圆的方程练习题答案

合集下载

圆的一般方程高一数学总结练习含答案解析

圆的一般方程高一数学总结练习含答案解析

2.2 圆的一般方程对于方程x 2+y 2+Dx+Ey+F=0,配方可化为① .1.当D 2+E 2-4F>0时,它表示以② 为圆心,③ 为半径的圆.2.当D 2+E 2-4F=0时,它表示一个点④ .3.当D 2+E 2-4F<0时,它不表示任何图形.4.我们把⑤ 称为圆的一般方程.圆的性质及其应用1.(2013江西南昌月考,★☆☆)若方程x 2+y 2+4kx-2y+5k=0表示圆,则k 的取值范围是( ) A.14<k<1 B .k<14或k>1 C.k=14或k=1 D .k∈R思路点拨 令D 2+E 2-4F>0即可解得.2.(2014江西,9,5分,★☆☆)在平面直角坐标系中,A,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x+y-4=0相切,则圆C 面积的最小值为( ) A.45π B.34π C.(6-2√5)π D.54π思路点拨 求圆C 面积的最小值,只要求出半径的最小值即可.圆过原点,则半径r=|CO|,又圆心到直线2x+y-4=0的距离d=r,∴2r=|OC|+d.问题转化为圆心到直线的距离与到原点的距离和的最小值. 3.(2013福建福州调研,★★☆)动点A 在圆x 2+y 2=1上移动时,它与定点B(3,0)连线的中点的轨迹方程是( )A.(x+3)2+y 2=4B.(x-3)2+y 2=1C.(2x-3)2+4y 2=1D.(x +32)2+y 2=12思路点拨 设出中点的坐标,找出其满足的关系式即可.4.(2013四川宜宾一模,★☆☆)已知点M(1,0)是圆C:x 2+y 2-4x-2y=0内的一点,那么过点M 的最短弦所在直线的方程是 .思路点拨 弦与CM 垂直时,弦长最小.一、选择题1. 方程x 2+y 2+2x-4y-6=0表示的图形是( ) A.以(1,-2)为圆心,√11为半径的圆 B.以(1,2)为圆心,√11为半径的圆 C.以(-1,-2)为圆心,√11为半径的圆 D.以(-1,2)为圆心,√11为半径的圆2.如果x 2+y 2-2x+y+k=0是圆的方程,则实数k 的取值范围是( ) A.(-∞,5) B.(-∞,54) C.(-∞,32) D.(32,+∞)3.原点与圆:x 2+y 2-2ax-2y+(a-1)2=0(a>1)的位置关系是( ) A.在圆内 B.在圆上 C.在圆外 D.无法确定4.经过圆x 2+2x+y 2=0的圆心C,且与直线x+y=0垂直的直线方程是( ) A.x-y+1=0 B.x-y-1=0 C.x+y-1=0 D.x+y+1=05.如果圆x 2+y 2+Dx+Ey+F=0与x 轴相切于原点,那么D,E,F 满足( ) A.D≠0,E≠0,F=0 B.D≠0,E=0,F=0 C.D=0,E≠0,F=0D.D=0,E=0,F≠06.已知圆C:x 2+y 2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m 的值为( ) A.8 B.-4 C.6 D.无法确定7.若圆x 2+y 2-2x-4y=0的圆心到直线x-y+a=0的距离为√22,则a 的值为( )A.-2或2B.12或32 C.2或0D.-2或0二、填空题8.过圆x 2+y 2-6x+4y-3=0的圆心,且平行于直线x+2y+11=0的直线的方程是 . 9.已知点(a+1,a-1)在圆x 2+y 2-x+y-4=0的外部,则a 的取值范围是 . 10.若曲线x 2+y 2+a 2x+(1-a 2)y-4=0关于直线y-x=0的对称曲线仍是其本身,则实数a= . 11.圆x 2+y 2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是 .三、解答题12.已知圆C:x 2+y 2-4x-14y+45=0及点Q(-2,3). (1)P(a,a+1)在圆上,求线段PQ 的长及直线PQ 的斜率; (2)若M 为圆C 上任一点,求|MQ|的最大值和最小值.13.定长为4的线段AB 的两个端点A,B 分别在x 轴和y 轴上滑动,求线段AB 的中点M 的轨迹方程.一、选择题1.(2015辽宁锦州统测,★☆☆)已知圆x 2+y 2-2ax-2y+(a-1)2=0(0<a<1),则原点O 在( ) A.圆内 B.圆外C.圆上D.圆上或圆外2.(2014贵州四校联考,★☆☆)圆x2+y2-2x-2y+1=0上的点到直线x-y=2的距离的最大值是( )A.2B.1+√2C.2+√22D.1+2√23.(2014福建福州期中,★☆☆)圆C1:x2+y2-4x+2y+4=0与圆C2:x2+y2+4x-10y+28=0关于直线l对称,则直线l的方程为( )A.2x-3y+6=0B.2x-3y-6=0C.3x+2y-4=0D.3x+2y+4=04.(2013河南商丘测试,★☆☆)已知圆的方程是x2+y2-4x+6y+9=0,下列直线中经过圆心的是( )A.3x+2y-1=0B.3x+2y=0C.3x-2y=0D.3x-2y+1=05.(2013河北唐山一模,★☆☆)已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,那么点P的轨迹所包围的图形的面积等于( )A.πB.8πC.4πD.9π二、填空题6.(2015合肥金寨段考,★★★)经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距之和为4的圆的一般方程为.三、解答题7.(2014湖北黄冈中学训练,★★☆)已知方程x2+y2+2x-6y+m=0.(1)若m∈R,试确定方程所表示的曲线;(2)若方程表示的是圆,且圆的圆心到直线2x-y-1=0的距离等于半径,求m的值.知识清单①(x+D2)2+(y+E2)2=14(D2+E2-4F) ②(-D2,-E2)③12√D2+E2-4F④(-D2,-E2)⑤x2+y2+Dx+Ey+F=0(D2+E2-4F>0)链接高考1.B 由题意知(4k)2+(-2)2-20k>0,所以4k2-5k+1>0,所以k>1或k<14.2.A 由题意得以AB为直径的圆C过原点O,圆心C为AB的中点,设D为切点,要使圆C的面积最小,只需圆的半径最短,也只需OC+CD最小,其最小值为OE(过原点O作直线2x+y-4=0的垂线,垂足为E)的长度.由点到直线的距离公式得OE=√5.∴圆C面积的最小值为π(√5)2=45π.故选A.3.C 设中点为M(x,y),则动点A(2x-3,2y),∵A在圆x2+y2=1上,∴(2x-3)2+(2y)2=1,即(2x-3)2+4y2=1,故选C.4.答案x+y-1=0解析过点M的最短弦与CM垂直,圆C:x2+y2-4x-2y=0的圆心为C(2,1),∵kCM =1-02-1=1,∴最短弦所在直线的方程为y-0=-1(x-1),即x+y-1=0.基础过关一、选择题1.D 原方程可化为(x+1)2+(y-2)2=11,所以表示以(-1,2)为圆心,√11为半径的圆.2.B 令D2+E2-4F=(-2)2+12-4k>0,得k<54.3.C 因为a>1,所以02+02-2a×0-2×0+(a-1)2>0,所以原点在圆外.4.A x2+2x+y2=0可化为(x+1)2+y2=1,∴圆心为C(-1,0).又所求直线与直线x+y=0垂直,∴所求直线的斜率为1,故所求直线的方程为y=x+1, 即x-y+1=0.5.C 配方得(x +D 2)2+(y +E 2)2=D 2+E 2-4F4.∵圆与x 轴相切于原点, ∴{-D2=0,|-E 2|=√D 2+E 2-4F2≠0,∴{D =0,E ≠0,F =0.6.C 圆上存在关于直线x-y+3=0对称的两点,则直线x-y+3=0过圆心(-m2,0),即-m2+3=0,∴m=6. 7.C 配方得(x-1)2+(y-2)2=5,圆心为(1,2),圆心到直线的距离d=√2=√22,所以a=2或0,故选C.二、填空题 8.答案 x+2y+1=0解析 由题意知圆心为(3,-2),设所求直线的方程为x+2y+m=0(m≠11),将圆心(3,-2)代入,得3-4+m=0,∴m=1,故所求直线的方程为x+2y+1=0. 9.答案 a>√2或a<-√2解析 ∵点(a+1,a-1)在圆x 2+y 2-x+y-4=0的外部,∴(a+1)2+(a-1)2-(a+1)+a-1-4>0, ∴a 2>2,即a>√2或a<-√2. 10.答案 ±√22解析 若曲线x 2+y 2+a 2x+(1-a 2)y-4=0关于直线y-x=0的对称曲线仍是其本身,则它是圆心在此直线上的圆,而圆心坐标是(-a 22,-1-a 22),则-a 22=-1-a 22,解得a=±√22.11.答案 6√2解析 x 2+y 2-4x-4y-10=0可化为(x-2)2+(y-2)2=(3√2)2,圆心到直线x+y-14=0的距离d=√12+12=5√2>r=3√2,∴圆上的点到直线的距离的最大值与最小值的差为2r=6√2. 三、解答题12.解析 (1)∵点P(a,a+1)在圆上,∴a 2+(a+1)2-4a-14(a+1)+45=0,∴a=4, ∴P(4,5),∴|PQ|=√(4+2)2+(5-3)2=2√10,k PQ =3-5-2-4=13.(2)∵圆心C 的坐标为(2,7),∴|QC|=√(2+2)2+(7-3)2=4√2,又圆的半径是2√2,∴点Q 在圆外,∴|MQ|max =4√2+2√2=6√2,|MQ|min =4√2-2√2=2√2.13.解析 解法一:设线段AB 的中点M 的坐标为(x,y),则A(2x,0),B(0,2y). 由|AB|=4,得√(2x )2+(-2y )2=4, 化简得x 2+y 2=4,所以线段AB 的中点M 的轨迹方程是x 2+y 2=4. 解法二:设M(x,y),A(x 0,0),B(0,y 0),则{x 0=2x ,y 0=2y .|AB|=√x 02+(-y 0)2=4,即(2x)2+(2y)2=16,化简得x 2+y 2=4,所以线段AB 的中点M 的轨迹方程是x 2+y 2=4.三年模拟一、选择题1.B 将O(0,0)代入x 2+y 2-2ax-2y+(a-1)2可得(a-1)2,因为0<a<1,所以(a-1)2>0,即原点O 在圆外.2.B 圆的方程可化为(x-1)2+(y-1)2=1. 圆心到直线x-y-2=0的距离为√2=√2>1,∴圆上的点到直线x-y=2的距离的最大值为1+√2. 3.A 圆C 1的方程可化为(x-2)2+(y+1)2=1, 圆C 2的方程可化为(x+2)2+(y-5)2=1,则C 1(2,-1),C 2(-2,5),所以线段C 1C 2的中点为(0,2),k C 1C 2=-32.由题意知直线l 是线段C 1C 2的中垂线,所以直线l 的方程为y-2=23x,即2x-3y+6=0. 4.B 根据题意知该圆的圆心坐标为(2,-3).各选项中只有3x+2y=0过点(2,-3),故选B.5.C 设P(x,y),由|PA|=2|PB|得√(x +2)2+y 2=2√(x -1)2+y 2,整理得x 2+y 2-4x=0,即(x-2)2+y 2=4,表示圆心为(2,0),半径为2的圆.圆的面积为π×22=4π.二、填空题6.答案 x 2+y 2-3x-5y+2=0解析 设所求圆的方程为x 2+y 2+Dx+Ey+F=0,在x 轴上的两个截距为x 1,x 2,在y 轴上的两个截距为y 1,y 2. 当x=0时,y 2+Ey+F=0,则y 1+y 2=-E2;当y=0时,x 2+Dx+F=0,则x 1+x 2=-D2. 则{16+4+4D +2E +F =0,1+9-D +3E +F =0,(-D2)+(-E2)=4,解得{D =-3,E =-5,F =2,∴圆的方程为x 2+y 2-3x-5y+2=0.三、解答题7.解析 (1)原方程可变形为 (x+1)2+(y-3)2=10-m.当m<10时,方程表示的曲线是以(-1,3)为圆心、√10-m 为半径的圆; 当m=10时,方程表示的图形是点(-1,3); 当m>10时,方程不表示任何曲线.(2)当m<10时,圆心(-1,3)到直线的距离等于圆的半径√10-m . 即√22+(-1)=√10-m ,∴m=145.。

高二数学圆的方程练习-(附答案)

高二数学圆的方程练习-(附答案)

