聚合物稳定与降解复习提要(不含第8章)
稳定与降解(第二章)1(四川大学高分子材料)
小结:链式反应中,ROOH的积累和分 解加快了氧化反应速率,是自动氧化的主 要原因。
2020/4/5
聚合物热氧循环示意图
2020/4/5
2. 氧化速率方程式
氢过氧化物(ROOH)的生成和分解是竞 争反应。当分解反应速率与生成反应速率 相等时,其浓度达到最大值,反应速率基 本恒定,处于稳态。 在自动氧化初期,ROOH主要发生单分子 分解,按一级反应进行;随ROOH的增多 ,双分子分解占主要地位,反应按二级反 应进行。 注:现有的氧化速率方程式是建立在稳态 假设之上的(二级反应)。
【例】PVC的热降解
特点:可以从分子链任何部位无规消除
2020/4/5
热降解
• 热降解的类型
解聚反应 (拉链降解)
无规断链反应
主链不断裂的小分子 消除反应
降解产物 降解初期 降解到一定程度时
举例
单体
低分子量聚合物
形成小分子, 但不是单体
单体迅速挥发, 聚合物相对分子量 变化很小,而聚合
物质量损失较大
(2)分子结构和稳定性:
链的不饱和性和立体异构现象对热稳定性影 响很小。
取代基位阻效应会降低分解温度。
2020/4/5
(3)交联和稳定性:
各种类型的交联均可以提高热稳定性。 交联密度提高,热稳定性也提高。
2020/4/5
(4)结晶和稳定性:
理论上,提高结晶度,可以提高热稳定性。
实际聚合物往往受到以上各种因素的综 合影响。(相互协同或相互抵消)
或室温下聚合物与氧作用:
【例】聚丙烯类分子链上有供电基团的聚合物。
2020/4/5
(2)增长 自由基继续链式反应
2020/4/5
ROOH 积累增多后,会分解成新的自由基 继续链式反应
稳定与降解(第3 章)6-8
主链断裂的情况: 主链断裂的情况:
第八节 杂 链 聚 合 物
一、聚酯类
1. 聚对苯二甲酸乙二醇酯(PET) 聚对苯二甲酸乙二醇酯( )
2000年,聚对苯二甲酸乙二醇酯(PET)世界 年 聚对苯二甲酸乙二醇酯 世界 产量约2707万吨, 万吨, 产量约 万吨 大约1826万吨用于涤纶生产, 万吨用于涤纶生产, 大约 万吨用于涤纶生产 万吨用于各种聚酯瓶, 约651万吨用于各种聚酯瓶, 万吨用于各种聚酯瓶 还有148万吨用于生产薄膜。 万吨用于生产薄膜。 还有 万吨用于生产薄膜
(1)光降解: )光降解: 真空中的光降解: 真空中的光降解:
大分子羧基自由基A可能进行两种反应 大分子羧基自由基 可能进行两种反应:
另一种可能的光降解过程: 另一种可能的光降解过程:
在有空气存在的情况下: 在有空气存在的情况下:
2. 聚碳酸酯(PC) 聚碳酸酯( )
(1)光降解: )光降解: PC具有很高的光稳定性。 具有很高的光稳定性。 具有很高的光稳定性
自由基聚合得到的PMMA,分子链上存在不 , 自由基聚合得到的 饱和端基,是会引发反应的薄弱点。 饱和端基,是会引发反应的薄弱点。
阴离子聚合的PMMA没有不饱和端基,降解 没有不饱和端基, 阴离子聚合的 没有不饱和端基 只能由主链的无规断链引发。 只能由主链的无规断链引发。
少量单体与MMA共聚可能会阻断 共聚可能会阻断PMMA的 少量单体与 共聚可能会阻断 的 解聚反应,从而提高其稳定性。 解聚反应,从而提高其稳定性。 小分子对PMMA的解聚影响不同。 的解聚影响不同。 小分子对 的解聚影响不同
侧酯基分解的难易程度依赖于其烷基基团上 氢原子数。 的β氢原子数。 氢原子数 聚甲基丙烯酸丁酯的四种异构体中, 氢原 聚甲基丙烯酸丁酯的四种异构体中, β氢原 子数越多,热降解时单体产率越低, 子数越多,热降解时单体产率越低,烯烃产 率依次提高。 率依次提高。其它聚甲基丙烯酸酯的热降解 行为与此类似。 行为与此类似。
2.5 聚合物的降解
一、热降解
塑料工艺
• 热降解是在温度较高或作用时间较长时发生的降解。 • 热降解与聚合物的化学键能有关,化学键能越大,越不容 易发生降解。比加聚四氟乙烯,C-F键键能大,所以稳定 性很好。热降解还与聚合物的纯度有关,如果分子存在不 稳定结构或杂质,降解更容易发生。 • 容易发生热降解的塑料有:PVC、PVDC、POM。 • 由于聚合物成型加工多数要进行加热,所以如何防止热降 解非常重要。 • 防止热降解的方法主要有:添加热稳定剂;温度不要太高 或高温时间不要太长。
2.5 聚合物的降解
塑料工艺
学习目标: 1、明确降解的类型 2、注意不同聚合物对不同降解的敏 感性 3、如何有效地防止降解
聚合物的降解(老化)
塑料工艺
• 降解:在光、热、氧等外界因素影响下,聚合物 分子量下降,化学结构发生改变,导致外观、力 学性能等下降。 • 降解的类型: – 热降解。 – 氧化降解。 – 力降解。 – 水降解。
三、力降解
塑料工艺
• 成型加工中总是要受到各种各样的力,如剪切力、 拉伸力。这些力可能造成分子链的断裂。 • 力降解是不以避免的。
四、水解
塑料工艺
• 含有酯、酰胺基聚合物在与水接触时,可能发生 水解。如:PA、PET。 • 防止的方法:干燥。(即PA制品的成型前处理工 序——干燥)
聚合物降解的应用实降解分为:热氧老化、光氧老化。 • 热氧老化是在热引发下氧参与的降解,降解速度一般较快; 光氧老化是在光引发下氧参与的降解,一般降解速度比较 慢。氧化降解有自动催化加速作用,降解速度会越来越快。 • 一般的聚合物都有被氧化降解的趋势,尤其有不饱和键和 带支链结构的聚合物。比如PP、ABS。 • 有效防止氧化降解的方法是:加入抗氧剂和光稳定剂;尽 量减少高温与氧接触。
聚合物稳定与降解(Polymer stability and degradation)
聚合物稳定与降解(Polymer stability and degradation)The first chapter, introduction1. the concept of aging (degradation)The storage, processing and use of polymer materials in the process of chemical properties, physical and mechanical properties will gradually become worse, known as aging or degradation. P1Characteristic:The inevitable, irreversible process.The relatively short time scale.2. factors that lead to the degradation of the polymer(a) internalThe composition and structure of A. polymer chain.(1) different composition and degradation of different(2) the activity may be the main cause of the degradation of the matrix(3) the active hydrogen is more likely to be seized(4) head to head (tail tail) structure of polyolefin are more likely to become active points.(5) the effect of molecular weight change: changes in the structure of the molecular weight of the internal rules increases, causing stability. On the contrary, if the irregular structure is reduced, increased stability.(6) effects of the molecular weight distribution: down a wide molecular weight distribution and stability.(7) the degree of branching effect: the degree of branching increases, the weak link in the molecular chain also increased, more prone to degradation.The aggregation state of B. polymersThe stability of amorphous polymer material less than crystalline polymer materialsThe reason: amorphous materials (low density polymer chain irregular arrangement), easy to be oxygen, water, chemical infiltration, degradation.3. impurities in polymersIn the two kinds of polymer impurity:(1) a small amount of impurities mixed in the process of the inevitable;(2) additive.Most of the impurities will accelerate the degradation of polymers.(two) external causes:Effects of A. heat, temperature and heat and oxygen: heat the polymer chain scission, the formation of free radicals (reversible, bidirectional) hot oxygen polymer crosslinking or degradation of the material performance decline.Effect of B. lightEffect of C. oxygen and ozone oxygen to polymer degradation in heat and light effect. The ozone of unsaturated bond (such as rubber) the damage is very serious.Effect of D. water and damp of water dissolving and extraction of components; hydrolysis and chain scission.Effect of E. and other factors: the effect of microorganism; other organisms; effects of various process factors. Often a variety of external synergy.The second chapter, the basic principle of polymer degradation and stability.