多元统计分析复习整理

合集下载

多元统计复习

多元统计复习

1、回归分析1、回归方程的基本假定?①回归函数的线性假设②误差项的等方差假设③误差项的独立性假设④误差项的正态分布的假设2、涉及到回归分析方程系数为何作显著性检验?在进行显著性的检验中,我们可以用F统计量来检验回归方程的显著性,也可以用P值法做检验.回归方程通过了显著性检验并不意味着每一个自变量都对应变量有显著的影响,可能其中的某个或某些自变量对应变量的影响并不显著,我们自然希望从回归方程中剔除那些对应变量影响并不显著的自变量,从而建立一个较为简单有效的回归方程,这就需要对每一个自变量进行考察.显然,若某个自变量对应变量无影响,那么在线性回归模型中,它的系数为零.那么我们就检验选取的自变量的影响是否显著等价于检验假设根据分布的定义,有,这里,对于给定的显著性水平,当时,我们拒绝,反之就接受,在SPSS软件的输出结果中,可以直接从P值看出检验结果,那么我们拒绝的P值区间是多少呢?3、统计性的依据是什么?给出一个回归分析方程如何作显著性检验?统计性的依据方差分析对于多元线性回归作显著性检验就是要看自变量从整体上对随机变量y 是否有明显的影响,即检验假设如果被接受,则表明y与之间不存在线性关系,为了说明如何进行检验,我们要首先建立方差分析表.在进行显著性的检验中,我们可以用F统计量来检验回归方程的显著性,也可以用P值法做检验.F统计量是:当为真时,,给定显著性水平α,查F分布表得临界值,计算F的观测值,若,则接受,即认为在显著性水平α之下,认为y与之间线性关系不显著.利用P值法作显著性检验十分方便,这里的P值是,定显著性水平α.,若,则拒绝,反之接受.4、回归分析和相关分析的区别和联系?相关分析和回归分析都是对客观事物数量依存关系的分析,均有一元和多元,线性与非线性之分,在应用中相互结合与渗透,但仍有差别,主要是:①相关分析主要刻画两类变量间线性相关的密切程度,而回归分析则是揭示一个变量如何与其他的变量相联系,并可由回归方程进行控制和预测②在相关分析在中,变量y与x处于平等的地位,在回归分析中,因变量y处于被解释的特殊地位③在相关分析中所涉及的变量y与x完全是随机变量;而在回归分析中因变量y是随机变量,自变量可以是随机变量,也可以是非随机变量.一般来说,只有存在相关关系,才可以进行回归分析,相关程度越高,回归分析的结果就越可靠.5、运用回归分析解决问题时,回归变量的选择理论依据是什么?选择回归变量时应注意哪些问题?1 从拟合角度考虑,可以采用修正的复相关系数达到最大的准则。

多元统计分析复习题

多元统计分析复习题

多元统计分析复习题一、填空题1、设有n 个一维数据:12,,...,n x x x ,则均值x -=________,方差2_____________s =。

若将它们从小到大记为(1)(2)(),,...,n x x x ,中位数M=______________________,极差R=______________。

2、请指出下面SPSS 软件操作分别代表多元统计分析中什么分析: (1)Analysis→Classify→Discriminant (2)Analysis→Data Reduction →Factor3、系统聚类法是在聚类分析的开始,每个样本自成 ________ ;然后 ,按照某种方法度量所有样本之间的亲疏程度,并把最相似的样本首先聚成一小类;接下来,度量剩余的样本和小类间的___________,并将当前最接近的样本或小类再聚成一类;如此反复,直到所有样本聚成一类为止。

4、设12(0,1),,,...,in N ξξξξ且相互独立,则n21n212_______;________ii ii ξξξ==∑∑。

5、在线性回归模型中,设因变量Y 与自变量121,,...,p XX X -的n 组观测数据为1,1(;,...,)(1,2,...,i i i p y x x i n -=),记11nii y y n ==∑,线性拟合值0111,1ˆˆˆˆ...i i p i p y x x βββ--=+++,则总离差平方和___________SST =,残差平方和___________SSE =,回归平方和__________SSR =,三者之间关系为___________________。

6、设x,y 是来自均值向量为μ,协方差矩阵为∑的总体G 的两个样品,则x,y之间的马氏平方距离2(,)______________d x y =;x 与总体G 的马氏平方距离2(,)______________d x G =。