高二数学圆的方程练习【同步达纲练习】A 级一、选择题1.若直线4x-3y-2=0与圆x 2+y 2-2ax+4y+a 2-12=0总有两个不同交点,则a 的取值范围是( )A.-3<a <7B.-6<a <4C.-7<a <3D.-21<a <192.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有( ) A.1个 B.2个 C.3个 D.4个3.使圆(x-2)2+(y+3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2)C.(4,1)D.(2 +2,2-3)4.若直线x+y=r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A.22B.1C.2D.25.直线x-y+4=0被圆x 2+y 2+4x-4y+6=0截得的弦长等于( ) A.8B.4C.22D.42二、填空题6.过点P(2,1)且与圆x 2+y 2-2x+2y+1=0相切的直线的方程为 .7.设集合m={(x,y)x 2+y 2≤25,N={(x,y)|(x-a)2+y 2≤9},若M ∪N=M ,则实数a 的取值范围是 .8.已知P(3,0)是圆x 2+y 2-8x-2y+12=0内一点则过点P 的最短弦所在直线方程是 ,过点P 的最长弦所在直线方程是 .三、解答题9.已知圆x 2+y 2+x-6y+m=0和直线x+2y-3=0交于P 、Q 两点,若OP ⊥OQ(O 是原点),求m 的值.10.已知直线l:y=k(x-2)+4与曲线C :y=1+24x 有两个不同的交点,求实数k 的取值范围.AA 级一、选择题1.圆(x-3)2+(y+4)2=2关于直线x+y=0的对称圆的标准方程是( )A.(x+3)2+(y-4)2=2B.(x-4)2+(y+3)2=2C.(x+4)2+(y-3)=2D.(x-3)2+(y-4)2=22.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( )A.|a |<1B.|a |<51 C.|a |<121D.|a |<1313.关于x,y 的方程Ax 2+Bxy+Cy 2+Dx+Ey+F=0表示一个圆的充要条件是( )A.B=0,且A=C ≠0B.B=1且D 2+E 2-4AF >0C.B=0且A=C ≠0,D 2+E 2-4AF ≥0D.B=0且A=C ≠0,D 2+E 2-4AF >0 4.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.(314,5) B.(5,1) C.(0,0)D.(5,-1)5.若两直线y=x+2k 与y=2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( )A.-51<k <-1 B.-51<k <1 C.- 31<k <1D.-2<k <2二、填空题6.圆x 2+y 2+ax=0(a ≠0)的圆心坐标和半径分别是 .7.若方程a 2x 2+(2a+3)y 2+2ax+a+1=0表示圆,则实数a 的值等于 .8.直线y=3x+1与曲线x 2+y 2=4相交于A 、B 两点,则AB 的中点坐标是 . 三、解答题9.求圆心在直线2x-y-3=0上,且过点(5,2)和(3,-2)的圆的方程.10.光线l 从点P(1,-1)射出,经过y 轴反射后与圆C :(x-4)2+(y-4)2=1相切,试求直线l 所在的直线方程.【素质优化训练】一、选择题1.直线3x+y-23=0截圆x 2+y 2=4得的劣弧所对的圆心角为(全国高考题)( )A.6πB.4π C.3π D.2π 2.对于满足x 2+(y-1)2=1的任意x,y ,不等式x+y+d ≥0恒成立,则实数d 的取值范围是( )A.[2-1,+∞]B.(-∞,2-1)C.[2 +1,+∞]D.(-∞, 2 +1)3.若实数x ,y 满足x 2+y 2=1,则12--y y 的最小值等于( )A.41 B.43C.23 D.24.过点P(1,2)的直线l 将圆x 2+2-4x-5=0分成两个弓形,当大、小两个弓形的面积之差最大时,直线l 的方程是( )A.x=1B.y=2C.x-y+1=0D.x-2y+3=05.一辆卡车宽2.7米,要经过一个半径为4.5米的半圆形隧道(双车道,不得违章),则这辆卡车的平顶车篷篷顶距离地面的高度不得超过( )A.1.8米B.3米C.3.6米D.4米 二、填空题6.若实数x,y 满足x 2+y 2-2x+4y=0,则x-2y 的最大值是 .7.若集合A={(x 、y)|y=-|x |-2},B={(x,y)|(x-a)2+y 2=a 2}满足A ∩B= ,则实数a 的取值范围是 .8.过点M(3,0)作直线l 与圆x 2+y 2=16交于A 、B 两点,当θ= 时,使△AOB 的面积最大,最大值为 (O 为原点).三、解答题9.令圆x 2+y 2-4x-6y+12=0外一点P(x,y)向圆引切线,切点为M ,有|PM |=|PO |,求使|PM |最小的P 点坐标.10.已知圆C :(x+4)2+y 2=4和点A(-23,0),圆D 的圆心在y 轴上移动,且恒与圆C外切,设圆D 与y 轴交于点M 、N ,求证:∠MAN 为定值.11.已知直角坐标平面内点Q(2,0),圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明轨迹是什么曲线.12.自点A(-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆x 2+y 2-4x-4y+7=0相切,求光线l 与m 所在直线方程.13.AB 是圆O 的直径,且|AB |=2a,M 是圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使|OP |=|MN |,求点P 的轨迹.参考答案:【同步达纲练习】A 级1.B2.C3.B4.D5.C6.x=2或3x-4y-2=07.-2≤a ≤28.x+y-3=0,x-y-3=09.m=3 10.(125,43) AA 级1.B2.D3.D4.D5.B6.(- 2a ,0), 2a7.-18.(- 103,101)9.(x-2)2+(y-1)2=10 10.3x+4y+1=0或4x+3y-1=0【素质优化训练】1.C2.A3.B4.D5.C6.107.-2(2+1)<a <2(2+1)8.θ=arccot22 或π-arccot22, 89.P(1312,1318) 10.60° 11.M 的轨迹方程为(λ2-1)(x 2+y 2)-4λ2x+(1+4x 2)=0,当λ=1时,方程为直线x=45. 当λ≠1时,方程为(x-1222-λλ)2+y 2=222)1(31-+λλ它表示圆,该圆圆心坐标为(1222-λλ,0)半径为13122-+λλ12.l 的方程为:3x+4y-3=0或4x+3y+3=0 M 的方程为3x-4y-3=0或4x-3y+3=0 13.x 2+(y ±2a )2=(2a )2轨迹是分别以CO ,CD 为直径的两个圆.。

高考数学圆的方程练习题附答案

高考数学圆的方程练习题附答案

高考数学圆的方程练习题附答案1.若圆c的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[分析]将圆心设为Ca,Ba>0,b>0,从问题的意义中得出b=1又圆心c到直线4x-3y=0的距离d==1,解决方案是a=2或a=-四舍五入所以该圆的标准方程为x-22+y-12=1.[答:]x-22+Y-12=12.2021·南京质检已知点p2,1在圆c:x2+y2+ax-2y+b=0上,点p关于直线x+y-1=0的对称点也在圆c上,则圆c的圆心坐标为________.【分析】因为点P相对于直线x+Y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解为a=0,所以中心坐标为0,1[答案] 0,13.如果已知圆的中心位于直线y=-4x上,且圆在点P3,-2处与直线L:x+y-1=0相切,则圆的方程式为:___[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为1,-4.半径r=2,圆的方程式为X-12+y+42=8[答案] x-12+y+42=84.2022·江苏常州模拟知道实数x,y满足x2+y2-4x+6y+12=0,那么| 2x-y |的最小值为___[解析] x2+y2-4x+6y+12=0配方得x-22+y+32=1,令x=2+cosα,y=-3+sinα,然后| 2x-y |=|4+2cosα+3-sinα|=|7-sinα-φ|≥7-tanφ=2.[答:]7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0a>0,b>0对称,则+的最小值是________.【分析】从圆的对称性来看,直线2aX by+8=0必须穿过圆的中心-2,4,因此a+B=2,+=+=++5≥ 2+5=9,from=,然后A2=4B2,再从a+B=2,所以当且仅当a=,B时取等号=[答案] 96.2022. 南京市和盐城市的第三次模拟考试是在平面直角坐标系xoy中进行的。

圆的方程 习题含答案

圆的方程 习题含答案

圆的方程习题(含答案)一、单选题1.以点P(2,-3)为圆心,并且与y轴相切的圆的方程是( )A.(x+2)2+(y-3)2=4B.(x+2)2+(y-3)2=9C.(x-2)2+(y+3)2=4D.(x-2)2+(y+3)2=92.当点在圆上运动时,连接它与定点,线段的中点的轨迹方程是()A.B.C.D.3.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为( )A.9πB.πC.2πD.由m的值而定4.圆的半径是()A.B.2C.D.45.已知圆与圆相交于A、B两点,则线段AB的垂直平分线的方程为A.B.C.D.6.若点为圆上的一个动点,点,为两个定点,则的最大值为()A.B.C.D.7.已知直线:是圆的对称轴.过点作圆的一条切线,切点为,则()A.2B.C.6D.8.若直线l:ax+by+1=0经过圆M:的圆心则的最小值为A.B.5C.D.109.若均为任意实数,且,则的最小值为()A.B.C.D.二、填空题10.如图,扇形的圆心角为90°,半径为1,点是圆弧上的动点,作点关于弦的对称点,则的取值范围为____.11.已知x,y满足-4-4+=0, 则的最大值为____12.若直线l:与x轴相交于点A,与y轴相交于B,被圆截得的弦长为4,则为坐标原点的最小值为______.13.设直线与圆相交于两点,若,则圆的面积为________.14.已知圆的圆心在曲线上,且与直线相切,当圆的面积最小时,其标准方程为_______.15.在平面直角坐标系xOy中,已知过点的圆和直线相切,且圆心在直线上,则圆C的标准方程为______.16.已知圆的圆心在直线上,且经过,两点,则圆的标准方程是__________.17.在平面直角坐标系中,三点,,,则三角形的外接圆方程是__________.18.如图,O是坐标原点,圆O的半径为1,点A(-1,0),B(1,0),点P,Q分别从点A ,B 同时出发,圆O 上按逆时针方向运动.若点P 的速度大小是点Q 的两倍,则在点P 运动一周的过程中,的最大值是_______.三、解答题 19.设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程. 20.已知圆内一点,直线过点且与圆交于,两点.(1)求圆的圆心坐标和面积; (2)若直线的斜率为,求弦的长;(3)若圆上恰有三点到直线的距离等于,求直线的方程.21.已知点在圆上运动,且存在一定点,点为线段的中点.(1)求点的轨迹的方程; (2)过且斜率为的直线与点的轨迹交于不同的两点,是否存在实数使得,并说明理由.22.已知圆经过()()2,5,2,1-两点,并且圆心在直线12y x =上。

高中数学例题:圆的一般方程

高中数学例题:圆的一般方程

高中数学例题:圆的一般方程例3.已知直线x 2+y 2―2(t+3)x+2(1―4t 2)y+16t 4+9=0表示一个圆.(1)求t 的取值范围;(2)求这个圆的圆心和半径;(3)求该圆半径r 的最大值及此时圆的标准方程.【思路点拨】若一个圆可用一般方程表示,则它具备隐含条件D 2+E 2―4F >0,解题时,应充分利用这一隐含条件.【答案】(1)117t -<<(2)(t+3,4t 2-1) (3)7 222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭ 【解析】(1)已知方程表示一个圆⇔D 2+E 2―4F >0,即4(t+3)2+4(1―4t 2)2―4(16t 4+9)>0,整理得7t 2―6t ―1<0117t ⇔-<<.(2)圆的方程化为[x ―(t+3)]2+[y+(1―4t 2)]2=1+6t ―7t 2.∴它的圆心坐标为(t+3,4t 2-1).(3)由7r ===≤.∴r 的最大值为7,此时圆的标准方程为 222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. 【总结升华】 在本例中,当t 在1,17⎛⎫- ⎪⎝⎭中任取一个值,它对应着一个不同的圆,它实质上是一系列的圆,因此本例中的圆的方程实质上是一个圆系方程,由2341x t y t =+⎧⎨=-⎩得y=4(x ―3)2―1,再由117t -<<,知2047x <<,因此它是一个圆心在抛物线2204(3)147y x x ⎛⎫=--<< ⎪⎝⎭的圆系方程.举一反三:【变式1】(1)求过(2,2),(5,3),(3,1)A B C -的圆的方程,及圆心坐标和半径;(2)求经过点(2,4)A --且与直线3260x y +-=相切于点(8,6)的圆的方程.【答案】(1)()224(1)5x y -+-= (4,1)(2)22113300x y x y +-+-= 【解析】(1)法一:设圆的方程为:220x y Dx Ey F ++++=,则8220345301030D E F D E F D E F +++=⎧⎪+++=⎨⎪+-+=⎩,解得:8212D E F =-⎧⎪=-⎨⎪=⎩所以所求圆的方程为:228220x y x y +--+=,即()224(1)5x y -+-=,所以圆心为(4,1)法二:线段AB 的中点为为75,22⎛⎫ ⎪⎝⎭,321523AB k -==- 线段AB 的中垂线为57322y x ⎛⎫-=-- ⎪⎝⎭,即3130x y --= 同理得线段BC 中垂线为260x y +-=联立2603130x y x y +-=⎧⎨+-=⎩,解得41x y =⎧⎨=⎩所以所求圆的方程为(4,1),半径r ==所以()224(1)5x y -+-=.(2)法一:设圆的方程为:220x y Dx Ey F ++++=,则2024062382100860D E F ED DEF --+=⎧⎪⎪+⎪=⎨⎪+⎪⎪+++=⎩,解得:11330D E F =-⎧⎪=⎨⎪=-⎩ 所以圆的方程为22113300x y x y +-+-=.法二:过点B 与直线3260x y +-=垂直的直线是3180x y --=, 线段AB 的中垂线为40x y +-=,由318040x y x y --=⎧⎨+-=⎩得:圆心坐标为113,22⎛⎫- ⎪⎝⎭,由两点间距离公式得半径21252r =, 所以圆的方程为22113125222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. 【变式2】判断方程ax 2+ay 2―4(a ―1)x+4y=0(a ≠0)是否表示圆,若表示圆,写出圆心和半径长.【答案】表示圆,圆心坐标2(1)2,a a a -⎛⎫- ⎪⎝⎭,半径||r a = 【变式3】方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是A .2a <-或23a >B .203a -<<C .20a -<<D .223a -<<【答案】D【解析】方程x 2+y 2+ax+2ay+2a 2+a-1=0转化为2223()124a x y a a a ⎛⎫+++=--+ ⎪⎝⎭,所以若方程表示圆,则有23104a a --+>,∴ 23440a a +-<,∴ 223a -<<.例4.(1)△ABC 的三个顶点分别为A (―1,5),B (―2,―2),C (5,5),求其外接圆的方程;(2)圆C 过点P (1,2)和Q (―2,3),且圆C 在两坐标轴上截得的弦长相等,求圆C 的方程.【思路点拨】在(1)中,由于所求的圆过三个点,因而选用一般式,从而只要确定系数D 、E 、F 即可;注意到三角形外接圆的圆心为各边的垂直平分线的交点,所以也可先求圆心,再求半径,从而求出圆的方程.在(2)中,可用圆的一般方程,但这样做计算量较大,因此我们可以通过作图,利用图形的直观性来进行分析,从而得到圆心或半径所满足的条件.【答案】(1)x 2+y 2―4x ―2y ―20=0(2)(x+1)2+(y ―1)2=5或(x+2)2+(y+2)2=25【解析】(1)解法一:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0,由题意有5260228055500D E F D E F D E F -+++=⎧⎪--++=⎨⎪+++=⎩,解得4220D E F =-⎧⎪=-⎨⎪=-⎩.故所求的圆的方程为x 2+y 2―4x ―2y ―20=0.解法二:由题意可求得AC 的中垂线的方程为x=2,BC 的中垂线方程为x+y ―3=0.∴圆心是两中垂线的交点(2,1),∴半径5r ==,∴所求的圆的方程为(x ―2)2+(y ―1)2=25,即x 2+y 2―4x ―2y ―20=0.(2)解法一:如右图所示,由于圆C 在两坐标轴上的弦长相等,即|AD|=|EG|,所以它们的一半也相等,即|AB|=|GF|,又|AC|=|GC|,∴Rt △ABC ≌Rt △GFC ,∴|BC|=|FC|.设C (a ,b ),则|a|=|b|. ①又圆C 过点P (1,2)和Q (―2,3),∴圆心在PQ 的垂直平分线上, 即51322y x ⎛⎫-=+ ⎪⎝⎭,即y=3x+4,∴b=3a+4. ② 由①知a=±b ,代入②得11a b =-⎧⎨=⎩或22a b =-⎧⎨=-⎩.∴r ==5.故所求的圆的方程为(x+1)2+(y ―1)2=5或(x+2)2+(y+2)2=25.即x 2+y 2+2x ―2y ―3=0或x 2+y 2+4x+4y ―17=0.解法二:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0.∵圆C 过点P (1,2)和Q (-2,3),∴22122049230D E F D E F ⎧++++=⎨+-++=⎩,解得38117E D F D =-⎧⎨=-⎩. ∴圆C 的方程为x 2+y 2+Dx+(3D ―8)y+11―7D=0,将y=0代入得x 2+Dx+11―7D=0.∴圆C 在x 轴上截得的弦长为12||x x -=x=0代入得y 2+(3D ―8)y+11―7D=0,∴圆C 在y 轴上截得的弦长为12||y y -=由题意有=,即D 2―4(11―7D)=(3D ―8)2―4(11―7D),解得D=4或D=2.故所求的圆的方程为x 2+y 2+4x+4y ―7=0或x 2+y 2+2x ―2y ―3=0.【总结升华】 (1)本例(1)的解法二思维迂回链过长,计算量过大,而解法一则较为简捷,因此,当所有已知的条件与圆心和半径都无直接关系,在求该圆的方程时,一般设圆的方程为一般方程,再用待定系数法来确定系数即可.(2)本例(2)中,尽管所给的条件也都与圆心和半径无直接关系,但可通过画图分析,利用平面几何知识,找到与圆心和半径相联系的蛛丝马迹,从而避免了选用圆的一般方程带来的繁琐的计算.(3)一般地,当给出了圆上的三点坐标,特别是当这三点的横坐标和横坐标之间、纵坐标和纵坐标之间均不相同时,选用圆的一般方程比选用圆的标准方程简捷;而在其他情况下的首选应该是圆的标准方程,此时要注意从几何角度来分析问题,以便找到与圆心和半径相联系的可用条件.举一反三:【变式1】如图,等边△ABC 的边长为2,求这个三角形的外接圆的方程,并写出圆心坐标和半径长.【答案】⎛ ⎝⎭2243x y ⎛+= ⎝⎭。