(a) the type of thermal degradationDepolymerization; random chain scission reaction; small molecular chain breaking elimination reaction;Features: simple caused by heat, no oxygen in.1. the depolymerization reaction (zipper degradation)The depolymerization began or weak molecular chain end point. Only product: monomer.Characteristic:(1) the early change of molecular weight polymer small, great mass loss;(2) to the degradation of polymer quality almost completely lost when the polymer relative molecular weight decreased dramatically.2. random chain scission reaction -- almost all polycondensate and add substantial degradation of polymersIrregular polymer chain scission reaction; the main product is low molecular weight polymer.Characteristic:(1) the initial molecular weight decreased rapidly and the quality of the polymer basically unchanged;(2) degradation to later stage, a large number of low molecular volatile polymer mass quickly disappeared.3. small molecular backbone fracture elimination reactionPolymer degradation caused by the elimination of side groups; and finally caused the main chain scission and comprehensive degradation.Features: from any part of the molecular chain of random elimination(two), the mechanism of degradationThe thermal oxidative degradation of the polymer at a certain temperature and oxygen in the air and the degradation reaction.Auto oxidation is the main feature of thermal oxidative degradation, but also the core of degradation.[heat: Auto oxidation reaction at room temperature to 150 DEG C, thermal oxidation is auto catalytic characteristics in the typical free radical chain mechanism, the. ]Schematic diagram of the polymer thermal oxygen cycleThe polymer thermal oxygen cycle, which represents the thermal oxidation process automatically. Seen from the figure, with each cycle, an initial alkyl radical R - at least 3 into a R, alkyl radical concentration is more and more high, the reaction speed is more and more fast, the formation of auto oxidation reaction.The rate of oxidation1. when the concentration of oxygen concentration in the air reaches or higher, with the rate of R and oxygen is very fast, [R -] < [ROO.Therefore, ROO double dominant coupling termination. The initiation rate is equal to the suspension rate (to reach steady state), available at steady state concentration of ROO.The oxygen concentration is greater than or equal to the oxygen concentration in the air, the oxidation reaction rate and the concentration of oxygen;2. oxygen concentration is very low, [R]>>[ROO, the reaction rate of the oxidation reaction rate depends on R and oxygen.In R, the termination reaction coupling termination dominant base,The oxygen concentration is very low, the oxidation rate of oxygen concentration.(three) the classification and method of adding antioxidant.Two kinds of antioxidants:The main antioxidant (radical scavenger): free radical reaction and auto oxidation process, interrupt the chain reaction.Features: automatic change of oxidation process.The auxiliary antioxidant (preventive antioxidant): can produce automatic decomposition of the oxidation process of ROOH without generating free radicals.Features: only reduce the oxidation rate, does not change the auto oxidation process.Principle: the sooner the better polymer added antioxidants.The type and mechanism of A. primary antioxidantThe main antioxidant can be divided into: hydrogen donor; electron donor; free radical trapping; benzofuran ketones.Hydrogen donor: is the most common secondary aromatic amines and hindered phenolic antioxidant.2,6-di-tert-butyl-4-methylphenolThe electron donor of tertiary amine containing reactive functional group of N-HGenerally, they can be given, generating onium cation.Radical trapping body can capture free radicals, and the product will no longer trigger free radical chain reaction.Benzofuran ketone - dilute oxygen conditions, alkyl radical captureWith B. antioxidantUse a variety of antioxidants, there will be synergistic effect, additive effect and antagonistic effect.Synergy: 1+1>2Two (or more) with antioxidant effect, the sum of more than separately use effect. Can be divided into both synergistic effect and hybrid Association effect.[cases] are synergistic effects of two kinds of hindered phenol.Antagonistic effect: 1+1<2Two (or more) with antioxidant effect, to separately use effect.Additive effect: 1+1 = 2Antioxidants used alone or in conjunction with other antioxidant,The effect of the same.(four) initiation of carbonylThe Norrish type I reaction between carbonyl and alpha carbon atoms bond cleavage.The Norrish type II reaction: only occurred in the gamma ketocarbonyl carbon atoms, at least one hydrogen atom under the condition can occur at room temperature.The Norrish type III reaction: through transfer of beta hydrogen atoms and C - C bond cleavage near the carbonyl side, the formation of aldehydes and alkenes.(five) stabilized light degradation and light degradation of oxygenA commonly used type of light stabilizer: light shielding agent; UV absorber; quenching agent; hindered amine light stabilizerThe 1. light shielding agentThe reflection or absorption of light at the polymer surface, or reduce the amount of transmission to the polymer, the main physical stabilization method.(1) surface protection agent: on the surface of polymer materials for coating or plating metal film protection.(2): carbon black pigment is the most effective light shielding agent.2. UV absorbersA kind of light stabilizer and most strongly and selectively absorb ultraviolet light, with low-energy radiation heat or harmless way to release energy.