多元统计分析期末考试考点整理

多元统计分析期末考试考点整理

二名词解释1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。

将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。

使类内对象的同质性最大化和类间对象的异质性最大化3、随机变量:是指变量的值无法预先确定仅以一定的可能性(概率)取值的量。

它是由于随机而获得的非确定值,是概率中的一个基本概念。

即每个分量都是随机变量的向量为随机向量。

类似地,所有元素都是随机变量的矩阵称为随机矩阵。

4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量三、计算题解:答:答:题型三解答题1、简述多元统计分析中协差阵检验的步骤答:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。

2、简述一下聚类分析的思想答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。

把相似的样品或指标归为一类,把不相似的归为其他类。

直到把所有的样品(或指标)聚合完毕.3、多元统计分析的内容和方法答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。

(1)主成分分析(2)因子分析(3)对应分析等2、分类与判别,对所考察的变量按相似程度进行分类。

(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。

多元统计分析简答题汇总

多元统计分析简答题汇总

1、简述多元统计分析中协差阵检验的步骤 第一,提出待检验的假设H0和H1; 第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域; 第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。

协差阵的检验检验0=ΣΣ0p H =ΣI : /2/21exp 2np n e tr n λ⎧⎫⎛⎫=-⎨⎬ ⎪⎩⎭⎝⎭S S00p H =≠ΣΣI : /2/2**1exp 2np n e tr n λ⎧⎫⎛⎫=-⎨⎬ ⎪⎩⎭⎝⎭S S检验12k ===ΣΣΣ012k H ===ΣΣΣ:统计量/2/2/2/211i i kkn n pn np k ii i i n n λ===∏∏S S2. 针对一个总体均值向量的检验而言,在协差阵已知和未知的两种情形下,如何分别构造的统计量?3. 作多元线性回归分析时,自变量与因变量之间的影响关系一定是线性形式的吗?多元线性回归分析中的线性关系是指什么变量之间存在线性关系? 答:作多元线性回归分析时,自变量与因变量之间的影响关系不一定是线性形式。

当自变量与因变量是非线性关系时可以通过某种变量代换,将其变为线性关系,然后再做回归分析。

多元线性回归分析的线性关系指的是随机变量间的关系,因变量y 与回归系数βi 间存在线性关系。

多元线性回归的条件是:(1)各自变量间不存在多重共线性; (2)各自变量与残差独立;(3)各残差间相互独立并服从正态分布; (4)Y 与每一自变量X 有线性关系。

4.回归分析的基本思想与步骤 基本思想:所谓回归分析,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。

回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。

多元统计分析期末复习

多元统计分析期末复习

第一章、多元正态分布的参数估计二、判断题1.多元分布函数是单调不减函数,而且是右连续的。

(√ )()x F 2.设是维随机向量,则服从多元正态分布的充要条件是:它的任何组合X p X 都是一元正态分布。

(X )()p R X ∈'αα3.是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质:μ(1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B (√ )4.若P 个随机变量X1,…XP 的联合分布等于各自边缘分布的乘积,则称X1,…XP 是相互独立的。

(√ )5.一般情况下,对任何随机向量,协差阵是对称阵,也()'=p X X X ,,1 ∑是正定阵。

(X )6.多元正态向量的任意线性变换仍然服从多元正态分布。

()'=p X X X ,,1 (√)7.多元正态分布的任何边缘分布为正态分布,反之一样。

( X )8.多元样本中,不同样品之间的观测值一定是相互独立的。

(√)9.多元正态总体参数均值的估计量具有无偏性、有效性和一致性。

(√)μX 10.是的无偏估计。

( X )S n 1∑11.Wishart 分布是分布在维正态情况下的推广。

(√)2χp 12.若,,且相互独立,则样本离差阵()()∑,~μαp N X n ,,1 =α。

(√)()()()()()∑-'--=∑=,1~1n W X X X X S n p ααα13.若,为奇异矩阵,则。

( X )()∑,~n W X p C ()c c n W C CX p '∑',~第二章 多元正态分布均值向量和协差阵的检验二、判断题1.设,,,则称统计量的分布为()∑,~μp N X ()∑,~n W S p p n ≥X S X n T 12-'=非中心分布,记为。