(完整版)圆的参数方程练习题有答案

(完整版)圆的参数方程练习题有答案

圆的参数方程1.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =3sin θ,(θ为参数,0≤θ<2π)判断点A (2,0),B ⎝⎛⎭⎫-3,32是否在曲线C 上?若在曲线上,求出点对应的参数的值. 解:将点A (2,0)的坐标代入⎩⎪⎨⎪⎧x =2cos θy =3sin θ,得⎩⎪⎨⎪⎧cos θ=1,sin θ=0.由于0≤θ<2π,解得θ=0,所以点A (2,0)在曲线C 上,对应θ=0.将点B ⎝⎛⎭⎫-3,32的坐标代入⎩⎪⎨⎪⎧x =2cos θy =3sin θ,得⎩⎪⎨⎪⎧-3=2cos θ,32=3sin θ,即⎩⎨⎧cos θ=-32,sin θ=12.由于0≤θ<2π, 解得θ=5π6,所以点B ⎝⎛⎭⎫-3,32在曲线C 上,对应θ=5π6. 2.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =2ty =3t 2-1,(t 为参数).(1)判断点M 1(0,-1)和M 2(4,10)与曲线C 的位置关系; (2)已知点M (2,a )在曲线C 上,求a 的值.[思路点拨] (1)将点的坐标代入参数方程,判断参数是否存在. (2)将点的坐标代入参数方程,解方程组.[解] (1)把点M 1(0,-1)的坐标代入参数方程⎩⎪⎨⎪⎧x =2t ,y =3t 2-1,得⎩⎪⎨⎪⎧0=2t-1=3t 2-1,∴t =0.即点M 1(0,-1)在曲线C 上.把点M 2(4,10)的坐标代入参数方程⎩⎪⎨⎪⎧x =2t ,y =3t 2-1,得⎩⎪⎨⎪⎧4=2t10=3t 2-1,方程组无解. 即点M 2(4,10)不在曲线C 上. (2)∵点M (2,a )在曲线C 上,∴⎩⎪⎨⎪⎧2=2t ,a =3t 2-1. ∴t =1,a =3×12-1=2. 即a 的值为2.3.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =t 2+1y =2t ,(t 为参数).①判断点A (1,0),B (5,4),E (3,2)与曲线C 的位置关系; ②若点F (10,a )在曲线C 上,求实数a 的值. 解:①把点A (1,0)的坐标代入方程组,解得t =0, 所以点A (1,0)在曲线上.把点B (5,4)的坐标代入方程组,解得t =2, 所以点B (5,4)也在曲线上.把点E (3,2)的坐标代入方程组,得到⎩⎪⎨⎪⎧3=t 2+1,2=2t ,即⎩⎨⎧t =±2,t =1.故t 不存在,所以点E 不在曲线上. ②令10=t 2+1,解得t =±3,故a =2t =±6.4.(1)曲线C :⎩⎪⎨⎪⎧x =ty =t -2,(t 为参数)与y 轴的交点坐标是____________.解析:令x =0,即t =0得y =-2,∴曲线C 与y 轴交点坐标是(0,-2). 答案:(0,-2)(2)在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1y =1-2t ,(t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θy =3cos θ,(θ为参数,a >0)有一个公共点在x 轴,则a =________. 解析:由y =0知1-2t =0,t =12,所以x =t +1=12+1=32.令3cos θ=0,则θ=π2+k π(k ∈Z ),sin θ=±1,所以32=±a .又a >0,所以a =32.答案:325.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2ty =at 2,(其中t 为参数,a ∈R).点M (5,4)在该曲线上,则常数a =________.解析:∵点M (5,4)在曲线C 上,∴⎩⎪⎨⎪⎧5=1+2t 4=at 2,解得⎩⎪⎨⎪⎧t =2,a =1.∴a 的值为1. 答案:16.圆(x +1)2+(y -1)2=4的一个参数方程为____________.解析:令x +12=cos θ,y -12=sin θ得⎩⎪⎨⎪⎧x =-1+2cos θy =1+2sin θ(θ为参数).答案:⎩⎪⎨⎪⎧x =-1+2cos θy =1+2sin θ(θ为参数)(注本题答案不唯一)7.已知圆的普通方程x 2+y 2+2x -6y +9=0,则它的参数方程为____________.解析:由x 2+y 2+2x -6y +9=0,得(x +1)2+(y -3)2=1.令x +1=cos θ,y -3=sin θ,所以参数方程为⎩⎪⎨⎪⎧x =-1+cos θy =3+sin θ,(θ为参数).答案:⎩⎪⎨⎪⎧x =-1+cos θy =3+sin θ,(θ为参数)(注答案不唯一)8.圆(x +2)2+(y -3)2=16的参数方程为( )A.⎩⎪⎨⎪⎧x =2+4cos θy =-3+4sin θ,(θ为参数) B.⎩⎪⎨⎪⎧x =-2+4cos θy =3+4sin θ,(θ为参数) C.⎩⎪⎨⎪⎧x =2-4cos θy =3-4sin θ,(θ为参数) D.⎩⎪⎨⎪⎧x =-2-4cos θy =3-4sin θ,(θ为参数) 解析:选B.∵圆(x -a )2+(y -b )2=r 2的参数方程为⎩⎪⎨⎪⎧x =a +r cos θy =b +r sin θ,(θ为参数)∴圆(x +2)2+(y -3)2=16的参数方程为⎩⎪⎨⎪⎧x =-2+4cos θy =3+4sin θ,(θ为参数)9.已知圆的方程为x 2+y 2=2x ,则它的一个参数方程是____________.解析:将x 2+y 2=2x 化为(x -1)2+y 2=1知圆心坐标为(1,0),半径r =1,∴它的一个参数方程为⎩⎪⎨⎪⎧x =1+cos θy =sin θ(θ为参数).答案:⎩⎪⎨⎪⎧x =1+cos θy =sin θ(θ为参数)10.已知圆P :⎩⎨⎧x =1+10cos θy =-3+10sin θ,(θ为参数),则圆心P 及半径r 分别是( )A .P (1,3),r =10B .P (1,3),r =10C .P (1,-3),r =10D .P (1,-3),r =10解析:选C.由圆P 的参数方程可知圆心P (1,-3),半径r =10.11.圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos θy =2sin θ,(θ为参数),则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0) 解析:选D.由⎩⎪⎨⎪⎧x =2+2cos θy =2sin θ得(x -2)2+y 2=4,其圆心为(2,0),半径r =2.12.直线:3x -4y -9=0与圆:⎩⎪⎨⎪⎧x =2cos θy =2sin θ(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心解析:选 D.圆心坐标为(0,0),半径为2,显然直线不过圆心,又圆心到直线距离d =95<2,故选 D.13.已知圆C :⎩⎪⎨⎪⎧x =-3+2sin θy =2cos θ,(θ∈[0,2π),θ为参数)与x 轴交于A ,B 两点,则|AB |=________.解析:令y =2cos θ=0,则cos θ=0,因为θ∈[0,2π),故θ=π2或3π2,当θ=π2时,x =-3+2sin π2=-1,当θ=3π2时,x =-3+2sin 3π2=-5,故|AB |=|-1+5|=4.答案:414.已知动圆x 2+y 2-2x cos θ-2y sin θ=0.求圆心的轨迹方程.解:设P (x ,y )为所求轨迹上任一点. 由x 2+y 2-2x cos θ-2y sin θ=0得: (x -cos θ)2+(y -sin θ)2=cos 2θ+sin 2θ,∴⎩⎪⎨⎪⎧x =cos θy =sin θ这就是所求的轨迹方程.15.P 是以原点为圆心,r =2的圆上的任意一点,Q (6,0),M 是PQ 中点, (1)画图并写出⊙O 的参数方程;(2)当点P 在圆上运动时,求点M 的轨迹的参数方程. 解:(1)如图所示,⊙O 的参数方程⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ.(2)设M (x ,y ),P (2cos θ,2sin θ),因Q (6,0), ∴M 的参数方程为⎩⎨⎧x =6+2cos θ2,y =2sin θ2,即⎩⎪⎨⎪⎧x =3+cos θ,y =sin θ. 16.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θy =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.解:设Q (cos θ,sin θ),PQ 中点M (x ,y ),则由中点坐标公式得x =2+cos θ2=12cos θ+1,y =0+sin θ2=12sin θ.∴所求轨迹的参数方程为⎩⎨⎧x =12cos θ+1y =12sin θ(θ为参数)消去θ可化为普通方程为(x -1)2+y 2=14,它表示以(1,0)为圆心、半径为12的圆.17.设Q (x 1,y 1)是单位圆x 2+y 2=1上一个动点,则动点P (x 21-y 21,x 1y 1)的轨迹方程是____________.解析:设x 1=cos θ,y 1=sin θ,P (x ,y ).则⎩⎪⎨⎪⎧x =x 21-y 21=cos 2θ,y =x 1y 1=12sin 2θ.即⎩⎪⎨⎪⎧x =cos 2θ,y =12sin 2θ,为所求. 答案:⎩⎪⎨⎪⎧x =cos 2θy =12sin 2θ18.已知P 是曲线⎩⎪⎨⎪⎧x =2+cos αy =sin α,(α为参数)上任意一点,则(x -1)2+(y +1)2的最大值为________.解析:将⎩⎪⎨⎪⎧x =2+cos αy =sin α代入(x -1)2+(y +1)2得(1+cos α)2+(1+sin α)2=2sin α+2cos α+3=22sin ⎝⎛⎭⎫α+π4+3, ∴当sin ⎝⎛⎭⎫α+π4=1时有最大值为3+2 2. 答案:3+2219.已知点P (x ,y )在曲线C :⎩⎪⎨⎪⎧x =1+cos θy =sin θ,(θ为参数)上,则x -2y 的最大值为( )A .2B .-2C .1+ 5D .1- 5解析:选C.由题意,得⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ,所以x -2y =1+cos θ-2sin θ=1-(2sin θ-cos θ) =1-5⎝⎛⎭⎫25sin θ-15cos θ=1-5sin ()θ-φ⎝⎛⎭⎫其中tan φ=12, 所以x -2y 的最大值为1+ 5.20.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos θy =sin θ,(θ为参数),求曲线C 上的点到直线l :x-y +1=0的距离的最大值.解:点C (1+cos θ,sin θ)到直线l 的距离 d =|1+cos θ-sin θ+1|12+12=|2+cos θ-sin θ|2=⎪⎪⎪⎪2+2cos ⎝⎛⎭⎫θ+π42≤2+22=2+1,即曲线C 上的点到直线l 的最大距离为2+1.21.(2016·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t ,(t为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .[解] (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上. 所以a =1.22.若P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos αy =sin α,(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:选A.依题意P (2+cos α,sin α),∴(x -5)2+(y +4)2=(cos α-3)2+(sin α+4)2=26-6cos α+8sin α=26+10sin(α-φ)(其中cos φ=45,sin φ=35)∴当sin(α-φ)=1,即α=2k π+π2+φ(k ∈Z )时,有最大值为36.23.已知点P ⎝⎛⎭⎫12,32,Q 是圆⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数)上的动点,则|PQ |的最大值是________.解析:由题意,设点Q (cos θ,sin θ), 则|PQ |=⎝⎛⎭⎫cos θ-122+⎝⎛⎭⎫sin θ-322=2-3sin θ-cos θ =2-2sin ⎝⎛⎭⎫θ+π6 故|PQ |max =2+2=2. 答案:224.已知曲线方程⎩⎪⎨⎪⎧x =1+cos θy =sin θ,(θ为参数),则该曲线上的点与定点(-1,-2)的距离的最小值为________.解析:设曲线上动点为P (x ,y ),定点为A ,则|P A |=(1+cos θ+1)2+(sin θ+2)2 =9+42sin ⎝⎛⎭⎫θ+π4, 故|P A |min =9-42=22-1. 答案:22-125.已知圆C ⎩⎪⎨⎪⎧x =cos θy =-1+sin θ,与直线x +y +a =0有公共点,求实数a 的取值范围.解:法一:∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ消去θ,得x 2+(y +1)2=1.∴圆C 的圆心为(0,-1),半径为1. ∴圆心到直线的距离d =|0-1+a |2≤1.解得1-2≤a ≤1+ 2.法二:将圆C 的方程代入直线方程, 得cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin ⎝⎛⎭⎫θ+π4. ∵-1≤sin ⎝⎛⎭⎫θ+π4≤1,∴1-2≤a ≤1+ 2.26.设P (x ,y )是圆x 2+y 2=2y 上的动点.①求2x +y 的取值范围;②若x +y +c ≥0恒成立,求实数c 的取值范围.解:圆的参数方程为⎩⎪⎨⎪⎧x =cos θy =1+sin θ,(θ为参数).①2x +y =2cos θ+sin θ+1=5sin(θ+φ)+1(φ由tan φ=2确定),∴1-5≤2x +y ≤1+ 5.②若x +y +c ≥0恒成立,即c ≥-(cos θ+sin θ+1)对一切θ∈R 成立.且-(cos θ+sin θ+1)=-2sin ⎝⎛⎭⎫θ+π4-1的最大值是2-1,则当c ≥2-1时,x +y +c ≥0恒成立.27.已知圆的极坐标方程为ρ2-42ρcos ⎝⎛⎭⎫θ-π4+6=0. (1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程; (2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值. [解] (1)由ρ2-42ρcos ⎝⎛⎭⎫θ-π4+6=0, 得ρ2-4ρcos θ-4ρsin θ+6=0, 即x 2+y 2-4x -4y +6=0,∴圆的标准方程(x -2)2+(y -2)2=2,3分 令x -2=2cos α,y -2=2sin α,得圆的参数方程为⎩⎨⎧x =2+2cos αy =2+2sin α,(α为参数)6分(2)由(1)知x +y =4+2(cos α+sin α) =4+2sin ⎝⎛⎭⎫α+π4,9分 又-1≤sin ⎝⎛⎭⎫α+π4≤1, 故x +y 的最大值为6,最小值为2.12分28.圆的直径AB 上有两点C ,D ,且|AB |=10,|AC |=|BD |=4,P 为圆上一点,求|PC |+|PD |的最大值.解:如图所示,以AB 所在直线为x 轴,线段AB 的中点为坐标原点建立平面直角坐标系.圆的参数方程为⎩⎪⎨⎪⎧x =5cos θ,y =5sin θ(θ为参数).易知点C (-1,0),D (1,0).因为点P 在圆上,所以可设P (5cos θ,5sin θ). 所以|PC |+|PD |=(5cos θ+1)2+(5sin θ)2+(5cos θ-1)2+(5sin θ)2 =26+10cos θ+26-10cos θ =(26+10cos θ+26-10cos θ)2 =52+2262-100cos 2θ.当cos θ=0时,|PC |+|PD |有最大值为226.29.(2014·高考课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.。

