xˆ 1
43
状态变量的收敛性2
状态变量的 误差不→0
x2 xˆ 2
44
状态变量的收敛性3
状态变量的 误差不→0
f * ( s ) ( s 3 )3 s3 9s2 27 s 27
令 f * ( s ) f ( s ) 得 h1 74 , h2 29 , h3 12
观测器的反馈系数阵为 H 74 29 12T
25
观测器的状态方程为 xˆ ( A HC )xˆ Bu Hy 1 1 74 1 74 1 1 29 xˆ 0u 29 y 0 1 9 0 12

控制系统状态空间应用

控制系统状态空间应用

控制系统状态空间应用引言:控制系统是现代工程中十分重要的一个领域,它涉及到工业自动化、电气工程、通信系统等多个方面。

其中,状态空间模型是一种广泛应用的数学工具,可用于描述和分析控制系统的动态行为。

本文将介绍控制系统的状态空间模型以及其在工程实际中的应用。

一、状态空间模型的基本原理状态空间模型是一种用于描述连续时间系统的数学模型,由状态方程和输出方程组成。

在状态空间模型中,系统的状态变量是描述系统动态行为的重要参数,而输入和输出变量则是表示系统输入和输出的信息。

1.1 状态方程状态方程描述了系统状态变量随时间变化的规律。

一般形式如下:dx/dt = Ax + Bu其中,dx/dt表示状态变量x随时间的变化率,A是状态矩阵,描述了状态变量之间的相互关系,B是控制矩阵,描述了输入变量对状态变量的影响。

1.2 输出方程输出方程描述了系统的输出变量与状态变量之间的关系。

一般形式如下:y = Cx + Du其中,y表示输出变量,C是输出矩阵,描述了状态变量与输出变量之间的关系,D是直接传递矩阵,表示输入变量对输出变量的直接影响。

二、控制系统状态空间模型的应用控制系统状态空间模型在工程实际中有着广泛的应用。

以下将分别介绍其在系统分析和控制设计中的具体应用。

2.1 系统分析状态空间模型可用于分析系统动态响应特性以及系统稳定性。

通过求解状态方程或者输出方程,可以获得系统的状态变量和输出变量的时间响应。

通过分析时间响应曲线,可以了解系统的超调量、响应速度等性能指标,从而对系统的动态特性有一个直观的认识。

2.2 控制设计状态空间模型在控制器的设计和参数调节中起到重要作用。

通过状态反馈控制策略,可以将系统状态变量作为反馈信号,根据系统状态的变化对控制器输出进行调节,以实现对系统的稳定控制。

此外,通过状态观测器的设计,可以根据系统输出变量推测出系统状态变量的估计值,从而实现对系统状态的可观测性。

三、控制系统状态空间模型的优势相比于传统的传输函数模型,控制系统的状态空间模型具有以下优势:3.1 描述能力强状态空间模型可以直观地描述系统的动态行为,包括状态变量和输出变量的时域特性。

现代控制理论控制系统的状态空间模型

现代控制理论控制系统的状态空间模型

线性时变系统的特点
线性时变系统的动态行为由线性时变微 分方程描述,其特点是系统参数随时间 变化。
线性时变系统的稳定性分析较为复杂,需要 考虑参数变化对系统稳定性的影响。
线性时变系统在航空航天、机器人、 化工等领域有广泛应用,其控制策 略需要根据具体应用场景进行设计。
05
非线性系统的状态空间 模型
状态空间模型的近似线性化
线性化方法
由于非线性系统的分析和设计通常比较复杂,因此常常采 用近似线性化的方法将非线性系统转化为线性系统进行分 析。
泰勒级数展开
一种常用的近似线性化方法是使用泰勒级数展开,将非线 性函数展开成多项式形式,并保留低阶项以获得近似的线 性模型。
局部线性化
另一种常用的近似线性化方法是局部线性化,即将非线性 系统在某个平衡点附近进行线性化处理,以获得该点附近 的线性模型。
线性微分方程具有叠加性和时不变性,即对于任意常数c,若x(t) 是方程的解,则cx(t)也是方程的解;同时,若在时间t=t0时, x(t0)=x0,则对于任意时间t>t0,x(t)都等于x0。
状态空间模型的建立
状态空间模型是一种描述控制系统动态行为的方法,它由状态方程和输出方程组成。状态方程描述了系统内部状态的变化规 律,输出方程描述了系统输出与内部状态和输入的关系。
状态空间模型的建立需要确定系统的状态变量、输入变量和输出变量,然后根据系统的物理特性和实际需求来选择合适的系 统矩阵A、B和C。
线性时不变系统的特点
01
线性时不变系统具有叠加性、 均匀性和时不变性,这些性质 使得线性时不变系统在分析和 设计上相对简单。
02
线性时不变系统的动态行为可 以通过系统的极点和零点来描 述,这些极点和零点决定了系 统的动态响应特性和稳定性。

