避雷器与浪涌保护器

合集下载

spd及避雷知识汇总

spd及避雷知识汇总

SPD(浪涌保护器)定义Surge Protective Device(SPD),浪涌保护器,又名电涌保护器、防雷器、避雷器,用于保护用电设备免遭雷电电磁脉冲或操作过电压破坏。

实物图简介1. 电涌保护器的种类名目繁多的避雷器在我国的市场上已经超过了上百种,如何对不同品牌、不同型号的避雷器进行分类也许就摆在我们面前。

分类从组合结构分;现在市场上的避雷器有几下几种:1)间隙类————开放式间隙、密闭式间隙2)放电管类———开放式放电管密封式放电管3)压敏电阻类——单片、多片4)抑制二极管类5)压敏电阻/气体放电管组合类----简单组合、复杂组合6)碳化硅类按照其保护性质有可以分为:开路式避雷器、短路式避雷器或开关型、限压型;按照工作状态(安装形式)又可分为:并联避雷器和串联式避雷器。

结构及特性2避雷器的结构及特性2.1间隙避雷器2.1.1开放式间隙避雷器间隙避雷器的工作原理:基于电弧放电技术,当电极间的电压达到一定程度时,击穿空气电弧在电极上进行爬电。

优点:放电能力强,通流量大(可以达到100KA)漏电流小热稳定性好缺点:残压高,反映时间慢,存在续流工艺特点:由于金属电极在放电时承受较大电流,所以容易造成金属的升华,使放电腔内形成金属镀膜影响避雷器的启动和正常使用。

放电电极的生产主要还是集中在国外一些避雷器生产企业,,电极的主要成分是钨金属的合金。

工程应用:该种结构的避雷器主要应用在电源系统做B级避雷器使用。

但由于避雷器自身的原因容易引起火灾,避雷器动作后(飞出)脱离配电盘等事故。

根据型号的不同适合与各种配电制式。

工程安装时一定要考虑安装距离,避免引起不必要的损失和事故。

2.1.2 密闭式间隙避雷器现在国内市场有一种多层石墨间隙避雷器,这种避雷器主要利用的是多层间隙连续放电,每层放电间隙相互绝缘,这种叠层技术不仅解决了续流问题而且是逐层放电,无形中增大了产品自身的通流能力。

优点:放电电流大测试最大50KA(实际测量值)漏电流小无续流无电弧外泻热稳定性好缺点:残压高,反映时间慢工艺特点:石墨为主要材料,产品内采用全铜包被解决了避雷器在放电时的散热问题,不存在后续电流问题,最大的特点是没有电弧的产生,且残压与开放式间隙避雷器比较要低很多。

雷欧力 交流电源电涌保护器(SPD)技术 说明书

雷欧力 交流电源电涌保护器(SPD)技术 说明书

欧雷克I级电涌保护器(Surge Protection Device,简称SPD )(又称防雷器、避雷器、浪涌保护器、过压保护器),适用于交流380V (50Hz/60Hz )及以下的TN-S、TN-C-S、TT、IT等供电系统因雷击而产生的电磁脉冲(EMP )保护,用于雷击区域的LPZ OA或LPZB区与LPZ1区交界处,其设计依据符合GB18802.1,IEC61643-1技术标准。

交流电源电涌保护器(SPD)技术说明书产品介绍防雷器技术参数1、可选遥信端子报警功能,便于远程报警监控。

2、最高可承受100KA(8/20μs)雷电流冲击。

3、反应速度快,动作响应时间小于25ns。

4、阻燃外壳设计,可方便地安装在35mm电气导轨上。

5、内置热脱扣失效脱离装置,使保护器因过热、击穿失效时能自动断开。

6、可视告警窗口颜色表示保护的工作状态,绿色(正常)、红色(故障)。

功能特点电涌保护器(SPD )是电子设备雷电防护中不可缺少的一种装置,其作用原理是在正常情况下,电涌保护器处于极高的电阻状态,从而保证电源系统正常工作;当系统线路上出现电涌过电压、过电流时,SPD的电阻突变或持续下降为低阻抗,SPD立即在纳秒级的时间内导通,将电涌能量通过SPD泄放入大地;当电涌过后,电涌保护器又迅速恢复为高阻状态,从而不影响系统正常供电。

工作原理防雷器安装注意事项1、防雷器并联安装于线路当中,且记。

2、线路请勿接反或接错。

3、防雷器安装在被保护设备前端越近效果越好。

4、设备需要定期检查,产品劣化后必须立即更换。

5、切记不可带电作业。

产品应用和安装位置该系列I级电涌保护器适用于雷击区域的LPZOA区或LPZOB区与LPZ1区区界面处,通常并联安装在埋地穿管进线低压入户端主配电柜处,做第一级防雷保护。

-1--2-防雷器安装方法及图示L1L2L3N(4P)单线接线法侧面4PL1L2L3N(4P)凯文件接线法T EL :0755-******** A DD :广东省深圳市龙华区观澜狮径路核电工业园A 栋2楼 Web:T EL :0755-******** A DD :广东省深圳市龙华区观澜狮径路核电工业园A 栋2楼 Web:。

避雷器、过电压保护器、浪涌保护器的区别

避雷器、过电压保护器、浪涌保护器的区别

避雷器、过电压保护器、浪涌保护器的区别
1、避雷器: 又称:surge
arrester,能释放雷电或兼能释放电力系统操作过电压能量,保护电工设备免受瞬时过电压危害,又能截断续流,不致引起系统接地短路的电器装置。

避雷器通常接于带电导线与地之间,与被保护设备并联。

当过电压值达到规定的动作电压时,避雷器立即动作,流过电荷,限制过电压幅值,保护设备绝缘;电压值正常后,避雷器又迅速恢复原状,以保证系统正常供电。

2、过电压保护器[1]为一种新型的过电压保护器,主要用于保护发电机、变压器、真空开关、母线、电动机等电气设备的绝缘免受过电压的损害,过电压保护器是限制雷电过电压和操作过电压的一种先进的保护电器。

3、浪涌保护器对间接雷电和直接雷电影响或其他瞬时过压的电涌进行保护,适用于家庭住宅、第三产业以及工业领域电涌保护的要求,具有相对相,相对地,相对中线,中线对地及其组合等保护模式。