圆练习题及答案

圆练习题及答案

圆练习题及答案【练习题一】题目:已知圆的半径为5厘米,求圆的周长和面积。

【答案】圆的周长公式为:C = 2πr将半径r = 5厘米代入公式,得:C = 2π * 5 = 10π ≈ 31.42厘米圆的面积公式为:A = πr²将半径r = 5厘米代入公式,得:A = π * 5² = 25π ≈ 78.54平方厘米【练习题二】题目:一个圆的直径是10厘米,求这个圆的半径和周长。

【答案】已知圆的直径d = 10厘米,半径r是直径的一半,所以:r = d / 2 = 10 / 2 = 5厘米圆的周长公式为:C = πd将直径d = 10厘米代入公式,得:C = π * 10 ≈ 31.42厘米【练习题三】题目:在一个圆中,弦AB的长度为8厘米,弦AB的圆心距为3厘米,求圆的半径。

【答案】设圆的半径为r厘米,弦AB的圆心距为3厘米,根据勾股定理,我们有:r² = (r - 3)² + 4²解这个方程,得:r² = r² - 6r + 9 + 166r = 25r = 25 / 6 ≈ 4.17厘米【练习题四】题目:一个圆的面积是78.54平方厘米,求圆的半径。

【答案】根据圆的面积公式:A = πr²已知面积A = 78.54平方厘米,我们可以求出半径r:78.54 = πr²r² = 78.54 / π ≈ 25r = √25 = 5厘米【练习题五】题目:已知圆的周长是31.42厘米,求圆的半径。

【答案】根据圆的周长公式:C = 2πr已知周长C = 31.42厘米,我们可以求出半径r:31.42 = 2πrr = 31.42 / (2π) ≈ 5厘米【练习题六】题目:在一个圆中,有一条弧长为5π厘米,圆心角为60度,求圆的半径。

【答案】已知弧长L = 5π厘米,圆心角θ = 60度,根据弧长公式:L = rθ / 180 * π将已知数值代入公式,得:5π = r * 60 / 180 * π5 = r * 60 / 180r = 5 * 180 / 60r = 15厘米以上是六道关于圆的练习题及其答案,希望对你有所帮助。

(完整版)圆的一般方程练习题

(完整版)圆的一般方程练习题

(限时:10分钟)1 .若圆x2 + y 2— 2x — 4y = 0的圆心到直线x — y + a = 0的距离为 誓,则a 的值为()1 3A . — 2 或 2 B.2或2C . 2 或 0D . — 2 或 0解析:圆的标准方程为(x — 1)2 + (y — 2)2 = 5,圆心为(1,2),圆心2. 若圆x 2+ y 2 — 2ax + 3by = 0的圆心位于第三象限,那么直线x + ay + b = 0 一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限解析:圆心为a ,— 2b ,则有a<0, b>0.直线x +ay + b = 0变为1 b 1 by = — ?—二由于斜率—a>0,在y 轴上截距—b >0,故直线不经过第 a a aa四象限.答案:D3. 直线y = 2x + b 恰好平分圆x 2 + y 2 + 2x —4y = 0,则b 的值为()A . 0B . 2C . 4D . 1解析:由题意可知,直线y = 2x + b 过圆心(—1,2),••• 2=2X (— 1)+ b , b = 4.答案:C4. M(3,0)是圆x 2+ y 2 — 8x — 2y + 10=0内一点,过M 点最长的弦到直线的距离 答案:C解得a = 0或2.课时作业23圆的一般方程所在的直线方程为 ________ ,最短的弦所在的直线方程是 ________ .解析:由圆的几何性质可知,过圆内一点M的最长的弦是直径,最短的弦是与该点和圆心的连线CM垂直的弦.易求出圆心为C(4,1),1 — 0k cM = = 1,二最短的弦所在的直线的斜率为—1,由点斜式,分 4-3别得到方程:y = x — 3 和 y = — (x — 3),即 x —y — 3= 0 和 x + y —3= 0.答案:x — y — 3= 0 x + y — 3= 05. 求经过两点A(4,7), B(— 3,6),且圆心在直线2x + y — 5= 0上 的圆的方程.解析:设圆的方程为x 2 + y 2 + Dx + Ey + F = 0 ,其圆心为D E-2,- 2,42+ 72 + 4D +7E + F = 0,由题意得—3 2 + 62 — 3D + 6E + F = 0,D E2 • — 2 + —㊁—5 = 0.4D + 7E + F = —65,即 3D — 6E — F = 45,2D + E =— 10,D = — 2, 解得E = — 6,F =— 15.x 2 + y 2— 2x — 6y —课后练|小和沖课时作婕曰日洁KEHOULI^ I(限时:30分钟)1. 圆x2+ y2+ 4x—6y—3 = 0的圆心和半径分别为()A . (2, —3); 16 B. (—2,3); 4C. (4, —6); 16D. (2, —3); 4解析:配方,得(x+ 2)2+ (y—3)2= 16,所以,圆心为(—2,3), 半径为4.答案:B2. 方程x2+ y2+ 4x—2y+ 5m= 0表示圆的条件是()1A. 4<m<1B. m>11C. m<4D. m<1解析:由42+ (—2)2—4X5m>0解得m<1.答案:D3. 过坐标原点,且在x 轴和y 轴上的截距分别是2和3的圆的 方程为()A . x 2+ y 2 — 2x — 3y = 0B . x 2 + y 2 + 2x — 3y = 0C . x 2 + y 2 — 2x + 3y = 0D . x 2+ y 2 + 2x + 3y = 0解析:解法一(排除法):由题意知,圆过三点 0(0,0), A(2,0), B(0,3),分别把A , B 两点坐标代入四个选项,只有 A 完全符合,故 选A.解法二(待定系数法):设方程为x 2 + y 2 + Dx + Ey + F = 0,F = 0,则 2D + F = — 4,3E + F = — 9, 故方程为 x 2 + y 2 — 2x — 3y = 0.解法三(几何法):由题意知,直线过三点 0(0,0), A(2,0), B(0,3),由弦AB 所对的圆心角为90 °知线段AB 为圆的直径,即所求的 圆是以AB 中点1, 2为圆心,2|AB 匸乎为半径的圆,其方程为(x —1)2 + y — |2 =于2,化为一般式得 x 2 + y 2— 2x — 3y = 0.答案:A4. 设圆的方程是 x 2*? + 2ax + 2y +(a — 1)2 = 0,若 0<a<1,则原 点()A .在圆上B. 在圆外C. 在圆内D .与圆的位置关系不确定解析:圆的标准方程是(x + a)2 + (y +1)2= 2a ,因为0<a<1,所以 (0 + a)2 + (0+ 1)2— 2a = (a — 1)2>0,即 0+a 2+ 0+ 1 2> 2a ,所以D = — 2, 解得E = — 3,F = 0,原点在圆外.答案:B5. 已知动点M到点(8,0)的距离等于点M到点(2,0)的距离的2倍, 那么点M的轨迹方程是()A . x2+ y2= 32B . x2+ y2= 16C. (x- 1)2+ y2= 16D. x2+ (y-1)2= 16解析:设M(x, y),贝S M 满足:x—8 2+ y2= 2 x —22+ y2,整理得x2+ y2= 16.答案:B6. 已知圆C: x2+ y2+2x+ ay—3= 0(a为实数)上任意一点关于直线I: x—y+ 2 = 0的对称点都在圆C上,贝S a= _______a解析:由题意可得圆C的圆心一1,—2在直线x—y+ 2= 0上, aa将—1,—2代入直线方程得—1——2+ 2 = 0,解得a= —2.答案:—2 ____7. 若实数x, y满足x2+ y2+ 4x—2y—4= 0,则寸x2+ y2的最大值是 ________ .关键是搞清式子寸x2+ y2的意义.实数x, y满足方程x2+ y2+ 4x —2y— 4 = 0,所以(x, y)为方程所表示的曲线上的动点,x2+ y2=.x—02+ y —02,表示动点(x, y)到原点(0,0)的距离.对方程进行配方,得(x+ 2)2+ (y—1)2= 9,它表示以C( —2,1)为圆心,3为半径的圆,而原点在圆内.连接CO交圆于点M, N,由圆的几何性质可知,MO 的长即为所求的最大值.|CO|= — 2 2+ 12= . 5, |MO|=, 5 + 3.答案:5 + 38. _____________________ 设圆x2+ y2—4x + 2y—11 = 0的圆心为A,点P在圆上,则FA 的中心M的轨迹方程是.解析:设M的坐标为(x, y),由题意可知圆心A为(2,—1), P(2x—2,2y+1)在圆上,故(2x —2)2+ (2y + 1)2—4(2x—2) + 2(2 y + 1)—11 = 0,即x2+ y2—4x+2y+ 1 = 0.答案:x2+ y2—4x + 2y + 1 = 09. 设圆的方程为x2+ y2—4x—5= 0,(1)求该圆的圆心坐标及半径;⑵若此圆的一条弦AB的中点为P(3,1),求直线AB的方程.解析:(1)将x2+ y2—4x— 5 = 0 配方得:(x—2)2+ y2= 9.二圆心坐标为C(2,0),半径为r = 3.⑵设直线AB的斜率为k.由圆的几何性质可知,CP丄AB,二k cp •=—1.1 —0二k cp= = 1,3—2二k=— 1.直线AB的方程为y— 1 = —(x—3),即x+y —4= 0.10. 已知定点0(0,0), A(3,0),动点P到定点O的距离与到定点1A的距离的比值是入,求动点P的轨迹方程,并说明方程表示的曲线.解析:设动点P的坐标为(x, y),则由.?|PO| = |PA|,得X x2+ y2) = (x—3)2+ y2,整理得:(X- 1)x2+ ( —1)y2+ 6x—9= 0.•/ X0,•••当后1时,方程可化为2x —3= 0,故方程表示的曲线是线段当X1时,方程可化为即方程表示的曲线是以3—X_ 1, 0为圆X—:i为半径的圆. OA的垂直平分线;x+ 2。