东南大学自动控制原理控制系统的状态空间模型

东南大学自动控制原理控制系统的状态空间模型

对偶实现
g(s)

n1sn1
sn an1sn1
1s 0
a1s a0

d
则状态空间表达式可为
d=0时为严格真系统
0 0 0 a0
1
0


a1

A 0 0 ,



1
0

an2

0 0 1 an1
实现过程:
第一步:分解传递函数
g(s)

bn

(bn1

bnan1)sn1 (b1 sn an1sn1
bna1)s a1s a0
(b0

bna0
)
第二步:定义虚拟输出
~y (s)

sn
an1s n1
1
a1s a0
u(s)
则 y(s) ((bn1 bnan1)sn1 (b1 bna1)s (b0 bna0 )) ~y (s) bnu(s)

bnu(t)
第三步:取n个状态变量 x1 ~y, x2 ~y (1) , , xn ~y (n1)
x1 ~y (1) x2 ,

xn1

~y (n1)

xn ,
xn ~y (n) an1xn a0 x1 u
y(t) (b0 bna0 )x1(t) (b1 bna1)x2 (t) (bn1 bnan1)xn (t) bnu(t)
假设零初始条件(即x(0)=0),进行拉普拉斯变换后得到系统的 传递函数矩阵为
G(s) C(sI A)1 B D

状态空间设计pid控制器原理

状态空间设计pid控制器原理

状态空间设计pid控制器原理全文共四篇示例,供读者参考第一篇示例:状态空间设计PID控制器原理PID控制器是控制系统中常用的一种控制策略,它通过比例、积分和微分三种控制方式来实现对系统的控制。

在工业自动化等领域,PID 控制器通常被广泛应用,以实现对系统的精确控制。

在PID控制器设计中,状态空间方法为设计者提供了一种简洁而有效的设计框架,可以更好地理解和分析控制系统的性能。

一、PID控制器的基本原理PID控制器由比例(Proportional)、积分(Integral)和微分(Derivative)三个部分组成,其基本原理是通过计算控制误差的比例、积分和微分量,来调节系统输出,使系统的输入与期望输出尽可能接近。

具体而言,PID控制器的输出可以表示为:\[ u(t)=K_{p}e(t)+K_{i}\int_{0}^{t}e(\tau)d\tau+K_{d}\frac{de(t)}{dt} \]\[ e(t) \]表示系统的误差信号,\[ K_{p} \]、\[ K_{i} \]和\[ K_{d} \]分别表示比例、积分和微分的系数,\(u(t)\)表示PID控制器的输出。

比例部分的作用是根据当前系统误差的大小来调节输出信号,使系统能够快速响应并收敛到设定值。

积分部分则用于消除系统的静态误差,通过对误差信号的积分来实现系统的稳定性。

微分部分则可以消除系统的瞬时波动,提高系统的响应速度。

状态空间方法是一种描述线性时间不变系统的数学模型的方法,它可以将系统表示为状态方程和输出方程的组合形式。

在设计PID控制器时,状态空间方法可以将系统的状态向量、输入和输出表示为矩阵形式,从而更好地理解系统的结构和参数。

在状态空间设计PID控制器时,首先需要将系统的状态方程表示为如下形式:\[ \dot{x}(t)=Ax(t)+Bu(t) \]\[ x(t) \]表示系统的状态向量,\[ u(t) \]表示系统的输入信号,\[ y(t) \]表示系统的输出信号,\[ A \]、\[ B \]、\[ C \]和\[ D \]分别表示系统的状态矩阵、输入矩阵、输出矩阵和传递矩阵。