是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。

当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害
从三者功能看避雷器保护的是雷电带来的高电压破坏力,过电压保护器保护的是雷电和供电网络带来的电压过高造成的损害,浪涌保护器保护的是雷电带来的高电压、高电流带来的损害。

防雷器的电压等级及防护等级

防雷器的电压等级及防护等级

防雷器也称:避雷器,浪涌保护器,SPD防雷器分类:电压开关型SPD:无电涌出现呈高阻抗,当出现电涌电压时突变为低阻抗的SPD.电压限压型SPD:无电涌出现呈高阻抗,水电用电流和电压的增加,阻抗跟着连续变小的SPD。

B级防雷器(第〡等级):由于特殊设计,能够直接承受直击雷的能量和释放部分直击雷及电流的防雷器。

C级防雷器(第〢等级):能够释放远距离或传导雷击的能量和释放部分直接雷击电流的防雷器。

D级防雷器(第〣等级):为了保护终端负载而设计的精密保护防雷器。

电压要求:电压等级的选择。

信号防雷器的最高工作电压的选择,是依据通信线路的工作电压来确定的。

一般来说,信号防雷器的最高工作电压必须大于通信线路工作电压的1.2倍。

参数:标称电压Un:与被防护系统的额定电压相符,例如:230/380V。

工作电压:在电网电压波动范围内具备正常运行的能力。

最大持续运行电压Uc:加在浪涌防护器接线端的最大连续工作电压的有效值。

Uc值必须与标称电压相符,在使用说明的规定范围内。

标称电压un:被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器类型,它标出交流或直流电压的有效值。

额定电压uc:能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。

额定放电电流ISN:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。

最大放电电流IMAX:给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

避雷器的主要种类、特点及应用场合:防雷器的种类基本上分三大类型:一是电源避雷器(安装时主要是并联方式,也串联方式)按电压的不同,分220V的单相电源防雷器和380V的三相电源防雷器。

二是信号防雷器,多数用于计算机网络、通信系统上,安装的方式是串联。

三是天馈线防雷器,使它适用于有发射机天线系统和接收无线电信号设备系统,连接方式也是串联。

防雷工程专业术语及雷电浪涌保护器名词解释

防雷工程专业术语及雷电浪涌保护器名词解释

防雷工程专业术语及雷电浪涌保护器名词解释1、雷电次数当雷暴进行时,隆隆的雷声持续不断,若其间雷声的时间间隔小于15分钟时,不论雷声断续传播的时间有多长,均算作是一次雷暴:若其间雷声的停息时间在15分钟以上时,就把前后分作是两次雷暴。

2、雷电小时就是说在该天文小时内发生过雷暴,更通俗些说是在这个时间里曾听到过雷声而不论雷暴持续时间的长短如何。

某一地区的〃年雷电小时数〃也就是说该地区一年中有多少个天文小时发生过雷暴,而不管在某一小时内雷暴是足足继续了一小时之久,还是只延续了数分钟。

3、宙暴日数也叫做雷电日数。

这是我们所最熟悉的。

只要在这一天内曾经发生过雷暴,听到过雷声,而不论雷暴延续了多长时间,都算作一个雷电日。

"年雷电日数”等于全年雷电日数的总和。

4、雷暴月数也叫做雷电月数,即指在这一个月内曾发生过雷暴。

〃年雷暴月数”也就是指一年中有多少个月发生过雷暴。

5.标称导通电压UIn1A又称为动作电压,当通过SPD的直流电流达至ImA峰值时,SPD两端的电压为动作电压。

6.最大持续运行电压UC指允许持久施加在SPD上的最大交流电压有效值或直流电压。

目前大家已有共识,只有在环境较好的城市或新建项目可以使用275VAC的电源浪涌保护器,在通常情况下使用Uc大于320VAC或385VAC还是一个明智的选择。

7.额定负载电流1能对SPD保护的输出端连接负载提供的最大持续额定交流电流有效值或直流电流。

8.标称放电电流In依据特殊分类试验要求,通过浪涌保护器而有8/20μS波形的涌流峰9.最大放电电流I.»x浪涌保护器能安全泄放的8/20μS波形的涌流峰值。

10.雷电脉冲电流IMP类似于自然雷电特性(峰值,电荷量和比能)的10/35OUS波形的模拟雷电电流;雷电流避雷器必须能泄放这样的雷电流数次而不损坏。

11.总放电电流多相浪涌保护器或组合型单相浪涌保护器总的脉冲电流泄放能力。

12.中断能力(后继电流灭弧能力)在UC下能被防雷器自身灭弧的主要后续电流的有效值,参看EDINVDE0675-6/A:1996-03;13.短路承受能力当同上级熔断器相连接时,防雷器能承受的最大短路电流;14.过载保护防止主电源线路因过载导致保护器过热损坏而加装的过载保护设备。

浪涌保护器和避雷器的区别

浪涌保护器和避雷器的区别

浪涌保护器和避雷器的区别对于电力系统中的电气设备而言,浪涌和雷击都是常见的问题。

浪涌和雷击会对电气设备造成不同程度的损坏,甚至可能导致设备的短路、火灾等安全事故。

为了保护电气设备的安全运行,我们通常会使用浪涌保护器和避雷器。

浪涌保护器和避雷器都属于电力系统的过电压保护装置。

它们的主要作用是为了保护电气设备免于过电压的侵害。

然而,它们在工作原理、适用范围、使用方法以及应用场合上都存在很大的差异。

浪涌保护器工作原理浪涌保护器是通过快速隔离和限制浪涌过电压,将过电压的能量释放到地线上,保护电气设备不受过电压侵害。

浪涌保护器相当于一种“消弧器”,它可以在电气设备中引入一个小的不规则电容,利用这个电容来消除过度电压。

适用范围浪涌保护器一般用于保护电气设备不受瞬态过电压和电磁脉冲的影响,比如对于机器人、医疗设备、工业设备等高敏感电子产品使用浪涌保护器可以有效的保护设备免受过电压伤害。