圆的一般方程练习题

圆的一般方程练习题

课时作业23 圆的一般方程(限时:10分钟)1.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为( ) A .-2或2 B.12或32C .2或0D .-2或0解析:圆的标准方程为(x -1)2+(y -2)2=5,圆心为(1,2),圆心到直线的距离|1-2+a |12+-12=22,解得a =0或2. 答案:C2.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限解析:圆心为⎝ ⎛⎭⎪⎪⎫a ,-32b ,则有a <0,b >0.直线x +ay +b =0变为y =-1a x -b a .由于斜率-1a >0,在y 轴上截距-b a>0,故直线不经过第四象限.答案:D3.直线y =2x +b 恰好平分圆x 2+y 2+2x -4y =0,则b 的值为( )A .0B .2C .4D .1解析:由题意可知,直线y =2x +b 过圆心(-1,2),∴2=2×(-1)+b ,b =4.答案:C4.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程为________,最短的弦所在的直线方程是________.解析:由圆的几何性质可知,过圆内一点M的最长的弦是直径,最短的弦是与该点和圆心的连线CM垂直的弦.易求出圆心为C(4,1),k CM=1-04-3=1,∴最短的弦所在的直线的斜率为-1,由点斜式,分别得到方程:y=x-3和y=-(x-3),即x-y-3=0和x +y-3=0.答案:x-y-3=0 x+y-3=05.求经过两点A(4,7),B(-3,6),且圆心在直线2x+y-5=0上的圆的方程.解析:设圆的方程为x2+y2+Dx+Ey+F=0,其圆心为⎝⎛⎭⎪⎪⎫-D2,-E2,由题意得⎩⎪⎨⎪⎧42+72+4D+7E+F=0,-32+62-3D+6E+F=0,2·⎝⎛⎭⎪⎪⎫-D2+⎝⎛⎭⎪⎪⎫-E2-5=0.即⎩⎪⎨⎪⎧4D+7E+F=-65,3D-6E-F=45,2D+E=-10,解得⎩⎪⎨⎪⎧D=-2,E=-6,F=-15.所以,所求的圆的方程为x2+y2-2x-6y-15=0.(限时:30分钟)1.圆x2+y2+4x-6y-3=0的圆心和半径分别为( )A.(2,-3);16 B.(-2,3);4C.(4,-6);16 D.(2,-3);4解析:配方,得(x+2)2+(y-3)2=16,所以,圆心为(-2,3),半径为4.答案:B则原点( )A .在圆上B .在圆外C .在圆内D .与圆的位置关系不确定解析:圆的标准方程是(x +a )2+(y +1)2=2a ,因为0<a <1,所以(0+a )2+(0+1)2-2a =(a -1)2>0,即0+a 2+0+12>2a ,所以原点在圆外.答案:B5.已知动点M 到点(8,0)的距离等于点M 到点(2,0)的距离的2倍,那么点M 的轨迹方程是( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:设M (x ,y ),则M 满足x -82+y 2=2x -22+y 2,整理得x 2+y 2=16.答案:B6.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =________解析:由题意可得圆C 的圆心⎝ ⎛⎭⎪⎪⎫-1,-a 2在直线x -y +2=0上,将⎝ ⎛⎭⎪⎪⎫-1,-a 2代入直线方程得-1-⎝ ⎛⎭⎪⎪⎫-a 2+2=0,解得a =-2. 答案:-27.若实数x ,y 满足x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值是________.解析:关键是搞清式子x 2+y 2的意义.实数x ,y 满足方程x 2+y 2+4x -2y -4=0,所以(x ,y )为方程所表示的曲线上的动点,x 2+y 2=x -02+y -02,表示动点(x ,y )到原点(0,0)的距离.对方程进行配方,得(x +2)2+(y -1)2=9,它表示以C (-2,1)为圆心,3为半径的圆,而原点在圆内.连接CO 交圆于点M ,N ,由圆的几何性质可知,MO 的长即为所求的最大值.|CO |=-22+12=5,|MO |=5+3.答案:5+38.设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则PA 的中心M 的轨迹方程是________.解析:设M 的坐标为(x ,y ),由题意可知圆心A 为(2,-1),P (2x -2,2y +1)在圆上,故(2x -2)2+(2y +1)2-4(2x -2)+2(2y +1)-11=0,即x 2+y 2-4x +2y +1=0.答案:x 2+y 2-4x +2y +1=09.设圆的方程为x 2+y 2-4x -5=0,(1)求该圆的圆心坐标及半径;(2)若此圆的一条弦AB 的中点为P (3,1),求直线AB 的方程. 解析:(1)将x 2+y 2-4x -5=0配方得:(x -2)2+y 2=9.∴圆心坐标为C (2,0),半径为r =3.(2)设直线AB 的斜率为k .由圆的几何性质可知,CP ⊥AB ,∴k CP ·k =-1.∴k CP =1-03-2=1, ∴k =-1.∴直线AB 的方程为y -1=-(x -3),即x +y -4=0.10.已知定点O (0,0),A (3,0),动点P 到定点O 的距离与到定点A 的距离的比值是1λ,求动点P 的轨迹方程,并说明方程表示的曲线.解析:设动点P 的坐标为(x ,y ),则由λ|PO |=|PA |,得λ(x 2+y 2)=(x -3)2+y 2,整理得:(λ-1)x 2+(λ-1)y 2+6x -9=0. ∵λ>0,∴当λ=1时,方程可化为2x -3=0,故方程表示的曲线是线段OA 的垂直平分线;当λ≠1时,方程可化为⎝ ⎛⎭⎪⎪⎫x +3λ-12+y 2=⎣⎢⎢⎡⎦⎥⎥⎤3λλ-12, 即方程表示的曲线是以⎝ ⎛⎭⎪⎪⎫-3λ-1,0为圆心,3λ|λ-1|为半径的圆.。

圆的方程习题附答案

圆的方程习题附答案

1.方程y =1-x 2表示的曲线是( ) A .上半圆 B.下半圆 C .圆D .抛物线解析:选A .由方程可得x 2+y 2=1(y ≥0),即此曲线为圆x 2+y 2=1的上半圆. 2.以M (1,0)为圆心,且与直线x -y +3=0相切的圆的方程是( ) A .(x -1)2+y 2=8 B.(x +1)2+y 2=8 C .(x -1)2+y 2=16D .(x +1)2+y 2=16解析:选A .因为所求圆与直线x -y +3=0相切,所以圆心M (1,0)到直线x -y +3=0的距离即为该圆的半径r ,即r =|1-0+3|2=22.所以所求圆的方程为:(x -1)2+y 2=8.故选A .3.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1 B.(x -2)2+(y +2)2=1 C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:选B .圆C 1的圆心坐标为(-1,1),半径为1,设圆C 2的圆心坐标为(a ,b ),由题意得⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎪⎨⎪⎧a =2,b =-2,所以圆C 2的圆心坐标为(2,-2),又两圆的半径相等,故圆C 2的方程为(x -2)2+(y +2)2=1.4.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2 B.(x +1)2+(y +1)2=2 C .(x -1)2+(y -1)2=2D .(x -1)2+(y +1)2=2解析:选D .由题意知x -y =0和x -y -4=0之间的距离为|4|2=22,所以r =2. 又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由y =-x 和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.5.在平面直角坐标系xOy 中,已知A (-1,0),B (0,1),则满足|P A |2-|PB |2=4且在圆x 2+y 2=4上的点P 的个数为( )A .0 B.1 C .2D .3解析:选C .设P (x ,y ),则由|P A |2-|PB |2=4,得(x +1)2+y 2-x 2-(y -1)2=4,所以x +y -2=0.求满足条件的点P 的个数即为求直线与圆的交点个数,圆心到直线的距离为|0+0-2|2=2<2=r ,所以直线与圆相交,交点个数为2.故满足条件的点P 有2个,选C . 6.已知动点M (x ,y )到点O (0,0)与点A (6,0)的距离之比为2,则动点M 的轨迹所围成的区域的面积是________.解析:依题意可知|MO ||MA |=2,即x 2+y 2(x -6)2+y 2=2,化简整理得(x -8)2+y 2=16,即动点M 的轨迹是以(8,0)为圆心,半径为4的圆. 所以其面积为S =πR 2=16π. 答案:16π7.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.解析:由题意知,圆的半径r =12k 2+4-4k 2=124-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π4.答案:3π48.已知平面区域⎩⎪⎨⎪⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为________.解析:由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.因为△OPQ 为直角三角形,所以圆心为斜边PQ 的中点(2,1), 半径r =|PQ |2=5,因此圆C 的方程为(x -2)2+(y -1)2=5. 答案:(x -2)2+(y -1)2=59.已知以点P 为圆心的圆经过A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2).则直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又因为直径|CD |=410,所以|P A |=210, 所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40. 10.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解:将圆C 化为标准方程可得(x -2)2+(y -7)2=8, 所以圆心C (2,7),半径r =22.(1)设m +2n =b ,则b 可看作是直线n =-12m +b2在y 轴上截距的2倍,故当直线m +2n=b 与圆C 相切时,b 有最大或最小值.所以|2+2×7-b |12+22=22,所以b =16+210(b =16-210舍去),所以m +2n 的最大值为16+210. (2)设n -3m +2=k ,则k 可看作点(m ,n )与点(-2,3)所在直线的斜率, 所以当直线n -3=k (m +2)与圆C 相切时,k 有最大、最小值,所以|2k -7+2k +3|1+k 2=22,解得k =2+3或k =2-3.所以n -3m +2的最大值为2+3,最小值为2-3.1.直线l :ax +by =0和圆C :x 2+y 2+ax +by =0在同一坐标系的图形只能是( )解析:选D .圆C 的圆心坐标为⎝⎛⎭⎫-a 2,-b2,半径为a 2+b 22,圆心到直线的距离为d =⎪⎪⎪⎪a 22+b 22a 2+b2=a 2+b 22, 所以直线与圆相切,故选D .2.已知P (x ,y )是圆x 2+(y -3)2=a 2(a >0)上的动点,定点A (2,0),B (-2,0),△P AB 的面积的最大值为8,则a 的值为( )A .1 B.2 C .3D .4解析:选A .要使△P AB 的面积最大,只要点P 到直线AB 的距离最大.由于AB 的方程为y =0,圆心(0,3)到直线AB 的距离为d =3, 故P 到直线AB 的距离的最大值为3+a .再根据AB =4,可得△P AB 面积的最大值为12·AB ·(3+a )=2(3+a )=8,所以a =1,故选A .3.设曲线x =2y -y 2上的点到直线x -y -2=0的距离的最大值为a ,最小值为b ,则a -b 的值为( )A .22 B. 2 C .22+1 D .2解析:选C .由x =2y -y 2得y 2-2y +x 2=0(x ≥0),即x 2+(y -1)2=1(x ≥0),表示以(0,1)为圆心,1为半径的右半圆,如图.圆心(0,1)到直线x -y -2=0的距离为32=322.结合图形可知曲线x =2y -y 2上的点到直线x -y -2=0的距离的最小值为322-1,最大值为点P (0,2)到直线x -y -2=0的距离42=22,因此a =22,b =322-1.因此a -b =22+1.故选C .4.设命题p :⎩⎪⎨⎪⎧4x +3y -12≥0,k -x ≥0,x +3y ≤12(x ,y ,k ∈R 且k >0);命题q :(x -3)2+y 2≤25(x ,y ∈R ). 若p 是q 的充分不必要条件,则k 的取值范围是________.解析:如图所示:命题p 表示的范围是图中△ABC 的内部(含边界),命题q 表示的范围是以点(3,0)为圆心,5为半径的圆及圆内部分,p 是q 的充分不必要条件.实际上只需A ,B ,C 三点都在圆内(或圆上)即可.由题知B ⎝⎛⎭⎫k ,4-43k ,则⎩⎪⎨⎪⎧k >0,(k -3)2+169(3-k )2≤25, 解得0<k ≤6. 答案:(0,6]5.在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.解:法一:(代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎪⎨⎪⎧1+E +F =0,(3+22)2+D (3+22)+F =0,(3-22)2+D (3-22)+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.法二:(几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1.则圆C 的半径为32+(t -1)2=3,所以圆C 的方程为(x -3)2+(y -1)2=9. 6.已知方程x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求实数m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.解:(1)由D 2+E 2-4F >0得(-2)2+(-4)2-4m >0,解得m <5.(2)设M (x 1,y 1),N (x 2,y 2),由x +2y -4=0得x =4-2y ;将x =4-2y 代入x 2+y 2-2x -4y +m =0得5y 2-16y +8+m =0,所以y 1+y 2=165,y 1y 2=8+m 5.因为OM ⊥ON ,所以y 1x 1·y 2x 2=-1,即x 1x 2+y 1y 2=0.因为x 1x 2=(4-2y 1)(4-2y 2)=16-8(y 1+y 2)+4y 1y 2,所以x 1x 2+y 1y 2=16-8(y 1+y 2)+5y 1y 2=0,即(8+m )-8×165+16=0,解得m =85.(3)设圆心C 的坐标为(a ,b ),则a =12(x 1+x 2)=45,b =12(y 1+y 2)=85,半径r =|OC |=455,所以所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165.。