状态空间方法与控制系统

状态空间方法与控制系统

状态空间方法与控制系统状态空间方法是现代控制理论中一种重要且广泛应用的方法。

它以状态变量为基础,将控制系统描述为一组微分或差分方程,通过对这组方程进行求解和分析,实现对控制系统行为的全面理解和精确控制。

本文将对状态空间方法与控制系统进行详细介绍和分析。

一、状态空间方法的基本原理状态空间方法是现代控制理论的核心方法之一,它基于系统的状态变量来描述和分析控制系统的动态行为。

在状态空间方法中,系统的状态由一组变量来表示,这些变量可以是物理量或逻辑变量,其个数与系统的自由度一致。

通过对状态变量的描述和分析,可以全面了解系统的行为,进而设计出合适的控制策略。

在状态空间方法中,系统的动态行为可以通过一组微分或差分方程来描述。

这组方程通常称为状态方程,它是由系统的物理模型或传递函数转化而来。

状态方程的一般形式为:【公式】其中x是系统的状态向量,u是输入向量,y是输出向量,A、B、C、D是系统的状态空间矩阵。

通过对状态方程进行求解和分析,可以得到系统的时间响应、频率响应等重要信息。

同时,状态空间方法还可以结合控制理论的相关概念和方法,如可控性、可观性、稳定性等,对系统进行全面而深入的分析。

二、状态空间方法的应用状态空间方法具有广泛的应用领域,包括控制系统设计、系统辨识、故障检测与诊断等。

以下将从几个方面介绍状态空间方法的具体应用。

2.1 控制系统设计状态空间方法为控制系统设计提供了基础和工具。

通过建立系统的状态方程,可以分析系统的稳定性、可控性和可观性等性质,并设计出合适的控制器。

其中,状态反馈控制是状态空间方法中常用且有效的控制策略之一。

通过对状态量的测量和反馈,可以实现对系统的精确控制。

2.2 系统辨识系统辨识是指通过一系列的试验或观测数据,从中提取出系统的数学模型,以便系统的建模和控制。

状态空间方法在系统辨识中起到重要作用。

通过对系统的输入-输出数据进行处理和分析,可以确定状态方程中的矩阵参数,进而建立系统的数学模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图9-45 跟踪误差 的内模设计响应, 输入为单位阶跃响 应,初始跟踪误差 非零
2016年4月20日
跟 踪 误 差
时间(s)
19
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
其次,考虑参考输入为斜坡信号的内模 设计问题。单位斜坡参考输入信号为r(t)=t, 由下列系统生成:
0 1 r Ar xr x xr 0 0 r d r xr 1 0xr
控制系统状态空间设计
设计实例
内模控制器 自动检测系统
2016年4月20日
2
例9-43 内模控制器 在许多实际场合,状态变量反馈方法并 不是一种改善系统性能的实用方法。其主要 原因为: 其一,状态变量反馈往往要求用具有无 限带宽的PD控制器或PID控制器来实现,但 实际部件和控制器都只有有限的带宽; 其二,实际应用中通常无法测量和反馈 所有的状态变量,除了设置状态观测器以外, 实用的状态反馈综合装置只能依赖于系统的 输出、输入和少量的可测量的状态变量,从 而影响系统综合的效果。
2016年4月20日 3
内模控制器是另一类校正控制器,能以 零稳态误差渐近跟踪各类参考输入信号,如 阶跃信号、斜坡信号及正弦信号等。众所周 知,在经典控制理论中,对于阶跃输入信号, Ⅰ型系统可以实现零稳态误差跟踪。如果在 校正控制器中引入参考输入的内模,则可以 在状态空间设计法中推广这一结论。采用类 似的内模控制器方法,可以在更多的情况下 实现零稳态误差跟踪。
Y ( s)
k2
图9-43 阶跃输入的内模设计
2016年4月20日
x
10
R(s)
+
e -
k1
1 s
-
u
对象G(s)
1 s 2 2s 2
Y ( s)
k2
x
由图可见,在校正控制器中,除包含有 状态变量反馈外,还包含了参考阶跃输入的 内模(图中积分器环节),故称为内模控制 器。 下例为一个具体系统的单位阶跃输入内 模控制器的设计过程。
由于可控性矩阵 0 1 2 0 cb cAb 1 2 6 3 rank rank 2 b Ab A b 2 6 8 满秩,增广系统可控,
2016年4月20日 13
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
s (k2 2k3 2) s (k1 2k2 k3 ) s 4k1 0
3 2
s 12s 22s 20 0
3 2
令上述两个特征方程式的对应项系数相等, 解得 k1=-5,k2=7.83,k3=1.09 或者 k1=-5,k2=2.17,k3=3.91 则由式(9-419)得到内模控制律为
2016年4月20日 11
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
设有
1 0 1 (t ) x x (t ) u (t ) 2 2 2 y (t ) 1 0x (t )
要求系统输出能以零稳态误差跟踪单位 阶跃参考输入信号。
1 0 0
0 e 0 c e 0 w A z b
若系统(9-420)可控,即
0 rank 0 b
w k1
2016年4月20日
0 cb Ab
cb cAb A2 b