使用方法浪涌保护器的安装位置通常设置在供电线路与受电设备之间,可以直接与设备的输入端口相连,可以在电源线或信号线上安装,视具体的应用场景而定。

需要注意的是,浪涌保护器的工作原理需要保证地线的良好使用,因此在使用时需要注意地线的连接和接地。

避雷器工作原理避雷器是一种用来抵抗雷击过电压的设备。

其主要是通过引导电纹波的能量,将电纹波的能量放到地球上,以达到防雷的目的。

避雷器的工作原理类似于一台变压器,其主要是根据不同的电场和电荷性质之间的相互作用,将电纹波能量导入地线上。

适用范围避雷器主要用于通讯、计算机及各种电气设备中,其主要作用是防止雷击、雷电波等异常电压的伤害。

使用方法避雷器可以分为外避雷器和内避雷器两种,其安装位置的选择要根据具体的应用场合而定,对于高压变压器室、电子设备室、通讯设施等设备,通常都需要安装避雷器。

避雷器需要经过质检认证,使用时一定要严格按照厂商的安装说明、技术规范及安全操作规程等使用。

浪涌保护器与避雷器的区别总体来看,浪涌保护器和避雷器的主要区别在于:1.工作原理不同:浪涌保护器是通过限制浪涌过电压,将能量释放到地线上以保护设备;避雷器是通过引导电纹波的能量,将电纹波的能量导入地线。

避雷器(浪涌保护器)的设计与选择

避雷器(浪涌保护器)的设计与选择

避雷器(浪涌保护器)的设计与选择摘要目前,智能电子设备广泛应用于日常生产生活中,由于智能电子设备自身耐过电压的水平较低,雷电流电磁脉冲引着电源线、信号线、网线等窜入室内,危害仪器设备,给企业财产、安全生产造成了一定的损失。

为了加强建(构)筑物内部电子设备的雷电防护,正确设计选择安装避雷器(浪涌保护器),有效保护低压设备迫在眉睫。

关键词避雷器(浪涌保护器);设计;安装电子设备感应灵敏,且自身耐过电压的水平较低,雷闪期间,雷电流脉冲波会引着电源线、信号线、网线等窜入室内,危害仪器设备,给企业财产、安全生产造成了一定的损失。

2010年8月2日,中卫香山机场遭雷击,雷电流脉冲波引着电源线窜入室内,烧坏了航站楼内德国进口的电子设备主板,造成直接经济损失20多万元;2007年,中卫长河化工厂遭雷电感应袭击,配电室2个空气开关烧坏,直接经济损失2万多元。

正确设计选择安装避雷器(浪涌保护器),有效保护耐过电压水平较低且感应灵敏的电子设备,对企业安全生产、防雷减灾意义重大。

1浪涌保护器的参数浪涌保护器常用的参数包括:标准电压Un、额定电压Uc、额定放电电流Isn、最大放电电流Imax、电压保护级别Up:、响应时间Ta、数据传输速率Vs、插入损耗Ae:、回波损耗Ar。

2浪源电涌保护器选型《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.4条规定:“电涌保护器必须能承受通过它们的雷电流,并应符合两个要求:通过电涌时的最大钳位电压,有能力熄灭在雷电流通过后产生的工频续流”。

2.1最大放电电流按照《建筑物防雷设计规范》GB50057-94(2000年版)相关条款:“全部雷电流的50%流入建筑物的防雷装置,另外50%流入建筑物的各种外来导电物、电力线、通信线、网线等设施”。

图1进入建筑物各种设施的雷电流分配图雷电波进入建筑内电力线、信息线、金属管道等,总配电间的低配供电线雷电流的分流,如表1所示。

2.2电压保护水平Up选择合适的最大放电电流固然重要,但电涌保护器的保护水平也不能忽略。

浪涌保护器的主要技术参数

浪涌保护器的主要技术参数

浪涌保护器的主要技术参数(最新版)目录1.浪涌保护器的定义和作用2.浪涌保护器的主要技术参数3.浪涌保护器技术参数的解释4.浪涌保护器的应用场景5.如何选择合适的浪涌保护器正文浪涌保护器,又称防雷器,是一种用于保护电子设备、仪器仪表和通讯线路安全的电子装置。

当电气回路或通信线路因外界干扰突然产生尖峰电流或电压时,浪涌保护器能够在极短时间内导通分流,从而避免浪涌对回路其他设备器材造成损害。

浪涌保护器适用于交流 50/60Hz,额定电压220V 至 380V 的供电系统(或通信系统),能够对间接雷电和直接雷电影响(或瞬时过压)的电涌进行保护。

浪涌保护器的主要技术参数包括:1.额定耐受最大冲击电流:表示浪涌保护器能够承受的最大冲击电流值,通常以 kA 为单位。

例如,CPM-R100T 型号的浪涌保护器的额定耐受最大冲击电流为 100kA。

2.标称放电电流:表示浪涌保护器在特定条件下能够正常工作的最大放电电流值,通常以 kA 为单位。

例如,CPM-R100T 型号的浪涌保护器的标称放电电流为 40kA。

3.响应时间:表示浪涌保护器从接收到浪涌信号到开始导通的时间,通常以微秒(μs)为单位。

响应时间越短,浪涌保护器的保护效果越好。

4.保护电压水平:表示浪涌保护器能够保护的电压范围,通常以伏特(V)为单位。

保护电压水平越低,浪涌保护器对设备提供的保护越全面。

5.波形:表示浪涌保护器能够承受的浪涌波形,通常以字母和数字组合表示,如 10/350us、8/20us 等。

不同的波形对应的防护能力有所不同。

在选择浪涌保护器时,需要根据实际应用场景选择合适的技术参数。

例如,在家庭住宅中,可以选择额定耐受最大冲击电流较小、保护电压水平较低的浪涌保护器;而在工业领域中,则需要选择额定耐受最大冲击电流较大、保护电压水平较低的浪涌保护器。