(1) two o-hydroxyl benzophenone UV absorber is the most importantCarbonyl ortho must contain a hydroxyl group to form hydrogen bonds through the chelate ring, keto enol tautomerism and to absorb and release energy. The intramolecular hydrogen bond strength is greater, more conducive to the process of tautomerism.No ortho hydroxy carbonyl when the compounds become photosensitizer.Six. The reaction of ozone with rubber- double bond addition reactionOzone cracking: the destruction of the ozone stress on the rubber, causing cracking in the direction perpendicular to the stress direction.Crack: rubber cracking caused by oxidative degradation.Seven. Biodegradable polymersNatural polymers are biodegradable, relatively natural polymer, synthetic polymer is difficult to be biodegraded.The third chapterA polyolefin.The structure of the polyolefin and polymer degradation and stability.The thermal stability of various key and group respectively:The thermal stability of order polyolefin as follows: polyethylene polypropylene polyisobutylene > >Main order: Polyolefin oxidation stability of high density polyethylene and low density polyethylene polypropylene > >Two PVC.The thermal stability of PVC is poor, without the stabilizer, cannot be processed into products by melting method.The thermal degradation of PVC 1.(1) the characteristics of degradation of PVC: the release of HCl -- the typical features; the presence of oxygen, accelerated degradation.The mechanism of HCl decomposition 2.PVC:(I) free radical mechanism: (II) ion molecule mechanism: (III) molecular mechanism:The photodegradation of PVC 3.PVC degradation and crosslinking during UV irradiation, the production of conjugated polyene and hydrogen chloride.The fourth chapterThe factors that cause a degradation in the processing andMechanical force, temperature, oxygen, water and other medium, such as trace metal impuritiesThe evaluation method of degradation and stabilization of polymer processing, twoAccording to the processing before and after processing (after different time or several times after processing) a performance test of polymer compared to make a judgment on the polymer degradation degree or stability.OneThe melt flow rate method. 2. the determination of relative molecular mass and its distribution. 3. rheological method. 4. yellow indexTwo. The degradation of PVC in the machining process1. the characteristics of degradation of PVCViscous flow temperature (160 to 212 DEG C) > the decomposition temperature (170 C)De HClThe dark - conjugated polymerThe molecular structure of polyene and intramolecular cyclization - polymer crosslinking and viscosity increase and the decrease of fluidityThe role of oxygen leads to removal of HCl increased;With polyene structure reaction, delay PVC color.Three. The influencing factors of the stability of PVC processingThe performance of the 1. polymer itself: molecular weight; particle morphology of resinInfluence of 2. factors on the degradation of PVC formula in the process ofCan reduce the viscosity of polymer melt.To improve the liquidity, reducing agent -- polymer degradation of PVC in the process of riskTo improve the processing of - PVCThe fifth chapterA polymer stabilizer.1. kinds of polymer stabilizersHeat stabilizer; light stabilizer; antioxidant capacity; chemical stabilizer; fungicideTwo. The mechanism of heat stabilizer1. preventive effect: to prevent the dehydrochlorination reaction, or at least can postpone the reaction.(1) the absorption of HCl, inhibit the auto catalytic role: metal carboxylate, organic tin mercaptide, epoxidized fatty acid esters(2) the replacement of labile chlorine atoms in the molecule of PVC, such as allylic chlorine or a chlorine atom of tertiary carbon, eliminate the trigger: metal soap, organic tin(3) to capture free radicals, prevent the auto oxidation of phenolic antioxidants:2. passivation effect: heat stabilizer can shorten the polyene sequence structure, and can form the PVC damage in the process of heating the carbon onium salt.Only organic tin stabilizer with thiol passivation and prevention functionThree types of heat stabilizers.1. lead heat stabilizer stabilizer2. organic tin stabilizer3. metal carboxylate stabilizer4. other metal stabilizer5.metal free 6. auxiliary stabilizerThe sixth chapterProcessing technology of waste plasticsThe establishment of waste plastics recycling system is feasible to eliminate environmental pollution and ensure waste plastic recycling.The main way of waste plastics recycling1. mechanical regenerationSimple regenerationAdvantages: economical and feasibleDisadvantages: requires relatively clean waste; high separation technology; end use markets products co.;Belongs to labor-intensive processing2. modified regenerationAdvantages: the mechanical property of the product is improved, can be recycled products of high gradeDisadvantages: process is complicated and some specific equipment3.: depolymerization is an advanced technology with the rapid development of recycling4. pyrolysis and gasificationAdvantages: pyrolysis can handle all can not be treated by other ways of waste plastics,Liquefaction condition can be selectedWithout the prior separation of plastic, also do not need to remove the impuritiesDisadvantages: gasification process General requirements for harsh conditionsThe pyrolysis liquid products need to be purified to more hydrocarbon components5. burningAdvantages: energy, fuelDisadvantages: exhaust pollution6. landfillAdvantages: simpleDisadvantages: loss of all available energy; space; exudate pollution; waste plastic refractory; huge investmentThe seventh chapterThe combustion characteristics of polymer materials.1. heat temperature of2.3. high flame burning speed of4. burning poisons released5. in the combustion will produce deformation, softening, melting and dropping phenomenon, which has a great influence on the combustion state, often cause the spread of fire, which makes it difficult to fire.Two. The combustion process of polymer materials3. fire by properties of materials are as follows 1. decomposition