基础练习-圆的一般方程

基础练习-圆的一般方程

2.3.2 圆的一般方程一、选择题1.圆的方程为(x -1)(x +2)+(y -2)(y +4)=0,则圆心坐标为( )A .(1,-1)B .⎝ ⎛⎭⎪⎫12,-1C .(-1,2)D .⎝ ⎛⎭⎪⎫-12,-1 2.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是( )A .a <-2或a >23B .-23<a <2 C .-2<a <0 D .-2<a <233.圆x 2+y 2-2x +6y +8=0的周长等于( ) A.2π B .2π C .22π D .4π4.方程2x 2+2y 2-4x +8y +10=0表示的图形是( )A .一个点B .一个圆C .一条直线D .不存在5.若直线mx +2ny -4=0始终平分圆x 2+y 2-4x -2y -4=0的周长,则mn 的取值范围是( )A .(0,1)B .(0,1]C .(-∞,1)D .(-∞,1]6.如果圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)关于直线y =x 对称,则有( )A .D +E =0B .D =EC .D =F D .E =F7.如果直线l 将圆x 2+y 2-2x -6y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( )A .[0,3]B .[0,1]C .⎣⎢⎡⎦⎥⎤0,13D .⎣⎢⎡⎭⎪⎫0,13 8.已知圆x 2+y 2+kx +2y +k 2=0,当该圆的面积取最大值时,圆心坐标是( )A .(0,-1)B .(1,-1)C .(-1,0)D .(-1,1)二、填空题9.点P (1,-2)和圆C :x 2+y 2+m 2x +y +m 2=0的位置关系是________10.若方程x 2+y 2+Dx +Ey +F =0表示以(2,-4)为圆心,4为半径的圆,则F =________.11.若x 20+y 20+Dx 0+Ey 0+F >0,则点P (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0的12.已知圆x2+y2-2x+4y-20=0上一点P(a,b),则a2+b2的最小值是________.三、解答题13.经过两点P(-2,4)、Q(3,-1),且在x轴上截得的弦长为6的圆的方程.14.圆C通过不同三点P(k,0)、Q(2,0)、R(0,1),已知圆C在点P的切线的斜率为1,试求圆C的方程.15.求经过点A(-2,-4)且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.16.已知圆经过点(4,2)和(-2,-6),该圆与两坐标轴的四个截距之和为-2,求圆的标准方程.1. [答案] D[解析] 圆的方程(x -1)(x +2)+(y -2)(y +4)=0可化为x 2+y 2+x +2y -10=0,∴圆心坐标为⎝ ⎛⎭⎪⎫-12,-1. 2. [答案] D[解析] 由题知a 2+(2a )2-4(2a 2+a -1)>0,即(3a -2)(a +2)<0,因此-2<a <23.3. [答案] C[解析] 圆的方程x 2+y 2-2x +6y +8=0可化为(x -1)2+(y +3)2=2,∴圆的半径r =2,故周长l =2πr =22π.4. [答案] A[解析] 方程2x 2+2y 2-4x +8y +10=0,可化为x 2+y 2-2x +4y +5=0,即(x -1)2+(y +2)2=0,∴方程2x 2+2y 2-4x +8y +10=0表示点(1,-2).5. [答案] D[解析] 可知直线mx +2ny -4=0过圆心(2,1),有2m +2n -4=0,即n =2-m ,则mn =m ·(2-m )=-m 2+2m =-(m -1)2+1≤1.6. [答案] B[解析] 由圆的对称性知,圆心在直线y =x 上,故有-E 2=-D 2,即D =E .7. [答案] A[解析] l 过圆心C (1,3),且不过第四象限.由数形结合法易知:0≤k ≤3.8. [答案] A[解析] 圆的半径r =124-3k 2,要使圆的面积最大,即圆的半径r 取最大值,故当k =0时,r 取最大值1,∴圆心坐标为(0,-1).9. [答案] 在圆C 外部[解析] 将点P (1,-2)代入圆的方程,得1+4+m 2-2+m 2=2m 2+3>0,∴点P 在圆C 外部.10. [答案] 4[解析] 由题意,知D =-4,E =8,r =(-4)2+82-4F 2=4,∴F =4. 11. [答案] 外部[解析] ∵x 20+y 20+Dx 0+Ey 0+F >0,∴点P (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0的外部.12. [答案] 30-10 5[解析] 原点到圆心的距离为5,半径r =5,则a 2+b 2最小值为(5-5)2=30-10 5.13. [解析] 设圆的方程为x 2+y 2+Dx +Ey +F =0,将P 、Q 两点的坐标分别代入,得⎩⎨⎧2D -4E -F =203D -E +F =-10①② 又令y =0,得x 2+Dx +F =0.由已知,|x 1-x 2|=6(其中x 1,x 2是方程x 2+Dx +F =0的两根),∴D 2-4F =36,③①、②、③联立组成方程组,解得⎩⎨⎧ D =-2E =-4F =-8, 或⎩⎨⎧D =-6E =-8F =0.∴所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.14. [解析] 设圆C 的方程为x 2+y 2+Dx +Ey +F =0,∵点P (k,0)、Q (2,0)在圆上,∴k 、2为方程x 2+Dx +F =0的两根.∴k +2=-D,2k =F .即⎩⎨⎧ D =-(k +2)F =2k ,又因圆过点P (0,1),故1+E +F =0.∴E =-F -1=-2k -1,故圆的方程为x 2+y 2-(k +2)x -(2k +1)y +2k =0.∴圆心C 的坐标为⎝ ⎛⎭⎪⎫k +22,2k +12.又∵圆在点P 的切线斜率为1,∴2k +12-0k +22-k=-1,即k =-3,从而D =1,E =5,F =-6.即圆的方程为x 2+y 2+x +5y -6=0.15. [解析] 解法一:设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心C ⎝ ⎛⎭⎪⎫-D 2,-E 2.∴k CB =6+E 28+D 2,由k CB ·k l =-1,得6+E 28+D 2·⎝ ⎛⎭⎪⎫-13=-1,①又有(-2)2+(-4)2-2D -4E +F =0,②82+62+8D +6E +F =0.③由①②③联立可得D =-11,E =3,F =-30.∴圆的方程为x 2+y 2-11x +3y -30=0.解法二:设圆的圆心为C ,则CB ⊥l ,从而可得CB 所在直线的方程为y -6=3(x -8),即3x -y -18=0.①由于A (-2,-4)、B (8,6),则AB 的中点坐标为(3,1),又k AB =6+48+2=1, ∴AB 的垂直平分线的方程为y -1=-(x -3),即x +y -4=0②由①②联立后,可解得⎩⎪⎨⎪⎧ x =112y =-32.即圆心的坐标为⎝ ⎛⎭⎪⎫112,-32 ∴所求圆的半径r =⎝ ⎛⎭⎪⎫112-82+⎝ ⎛⎭⎪⎫6+322=1252. ∴所求圆的方程为⎝ ⎛⎭⎪⎫x -1122+⎝ ⎛⎭⎪⎫y +322=1252. 16. [解析] 设圆的一般方程为x 2+y 2+Dx +Ey +F =0.∵圆经过点(4,2)和(-2,-6),∴⎩⎨⎧4D +2E +F +20=0 ①2D +6E -F -40=0 ②设圆在x 轴上的截距为x 1、x 2,它们是方程x 2+Dx +F =0的两个根,得x 1+x 2=-D .设圆在y 轴上的截距为y 1、y 2,它们是方程y 2+Dy +F =0的两个根,得y 1+y 2=-E .由已知,得-D +(-E )=-2,即D +E -2=0.③.由①②③联立解得D =-2,E =4,F =-20.∴所求圆的一般方程为x 2+y 2-2x +4y -20=0,化为标准方程为(x -1)2+(y +2)2=25.。

高中数学圆的方程典型例题(含答案)

高中数学圆的方程典型例题(含答案)

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点 A(1,4)、B(3,2)且圆心在直线 y 0上的圆的标准方程并判断点 P(2,4)与圆的关系. 分析: 欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点 P 与圆的位置关系,只须看点 心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径, 则点在圆内.解法一:(待定系数法)设圆的标准方程为 (x a)2 (y b)2 r 2 . ∵圆心在 y 0 上,故 b 0. ∴圆的方程为 (x a)2 y 2 r 2.又∵该圆过 A(1,4)、 B(3,2)两点.22(1 a)216 r 2 22(3 a)24 r 2解之得: a 1, r 2 20.所以所求圆的方程为 (x 1)2 y 2 20 . 解法二:(直接求出圆心坐标和半径)42 因为圆过 A(1,4) 、 B(3 , 2)两点,所以圆心 C 必在线段 AB 的垂直平分线 l 上,又因为 k AB 4 21AB1 3 斜率为1,又 AB 的中点为 (2,3),故 AB 的垂直平分线 l 的方程为: y 3 x 2即 x y 1 0.又知圆心在直线 y 0上,故圆心坐标为 C( 1,0) ∴半径 r AC (1 1)2 42 20 . 故所求圆的方程为 (x 1)2 y 2 20 . 又点 P(2 ,4) 到圆心 C( 1,0)的距离为d PC (2 1)2 4225 r .∴点 P 在圆外.例2 求半径为 4,与圆 x 2 y 2 4x 2y 4 0相切,且和直线 y 0相切的圆的方程. 分析: 根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆 C :(x a)2 (y b)2 r 2.圆C 与直线 y 0相切,且半径为 4,则圆心 C 的坐标为 C 1(a, 4)或C 2(a, 4). 又已知圆 x 2 y 2 4x 2y 4 0的圆心 A 的坐标为 (2 ,1) ,半径为 3.P 与圆,故 l 的52t 3tt 2 (3t 5)2 .若两圆相切,则 CA 4 3 7或 CA 4 3 1.2 2 2 2 2 2(1)当C 1(a , 4)时, (a 2)2 (4 1)2 72,或 (a 2)2 (4 1)2 12 (无解),故可得 a 2 2 10.∴所求圆方程为 (x 2 2 10)2 (y 4)2 42,或 (x 2 2 10)2 (y 4)2 42.(2)当C 2 (a , 4)时, (a 2)2 ( 4 1)2 72,或(a 2)2 ( 4 1)2 12 (无解),故 a 2 2 6.∴所求圆的方程为 (x 2 2 6)2 (y 4)2 42 ,或 (x 2 2 6)2 (y 4)2 42. 说明: 对本题,易发生以下误解:由题意,所求圆与直线 y 0相切且半径为 4,则圆心坐标为 C(a,4) ,且方程形如 (x a)2 (y 4)2 42.又 2 2 2 2 2圆x 2 y 2 4x 2y 4 0,即(x 2)2 (y 1)2 3 2 ,其圆心为 A(2 , 1) ,半径为 3.若两圆相切,则 CA 4 3.故 (a 2)2 (4 1)2 72 , 解 之 得 a 2 2 10 . 所 以 欲 求 圆 的 方 程 为 (x 2 2 10)2 (y 4)2 42 , 或 2 2 2 (x 2 2 10)2 (y 4)2 42 .上述误解只考虑了圆心在直线 y 0 上方的情形,而疏漏了圆心在直线 y 0下方的情形.另外,误解中没有考虑两圆 内切的情况.也是不全面的.例3 求经过点 A(0 , 5) ,且与直线 x 2y 0和2x y 0都相切的圆的方程.分析: 欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点 A ,故只需确定圆心坐标.又圆与两已知直 线相切,故圆心必在它们的交角的平分线上.解: ∵圆和直线 x 2y 0与 2x y 0相切, ∴圆心 C 在这两条直线的交角平分线上, 又圆心到两直线 x 2y 0和 2x y 0 的距离相等.∴x 2y x 2y .∴ 5 5 .∴两直线交角的平分线方程是 x 3y 0或 3x y 0. 又∵圆过点 A(0 ,5) ,∴圆心 C 只能在直线 3x y 0 上. 设圆心 C(t ,3t)∵ C 到直线 2x y 0 的距离等于 AC化简整理得 t 2 6t 5 0 .解得: t 1或 t 5∴圆心是 (1 , 3) ,半径为 5 或圆心是 (5 ,15) ,半径为 5 5 . ∴所求圆的方程为 (x 1)2 (y 3)2 5或 (x 5)2 (y 15)2 125.说明: 本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过 定点且与两已知直线相切的圆的方程的常规求法.例 4、 设圆满足: (1)截 y 轴所得弦长为 2; (2)被 x 轴分成两段弧,其弧长的比为 3:1,在满足条件 (1)(2)的所有圆中, 求圆心到直线 l :x 2y 0 的距离最小的圆的方程.分析: 要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个, 其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到 符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一: 设圆心为 P(a ,b) ,半径为 r . 则P 到 x 轴、 y 轴的距离分别为 b 和 a由题设知:圆截 x 轴所得劣弧所对的圆心角为 90 ,故圆截 x 轴所得弦长为 2r . 2∴r 2b 2又圆截 y 轴所得弦长为 2.2∴r a 2 1 .又∵ P(a ,b) 到直线 x 2y 0的距离为22a 2 4b 24ab2 2 2 2a 2 4b 2 2(a 2 b 2 )2b当且仅当 a b 时取“ =”号,此时 d mina b这时有2b 2 a 2 1a 1 a1或b 1b1又r22b 22∴ 5d 22a 2b2故所求圆的方程为(x 1)2 (y 1)2 2或(x 1)2 (y 1)2 2 解法二:同解法一,得a 2bd.5∴ a 2b 5d .2 2 2∴ a2 4b2 4 5bd 5d2.将a2 2b2 1代入上式得:222b2 4 5bd 5d2 1 0 .上述方程有实根,故28(5d 2 1) 0,∴d 5.5将d 5代入方程得b 1.5又2b2 a2 1 ∴ a 1.由a 2b 1 知a 、b 同号.故所求圆的方程为(x 1)2 (y 1)2 2或(x 1)2 (y 1)2 2 .说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例 5 已知圆O:x2 y2 4,求过点P 2,4 与圆O相切的切线.解:∵点P 2,4 不在圆O 上,∴切线PT 的直线方程可设为y k x 2 4根据d r∴2k 4 221 k3解得k343所以y 3 x 2 44即3x 4y 10 0因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0 解决(也要注意漏解) .还可以运用2x0x y0y r 2,求出切点坐标x0、y0的值来解决,此时没有漏解.例6 两圆C 1:x 2 y 2 D 1x E 1y F 1 0与C 2:x 2 y 2 D 2x E 2yF 2 0相交于 A 、 B 两点,求它们的公共弦AB 所在直线的方程.分析: 首先求 A 、 B 两点的坐标,再用两点式求直线 AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求,可以采用“设而不求”的技巧.解: 设两圆 C 1、C 2 的任一 交点坐标为 (x 0 , y 0) ,则有:22 x 0 y 0 D 1xE 1y 0F 1 0①22 x 0 yD 2x0 E 2 yF 2 0②①-②得: (D 1 D 2)x 0 (E 1 E 2)y 0 F 1F 2 0 .∵ A 、 B 的坐标满足方程(D 1 D 2)x(E 1 E 2)yF 1F 2 0 .∴方程 (D 1 D 2 )x (E 1E 2)yF 1 F 2是过 A 、 B 两点的直线方程又过 A 、 B 两点的直线是唯一的.∴两圆C 1、 C 2的公共弦 AB 所在直线的方程为 (D 1 D 2)x (E 1 E 2)yF 1 F 2 0.说明: 上述解法中,巧妙地避开了求 A 、 B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲 线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了 对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例 7、过圆 x 2 y 2 1外一点 M(2,3) ,作这个圆的两条切线 MA 、 MB ,切点分别是 A 、B ,求直线 AB 的方程。