工程部培训资料-电涌保护器的作用及工作原理

工程部培训资料-电涌保护器的作用及工作原理

2. 传导雷 雷电可能直接对电源线(低压 架空线)或数据信号线放电, 大部分高能雷电流沿导线双 向被引入到建筑物内。
3. 附近的雷击 附近的雷电闪击也可能引起建筑物 装置上的浪涌电压(浪涌电流)。这 个浪涌电压直接或通过电磁性或电 容性耦合到达电子装置、设备的线 路上。例如在雷电放电通道(引下 线)和金属导线之间。
电涌保护器的作用及工作原理
电涌保护器又称防雷器、 浪涌保护器或避雷器,电 涌保护器的作用是将线路 上出现的浪涌电压(瞬间过 电压/浪涌电流)引导至接 地装置,泄放到大地,从 而达到保护设备的目的。
电涌保护器的工作原理:电源电涌保护器一 般情况下处于高阻抗状态,当线路出现浪涌 电流时,电涌保护器在极短的时间内(纳秒 级)导通与地连接,由于接地系统具有较低 的接地电阻,大部分浪涌电流会通过浪涌保 护器泄放到大地,电源线路经过多级浪涌保 护器的泄流作用,最终使浪涌电流降低至设 备能够承受的状态。其它类型的浪涌保护器 则通过断开与后续设备的线路连接,达到浪 涌保护的目的。
4. 远处的雷击 就是几百米之外的雷电闪击可能在 低压导线、数据线上感应出过电压, 也可能将高电压传导到建筑物的接 地装置上,从而对电子设备造成极 大的危害。甚至云层之间或云层内 部的放电产生的电磁场也能耦合浪 涌电压到导线中。
5. 开关浪涌 开关浪涌来自电路的闭合、断 开等转换操作,来自感性和容 性负载的开关操作,也来自短 路电流的阻断。特别的,大型 用电系统或变压器的断开可能 引起对邻近的电子设备的损坏。
避雷器的分类:保护间 隙 、排气式避雷器、 阀式避雷器(碳化硅、 氧化锌)。
阀式避雷器氧化锌避雷器在低压供电系统、测量 和控制系统、计算机网络 系统、监控等系统中引起 浪涌电压(浪涌电流或电 涌)的因素主要有以下几 种:

浪涌保护器和避雷器的区别

浪涌保护器和避雷器的区别

浪涌保护器和避雷器的区别1、避雷器有多个电压等级,从0.38KV低压到500KV特高压均有,而浪涌保护器一般只有低压产品;2、避雷器多安装在一次系统上,防止雷电波的直接侵入,而浪涌保护器大多安装在二次系统上,是在避雷器消除了雷电波的直接侵入后,或避雷器没有将雷电波消除干净时的补充措施;3、避雷器避雷器是保护电气设备的,而浪涌保护器大多是为保护电子仪器或仪表的;4、避雷器由于接于电气一次系统上,要有足够的外绝缘性能,外观尺寸比较大,而浪涌保护器由于接于低压,尺寸制作的可以很小。

浪涌保护器1、变频控制柜必须加2、使用真空断路器的控制柜必须加3、供电系统的进线开关必须加4、其它控制柜可以不加,当然如果为了保险起见有预算空间的话可以都加上浪涌保护器总体分为两类:电机保护型、电站保护型在选择时必须注意!1•主要结构及工作原理电涌保护器的工作原避雷器理见示意图,两个电极分别与L(或者N)和PE线相联,两个电极之间形成一个电气间隙。

电网在不超过最大持续运行电压的情况下运行时,两个电极之间呈高阻状态。

女口果电网因雷击或者操作过电压使两个电极之间的电压超过点火电压时,间隙被击穿,通过弧光放电将过电压能量释放。

冲击波过后,电弧将被由分弧片和灭弧室组成的灭弧系统熄灭,恢复到高阻状态。

图1原理示意图2•作用BY系列电涌保护器采用了一种非线性特性极好的压敏电阻,在正常情况下,电涌保护器外于极高的电阻状态,漏流几乎为零,保证电源系统避雷器正常供电。

当电源系统出现上述情况的过电压时,不锈钢装饰,电涌保护器立即在纳秒级的时间内迅速导通,将该过电压的幅值限止在设备的安全工作范围内。

同时把该过电压的能量释放掉。

随后,保护器又迅速的变为高阻状态,因而不影响电源系统的正常供电。

电涌保护器(SurgeprotectionDevice)是电子设备雷电防护中不可缺少的一种装置,过去常称为"避雷器"或“过电压保护器”英文简写为SPD。

浪涌保护器(防雷器)科普知识

浪涌保护器(防雷器)科普知识

浪涌保护器(防雷器)科普知识电涌保护器SPD也称为电涌放电器,所有用于特定目的的电涌保护器实际上都是一种快速开关,并且电涌保护器在一定的电压范围内被激活。

激活后,浪涌保护器的抑制元件将从高阻抗状态断开,L极将变为低电阻状态。

通过这种方式,可以排出电子设备中的局部能量浪涌电流。

在整个雷电过程中,电涌保护器将在极点上保持相对恒定的电压。

该电压可确保浪涌保护器始终开启,并且可以安全地将浪涌电流释放到大地。

换句话说,电涌保护器可保护敏感的电子设备免受雷电事件、公共电网开关活动、功率因数校正过程以及内部和外部短期活动产生的其他能量的影响。

应用闪电对人身安全有明显的威胁,对各种设备构成潜在威胁。

电涌对设备的损害不仅限于直接交流电涌保护器T2SLP40-275-1S+1雷击。

近距离雷击对敏感的现代电子设备构成巨大威胁;另一方面,雷云之间的距离和放电中的雷电活动会在电源和信号回路中产生强烈的浪涌电流,使正常流量设备正常。

运行并缩短设备的使用寿命。

由于接地电阻的存在,雷电流流过大地,从而产生高电压。

这种高电压不仅危及电子设备,而且由于步进电压而危及人的生命。

浪涌,顾名思义是超过正常工作电压的瞬态过电压。

从本质上讲,电涌保护器是一种在短短几百万分之一秒内发生的猛脉冲,并可能导致浪涌:重型设备、短路、电源开关或大型发动机。

含有避雷器的产品可以有效吸收突然爆发的能量,以保护连接的设备免受损坏。

电涌保护器,也称为避雷器,是为各种电子设备、仪器和通信线路提供安全保护的电子设备。

当由于外部干扰在电路或通信线路中突然产生电流或电压时,电涌保护器可以在很短的时间内进行分流,从而避免浪涌损坏电路中的其他设备。

基本功能电涌保护器流量大,残余电压低,响应时间快;采用最新的灭弧技术,彻底避免火灾;内置热保护的温控保护电路;带有电源状态指示,指示电涌保护器的工作状态;结构严谨,工作稳定可靠。