( X )2HotellingT ()μ,,~22n p T T 2.在协差阵未知的情况下对均值向量进行检验,需要用样本协差阵去代∑S n1替。

多元统计分析复习整理

多元统计分析复习整理

一、聚类分析的基本思想:我们认为,所研究的样品或指标之间存在着程度不同的相似性。

根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间的相似程度的统计量,以这些统计量为划分类型的依据,把一些相似程度较大的样品聚合为一类,把另一些彼此之间相似程度较大的样品又聚合到另外一类。

把不同的类型一一划分出来,形成一个由小到大的分类系统。

最后,用分群图把所有的样品间的亲疏关系表示出来。

二、聚类分析的方法系统聚类法、模糊聚类法、K-均值法、有序样品的聚类、分解法、加入法三、系统聚类法的种类最短距离法、最长距离法、重心法、类平均法、离差平方和法四、判别分析的基本思想判别分析用来解决被解释变量是非度量变量的情形,预测和解释影响一个对象所属类别。

识别一个个体所属类别的情况下有着广泛的应用判别分析将对象进行分析,通过人们选择的解释变量来预测或者解释每个对象的所属类别。

五、判别分析的假设条件判别分析的假设条件之一是每一个判别变量不能是其他判别变量的线性组合;判别分析的假设之二是各组变量的协方差矩阵相等。

判别分析最简单和最常用的形式是采用线性判别函数。

判别分析的假设之三是各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布。

当违背该假设时,计算的概率将非常的不准确。

六、判别分析的方法距离判别法、Bayes判别法、Fisher判别法、逐步判别法七、距离判别法的判别准则设有两个总体1G 和2G ,x 是一个p 维样品,若能定义样品到总体1G 和2G 的距离d (x ,1G )和d (x ,2G ),则用如下规则进行判别:若样品x 到总体1G 的距离小于到总体2G 的距离,则认为样品x 属于总体1G ,反之,则认为样品x 属于总体样品x 属于总体2G ,若样品x 到总体1G 和2G 的距离相等,则让它待判。

八、Fisher 判别的思想Fisher 判别的思想是投影,将k 组p 维数据投影到某一个方向,使的它们的投影与组之间尽可能地分开。

多元统计分析期末考试考点

多元统计分析期末考试考点

多元统计分析期末考试考点The following text is amended on 12 November 2020.二名词解释1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。

将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。

使类内对象的同质性最大化和类间对象的异质性最大化3、随机变量:是指的值无法预先确定仅以一定的可能性(概率)取值的量。

它是由于随机而获得的非确定值,是概率中的一个基本概念。

即每个分量都是随机变量的向量为随机向量。

类似地,所有元素都是随机变量的矩阵称为随机矩阵。

4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量三、计算题解:答:答:题型三解答题1、简述多元统计分析中协差阵检验的步骤答:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。

2、简述一下聚类分析的思想答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。

把相似的样品或指标归为一类,把不相似的归为其他类。

直到把所有的样品(或指标)聚合完毕.3、多元统计分析的内容和方法答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。

(1)主成分分析(2)因子分析(3)对应分析等2、分类与判别,对所考察的变量按相似程度进行分类。

天津市考研统计学复习资料多元统计分析重点知识点梳理

天津市考研统计学复习资料多元统计分析重点知识点梳理

天津市考研统计学复习资料多元统计分析重点知识点梳理多元统计分析是统计学的一个重要分支,主要研究多个变量之间的关系。

在天津市考研统计学考试中,多元统计分析是一个重要的考点。

本文将为大家梳理多元统计分析的重点知识点,帮助大家更好地复习。

一、多元统计分析的基本概念多元统计分析是指研究多个变量之间关系的一种统计方法。

基本概念包括变量、样本、总体以及数据矩阵等。

变量是研究对象的属性或特征,可以分为自变量和因变量。

样本是从总体中抽取出来的一部分观察对象。

总体是包含所有观察对象的集合,数据矩阵则是由多个变量构成的数据表格。

二、多元统计分析的基本假设多元统计分析中,基本的假设包括正态性、方差齐性、线性关系和独立性。

正态性假设要求变量呈正态分布;方差齐性假设要求不同组之间的方差相等;线性关系假设要求变量之间存在线性关系;独立性假设要求各个样本之间是相互独立的。

三、多元统计分析的方法多元统计分析的方法包括主成分分析、因子分析、聚类分析、判别分析以及多元方差分析等。

主成分分析是一种降维技术,可以将多个变量转化为少数几个主成分;因子分析是一种变量提取技术,用于研究隐藏在观测变量背后的潜在因素;聚类分析是一种将样本按照某种相似性划分为不同群体的方法;判别分析是一种用于分类的方法,可以根据已知类别的样本训练分类模型,然后对未知类别的样本进行分类;多元方差分析是用于研究多个因素对多个变量的影响的方法。