2020年高考数学复习题:圆的方程

2020年高考数学复习题:圆的方程

圆的方程[基础训练]1.以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的方程为( )A .(x -2)2+(y +1)2=3B .(x +2)2+(y -1)2=3C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=9答案:C 解析:∵圆心(2,-1)到直线3x -4y +5=0的距离d =|6+4+5|5=3, ∴圆的半径为3,即圆的方程为(x -2)2+(y +1)2=9.2.方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( )A.14<m <1B .m <14或m >1C .m <14D .m >1 答案:B 解析:由D 2+E 2-4F =16m 2+4-20m >0,解得m >1或m <14.3.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .4答案:B 解析:根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m ,因为∠APB=90°,连接OP,易知|OP|=12|AB|=m,要求m的最大值,即求圆C上的点P到原点O的最大距离.因为|OC|=32+42=5,所以|OP|max=|OC|+r=6,即m的最大值为6.4.[2019湖南师大附中月考]已知圆x2+(y-1)2=2上任一点P(x,y),其坐标均使得不等式x+y+m≥0恒成立,则实数m的取值范围是()A.[1,+∞) B.(-∞,1]C.[-3,+∞) D.(-∞,-3]答案:A解析:∵x+y+m≥0,即m≥-x-y恒成立,∴只需求出-x-y的最大值即可.∵1=x2+(y-1)22≥⎝⎛⎭⎪⎫x+y-122,∴(x+y-1)2≤4,解得-2≤x+y-1≤2,即-1≤x+y≤3,∴-3≤-x-y≤1,∴-x-y的最大值是1,则m≥1,∴实数m的取值范围是[1,+∞).故选A.5.若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y=2的距离等于1,则半径r的取值范围是()A.(4,6) B.[4,6] C.[4,6) D.(4,6]答案:A解析:易求圆心(3,-5)到直线4x-3y=2的距离为5.令r=4,可知圆上只有一点到已知直线的距离为1;令r=6,可知圆上有三点到已知直线的距离为1,所以半径r在(4,6)之间取值符合题意.6.[2019河南豫西五校联考]在平面直角坐标系xOy中,以点(0,1)为圆心且与直线x-by+2b+1=0相切的所有圆中,半径最大的圆的标准方程为()A.x2+(y-1)2=4 B.x2+(y-1)2=2C.x2+(y-1)2=8 D.x2+(y-1)2=16答案:B解析:解法一:由题意,可得圆心(0,1)到直线x-by+2b+1=0的距离d=|1+b|1+b2=(1+b)21+b2=1+2b1+b2≤1+2|b|1+b2≤2,当且仅当b=1时等号成立,所以半径最大的圆的半径r=2,此时圆的标准方程为x2+(y-1)2=2.故选B.解法二:直线x-by+2b+1=0过定点P(-1,2),如图,∴圆与直线x-by+2b+1=0相切于点P时,圆的半径最大,为2,此时圆的标准方程为x2+(y-1)2=2,故选B.7.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为________.答案:4解析:如图所示,圆心M(3,-1)与定直线x=-3的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.8.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN =45°,则x0的取值范围是________.答案:[-1,1]解析:解法一:当x0=0时,M(0,1),由圆的几何性质,得在圆上存在点N(-1,0)或N(1,0),使∠OMN=45°.当x0≠0时,过M作圆的两条切线,切点为A,B,如图1.若在圆上存在N,使得∠OMN=45°,应有∠OMB≥∠OMN=45°,∴∠AMB≥90°,∴-1≤x0<0或0<x0≤1.综上,-1≤x0≤1.解法二:过O作OP⊥MN,P为垂足,如图2,OP =OM ·sin 45°≤1,∴OM ≤1sin 45°,∴OM 2≤2,∴x 20+1≤2,∴x 20≤1,∴-1≤x 0≤1.9.[2019银川模拟]已知P 是直线l :3x -4y +11=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,C 是圆心,那么四边形P ACB 面积的最小值是________. 答案:3 解析:圆的标准方程为(x -1)2+(y -1)2=1,圆心为C (1,1),半径r =1,根据对称性可知,四边形P ACB 的面积为2S △APC =2×12|P A |r =|P A |=|PC |2-r 2,要使四边形P ACB 的面积最小,则只需|PC |最小,最小为圆心到直线l :3x -4y +11=0的距离d =|3-4+11|32+(-4)2=105=2. 所以四边形P ACB 面积的最小值为|PC |2min -r 2=4-1= 3.10.[2019河南安阳一模]在平面直角坐标系xOy 中,点A (0,-3),若圆C :(x -a )2+(y -a +2)2=1上存在一点M 满足|MA |=2|MO |,则实数a 的取值范围是________.答案:[0,3] 解析:设满足|MA |=2|MO |的点的坐标为M (x ,y ), 由题意得x 2+(y +3)2=2x 2+y 2,整理得x 2+(y -1)2=4,即所有满足题意的点M 组成的轨迹方程是一个圆,原问题转化为圆x 2+(y -1)2=4与圆C :(x -a )2+(y -a +2)2=1有交点,据此可得关于实数a 的不等式组 ⎩⎪⎨⎪⎧a 2+(a -3)2≥1,a 2+(a -3)2≤3, 解得0≤a ≤3,综上可得,实数a 的取值范围是[0,3].11.[2019广东深圳3月联考]如图,直角三角形ABC 的顶点A 的坐标为(-2,0),直角顶点B 的坐标为(0,-22),顶点C 在x 轴上,点P 为线段OA 的中点.(1)求BC 边所在直线方程;(2)若M 为直角三角形ABC 外接圆的圆心,求圆M 的方程;(3)在(2)的条件下,若动圆N 过点P 且与圆M 内切,求动圆N 的圆心的轨迹方程.解:(1)易知k AB =-2,AB ⊥BC ,∴k CB =22,∴BC 边所在直线方程为y =22x -2 2.(2)由(1)及题意得C (4,0),∴M (1,0),又∵AM =3,∴外接圆M 的方程为(x -1)2+y 2=9.(3)∵圆N 过点P (-1,0),∴PN 是动圆的半径,又∵动圆N 与圆M 内切,∴MN =3-PN ,即MN +PN =3,∴点N 的轨迹是以M ,P 为焦点,长轴长为3的椭圆.∵P (-1,0),M (1,0),∴a =32,c =1,b =a 2-c 2=54,∴所求轨迹方程为x 294+y 254=1,即4x 29+4y 25=1.[强化训练]1.[2019广东七校联考]圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是( )A .2 3 B.203 C .4 D.163答案:D 解析:圆x 2+y 2+2x -6y +1=0的标准方程为(x +1)2+(y -3)2=9,∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,∴该直线经过圆心(-1,3),即-a -3b +3=0,∴a +3b =3(a >0,b >0).∴1a +3b =13(a +3b )⎝ ⎛⎭⎪⎫1a +3b =13⎝ ⎛⎭⎪⎫1+3a b +3b a +9 ≥13⎝ ⎛⎭⎪⎫10+23a b ·3b a =163, 当且仅当3b a =3a b ,即a =b 时等号成立,故选D.2.[2019江西新余五校3月联考]已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,当△OPQ 的面积最大时,直线l 的方程为( )A .x -y -3=0或7x -y -15=0B .x +y +3=0或7x +y -15=0C .x +y -3=0或7x -y +15=0D .x +y -3=0或7x +y -15=0答案:D 解析:当直线l 的斜率不存在时,l 的方程为x =2,则P ,Q 的坐标为(2,5),(2,-5),所以S △OPQ =12×2×25=2 5.当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝⎛⎭⎪⎫k ≠12, 则圆心到直线PQ 的距离d =|1-2k |1+k 2, 由平面几何知识,得|PQ |=29-d 2,S △OPQ =12·|PQ |·d =12·29-d 2·d=(9-d 2)d 2≤⎝ ⎛⎭⎪⎫9-d 2+d 222=92, 当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92. 因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92, 解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0.故选D.3.已知实数x ,y 满足x 2+y 2=4(y ≥0),则m =3x +y 的取值范围是( )A .(-23,4)B .[-23,4]C .[-4,4]D .[-4,23]答案:B 解析:由于y ≥0,所以x 2+y 2=4(y ≥0)为上半圆,3x +y -m =0是直线(如图),直线的斜率为-3,在y 轴上截距为m ,又当直线过点(-2,0)时,m =-23,设圆心O 到直线3x +y -m =0的距离为d ,所以⎩⎪⎨⎪⎧ m ≥-23,d ≤r ,即⎩⎪⎨⎪⎧ m ≥-23,|-m |2≤2,解得m ∈[-23,4].4.过点A (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围为( )A .(-∞,-3)∪(1,+∞)B.⎝ ⎛⎭⎪⎫-∞,32 C .(-3,1)∪⎝ ⎛⎭⎪⎫32,+∞ D .(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32 答案:D 解析:圆x 2+y 2-2ax +a 2+2a -3=0的圆心为(a,0),且a <32,并且(a ,a )在圆外,即有a 2>3-2a ,解得a <-3或a >1,所以a <-3或1<a <32.5.[2019福建厦门3月联考]若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3答案:B 解析:方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23. 又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34, ∴仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,故选B.6.[2019重庆九校联盟联考]设m ,θ∈R ,则(22-m -cos θ)2+(22+m -sin θ)2的最小值为( )A .3B .4C .9D .16答案:C 解析:(22-m -cos θ)2+(22+m -sin θ)2的几何意义是单位圆上的点与直线x +y -42=0上的点间的距离的平方,故其最小值为(4-1)2=9.故选C.7.[2019广东广州模拟]已知圆(x +3)2+y 2=64的圆心为M ,设A 为圆上任一点,点N 的坐标为(3,0),线段AN 的垂直平分线交MA 于点P ,则|PM ||PN |的取值范围是( )A.⎣⎢⎡⎦⎥⎤67,8B.⎣⎢⎡⎦⎥⎤25,6 C.⎣⎢⎡⎦⎥⎤17,7 D.⎣⎢⎡⎦⎥⎤14,4 答案:C 解析:圆(x +3)2+y 2=64的圆心为M ,设A 为圆上任一点,点N 的坐标为(3,0),线段AN 的垂直平分线交MA 于点P ,∴P 是AN 的垂直平分线上一点,∴|P A |=|PN |.又∵|AM |=8,∴点P 满足|PM |+|PN |=|AM |=8>6,即点P 满足椭圆的定义,焦点是(3,0),(-3,0),长半轴长a =4,∴点P 的轨迹方程为x 216+y 27=1,|PM |+|PN |=8,|PM ||PN |=8-|PN ||PN |=8|PN |-1.∵1≤|PN |≤7,∴8|PN |∈⎣⎢⎡⎦⎥⎤87,8, ∴|PM ||PN |∈⎣⎢⎡⎦⎥⎤17,7, 故选C.8.圆x 2+y 2-4x +4y +6=0上的动点M 到坐标原点的距离的最大值、最小值分别是________,________.答案:322 解析:因为圆心是A (2,-2),半径是2,又AO =22,所以动点M 到坐标原点的距离的最大值、最小值分别是22+2=32,22-2= 2.9.[2019湖南师大附中模拟改编]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A 为圆心的圆与直线y =b a x 相交于P ,Q 两点,且AP →·AQ →=0,OP →=3OQ →.则椭圆C 的标准方程和圆A 的方程分别为________,________.答案:x 24+y 2=1 (x -2)2+y 2=85 解析:如图,设T 为线段PQ的中点,连接AT ,则AT ⊥PQ .∵AP →·AQ →=0,即AP ⊥AQ ,∴|AT |=12|PQ |.又OP →=3OQ →,∴|OT |=|PQ |.∴|AT ||OT |=12,即b a =12.由已知c =3,∴a 2=4,b 2=1,故椭圆C 的方程为x 24+y 2=1.又|AT |2+|OT |2=4,∴|AT |2+4|AT |2=4,∴|AT |=255,r =|AP |=2105.∴圆A 的方程为(x -2)2+y 2=85. 10.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M 的坐标为(m ,n )(m ≠-2),求n -3m +2的最大值和最小值. 解:(1)由题意知,圆C 的标准方程为(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2.∵|QC |=[2-(-2)]2+(7-3)2=42>22,∴|MQ |max =42+22=62,|MQ |min =42-22=2 2.(2)易知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2)⎝⎛⎭⎪⎫k =n -3m +2, 即直线MQ 的方程为kx -y +2k +3=0.由题意知,当直线MQ 与圆C 相切时取得最值, 则|7-2k -2k -3|1+k2=22, 解得k =2-3或k =2+3,则k =n -3m +2的最大值和最小值分别为2+3,2- 3. 11.[2016江苏卷]如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程;(3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.解:圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5.(1)由圆心N 在直线x =6上,可设N (6,y 0).因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,于是圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2. 设直线l 的方程为y =2x +m ,即2x -y +m =0,则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为BC =OA =22+42=25,而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22, 所以25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.(3)设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t,0),TA →+TP →=TQ →,所以⎩⎪⎨⎪⎧x 2=x 1+2-t ,y 2=y 1+4.①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-5≤[(t+4)-6]2+(3-7)2≤5+5,解得2-221≤t≤2+221.因此,实数t的取值范围是[2-221,2+221 ].。