of the heating and melting heat: 2. flash temperature, autoignition temperature, limit oxygen index4. burningNet heat of combustion to combustion >0Net heat of combustion <0 stop burning5. flame propagationThree. Combustion process of polymers1. in the combustion of organic matter, the first thermal oxidation degradation reaction of polymer chain, long chain rapid collapse, liquid or solid organic materials into combustible gas (hydrocarbon),Combustion is a free radical chain reaction of 2. small molecule hydrocarbon, eventually forming carbon dioxide and water.3. polymer combustion, the main fuel is hydrogen, instead of carbon; in the polymer structure as the hydrogen molecule from substitutionThe key is to capture the 4. flame retardant free radical and free radical resistance and low energy. The combustion of PVC leaving the fire extinguish, because it generates hydrogen chloride can capture free radicals in the cleavage process.Four. Flame retardant agent and flame retardant mechanism1. basic options: (1) the polymer itself has a certain flame retardance (2) combustion velocity is relatively small(3) (4) good heat resistance and flame retardant filler, good compatibility2. flame retardant flame retardantThe endothermic effect covering effect of dilution effectThe inhibitory effect of enhancement effect3. as a flame retardant with four service conditions:(1) flame retardant is not flammable or low flammable material.(2) have good dispersion in polymer materials.(3) cannot be destroyed by the physical properties of flame retardant material. (4) flame retardant itself or under combustion conditions do not release toxic gases4. kinds of flame retardantsAdd type* easy to use, wide application range,* but there is a certain impact on the performance of polymer,* mainly used in polyethylene, polypropylene, polyvinyl chloride and polystyrene resin.* such as chlorinated paraffin, four Bromethyl, aluminium hydroxide and magnesium hydroxide etc..Reaction type* as a monomer in polymerization, the polymer with flame retardant properties.* operation and processing complex* four phthalic anhydride and two bromine chloride four bisphenol A is a reactive flame retardant.* for the polycondensation reaction, such as polyurethane, unsaturated polyester, epoxy resin, polycarbonate, etc..5. flame retardant mechanism of flame retardantDifferent flame retardant, the flame retardant mechanism is different, but the overall physical effect and chemical effect of.- physical effects of dilution of combustible materials, heat effect and air isolation effect;Chemical interaction in carbonation, eliminate free radicals and phosphorus acylation.The stability and degradation of the eighth chapter of medical polymer materialsOneBiomedical materials can be divided into three categories: medical metal materials, medical ceramic materials and medical polymer materials2.. Various factors in vivo degradation:* after a large number of studies show that the release of inflammatory cells (enzymes and enzyme hydrolase) and oxidant (O2 *, H2O2, OH), acidic substances (such as fatty acids) and substances in body fluids (Ca2+, phospholipid, cholesterol) constitute environmental degradation.* all non endothelialization surfaces of synthetic materialsstimulate certain levels of immune response in vivo, such as inflammatory reactions, and therefore all materials in the body are degraded.* the inflammatory response of the material depends on the interaction of the material surface with the protein in the body fluid. The adsorption and denaturation of the protein is the cause of the biological response to the cell and material interface.3. natural materials: gelatin, chitosan, cellulose, protein, natural coralDegradation of 4.PCL5. polylactic acid (PLA)direct methodThe relative molecular weight of polylactic acid produced by the method is less than 4000, and the strength is low, so the practicability is not strong.indirect method* first, DL- lactic acid was prepared by condensation polymerization with ZnO powder as catalyst* polylactic acid was synthesized by vacuum polymerization under the high temperature with ZnO as catalyst. The synthesized PLA has a molecular weight of 7.3 * 1046. tissue engineeringThe relationship between structure of mammalian tissues using the principle and method of engineering and life sciences to understand the normal and pathological features, biological tissue substitutes and development of live, used to repair, maintain and improve the function of human body.Three major elements of tissue engineering (1)Cell carrier materialThe separation of the cells themselves may not form the organization, they need temporary support material growth, the three-dimensional simulation of the natural counterpart, often in the extracellular matrix, which plays a physical support role, and adhesive substance cell loading in vitro and late implantationThree major elements of tissue engineering (two)Isolation and culture of cellsIndividual cells were collected from healthy parts of the donor tissue and isolated and then transplanted to the site needed by the patient.Three major elements of tissue engineering (three)Cell growth factorIn tissue and organ regeneration, various tissue inducing factors, growth factors and angiogenesis stimulating factors are beneficial to the formation of tissue, but it can not be implanted directly into the body.。
聚合物的降解与稳定化
2011-2012学年上学期聚合物的降解及稳定化复习资料第一章绪论老化(降解):高分子材料在加工、贮存、使用的过程中,物理化学性质和力学性能会逐渐变差。
导致聚合物降解的因素:内因:聚合物的组成及其链结构;聚合物的聚集态结构;杂质。