术语1、空气终端系统电涌保护器用于直接接受或承受雷击的金属物体和金属结构,例如避雷针,防雷带(线),防雷网等。

你知道避雷器和浪涌保护器的区别吗

你知道避雷器和浪涌保护器的区别吗

你知道避雷器和浪涌保护器的区别吗避雷器和浪涌保护器都是用于保护电气设备免受电压过高或电磁干扰的设备,但它们的功能和原理有所不同。

避雷器和浪涌保护器是用于保护电气设备免受过电压的损害的重要装置。

虽然它们都属于过电压保护设备,但在原理、工作方式和应用领域上存在一些区别。

1.功能区别:避雷器主要用于保护电力系统、通信系统等大型电气设备免受雷击的影响。

当雷击产生高电压脉冲时,避雷器会引导这些脉冲通过其内部的气体放电管,从而将高电压脉冲释放到地面,保护设备免受损坏。

浪涌保护器则主要用于保护电子设备免受电源输入端的瞬态过电压(如电源开关、插座等)和电磁干扰的影响。

当电源输入端出现过电压或电磁干扰时,浪涌保护器会迅速导通其内部的气体放电管,将过高的电压限制在设备所能承受的范围内,从而保护设备免受损坏。

2.原理区别:避雷器主要利用了气体放电管(如普通放电管、快速恢复二极管等)的瞬态响应特性。

当雷击产生高电压脉冲时,气体放电管会迅速导通,将高电压脉冲释放到地面;当雷电消失时,气体放电管会迅速恢复截止状态。

这样一来,避雷器就能够有效地保护设备免受雷击的影响。

避雷器:避雷器主要用于保护电力系统免受雷电过电压的影响。

它基于气体放电原理,由一个或多个金属氧化锌(MOA)元件组成。

当系统中出现过电压时,避雷器会自动启动,将过电压引导到地,保护系统和设备不受损害。

避雷器具有高电压容量和快速响应的特点。

浪涌保护器主要利用了气体放电管的瞬态响应特性以及其对过电压的阻抗能力。

当电源输入端出现过电压或电磁干扰时,气体放电管会迅速导通,将过高的电压限制在设备所能承受的范围内;同时,气体放电管还能够吸收部分能量,从而减轻对设备的损害。

浪涌装置、避雷器、漏保、空开、断路器区别

浪涌装置、避雷器、漏保、空开、断路器区别

现在家家户户都离不开用电,家用电器安全也越来越被大家所重视。

为了保护我们的用电安全,各式各样能够断开电路的装置都被生产出来了,其中大家比较了解的有浪涌装置、避雷器、漏保、空开、断路器,不过大家分不清这几种保护装置有什么区别,今天我们就来了解一下浪涌装置、避雷器、漏保、空开、断路器的区别。

希望能够对大家有所帮助。

(1)浪涌和空开的区别
1)浪涌保护器
浪涌保护器(SPD)又称为“防雷器”和“避雷器”,是限制电气回路、通讯线路中强烈的瞬态过电压产生的浪涌,从而起到保护设备的作用。

其工作原理是当线路中出现瞬间过电压或过电流时,浪涌保护器会迅速导通,将线路中的浪涌泄放入大地。

按照保护设备的不同,可分为电源浪涌保护器和信号浪涌保护器两类。

其中电源浪涌保护器按照同容量的不同可一级电源浪涌保护器、二级电源浪涌保护器、三级电源浪涌保护器和四级电源浪涌保护器;信号浪涌保护器可分为网络信号浪涌保护器、视频浪涌保护器、监控三合一浪涌保护器、控制信号浪涌保护器、天馈信号浪涌保护器等。

2)空气开关
空气开关又称为断路器,当电路中电流超过额定电流时会自动断开,并对电路或电气设备发生短路、过载等进行保护。

例如照明、泵房等电源都可以用空气开关控制。

其工作原理是通过开关的电流超过一定电流时会因发热使金属片弯曲,开关脱扣,切断电源,保护线路中的设备不因过大的电流而损坏。

3)两者的区别
工作原理不一样:
浪涌保护器在线路中瞬态过电压增大时,会及时导通,将线路上的过电压泄放入地;而空气开关在线路上电流超过额定电流时,会自动断开,保护用电设备。

防雷浪涌保护器原理

防雷浪涌保护器原理

防雷浪涌保护器原理
防雷浪涌保护器是一种用于保护电气设备不受雷电、浪涌等突发电压干扰的器件。

它的原理基于电磁电容耦合和电流分流。

防雷浪涌保护器通常由三个主要部分组成:雷电电源、浪涌电源和保护电路。

雷电电源通过感应线圈和电感耦合,将从云层到地面的高压电流转换为低压电流。

浪涌电源则通过浪涌电容和电感耦合,将短时间内的高电压转变为较低的电压。

在正常情况下,防雷浪涌保护器的保护电路处于断路状态,不会影响电气设备的正常工作。

当雷电或浪涌电压突然出现时,保护电路会迅速响应,将电流引导到接地线,保护电气设备免受超额电压的侵害。

防雷浪涌保护器的原理可以总结为以下几个关键步骤:
1. 感应和转换:雷电电源通过感应线圈和耦合电感将高压电流转换为低压电流,保护电路从中获取电能。

2. 电流分流:保护电路中的电感和电容会使电流优先通过保护电路,从而降低电气设备受到的电压。

3. 响应保护:当雷电或浪涌电压突然出现时,保护电路会迅速响应,将电流引导到接地线,以保护电气设备免受过高电压的侵害。

通过这种原理,防雷浪涌保护器能够有效保护电气设备,减小由雷电和浪涌电压引起的突发电压冲击,避免设备受损甚至损坏。

它广泛应用于各种需要防雷浪涌保护的电气系统和设备,如计算机、通信设备、电力设备等。

季幼章著——避雷器和浪涌保护器的比较

季幼章著——避雷器和浪涌保护器的比较

Elements雷器两端电压峰值U1mA,定义为参考电压。

从这一电压开始,认为避雷器进入限制过电压的工作范围,所以也称为转折电压。

(4)压比K压比K系指避雷器通过波形为8/20μs的标称冲击放电电流时的残压与起始动作电压之比,例如5kA压比为K=U5KA/ U1mA,压比越小,表明残压越低,保护性能越好。

(5)荷电率荷电率表明单位电阻片上的电压负荷,η=U C/U1mA。

荷电率的高低对避雷器老化程度的影响很大,在中性点非有效接地系统中,一般采用较低的荷电率,而在中性点直接接地系统中,采用较高的荷电率。

(6)冲击残压这是避雷器保护特性中的主要指标,对于220kV及以下的避雷器,一般都是按波形为8/20μs,幅值为5kA的冲击电流来测量残压的,对于330kV及以上系统,由于可能出现较大的雷电流,因此使用幅度为10kA的冲击电流来测量残压。