cAb 2 cA b n 2 A3 b
u(t ) 5 e( )d 7.83x1 (t ) 1.09 x2 (t )
0
t
相应的单位阶跃输入内模控制系统的结构图 如图9-44所示。
2016年4月20日 17
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。 1.09
r
e
5
1 s
u
2
2 1 x2 x 1 1 x1=y x
2016年4月20日 8
当增广系统可控时,即
0 cb cAb cAn2b rank n 1 2 n 1 Ab A b b Ab
总可以找到反馈信号
w(t ) k1e(t ) k2 z(t )
使该系统渐近稳定。这表明跟踪误差e(t)是 渐近稳定的,因此系统输出能以零稳态误 差跟踪参考输入信号。
(t ),w(t ) u (t ) z (t ) x (t ) Ax (t ) bu (t ) (t ) z x Az(t ) bw(t )
2016年4月20日
7
(t ) (t ) y (t ) cx e (t ) Az(t ) bw(t ) z
则式(9-414)与式(9-415)构成如下增广系统方程
0 c e 0 e w z 0 A z b
当增广系统可控时,即
0 cb cAb cAn2b rank n 1 2 n 1 Ab A b b Ab
2016年4月20日 9
w(t ) k1e(t ) k2 z(t )
对式(9-418)求积分,可得系统内部的反馈 控制信号为 t
与此对应的框图模型如图9-43所示。
R(s)
+
u(t ) k1 e( )d k2 x(t )
0
e -
k1
1 s
-
u
对象G(s)
1 s 2 2s 2
2016年4月20日
e k3 z1 z 2
14
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
0 1 0 0 e z 1 0 0 1 1 k k 1 2 0 2 2 2 z 2
其中,初始条件未知。
2016年4月20日
r (t ) d r xr (t )
5
此外,参考输入r(t)的生成系统也可以等 效为
r (t ) n1r
(n)
( n 1)
(t ) n2 r
( n2)
(t )
(t ) 0 r (t ) 1r
首先考虑参考输入r(t)为单位阶跃信号时 的内模控制器设计。此时,r(t)可由下列方程 生成:
r (t ) 0,r (t ) xr (t ) x
或等价为
2016年4月20日
(t ) 0 r
6
定义跟踪误差
e(t ) r (t ) y(t )
于是有
(t ) (t ) y (t ) cx e
现在,引入两个中间变量z(t)和w(t),其 定义为:
故有
2016年4月20日 20
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
设单输入-单输出系统的状态空间表达式为
(t ) Ax (t ) bu (t ) x
r (t ) n1r (t ) n2 r (t ) 0 r (t ) 1r
(n) ( n 1)
e k3 z1 z 2
如果要求闭环极点为s1,2=-1±j,s3=-10,则希 望特征方程为
( s 1 j )( s 1 j )( s 10) 3 2 s 12s 22s 20
0
2016年4月20日 15
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
y (t ) cx (t )
( n2)
(t )
单位斜坡参考输入信号为r(t)=t 且有 r(t ) 0,则对于单输入 单输出系统
(9 409),定义跟踪误差e r y,有
(t ) (t ) (t ) c e y x
2016年4月20日 21
0 1 0 0 e z 1 0 0 1 1k1 k 2 0 2 2 2 z 2
e k3 z1 z 2
2016年4月20日
0 e 0 c e 0 w (9-420) A z b
22
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
e 0 e 0 z 0
而实际特征方程为
1 0 s det k s k k 1 2 3 1 2k1 2(1 k 2 ) s 2 2k3 s 3 (k 2 2k3 2) s 2 (k1 2k 2 k3 ) s 4k1 0
2016年4月20日 16
2016年4月20日
12
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
由式(9-416) 0 c e 0 e w z 0 A z b
0 1 0 e 知增广系统方程为 0 0 1 z 0 2 2 0 e z 1 w 2
故通过状态反馈
e w k k1e k 2 z1 k3 z2 z
式中k=[k1 k2 k3],可任意配置闭环增广系统 的极点。
0 1 0 0 e z 1 0 0 1 1 k k 1 2 0 2 2 2 z 2
2016年4月20日 4
设单输入-单输出系统的状态空间表达式为
(t ) Ax (t ) bu (t ) x y (t ) cx (t )
其中,x∈Rn为状态向量,u为标量输入,y 为标量输出,A、b和c维数适当。 生成参考输入信号r(t)的线性系统为
相关文档
最新文档