外因:热、环境温度和热氧的影响;光的影响;氧和臭氧的影响;水和潮湿的影响;其他的因素影响,比如微生物(真菌的活性或酶作用)、某些高级生命体(昆虫)等生物降解。
聚合物再生的意义:保护人类赖以生存的自然环境;充分利用自然资源,变废为宝。
第二章聚合物降解与稳定化的基本定理热降解的三大类:解聚反应(拉链降解);无规断链反应;主链不断裂的小分子消除反应。
热氧降解主要特征以及核心:自动氧化反应。
当氧浓度等于或大于空气中的氧浓度时,氧化反应速率与氧浓度无关;当氧浓度很低时,吸氧速率是氧浓度的函数,即氧化反应速率与氧浓度有关。
抗氧剂的两大类:主抗氧剂(自由基捕获剂):作用——改变自动氧化历程。
辅助抗氧剂(预防型抗氧剂):作用——只能降低氧化速率,而不改变自动氧化历程。
主抗氧剂的分为4类:氢给予体、电子给予体、自由基捕获体、苯并呋喃酮类。
抗氧剂的配合:协同效应、加合效应、对抗效应。
羰基的引发作用:(P42)光稳定剂四大类:光屏蔽剂、紫外光吸收剂、猝灭剂、受阻胺光稳定剂。
邻羟基二苯甲酮类(一类重要的紫外线吸收剂)(P44)臭氧龟裂:具有不饱和键的橡胶,在应力作用的条件下,能和臭氧发生独特的破坏作用,即在垂直与应力方向引起开裂。
第三章聚合物降解各论聚合物分子链中,各种键和基团的热稳定性顺序:(P59、60)对聚丙烯的光氧化而言,氢过氧化物也是主要的起始光引发剂。
由于聚丙烯光氧化的动力学链长大约是聚乙烯的10倍,所以在光氧化的聚丙烯中氢过氧化物浓度比氧化的聚乙烯中高很多。
(P62)聚氯乙烯的降解:典型特征是释放HCl,具有催化作用加速了降解。
厚的试样比薄的试样降解更快,是由于厚的试样中HCl逸出更慢而起到了催化作用。
稳定与降解(四川大学,高分子材料)
自动氧化反应是热氧降解的主要特征, 也是热氧降解的核心。
【热自动氧化反应:发生在室温到150℃之 间,按典型链式自由基机理进行的、具有自动 催化特征的热氧化反应。】
1. 热自动氧化的自由基链式反应机理
(1)引发 受能量(热、光)激发后,在分子的
薄弱处首先引发出自由基。
或室温下聚合物与氧作用:
【例】聚丙烯类分子链上有供电基团的聚合物。
在自动氧化初期,ROOH主要发生单分子 分解,按一级反应进行;随ROOH的增多, 双分子分解占主要地位,反应按二级反应 进行。
注:现有的氧化速率方程式是建立在稳 态假设之上的(二级反应)。
引发 增长
终止
① 当氧浓度达到空气中的浓度或更高时, R·和氧的结合速率非常快,[R·] <<[ROO·].
依此类推,不饱和结构对α氢原子的反 应性有明显的活化效应。
其它不饱和官能团如羰基、腈基也有此 现象。
(2)支化结构
线性聚合物比支链聚合物更耐氧化。
原因:叔碳原子的氧化反应性比仲碳原子 或伯碳原子都高。(即离解能更低。)
例:① 支链聚烯烃类氧化敏感性大于线 性聚烯烃类;
② 天然橡胶(聚异戊二烯)和 聚丁二烯橡胶中,除烯丙基氢易活化外,主 链上的叔碳丙基氢的热氧敏感性。
氧化速率可表示为:
可见: 氧浓度很低时,氧化反应速率与氧浓度有关;
2. 影响热氧降解的因素:
聚合物的热氧稳定性主要受聚合物结构 因素(内因)的影响。
(1)聚合物的饱和程度
含不饱和二烯类的橡胶比饱和聚合物的耐 氧化性差很多。
原因:烯丙基氢和苯甲基氢离解键能(活 化能)小于乙烯基氢和苯基氢。其离解后自 由基由于与π电子体系的共轭,处于相对稳 定状态。
共振效应; 临近基团的位阻效应; α位置的自由体异构现象对热 响很小。
《聚合物合成工艺学》复习知识点及思考题
《聚合物合成工艺学》各章重点第一章绪论1.高分子化合物的生产过程及通常组合形式原料准备与精致,催化剂配置,聚合反应过程,分离过程,聚合物后处理过程,回收过程2.聚合反应釜的排热方式有哪些夹套冷却,夹套附加内冷管冷却,内冷管冷却,反应物料釜外循环冷却,回流冷凝器冷却,反应物料部分闪蒸,反应介质部分预冷。
3. 聚合反应设备1、选用原则:聚合反应器的操作特性、聚合反应及聚合过程的特性、聚合反应器操作特性对聚合物结构和性能的影响、经济效应。
2、搅拌的功能要求及作用功能要求:混合、搅动、悬浮、分散作用:1)推动流体流动,混匀物料;2)产生剪切力,分散物料,并使之悬浮;3)增加流体的湍动,以提高传热效率;4)加速物料的分散和合并,增大物质的传递效率;5)高粘体系,可以更新表面,使低分子蒸出。
第二章聚合物单体的原料路线1.生产单体的原料路线有哪些?(教材P24-25)石油化工路线,煤炭路线,其他原料路线(主要以农副产品或木材工业副产品为基本原料)2.石油化工路线可以得到哪些重要的单体和原料?并由乙烯单体可以得到哪些聚合物产品?(教材P24-25、P26、P31)得到单体和原料:乙烯、丙烯、丁烯、丁二烯、苯、甲苯、二甲苯。
得到聚合物:聚乙烯、乙丙橡胶、聚氯乙烯、聚乙酸乙烯酯、聚乙烯醇、维纶树脂、聚苯乙烯、ABS树脂、丁苯橡胶、聚氧化乙烯、涤纶树脂。
3. 合成聚合物及单体工艺路线第三章自由基聚合生产工艺§ 3-1自由基聚合工艺基础1.自由基聚合实施方法及选择本体聚合、乳液聚合、溶液聚合、悬浮聚合。
聚合方法的选择只要取决于根据产品用途所要求的产品形态和产品成本。
2.引发剂及选择方法,调节分子量方法种类:过氧化物类、偶氮化合物,氧化还原体系。
选择方法:(1)根据聚合操作方式和反应温度条件,选择适当分解速度的引发剂。
(2)根据引发剂分解速度随温度的不同而变化,故根据反应温度选择适引发剂。
(3)根据分解速率常数选择引发剂。
高分子材料的稳定与降解第三章聚合物降解各论
(i)链终止抗氧剂的稳定化 选用抗氧剂时要根据具体条件下的[R.]和 [ROO.]之比。 光氧化中, [R.]和[ROO.]的比值比在液态烃 中大两个数量级以上。
抗氧剂多是光敏剂。但受阻酚类可以与紫外 吸收剂起协同作用。
只能捕捉[R.]和[ROO.]二者之一的稳定剂通 常抑制系数为1~2。 能同时捕捉[R.]和[ROO.]二者的链终止抗氧 剂的抑制系数远大于1。 具有氧化和还原状态之间交替的能力的抗氧 剂可显示出催化再生机理,对稳定聚合物有 较大潜力。
有氧存在时,自由基的反应必然导致生成氢 过氧化物,将促进聚合物的降解。
聚丙烯热氧化后,分子量上会出现:醛、酮、 羧酸、酯、内酯等结构。
热氧化降解时的挥发产物:水、甲醛、乙醛、 丙酮、甲醇、氢、过氧化氢、一氧化碳和二 氧化碳。
物理性能的变化:
聚丙烯热氧化过程中,大分子烷基自由基是 一个关键的中间体:
聚乙烯的热氧化产物:酮、羧酸、挥发分, 少量的酯和内酯;高温氧化时有醛生成。
聚乙烯热氧化时的主要反应是交联反应, 或生成长链支化产物。
一般认为:交联由于自由基相互结合而形成。 现在有证据表明:自由基在双键上的加成非 常重要。
(3)聚乙烯降解的应用研究 Pages研究了HDPE在冬季气候老化条件下结 构和力学性能的变化。
例:亚硝基自由基的稳定化作用机理:
(ii)预防型稳定剂的稳定化 预防型稳定剂降低链引发速率。包括三类: ① 紫外线屏蔽剂和紫外线吸收剂 对光不透明或在300~400nm区间有强烈光 谱吸收的化合物,通过某种途径能将能量无 害地消散掉。 例:反射性或不透明的颜料。 紫外吸收剂对屏蔽作用贡献小。
② 激发态猝灭剂 ③ 分解氢过氧化物的光稳定剂。
PP/PE合金的溶液可能是均匀的单相体系, 其降解和交联反应都受到抑制。
聚合物改性复习提纲
《聚合物改性》复习提纲2014.3.26体会聚合物改性的思想方法:使用性能、加工性能、成本、环保——最佳平衡聚合物改性的目的?聚合物改性的主要方法?聚合物改性的发展概况?一、共混1.共混改性:①化学共混、物理共混、物理化学共混②根据物料形态分类:熔融共混、溶液共混、乳液共混2.共混物形态的两大体系三种基本类型:均相体系非均相体系:海-岛结构特点(定义)海-海结构3.聚合物共混物均相体系与非均相体系的判定依据:Tg4.分散度及均一性定义5.共混物的相容性概念完全相容、部分相容、不相容体系的特征(示意图) 广义相容性的概念6.共混物形态的研究方法、共混物形态的主要影响因素7.试述弹性体增韧理论的发展概况。
用银纹—剪切带等理论解释弹性体增韧塑料体系的机理。
具体分析分散相状况对改性效果的影响8.非弹性体增韧机理,弹性体增韧与刚性粒子增韧的异同?9.共混过程物料所受的主要作用:剪切对流扩散10.平衡粒径及与之相关的软包硬规律、等粘点、等粘温度概念。
11.橡塑共混体系的共混温度控制对共混物性能的影响。
图2-2412.什么是“两阶”共混,实现“两阶”共混的关键是什么?与一步共混法相比,有什么特点?试举例说明。
13.PVC可用哪几种增韧方法进行增韧改性。
常用于PVC增韧的改性剂有哪些?其共混特征?14.聚烯烃共混抗冲体系?15.什么是超韧尼龙?13.LCP在聚合物共混中的优势及应用。
二、填充与纤维增强1.常见的无机填料及特性(云母、碳酸钙、氢氧化镁、白炭黑等)2.填充改性的目的:三条。
并会举例说明。
3.常见的增强纤维(GF、CF、芳纶)4.偶联剂:“架桥作用”偶联剂定义(无机与有机的联接)、种类(三种)5.无机刚性粒子的增韧改性需满足什么条件?机理及应用实例?6.什么是纳米材料?你认为纳米材料在高聚物的应用中应注意解决哪些问题。
三、化学改性1.什么是化学改性?按聚合度和官能团的变化如何划分?2.接枝共聚物的制备方法?3.接枝共聚物在聚合物抗冲改性中的应用(成功范例HIPS 、ABS),什么是包藏结构,具有包藏结构的体系有什么特点?4.嵌段共聚物的种类及制备方法(举例线型及星型SBS的制备)5.嵌段共聚物的主要应用,热塑性弹性体的特点?6.IPN定义及分类方法?7.简述IPN的制备方法(同步法、分步法、乳液法)8.IPN的主要应用,试举例说明。
【精品】高分子化学复习提纲完整版
高分子化学复习提纲第一部分:分章内容第一章:1、掌握表1-1和表1-2中常见聚合物的名称、重复单元和单体。
2、了解常见聚合物的命名原则。
3、掌握连锁聚合和逐步聚合的特征(分子量、转化率和机理的不同点).4、掌握聚合物的微观结构的多样性(键接方式、序列结构、立体结构的不同点)。
5、掌握热塑性聚合物和热固性聚合物的定义和特点。
6、掌握玻璃化温度和熔点的定义及其应用.第二章:1、了解常见的缩聚单体的特征,并掌握常见的缩聚产品。
2、何谓官能度?对缩聚有什么影响?那些单体可以制得线型聚合物?那些单体可以制得体型聚合物?一分子中能参与反应的官能团数称作官能度,2-2或2—官能度体系缩聚,形成形成聚合物;2—3、2—4、或3-3等官能度体系则形成体型缩聚物。
除聚合速率外,分子量控制是线性缩聚关键,凝胶点的控制是体型缩聚的关键.3、在推导线性缩聚动力学时,用到哪个假设?官能团等活性概念.4、什么叫反应程度?与分子量有什么关系?平衡常数对聚合度有什么影响?P60反应程度定义为反应的基团数(N0—-N)占起始基团数N0的分数;Xn=1/(1-p);5、基团比对聚合度有事么影响?P606、逐步聚合有哪些实施方法?熔融聚合、溶液聚合、界面聚合、固相聚合、,以前两种方法为主,固相聚合为辅,工业上界面缩聚只限于聚碳酸酯的合成。
7、了解界面缩聚的组成和注意事项。
组成,两种单体、水和有机溶剂;单体的活性要高,界面缩聚属于扩散控制,应有足够的搅拌强度,保证单体及时传递。
8、了解常见的线性缩聚物的制备原理和方法.P4010、9、何谓无规预聚物和结构预聚物?P4011、碱催化和酸催化的酚醛树脂的结构有何不同?生产控制上什么差异?碱催化时,醛过量,形成无规预聚物,继续加热可直接交联固化;酸催化时,酚过量,形成热塑性结构预聚物,不能固化,要外加催化剂(六亚甲基四胺)才能固化。
11、了解常见的结构预聚物的制备原理和方法及交联固化方法。
不饱和聚酯;环氧树脂;酸催化酚醛树脂。
聚合物降解与稳定化
聚合物降解与稳定化
聚合物降解是指聚合物在所受外界条件的作用下,发生化学结构的变化,导致聚合物分子链的破坏和物理性能的下降。
聚合物降解的原因主要有热氧化降解、光辐射降解、机械应力引起的降解等。
降解会导致聚合物材料的拉伸强度、弹性模量等物理性能下降,甚至使其完全失去使用价值。
而聚合物稳定化是为了延缓聚合物降解的过程,提高聚合物材料的耐久性和使用寿命。
常见的聚合物稳定化方法有添加抗氧化剂、紫外吸收剂等。
抗氧化剂可以防止聚合物在高温、氧气和紫外光等环境下发生自由基氧化反应,从而延缓聚合物的降解速度;紫外吸收剂则可以吸收紫外光,减少紫外光对聚合物材料的照射和损伤。
聚合物降解与稳定化是聚合物材料研发和应用中需要重点考虑的问题。
降解会限制聚合物材料的使用寿命和应用范围,稳定化则可以提高聚合物材料的耐久性和可靠性。
因此,在聚合物材料的设计和生产过程中,需要选择合适的降解机理和稳定化方法,以满足不同应用环境和需求。
高分子材料的稳定与降解聚合物降解各论课件.ppt
* 实验发现,取向对PVC的光氧化有重要影响。 拉伸取向后的样品在太阳光紫外线(波长大 于300nm)照射下生成的羰基比未拉伸样品 多得多。
原因:PVC拉伸过程中形成了一种构象,有利 于自由基从分子链上夺取氢原子。
高分子材料的稳定与降解聚合物降 解各论课件
Thank you!