残压越低,被保护设备的绝缘水平可以越低。

(7)通流容量通流容量表示避雷器阀片能耐受通过电流的能力。

因为避雷器中通过的电流主要有两种,一种是雷电流,另一种是工频续流。

所以通常分别用一定幅值的冲击电流和方波电流来进行试验,电流波形规定为4/10μs。

方波电流试验,虽然电流幅值较小,但持续时间长得多(2000μs),对阀片的考验是很严格的。

(8)泄漏电流氧化锌阀片相当于一个电阻和电容的混联电路,考虑杂散电容后,一支避雷器相当于一个阻容链。

在交流电压下,避雷器的总泄漏电流中包含着阻性电流(有功分量)和容性电流(无功分量)。

正常情况下,流过避雷器的主要为容性电流,阻性电流只占很小一部分。

当阀片老化时,以及避雷器受潮,内部绝缘部件受损以及表面严重污秽时,容性电流不大,而阻性电流大大增加。

所以测量泄漏电流是监测避雷器的主要方法,通常测量0.75U1mA下的泄漏电流值。

4 浪涌保护器4.1 浪涌保护器工作原理电路在遭雷击和接通、断开电感负载或大型负载时,常常会产生很高的操作过电压,当电压增加仅持续1ns或2ns时,被称为尖峰,当电压增加持续3ns或更长时间时,被称为浪涌。

什么是浪涌保护器或避雷器及其原理和符号

什么是浪涌保护器或避雷器及其原理和符号
2、放电间隙和压敏电阻的工作原理虽然有差异,但是基本的特性非常相似:在没有过电压时,他们的阻抗都非常高,一般是兆欧级,几乎相当于断路。当出现过电压时,阻抗迅速下降到几欧,浪涌电流就会通过浪涌保护器流入地,而不会进入设备,同时,由于浪涌保护器的这时的阻抗很小,它的两遍电压也比较小,同时因为他和被保护的设备并联,也就防止设备承受较大的浪涌电压。这样,就起到了泄流和限压的效果。
三、浪涌保护器:
浪涌保护器,简称SPD,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置,主要用于限制过电压和泄放电涌电流。浪涌保护器一般是与被保护的设备并联,当产生过电压时,可以起到分流和限压的效果。防止过大的电流与电压对设备产生损害。
四、浪涌保护器的工作原理:
1、浪涌保护器的核心元件是内部的一个非线性元件。根据非线性元件的不同,浪涌保护器可以分为开关型(核心元件主要为放电间隙)和限压型(核心元件主要为压敏电阻)。
一、浪涌定义:
浪涌(surge),又称为电涌、突波,是指瞬间超出稳定值的峰值,包括浪涌电压和浪涌电流。
二、浪涌的原因:
供电系统的浪涌主要来自两方面的原因:外部(雷电原因)和内部(电气设备启停和故障等)。浪涌的特点往往是时间很短(雷电造成的过电压往往在微秒级,电气设备造成的过电压往往在毫秒级),但是瞬时的电压和电流极大,极有可能对用电设备和电缆造成危害,所以需要浪涌保护器对它们进行保护。

浪涌保护器的泄漏电流国标

浪涌保护器的泄漏电流国标

浪涌保护器的泄漏电流国标【最新版】目录1.浪涌保护器的概念和作用2.浪涌保护器的泄漏电流国标3.泄漏电流的合格范围4.影响泄漏电流的因素5.如何选择合适的浪涌保护器正文一、浪涌保护器的概念和作用浪涌保护器,又称防雷器或避雷器,是一种用于限制电气回路和通信线路中瞬态过电压的装置。

当外界干扰突然产生尖峰电流或电压时,浪涌保护器可以在极短时间内导通分流,避免浪涌对回路其他设备器材造成损害。

浪涌保护器适用于交流 50/60Hz(额定电压 220V/380V)供电系统,也可用于对间接雷电和直接雷电影响(或他瞬时过压)电涌保护作用。

二、浪涌保护器的泄漏电流国标在我国,浪涌保护器的泄漏电流标准是由国家标准 GB/T18802.12-2014《低压开关设备和控制设备使用的浪涌保护器》所规定的。

该标准对浪涌保护器的泄漏电流进行了详细的分类和规定。

三、泄漏电流的合格范围根据国家标准,压敏型浪涌保护器的泄漏电流应在 15A 以下为合格。

对于小规格低电压的压敏电阻,如 5mm 尺寸以下,压敏电压在 100V 以下的,标准定义的漏电流是指在 0.85,u0.1 电压施加下的回路电流,一般也是 a 级,数值在 30a 以下为合格。

四、影响泄漏电流的因素泄漏电流的大小受浪涌保护器的工作电压、标称放电电流、冲击放电电流、响应时间等因素影响。

在选择浪涌保护器时,需要根据具体的应用场景和设备要求,综合考虑这些因素,选择合适的产品。

五、如何选择合适的浪涌保护器选择浪涌保护器时,首先要确定安装位置,也就是采用一级防雷、二级防雷还是三级防雷。

配电系统应按照标准要求进行分级配置,第一级保护应能承受绝大部分雷电流,第二级配置应能泄放残余的雷电流,限制设备端的残余电压,同时与第一级保护配合。

在选择浪涌保护器时,还需要考虑其通流容量(标称放电电流、最大放电电流、冲击放电电流等),以确保其能够承受系统中的瞬时过电压。

浪涌保护器的构成和应用简述

浪涌保护器的构成和应用简述

浪涌保护器的构成和应用简述1 基本概念(1)浪涌电压:雷电击中室外输电线路时,及接通或断开的线路具有较大电感负荷时,常常会在瞬间产生很高的操作过电压,当该电压保持在1ns~2ns时,被称作尖峰电压。

持续3ns以上时,将产生浪涌效应,被称为浪涌电压(或浪涌电流)。

浪涌电压会对整个配电网络设备产生极大的压力甚至破坏。

(2)浪涌保护器:也称防雷器,是一种当配电网络遭受雷击或过电压操作时,为供配电设备提供保护的装置。

当电气回路因雷击或操作电压而存在尖峰电压(或电流)时,能在极短的时间内导通分流,避免浪涌电压(电流)对回路中其他设备的损害。

2 按工作原理分类2.1 开关型在正常工况时呈现为高阻抗,在回路存在因雷击或操作过电压时,其阻抗突变为低值,允许雷电流通过。

此类装置的组件主要为:放电间隙,气体放电管,闸流晶体管等。

2.2 限压型正常工况下呈现高阻抗,回路电压或电流增大时,阻抗不断减小,电流-电压特性为明显非线性。

此类装置的组件主要为:压敏电阻,限压二极管,雪崩二极管。

2.3 分流型与阻流型(1)分流型:和被保护设备元器件为并联关系,当回路存在雷电过电压(或操作过电压)时,对浪涌电流呈现低阻抗特性,分流浪涌电流,达到保护元器件的目的。