高中数学(人教A版)选择性必修一课后习题:圆的标准方程(课后习题)【含答案及解析】

高中数学(人教A版)选择性必修一课后习题:圆的标准方程(课后习题)【含答案及解析】

圆的方程圆的标准方程 课后篇巩固提升必备知识基础练1.已知圆的方程是(x-2)2+(y-3)2=4,则点P (3,2)( )A.是圆心B.在圆上C.在圆内D.在圆外(3-2)2+(2-3)2=2<4,∴点P 在圆内.2.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程是( ) A.(x+1)2+(y-3)2=29 B.(x+1)2+(y-3)2=116 C.(x-1)2+(y+3)2=29 D.(x-1)2+(y+3)2=116A (-4,-5),B (6,-1),所以线段AB 的中点为C (1,-3),所求圆的半径r=12|AB|=12√102+42=√29,所以以线段AB 为直径的圆的方程是(x-1)2+(y+3)2=29,故选C .3.方程x=√1-y 2表示的图形是( ) A.两个半圆 B.两个圆 C.圆 D.半圆x ≥0,方程两边同时平方并整理得x 2+y 2=1,由此确定图形为半圆,故选D .4.一个动点在圆x 2+y 2=1上移动时,它与定点A (3,0)的连线中点的轨迹方程是( ) A.(x+3)2+y 2=4 B.(x-3)2+y 2=1 C.(2x-3)2+4y 2=1D.x+322+y 2=12M (x 0,y 0)为圆上的动点,则有x 02+y 02=1,设线段MA 的中点为P (x ,y ),则x=x 0+32,y=y 0+02,则x 0=2x-3,y 0=2y ,代入x 02+y 02=1,得(2x-3)2+(2y )2=1,即(2x-3)2+4y 2=1.5.圆(x-2)2+(y+3)2=2的圆心是 ,半径是 .-3) √26.圆(x+1)2+y 2=5关于直线y=x 对称的圆的标准方程为 .(x+1)2+y 2=5的圆心坐标为(-1,0),它关于直线y=x 的对称点坐标为(0,-1),即所求圆的圆心坐标为(0,-1),所以所求圆的标准方程为x 2+(y+1)2=5.2+(y+1)2=57.若直线3x-4y+12=0与两坐标轴交点为A ,B ,则以线段AB 为直径的圆的方程是 .解析由题意得A (0,3),B (-4,0),AB 的中点-2,32为圆的圆心,直径AB=5,以线段AB 为直径的圆的标准方程为(x+2)2+y-322=254.答案(x+2)2+y-322=2548.已知圆M 过A (1,-1),B (-1,1)两点,且圆心M 在直线x+y-2=0上. (1)求圆M 的方程;(2)若圆M 上存在点P ,使|OP|=m (m>0),其中O 为坐标原点,求实数m 的取值范围.设圆M 的方程为(x-a )2+(y-b )2=r 2(r>0),根据题意得{a +b -2=0,(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,解得{a =1,b =1,r =2,所以圆M 的方程为(x-1)2+(y-1)2=4. (2)如图,m=|OP|∈[2-√2,2+√2].关键能力提升练9.若直线y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,则k ,b 的值分别为( ) A.12,-4B.-12,4C.12,4D.-12,-4y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,直线2x+y+b=0的斜率为-2,所以k=12,并且直线2x+y+b=0经过已知圆的圆心,所以圆心(2,0)在直线2x+y+b=0上,所以4+0+b=0,所以b=-4.故选A .10.已知圆O :x 2+y 2=1,点A (-2,0)及点B (2,a ),从A 点观察B 点,要使视线不被圆O 挡住,则实数a 的取值范围是( ) A .(-∞,-1)∪(-1,+∞) B .(-∞,-2)∪(2,+∞) C .-∞,-4√33∪4√33,+∞D .(-∞,-4)∪(4,+∞)方法1)(直接法)写出直线方程,将直线与圆相切转化为点到直线的距离来解决.过A ,B 两点的直线方程为y=a 4x+a 2, 即ax-4y+2a=0, 令d=√a 2+16=1,化简后,得3a 2=16,解得a=±4√33.再进一步判断便可得到正确答案为C . (方法2)(数形结合法)如图,设直线AB 切圆O 于点C 在Rt △AOC 中,由|OC|=1,|AO|=2,可求出∠CAO=30°.在Rt △BAD 中,由|AD|=4,∠BAD=30°,可求得BD=4√33,再由图直观判断,故选C .11.(2020四川成都石室中学高二上期中)已知实数x ,y 满足x 2+y 2=1,则√3x+y 的取值范围是( ) A.(-2,2) B.(-∞,2] C.[-2,2]D.(-2,+∞)解析因为x 2+y 2=1,所以设x=sin α,y=cos α,则√3x+y=√3sin α+cos α=2sin α+π6,所以√3x+y 的取值范围是[-2,2].故选C .12.(多选题)若经过点P (5m+1,12m )可以作出圆(x-1)2+y 2=1的两条切线,则实数m 的取值可能是( ) A.110B.113C.-113D.-12P 可作圆的两条切线,说明点P 在圆的外部,所以(5m+1-1)2+(12m )2>1,解得m>113或m<-113,对照选项知AD 可能.13.(多选题)设有一组圆C k :(x-k )2+(y-k )2=4(k ∈R ),下列命题正确的是( ) A.不论k 如何变化,圆心C 始终在一条直线上 B.所有圆C k 均不经过点(3,0) C.经过点(2,2)的圆C k 有且只有一个 D.所有圆的面积均为4π(k ,k ),在直线y=x 上,故A 正确;令(3-k )2+(0-k )2=4,化简得2k 2-6k+5=0,∵Δ=36-40=-4<0,∴2k 2-6k+5=0无实数根,故B 正确;由(2-k )2+(2-k )2=4,化简得k 2-4k+2=0,∵Δ=16-8=8>0,有两个不等实根,∴经过点(2,2)的圆C k 有两个,故C 错误;由圆的半径为2,得圆的面积为4π,故D 正确.故选ABD .14.已知点A (8,-6)与圆C :x 2+y 2=25,P 是圆C 上任意一点,则|AP|的最小值是 .82+(-6)2=100>25,故点A 在圆外,从而|AP|的最小值为√82+(-6)2-5=10-5=5.15.已知圆C 的半径为2,圆心在x 轴的正半轴上,且圆心到直线3x+4y+4=0的距离等于半径长,则圆C 的标准方程为 .(a ,0),且a>0,则点(a ,0)到直线3x+4y+4=0的距离为2,即|3×a+4×0+4|√3+4=2,所以3a+4=±10,解得a=2或a=-143(舍去),则圆C 的标准方程为(x-2)2+y 2=4.x-2)2+y 2=416.矩形ABCD 的两条对角线相交于点M (2,1),AB 边所在直线的方程为x-2y-4=0,点T (-1,0)在AD 边所在直线上.(1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.因为AB 边所在直线的方程为x-2y-4=0,且AD 与AB 垂直,所以直线AD 的斜率为-2.又因为点 T (-1,0)在直线AD 上,所以AD 边所在直线的方程为y-0=-2(x+1),即2x+y+2=0.(2)由{x -2y -4=0,2x +y +2=0,解得{x =0,y =-2,所以点A 的坐标为(0,-2),因为矩形ABCD 两条对角线的交点为M (2,1),所以M 为矩形外接圆的圆心.又|AM|=√(2-0)2+(1+2)2=√13,从而矩形ABCD 外接圆的方程为(x-2)2+(y-1)2=13.学科素养创新练17.设A (x A ,y A ),B (x B ,y B )为平面直角坐标系内的两点,其中x A ,y A ,x B ,y B ∈Z .令Δx=x B -x A ,Δy=y B -y A ,若|Δx|+|Δy|=3,且|Δx|·|Δy|≠0,则称点B 为点A 的“相关点”,记作B=τ(A ). (1)求点(0,0)的“相关点”的个数.(2)点(0,0)的所有“相关点”是否在同一个圆上?若在,写出圆的方程;若不在,请说明理由.因为|Δx|+|Δy|=3(Δx ,Δy 为非零整数),所以|Δx|=1,|Δy|=2或|Δx|=2,|Δy|=1,所以点(0,0)的“相关点”有8个.(2)是.设点(0,0)的“相关点”的坐标为(x ,y ).由(1)知|Δx|2+|Δy|2=5,即(x-0)2+(y-0)2=5,所以所有“相关点”都在以(0,0)为圆心,√5为半径的圆上,所求圆的方程为x 2+y 2=5.。

圆的方程练习题

圆的方程练习题

圆的方程练习题一、选择题1. 已知圆心在(2,-3),半径为5的圆的方程是:A. \((x-2)^2+(y+3)^2=25\)B. \((x+2)^2+(y-3)^2=25\)C. \((x-2)^2+(y-3)^2=25\)D. \((x+2)^2+(y+3)^2=25\)2. 圆 \(x^2+y^2=9\) 与直线 \(y=x\) 相切,那么圆心到直线的距离是:A. 1B. 3C. \(\sqrt{2}\)D. \(\sqrt{3}\)3. 圆 \((x-1)^2+(y+2)^2=25\) 与 \(x\) 轴相交于两点,这两点的坐标分别是:A. (1, 2) 和 (1, -2)B. (6, 0) 和 (-4, 0)C. (4, 0) 和 (-2, 0)D. (3, 0) 和 (-2, 0)二、填空题4. 圆心在原点,半径为4的圆的方程是________。

5. 已知圆 \(x^2+y^2+Dx+Ey+F=0\) 与 \(y\) 轴相切,圆心在 \(x\) 轴上,且半径为1,求D和E的值。

6. 若圆 \((x-a)^2+(y-b)^2=r^2\) 经过点 (1,1),则a和b的值分别是________。

三、简答题7. 求经过点A(2,3)和B(-2,-3)的圆的方程。

8. 已知圆 \(x^2+y^2-4x-6y-10=0\),求该圆的圆心和半径。

9. 若圆 \(x^2+y^2-6x-8y+m=0\) 与 \(x\) 轴相切,求m的值。

四、解答题10. 已知圆 \(x^2+y^2-2x-4y-10=0\),求圆心、半径,并判断圆与直线 \(y=2x\) 是否相交。

11. 圆 \(x^2+y^2=9\) 内有一点P(1,1),求过点P的所有圆的切线方程。

12. 已知圆 \((x-3)^2+(y+1)^2=25\),求该圆上所有到直线\(2x+3y-5=0\) 距离为 \(\sqrt{2}\) 的点的坐标。

圆解方程练习题带答案

圆解方程练习题带答案

圆解方程练习题带答案解方程是数学中重要的内容之一,帮助我们理解数学概念并解决实际问题。

在解方程的学习过程中,练习题是不可或缺的一部分。

本文将提供一些圆解方程的练习题及其答案,帮助读者加深对圆解方程的理解。

练习题1:已知圆的半径为3,求圆的面积。

解答:圆的面积公式为:S = π * r^2将半径r代入公式中,得到:S = π * 3^2S = π * 9S = 9π练习题2:已知圆心坐标为(2, 4),半径为5,求圆的方程。

解答:圆的方程为:(x - a)^2 + (y - b)^2 = r^2其中,(a, b)为圆心坐标,r为半径。

将已知数据代入方程中,得到:(x - 2)^2 + (y - 4)^2 = 5^2x^2 - 4x + 4 + y^2 - 8y + 16 = 25x^2 + y^2 - 4x - 8y - 5 = 0练习题3:已知圆心坐标为(-1, 2),过点(4, 1)的直线与圆交于两个点,求这两个点的坐标。

解答:设圆心为C(-1, 2),过点(4, 1)的直线为l。

首先求直线l的方程:设直线l的斜率为k。

k = (1 - 2) / (4 - (-1)) = -1/5直线l的方程为:y = -1/5 * x + b将过圆心C的直线l带入圆的方程中,求得交点:(-1)^2 + (2 - (-1)/5 * x + b)^2 = r^2x^2 - 2/5x + 2 - 2/5b + b^2 = r^2将直线l的方程代入上式中,得到:x^2 - 2/5x + 2 - 2/5(-1/5 * x + b) + b^2 = r^2x^2 - 2/5x + 2 + 2/25x - 2/25b + b^2 = r^2整理得:(1 + 2/25)x^2 + (-2/5 + 2/25b - 2/25x)x + (2 + b^2) - r^2 = 0令A = 1 + 2/25,B = -2/5 + 2/25b - 2/25x,C = 2 + b^2 - r^2则上式可化为:Ax^2 + Bx + C = 0由已知直线l与圆交于两个点可得到两个解,即求二次方程Ax^2 + Bx + C = 0的解。

圆的方程练习题

圆的方程练习题

圆的方程练习题1.求过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程. 【答案】()()22114x y -+-=.【解析】试题分析:由,A B 的坐标计算可得AB 的垂直平分线方程y x =,进而得到:{20y xx y =+-=,解可得,x y 的值,即可得圆心坐标,而圆的半径22r ==,代入圆的标准方程计算即可得到答案。

解析:由已知得线段AB 的中点坐标为()0,0,所以()11111AB k --==---所以弦AB 的垂直平分线的斜率为1k =, 所以AB 的垂直平分线方程为y x = 又圆心在直线20x y +-=上,所以{ 20y x x y =+-= 解得1{ 1x y == 即圆心为()1,1圆的半径为22r ==所以圆的方程为()()22114x y -+-=.2.若圆过A (2,0),B (4,0),C (0,2)三点,求这个圆的方程. 【答案】x 2+y 2﹣6x ﹣6y+8=0【解析】试题分析:设所求圆的方程为220,x y Dx Ey F ++++=将()2,0A ,()()4,0,0,2B C三点代入,即可求得圆的方程。

解析:设所求圆的方程为x 2+y 2+Dx+Ey+F=0,则有4+20{1640 240D F D F E F +=++=++=①②③②﹣①得:12+2D=0,∴D=﹣6 代入①得:4﹣12+F=0,∴F=8代入③得:2E+8+4=0,∴E=﹣6 ∴D=﹣6,E=﹣6,F=8∴圆的方程是x 2+y 2﹣6x ﹣6y+8=03.已知圆经过()()2,5,2,1-两点,并且圆心在直线12y x =上。

(1)求圆的方程;(2)求圆上的点到直线34230x y -+=的最小距离。

【答案】(1)()()222116x y -+-=.(2)1【解析】试题分析:(1)设出圆的一般方程,利用待定系数法求解;(2)结合几何图形,先求出圆心到直线的距离,再减去半径的长度即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的方程练习题答案
A级基础演练
一、选择题
1.(2013·济宁一中月考)若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为
( ).A.-1 B.1 C.3 D.-3
解析化圆为标准形式(x+1)2+(y-2)2=5,圆心为(-1,2).∵直线过圆心,∴3×(-
1)+2+a=0,∴a=1.
答案 B
2.(2013·太原质检)设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,则原点与圆的位置关系是 ( ).
A.原点在圆上B.原点在圆外
C.原点在圆内D.不确定
解析将圆的一般方程化为标准方程(x+a)2+(y+1)2=2a,因为0<a<1,所以(0+a)2+(0+1)2-2a=(a-1)2>0,所以原点在圆外.
答案 B
3.圆(x+2)2+y2=5关于直线y=x对称的圆的方程为 ( ).A.(x-2)2+y2=5 B.x2+(y-2)2=5
C.(x+2)2+(y+2)2=5 D.x2+(y+2)2=5
解析由题意知所求圆的圆心坐标为(0,-2),所以所求圆的方程为x2+(y+2)2=5.
答案 D
4.(2013·郑州模拟)动点P到点A(8,0)的距离是到点B(2,0)的距离的2倍,则动点P的轨迹方程为 ( ).
A.x2+y2=32 B.x2+y2=16
C.(x-1)2+y2=16 D.x2+(y-1)2=16
解析设P(x,y),则由题意可得:2x-22+y2=x-82+y2,化简整理得x2+y2=16,故选B.
答案 B
二、填空题
5.以A(1,3)和B(3,5)为直径两端点的圆的标准方程为________.
解析 由中点坐标公式得AB 的中点即圆的圆心坐标为(2,4),再由两点间的距离公式得圆的半径为
4-3
2

2-1
2
=2,故圆的标准方程为(x -2)2+(y -4)2
=2.
答案 (x -2)2
+(y -4)2
=2
6.已知直线l :x -y +4=0与圆C :(x -1)2
+(y -1)2
=2,则圆C 上各点到l 的距离的最小值为________.
解析 由题意得C 上各点到直线l 的距离的最小值等于圆心(1,1)到直线l 的距离减去半径,即|1-1+4|2-2= 2.
答案
2
三、解答题
7.(12分)求适合下列条件的圆的方程:
(1)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2); (2)过三点A (1,12),B (7,10),C (-9,2).
解 (1)法一 设圆的标准方程为(x -a )2
+(y -b )2
=r 2

则有⎩⎪⎨⎪⎧
b =-4a ,
3-a 2
+-2-b 2
=r 2

|a +b -1|
2=r ,
解得a =1,b =-4,r =2 2. ∴圆的方程为(x -1)2
+(y +4)2
=8.
法二 过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4). ∴半径r =
1-3
2
+-4+2
2
=22,
∴所求圆的方程为(x -1)2
+(y +4)2
=8.
(2)法一 设圆的一般方程为x 2
+y 2
+Dx +Ey +F =0, 则⎩⎪⎨⎪

1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0.
解得D =-2,E =-4,F =-95.
∴所求圆的方程为x 2
+y 2
-2x -4y -95=0. 法二 由A (1,12),B (7,10), 得AB 的中点坐标为(4,11),k AB =-13,
则AB 的垂直平分线方程为3x -y -1=0.
同理得AC 的垂直平分线方程为x +y -3=0.
联立⎩⎪⎨
⎪⎧
3x -y -1=0,x +y -3=0
得⎩⎪⎨⎪⎧
x =1,
y =2,
即圆心坐标为(1,2),半径r =
1-12
+2-12
2
=10.
∴所求圆的方程为(x -1)2
+(y -2)2
=100.
8.(13分)已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410. (1)求直线CD 的方程; (2)求圆P 的方程.
解 (1)直线AB 的斜率k =1,AB 的中点坐标为(1,2), ∴直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0. ①
又直径|CD |=410,∴|PA |=210, ∴(a +1)2
+b 2
=40,

由①②解得⎩
⎪⎨
⎪⎧
a =-3,
b =6或⎩
⎪⎨
⎪⎧
a =5,
b =-2.
∴圆心P (-3,6)或P (5,-2),
∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40
P。

相关文档
最新文档