高分子材料的稳定与降解聚合物降 解各论课件
高分子材料的稳定与降解聚合物降 解各论课件
高分子材料的稳定与降解聚合物降 解各论课件
一般认为PVC脱HCl是“开拉链”反应: 要使PVC颜色发黄,至少需要连续7个共轭双 键结构。从大分子上依次除去HCl将不断增 加剩余链的共轭能,使下一步脱氯化氢所需 的活化能降低,容易形成多烯链。
高分子材料的稳定与降解聚合物降 解各论课件
实际上,PVC降解时,同时进行多种化学反 应:分解脱HCl;氧化断链与交联;少量的 芳构化过程。
聚氯乙烯分解的HCl具有自催化作用:
高分子材料的稳定与降解聚合物降 解各论课件
热失重研究表明,PVC的分解分两阶段进行:
高分子材料的稳定与降解聚合物降 解各论课件
PVC脱HCl时,生成多烯结构,同时由于交 联和环化,其相对分子质量增加。
高分子材料的稳定与降解聚合物降 解各论课件
(2)PVC脱HCl的机理: 聚合物分子链上的非正常结构(支化、氯代 烯丙基团、含氧结构、端基、头-头结构等) 引发了脱HCl反应。 含氯模型化合物的稳定性:
高分子材料的稳定与降解聚合物降 解各论课件
PVC分解脱HCl的机理: (i)自由基机理:
证据: 过程: 在某个稳定性较差的位置无规的引发C-Cl 键断裂反应,生成大分子自由基,随后脱除 HCl。
(iii) 分子机理:
高分子材料的稳定与降解聚合物降 解各论课件
聚合物的降解与稳定化
聚合物的降解与稳定化2011-2012学年上学期聚合物的降解及稳定化复习资料第一章绪论老化(降解):高分子材料在加工、贮存、使用的过程中,物理化学性质和力学性能会逐渐变差。
导致聚合物降解的因素:内因:聚合物的组成及其链结构;聚合物的聚集态结构;杂质。
外因:热、环境温度和热氧的影响;光的影响;氧和臭氧的影响;水和潮湿的影响;其他的因素影响,比如微生物(真菌的活性或酶作用)、某些高级生命体(昆虫)等生物降解。
聚合物再生的意义:保护人类赖以生存的自然环境;充分利用自然资源,变废为宝。
第二章聚合物降解与稳定化的基本定理热降解的三大类:解聚反应(拉链降解);无规断链反应;主链不断裂的小分子消除反应。
热氧降解主要特征以及核心:自动氧化反应。
当氧浓度等于或大于空气中的氧浓度时,氧化反应速率与氧浓度无关;当氧浓度很低时,吸氧速率是氧浓度的函数,即氧化反应速率与氧浓度有关。
抗氧剂的两大类:主抗氧剂(自由基捕获剂):作用——改变自动氧化历程。
辅助抗氧剂(预防型抗氧剂):作用——只能降低氧化速率,而不改变自动氧化历程。
主抗氧剂的分为4类:氢给予体、电子给予体、自由基捕获体、苯并呋喃酮类。
抗氧剂的配合:协同效应、加合效应、对抗效应。
羰基的引发作用:(P42)光稳定剂四大类:光屏蔽剂、紫外光吸收剂、猝灭剂、受阻胺光稳定剂。
邻羟基二苯甲酮类(一类重要的紫外线吸收剂)(P44)臭氧龟裂:具有不饱和键的橡胶,在应力作用的条件下,能和臭氧发生独特的破坏作用,即在垂直与应力方向引起开裂。
第三章聚合物降解各论聚合物分子链中,各种键和基团的热稳定性顺序:(P59、60)对聚丙烯的光氧化而言,氢过氧化物也是主要的起始光引发剂。
由于聚丙烯光氧化的动力学链长大约是聚乙烯的10倍,所以在光氧化的聚丙烯中氢过氧化物浓度比氧化的聚乙烯中高很多。
(P62)聚氯乙烯的降解:典型特征是释放HCl,具有催化作用加速了降解。
厚的试样比薄的试样降解更快,是由于厚的试样中HCl逸出更慢而起到了催化作用。
高分子材料的稳定与降解 第三章 聚合物降解各论1
推论二:聚烯烃中存在能吸收太阳光的物 质或基团,特别是含氧基团。如:羰基、 氢过氧化物等。
理由:C—C键不能吸收波长大于190nm的光, 而太阳辐射至地球表面时,波长>280nm;但工 业聚烯烃在阳光照射下很快变脆。
现已证明:氢过氧化物(ROOH)是光降解 的重要引发剂。
聚烯烃的降解和稳定性与聚合物的结构有关。
过氧化物常用来引发对烯烃的改性反应,但 同时大分子自由基会引起复杂的副反应:
聚丙烯倾向于发生β断裂导致降解,聚乙烯 则倾向于发生交联。
Yu的实验证明:在过氧化物的作用下,PP 的降解作用超过了PE的交联作用;在辐照的 作用下,PE的交联作用大于PP的降解作用。
Braun的实验证明:在PE/PP合金的熔体中, PP和PE的反应是互不相干的。不形成PP和 PE的接枝共聚物。仍然为两相体系。
在光氧化的聚丙烯中,氢过氧化物浓度比氧 化的聚乙烯中高很多。
聚丙烯氢过氧化物的光解过程中,主要的挥 发产物是水,还包括少量的乙烷、乙烯、丙 烷、丙烯等。
实验研究:γ射线对聚丙烯氧化和物理性能的 影响。
(2)聚丙烯的热降解 无氧条件下,聚丙烯热裂解的敏感性比聚乙烯 大3.5倍。 有氧条件下,聚丙烯热裂解比聚乙烯大约30倍。 聚丙烯的热分解遵循无规断链机理:
主要聚烯烃的光氧化稳定性与它们的热氧化 稳定性顺序相同。
二、聚烯烃的降解
1. 聚乙烯
(1)聚乙烯的光降解 不存在氧时,纯聚乙烯对紫外光的作用相当稳定。 商品聚乙烯的耐候性决定于在样品表面发生的光氧 化反应。光氧化反应的由杂质或羰基的存在引起。
现象:在空气中紫外线照射聚乙烯膜会引起氧的吸 收及一系列反应。
有氧存在时,自由基的反应必然导致生成氢 过氧化物,将促进聚合物的降解。
聚合物合成工艺学复习要点
聚合物合成工艺学题库一、选择题:1. HDPE与LDPE进行比较,前者支链量( B ),机械强度( ),可应用于管材。
A. 少;低B. 少;高C. 多;低D. 多;高2. 在丁苯橡胶乳液聚合中,分别采用( C )低温聚合,和()高温聚合;低温丁苯在()方面优于高温丁苯。
A. 50℃,100℃,极性、弹性、老化性B. 0℃,50℃,加工性能、色泽、老化性C. 5℃,50℃,弹性、强度、加工性能D. 0℃,50℃,极性、弹性、老化性3. 氨基树脂可由下列哪一类化合物进行合成?(C )A. 苯酚与甲醛B. 二元酸与二元胺C. 脲与甲醛D.光气与双酚A4. 本体聚合常采用分段聚合工艺,其目的是(B )A. 降低反应温度B. 导出反应热C. 提高转化率D. 简化工艺5. 离子聚合过程,一般选择(D)工艺。