(2)阻流型:和被保护设备元器件为串联关系,当回路存在雷电过电压(或操作过电压)时,对浪涌电流呈现高阻抗特性,阻断浪涌电流通过,达到保护元器件的目的。

这两类装置的组件主要有:阻流线圈,高(低)通滤波器,1/4波长短路器。

2.4 按用途分类交(直)流电源保护器,网络信号防雷器,视频信号防雷器等。

3 浪涌保护器的基本元件3.1 放电间隙(又称保护间隙)放电间隙由两根存在一点间隔距离的金属棒构成,其中一根和被保护设备的电源线(或中性线)相连,另一根与接地线相连。

当线路中存在雷击过电压(或过电流)时,导线间隙被击穿,过电压(或过电流)被泄入大地,从而避免设备负载过量电压(或电流)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

避雷器和电涌保护器运用说明目录一、定义二、防雷器与浪涌保护器的比较三、线路避雷器运用及其说明四、浪涌保护器设计原理、特性、运用范畴五、参考依据与文献一、定义1.避雷器避雷器是变电站保护设备免遭雷电冲击波袭击的设备。

当沿线路传入变电站的雷电冲击波超过避雷器保护水平时,避雷器首先放电,并将雷电流经过良导体安全的引入大地,利用接地装置使雷电压幅值限制在被保护设备雷电冲击水平以下,使电气设备受到保护。

2.浪涌保护器也叫防雷器,是一种为各种电力设备、仪器仪表、通讯线路等提供安全防护的装置。

当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。

➢从以下资料可以看出,浪涌保护器也是防雷器的一种,但是有很大的区别。

二、避雷器与浪涌保护器的比较避雷器指建筑物避雷器,与避雷针、接地排等一起形成一个法拉第笼,防止建筑物被损坏,避雷器的基本原理是把雷击电磁脉冲(LEMP)导入地进行消解。

但是为什么在安装避雷器后仍有大量的建筑物及其里面的设备被雷击损坏呢?首先,避雷器的导线采用铜铁合金,因此其导线性能是有限的,反应速度仅为200微妙(uS)。

而LEMP的半峰速度(能量达到最大值)为20微妙(uS),也就是说LEMP的速度快于避雷器,这样避雷器把第一次直击雷导入地后,对于二次雷、三次雷往往反应不过来,直接泄漏打在设备上。

也就是说,避雷器对二次雷、三次雷几乎不起作用。

其次,LEMP导入地后,会从地返回形成感应雷。

感应雷会从所有含有金属的导线上泄漏到设备(网线、电源线、信号线、传输线等)。

由于避雷器是单向作用的,因此它对感应雷不起作用,感应雷可以直接打坏设备。

更何况,导线部分往往不会安装避雷器。

再次,浪涌只有20%来自雷击等外部环境,80%来自系统内部运行,避雷器对这80%是不起任何作用的。

根据分析来回答电涌保护器(SPD,有的称浪涌保护器)和避雷器的区别:1、应用范围不同(电压):避雷器范围广泛,有很多电压等级,一般从0.4kV低压到500kV超高压都有(详见楼上分析),而SPD一般指1kV以下使用的过电压保护器;2、保护对象不同:避雷器是保护电气设备的,而SPD浪涌保护器一般是保护二次信号回路或给电子仪器仪表等末端供电回路。

3、绝缘水平或耐压水平不同:电器设备和电子设备的耐压水平不在一个数量级上,过电压保护装置的残压应与保护对象的耐压水平匹配。

4、安装位置不同:避雷器一般安装在一次系统上,防止雷电波的直接侵入,保护架空线路及电器设备;而SPD浪涌保护器多安装于二次系统上,是在避雷器消除了雷电波的直接侵入后,或避雷器没有将雷电波消除干净时的补充措施;所以避雷器多安装在进线处;SPD多安装于末端出线或信号回路处。

5、通流容量不同:避雷器因为主要作用是防止雷电过电压,所以其相对通流容量较大;而对于电子设备,其绝缘水平远小于一般意义上的电器设备,故需要SPD对雷电过电压和操作过电压进行防护,但其通流容量一般不大。

(SPD一般在末端,不会直接与架空线路连接,经过上一级的限流作用,雷电流已经被限制到较低值,这样通流容量不大的SPD完全可以起到保护作用,通流值不重要,重要的是残压。

)6、其它绝缘水平、对参数的着眼点等也有较大差异。

7、浪涌保护器适用于低压供电系统的精细保护,依据不同的交直流电源电床可选择各种相应的规格。

电源浪涌保护器一精细由于终端设备离前级浪涌保护器距离较大,从而使得该线路上容易产生振荡过电压或感应到其他过电压。

适用于终端设备的精细电源浪涌保护,与前级浪涌保护器配合使用,则保护效果更好。

8、避雷器主材质多为氧化锌(金属氧化物变阻器中的一种),而浪涌保护器主材质根据抗浪涌等级、分级防护(IEC61312)的不同是不一样的,而且在设计上比普通防雷器精密得多。

9、从技术上来说,避雷器在响应时间、限压效果、综合防护效果、抗老化特性等方面都达不到浪涌保护器的水平。

共同点:都能防止雷电过电压因为上述原因,SPD也就应运而生。

SPD的原理是把LEMP转化为热能进行消解,由于不是导通式,反应速度非常快,可低于纳秒,可以有效防止二次雷和三次雷。

SPD 分为电源SPD,精密仪器SPD,数字线路SPD,而且也是双向作用的,因此可以有效防止感应雷。

因此,IEEE标准规定,在安装避雷器的同时应该加上SPD,以形成防雷的双保险。

此外,SPD对于内部的80%的浪涌也能起到有效抑制作用,这是避雷器所不能做到的。

总体上讲,避雷器是专门针对电气设备免受雷电冲击波所设置的防护设备,而浪涌保护器是比避雷器更先进的防护设备,除开雷电冲击波,还可以极大程度消弱电力系统自身所产生的其它破坏性浪涌冲击。