A. 悬浮聚合B. 乳液聚合C. 本体和悬浮D. 本体和溶液6.悬浮聚合与本体聚合工艺相比,前者(B )。
A. 工艺简单,成本低B. 导热效果好,产物纯度低C. 转化率高,成本低D. 后处理工艺简单7. 乳液聚合生产过程中,破乳方法不包括( B)。
A. 强烈搅拌B. 加热C. 加入电解质D. 调节pH8. 对于粘度很高流动性差的合成橡胶溶液聚合,反应釜应选择( A)搅拌器。
A. 螺带式B. 平浆式C. 锚式D. 旋浆式9. 下列哪种温度不是国际通用的描述塑料的耐热性能的( D )。
A. 马丁耐热温度B. 维卡耐热温度C. 热扭变温度D. 玻璃化温度10. C4馏分中所含的丁烷、丁二烯、丁烯各异构体的沸点非常相近,可通过( C )的方法进行分离。
A. 闪蒸B. 水蒸气蒸馏C. 萃取精馏D. 减压蒸馏11. APP是指( C)。
A. 全同聚丙烯B. 间同聚丙烯C. 无规聚丙烯D. 高分子量聚丙烯12. 用无机粉末做分散剂的自由基悬浮聚合结束后,用( B )洗涤以除去分散剂。
A. 稀碱B. 稀酸C. 去离子水D. 十二烷基苯磺酸钠13. BPO常常和(C )组成氧化还原引发体系用于自由基聚合。
稳定与降解(第二章)1(四川大学,高分子材料),
(4)结晶和稳定性:
理论上,提高结晶度,可以提高热稳定性。
实际聚合物往往受到以上各种因素的综 合影响。(相互协同或相互抵消)
精选
二、热降解的稳定化
1. 加入热稳定的添加剂 作用:
① 与聚合物分子中最活泼的键反应,生成稳定的 键,以提高热稳定性;
② 可中断热降解的链式反应。 某些高分子材料加工和使用过程中必须加入热稳
精选
聚合物热氧循环示意图
精选
2. 氧化速率方程式
氢过氧化物(ROOH)的生成和分解是竞 争反应。当分解反应速率与生成反应速率 相等时,其浓度达到最大值,反应速率基 本恒定,处于稳态。
在自动氧化初期,ROOH主要发生单分子 分解,按一级反应进行;随ROOH的增多, 双分子分解占主要地位,反应按二级反应 进行。
定剂。
精选
2. 改变聚合物结构 • 含芳环或杂环的聚合物,具有极佳的耐热 性。
(但难于加工,常采用多步反应和加工制成 )
精选
• 梯形或螺旋型聚合物也具有较高的耐热性。
精选
• 完全碳化聚合物具有优异的耐热性能。
精选
三、热氧降解的机理
热氧降解:聚合物在一定温度下与空气中 的氧发生反应而降解。
热氧降解贯穿于加工、贮存和使用全过程,
含有季碳原子链节的聚合物,热降解的单 体产率高。 原因:热降解反应一般属自由基反应,季
碳原子的自由基反应只能为分子内歧化 反应。
精选
若非季碳原子,则由于链转移作用,不发生 进一步解聚,单体产率降低。
(1)分子间链转移;
(2)分子内链转移;
精选
2. 无规断链反应与聚合物化学结构的关系
(1)链离解能和稳定性:
或室温下聚合物与氧作用:
有机化学中的聚合物的降解与稳定性
有机化学中的聚合物的降解与稳定性聚合物是由连续的重复单元组成的高分子化合物。
它们在各个领域广泛应用,如塑料、纤维、涂料、药物等。
然而,聚合物的降解和稳定性是一个重要的研究领域。
本文将探讨有机化学中聚合物的降解机制以及如何提高其稳定性。
聚合物的降解机制与稳定性密切相关。
降解是指聚合物的分子链发生断裂,导致物理和化学性质的变化。
聚合物的降解可发生在热、光、氧、湿等条件下。
其中,热降解是最为普遍和重要的降解方式。
聚合物在高温下会发生链热解或内聚解。
链热解是指聚合物分子链序列发生断裂,产生自由基和低分子量产物。
内聚解是由于聚合物分子内部有不稳定的键或化学结构,使得整个分子完全分解为小分子。
热降解的温度通常由聚合物材料的玻璃转变温度和熔融温度决定。
除了热降解,光降解也是一个重要的降解方式。
聚合物在长时间的紫外线或可见光照射下,会发生主链裂解或侧链裂解。
主链裂解指的是聚合物的主链发生断裂,导致分子量的减小。
侧链裂解是指聚合物的侧链或取代基发生断裂,引起聚合物结构的改变。
氧降解是指聚合物与氧气接触时发生的降解反应。
氧气中的氧化物能够进一步引发链热解反应,导致聚合物分子链的断裂。
湿降解是指聚合物与水蒸气或溶液中水反应,产生分子链的断裂和水解反应。
为了提高聚合物的稳定性,可以采取一系列措施。
首先,可以通过合适的聚合物设计来提高聚合物的热稳定性。
例如,引入稳定基团来增加分子内的键能,降低链热解的速率。
其次,聚合物的添加剂也可以有效提高聚合物的稳定性。
抗氧化剂、紫外线吸收剂等可以减缓或阻止聚合物的降解反应。
此外,采用适当的包装材料、储存条件和环境控制也能延缓聚合物的降解。
聚合物的降解与稳定性在有机化学中具有重要意义。
深入了解聚合物的降解机制有助于优化聚合物的性能和应用。
通过增加聚合物的稳定性,可以延长其使用寿命,并减少对环境的不良影响。
综上所述,有机化学中的聚合物的降解与稳定性是一个重要的研究领域。
热降解、光降解、氧降解和湿降解是常见的降解方式。
聚合物稳定与降解
聚合物稳定与降解第一章、绪论1.老化(降解)的概念高分子材料在加工、贮存、使用过程中,物理化学性质和力学性质会逐渐变差,称为老化,或降解。
p1特点:不可避免,不可逆的过程。
时间尺度上相对较短。
2.导致聚合物降解的因素(一)内因A.聚合物的组成及其链结构。
(1)组成不同、降解情况不同(2)活性基体可能是降解的主要内因(3)活泼氢更容易被夺取(4)头-头(尾-尾)结构的聚烯烃更易成为活性点。
(5)分子量变化的影响:分子量的变化使其内部不规则的结构增加,造成稳定性下降。
反之,若不规则结构减少,则稳定性增加。
(6)分子量分布的影响:分子量分布宽、则稳定性下降。
(7)支化度的影响:支化度增加,分子链中的薄弱环节也增加,越容易发生降解。
B. 聚合物的聚集状态非晶聚合物材料稳定性小于结晶聚合物材料原因:非晶材料密度小(高分子链排列不规则),易被氧、水、化学物质渗透、降解。
3. 聚合物中的杂质聚合物中的杂质分两类:(1)加工过程中必然混入的少量杂质;(2)添加剂等物质。
多数杂质会加快聚合物的降解。
(二)外因:A.热、温度和热氧的影响:热使聚合物断链,形成自由基(可逆、双向)热氧作用使聚合物交联或降解,最终使材料性能下降。
B.光的影响C.氧和臭氧的影响:氧易在热、光作用下使聚合物降解。
臭氧对不饱和键(如橡胶)的破坏极为严重。
D. 水和潮湿的影响:对水溶性成分的溶解、抽提;水解、断链。
E.其它因素的影响:微生物的影响;其它生物的影响;加工过程中各种因素的影响。
各种外因往往协同作用。
第二章、聚合物降解与稳定化的基本原理(一)热降解的类型解聚反应;无规断链反应;主链不断裂的小分子消除反应;特点:单纯由热引起,没有氧参与。
1. 解聚反应(拉链降解)解聚始于分子链端部或薄弱点。
惟一产物:单体。
特点:(1)初期相对分子质量变化小,聚合物质量损失较大;(2)降解至聚合物质量几乎完全损失时,聚合物相对分子量急剧降低。
2. 无规断链反应——几乎所有缩聚物和大量加聚物的降解方式聚合物无规则断链;反应主要产物为低相对分子量聚合物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热氧循环
内部资料
1
O·
R· R·
RH ROO·
R· ROOH
ROH+H2O
2RH
RO· HO·
当氧气浓度很低时,[R·]>>[ROO·],氧化速率,决定于 R·与 O2 的反应速率 三、抗氧剂的分类 1.主抗氧剂:自由基捕捉剂 氢给予体 电子给予体 自由基捕获剂 苯并呋喃酮 2.辅助抗氧剂:预防型抗氧剂 3.抗氧剂的配合 协同效应:1+1>2 加和效应:1+1=2 对抗效应:1+1<2 四、光氧降解机理 1.羰基光引发机理 (1)NorrishⅠ型反应
内部资料
5
第六章 塑料的再生及其稳定化 一、为什么要对塑料进行再生及稳定化 难分解,难腐蚀,燃烧产生有毒气体 二、废塑料的处理技术 1.再生利用 机械再生 改性再生 解聚 热解液化 气化 2.焚烧 3.填埋 三、再生废塑料的改性技术 直接再生 改性利用 第七章 聚合物材料的阻燃稳定化(P251) 一、阻燃 聚合物材料的阻燃,从广义上讲,就是应使易燃的聚合物材料变得难燃和具有着火后离开火源 能自熄的特性,而且还应具有低发烟,低毒性的特性。 二、聚合物材料的燃烧过程 加热熔融 热分解 着火 燃烧 火焰传播 在聚合物的燃烧中,最主要的燃料是氢,而不是碳 三、极限氧指数 定义:刚好维持聚合物燃烧时的混合气体中最低氧含量的体积百分率 四、聚合物材料的燃烧特性 发热量大 火焰温度高 燃烧速度快 燃烧释放毒物 五、聚合物材料的阻燃特定 易燃:极限氧指数<22 PE PP PMMA PS 难燃:22<极限氧指数<27 软质 PVC PVA PA PC 高难燃:极限氧指数>27 PTFE 聚苯醚 硅橡胶 聚酰亚胺 六、阻燃剂的阻燃作用
(2)NorrishⅡ型反应(酮式羰基的γ -C)
内部资料
2
(3)NorrishⅢ型反应(β -H 转移)
2.光稳定剂 (1)光屏蔽剂 (2)紫外线吸收剂 邻羟基二苯甲酮
发生 NorrishⅠ型反应
五、臭氧与聚合物的作用 橡胶的臭氧龟裂 第三章:聚合物降解各论(P59) 一、聚烯烃的热稳定性
内部资料
3
二、PP 1.光降解: PP 中的生色团吸收λ >290nm 的紫外光 三、PVC PVC 降解的特点: 释放具有自催化作用的 HCl 在 O2 中的降解快于真空及惰性气体 四、PTFE PTFE 是最稳定的聚合物 C-F 键的高强度 强电负性 F 对主链的屏蔽结构 五、聚甲基丙烯酸高级酯 聚甲基丙烯酸异丁酯热解时产生 100%的单体。 聚甲基丙烯酸正丁酯热解时伴有少量烯烃+单体。 聚甲基丙烯酸仲丁酯热解时烯烃产量很高+单体。 聚甲基丙烯酸叔丁酯热解时绝大部分为烯烃+单体。 酯侧基分解的难易依赖于烷基基团的β -H 个数 在聚甲基丙烯酸丁酯的四种异构体中, β 氢原子数分别是异丁酯 1 、正丁酯 2、仲丁酯 5、 叔丁酯 9。
聚合物稳定与降解复习提要
第一章 绪论 1.老化与降解:高分子材料在加工贮存和使用过程中物理化学和力学性能会逐渐变差,这称为 老化或者降解。 2.导致聚合物降解的因素 (1)内因 ①聚合物的组成及其链结构 1>聚合物组成不同其降解情况不同 2>活性基团可能就是一个结构上的弱点 3>反应速率决定于氧化剂从聚合物分子上夺取氢原子的难易程度。3°H>2°H>1°H 4>头-头、尾-尾键接和端双键 5>相对分子质量增大使相对不规则结构减少,稳定性提高 6>相对分子质量分布宽的通常稳定性较差 7>支化度越大,链结构上的薄弱环节就多,就越容易降解 ②聚合物的聚集状态:非晶态材料比晶态材料易降解 ③杂志 (2)外因 ①热,环境温度和热氧影响 ②光的影响 ③氧,臭氧 ④水和潮湿的影响 ⑤其他因素的影响 第二章 聚合物降解与稳定化的基本原理 一、热降解 1.解聚反应 2.无规断链反应 3.主链不断链的小分子消除反应 PVC PVAc PMMA 二、热氧降解的机理:自动氧化反应(主要特征、核心)
素炼必须在空气中进行,在惰性气氛中,机械处理易导致交联,空气中的 O2 足以抑制交联的 发生。 第五章 聚合物的稳定剂 (P139) 一、热稳定剂的作用机理 1.预防作用 ①吸收 HCl,抑制自催化。 ②置换 PVC 中不稳定的 Cl 如烯丙基氯或者叔碳氯,消除引发点。 ③捕捉自由基抑制自动氧化。 2.钝化功能 ①与多烯系列的加成反应 ②碳鎓盐发生转化
聚甲基丙烯酸高级酯的酯基会发生非自由基的分解反应,尤其是当酯基的烷基上有β -氢原子 时,能和酯基形成一个六圆环的过渡状态时候,特别容易分解生成烯烃和羧酸。 第四章 聚合物在加工过程中的降解 一、加工过程中引起降解的因素 温度 氧 应力 水 杂志
内部资料
4
二、加工过程中降解与稳定的评价 熔体的流动速率 相对分子质量的测定 流变方法 黄色指数 三、加工温度高于分解温度 POM PVC 四、天然橡胶的素炼 橡胶的机械处理叫素炼
内部资料
6
吸热效应 覆盖效应 稀释效应 抑制效应(捕捉自由基) 增强效应(协同效应) 七、有机阻燃剂的分类
第八章 医用高分子的稳定与降解
内部资料
7