在用电单位高压进线系统(10KV及以上)已装设避雷器的情况下,在低压系统中就应装设防护功能更精密的浪涌保护器。

三、避雷器运用与说明1、线路避雷器防雷的基本原理雷击杆塔时,一部分雷电流通过避雷线流到相临杆塔,另一部分雷电流经杆塔流入大地,杆塔接地电阻呈暂态电阻特性,一般用冲击接地电阻来表征。

雷击杆塔时塔顶电位迅速提高,其电位值为Ut=iRd L.di/dt (1)式中i——雷电流;Rd——冲击接地电阻;L.di/dt——暂态分量。

当塔顶电位Ut与导线上的感应电位U1的差值超过绝缘子串50的放电电压时,将发生由塔顶至导线的闪络。

即Ut-U1>U50,如果考虑线路工频电压幅值Um的影响,则为Ut-U1 Um>U50。

因此,线路的耐雷水平与3个重要因素有关,即线路绝缘子的50放电电压、雷电流强度和塔体的冲击接地电阻。

一般来说,线路的50放电电压是一定的,雷电流强度与地理位置和大气条件相关,不加装避雷器时,提高输电线路耐雷水平往往是采用降低塔体的接地电阻,在山区,降低接地电阻是非常困难的,这也是为什么输电线路屡遭雷击的原因。

加装避雷器以后,当输电线路遭受雷击时,雷电流的分流将发生变化,一部分雷电流从避雷线传入相临杆塔,一部分经塔体入地,当雷电流超过一定值后,避雷器动作加入分流。

大部分的雷电流从避雷器流入导线,传播到相临杆塔。

雷电流在流经避雷线和导线时,由于导线间的电磁感应作用,将分别在导线和避雷线上产生耦合分量。

因为避雷器的分流远远大于从避雷线中分流的雷电流,这种分流的耦合作用将使导线电位提高,使导线和塔顶之间的电位差小于绝缘子串的闪络电压,绝缘子不会发生闪络,因此,线路避雷器具有很好的钳电位作用,这也是线路避雷器进行防雷的明显特点。

以往输电线路防雷主要采用降低塔体接地电阻的方法,在平原地带相对较容易,对于山区杆塔,则往往在4个塔脚部位采用较长的辐射地线或打深井加降阻剂,以增加地线与土壤的接触面积降低电阻率,在工频状态下接地电阻会有所下降。

但遭受雷击时,因接地线过长会有较大的附加电感值,雷电过电压的暂态分量L.di/dt会加在塔体电位上,使塔顶电位大大提高,更容易造成塔体与绝缘子串的闪络,反而使线路的耐雷水平下降。

因为线路避雷器具有钳电位作用,对接地电阻要求不太严格,对山区线路防雷比较容易实现。

2 线路避雷器使用及动作情况淄博电业局管辖的110kV龙博1线和35kV南黑线、炭谢线位于丘陵和山地,多年来经常发生雷击跳闸故障,据统计110kV龙博1线在1989~1996年共发生5次雷击掉闸,35kV南黑线、炭谢线分别在1994~1997年各发生6次雷击掉闸,虽然采取了各种措施,效果均不明显。

1997年在易遭雷击的龙博1线62~64号和南黑线87、89、90号及炭谢线51号分别装设了7组共20只线路型氧化锌避雷器,安装方式是在龙博1线和南黑线各悬挂3组9只,在炭谢线51号上相和下相各悬挂1只(该杆不久前遭雷击),经过2个雷雨季节的考验,线路未发生故障及掉闸事故。

3避雷器的选型及安装维护线路避雷器有2种类型,即带串联间隙和无串联间隙2种,因运行方式不同和电站避雷器相比在结构设计上也有所区别。

线路避雷器安装时应注意:(1)选择多雷区且易遭雷击的输电线路杆塔,最好在两侧相临杆塔上同时安装;(2)垂直排列的线路可只装上下2相;(3)安装时尽量不使避雷器受力,并注意保持足够的安全距离;(4)避雷器应顺杆塔单独敷设接地线,其截面不小于25mm2,尽量减小接地电阻的影响。

投运后进行必要的维护:(1)结合停电定期测量绝缘电阻,历年结果不应明显变化;(2)检查并记录计数器的动作情况;(3)对其紧固件进行拧紧,防止松动;(4)5a拆回,进行1次直流1mA及75参考电压下泄漏电流测量。

四、浪涌保护器设计原理、特性、运用范畴➢设计原理在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。

如下图所示,MOV将火线和地线连接在一起。

MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。

这些半导体具有随着电压变化而改变的可变电阻。

当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。

反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。

如果电压正常,MOV会闲在一旁。

而当电压过高时,MOV可以传导大量电流,消除多余的电压。

随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。

按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。

打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。

另一种常见的浪涌保护装置是气体放电管。

这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现此功能。

当电压处于某一特定范围时,该气体的组成决定了它是不良导体。

如果电压出现浪涌并超过这一范围,电流的强度将足以使气体电离,从而使气体放电管成为非常良好的导体。

它会将电流传导至地线,直到电压恢复正常水平,随后它又会变成不良导体。

这两种方法都是采用并联电路设计——多余的电压从标准电路流入另一个电路。

有几种浪涌保护器产品使用串联电路设计抑制电涌——它们不是将多余的电流分流到另一条线路,而是通过降低流过火线的电量。

基本上说,这些抑制器在检测到高电压时会储存电能,随后再逐渐释放它们。

制造这种保护器的公司解释说该方法可以提供更好的保护,因为它反应速度更快,并且不会向地线分流,但另一方面,这种分流可能会干扰建筑物的电力系统。

抑制二极管:抑制二极管具有箝位限压功能,它是工作在反向击穿区,由于它具有箝位电压低和动作响应快的优点,特别适合用作多级保护电路中的最末几级保护元件。

抑制二极管在击穿区内的伏安特性可用下式表示:I=CUα,上式中α为非线性系数,对于齐纳二极管α=7~9,在雪崩二极管α=5~7.➢抑制二极管的技术参数主要有:(1)额定击穿电压,它是指在指定反向击穿电流(常为lma)下的击穿电压,这于齐纳二极管额定击穿电压一般在2.9V~4.7V范围内,而雪崩二极管的额定击穿电压常在5.6V~200V范围内。

相关文档
最新文档