四、多元统计分析的应用领域多元统计分析在实际应用中有广泛的应用领域。

比如,在金融风险管理领域,可以利用因子分析来识别和度量风险因子;在市场调研和消费者行为研究中,可以利用聚类分析来对消费者进行划分和分类;在医学研究中,可以利用判别分析来辅助诊断疾病。

五、多元统计分析的局限性多元统计分析也存在一定的局限性。

首先,多元统计分析的结果可能受到数据质量和样本分布的影响。

其次,多元统计分析的结果只是对样本的推断,不能直接推广到整个总体。

此外,多元统计分析的结果需要结合实际情况进行解释和分析,不能仅仅依赖统计指标。

多元统计分析期末复习

多元统计分析期末复习

多元统计分析期末复习第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系)(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X均值向量:随机向量X与Y的协方差矩阵:当X=Y时Cov(X,Y) =D(X);当Cov( X,Y)=0,称X,Y不相关。

随机向量X与Y的相关系数矩阵:2、均值向量协方差矩阵的性质(1) .设X,Y为随机向量,A,B为常数矩阵E ( AX)二AE( X);E ( AXB =AE (X)B;D(AX)=AD(X)A ';Cov(AX,B Y)二ACov(X, Y)EX ' ( EX^EX?, , EX p) ( 2,…,P )'cov( X ,Y ) E ( X EX )( YEY )' (2) .若X,Y独立,则Cov(X,Y) =0,反之不成立.(X,Y) (r j)pq(3) .X的协方差阵D(X)是对称非负定矩阵。

例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质特别地,当为对角阵时,相互独立。

(2) .若,、为sxp阶常数矩阵,d为s阶向量,AX+ d?即正态分布的线性函数仍是正态分布.(3) .多元正态分布的边缘分布是正态分布,反之不成立.(4) .多元正态分布的不相关与独立■等价.,X pX ~ N p(,) '例3 .见黑板.N s( A d , A A )三、多元正态分布的参数估计⑴“为来自p兀总体X的(简单)样本”的理解---独立同截面.X(1),,X(n)(2)多兀分布样本的数字特征- —常见多兀统计量X n(X i,X2,,X p)' 1(X (i)X )( X (i) X )' —样本均值向量i 1X样本离差阵S = 样本协方差阵V = S ;样本相X X X ~ N p(,-)关阵R W p(n1,)X n(3) , V分别是和的最大似然估计;⑷估计的性质是的无偏估计;,V分别是和的有效和一致估计;S?,与S相互独立;第五章聚类分析:一、什么是聚类分析:聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。

多元统计分析

多元统计分析

VI. 什么是主成分分析, 求主成分的基本思想与方法 (包 括从总体协方差阵出发和从相关矩阵出发。计算、 问答。P45-49。问答题中,求出特征向量后还要确 定主成份的个数) 1. 定义: 设X = ( x1 ,⋯ , x p )′是p维随机向量,EX = µ , DX = V ≥ 0,
的极大似然估计为
2. 多元正态分布的线性性质及推论 (1) 性质:
(2)
设ϕ (t ), ϕ1 (t(1) ), ϕ2 (t(2) )分别是X , X (1) , X (2)的特征函数,
设X ~ N n ( µ , V ),B为r × n阶实数矩阵,b为r维实向量, 则线性变换
t(1) q , t = (t1 ,⋯ , t p )′ = t(2) p − q t(1) = (t1 ,⋯ , tq )′,t(2) = (tq +1 ,⋯ , t p )′, (1 ≤ q < p )
则X (1)与X (2)相互独立等价于
Z = BX + b ~ N r ( B µ + b, BVB′ ),则X 的任意边沿分布仍是正态分布。
ϕ (t ) = ϕ1 (t(1) )ϕ2 (t(2) ).
若X 具有分布密度f ( x1 ,⋯ , x p ),则X (1)与X (2)也分别有 分布密度f1 ( x1 ,⋯ , xq )与f 2 ( xq +1 ,⋯ , x p ),此时X (1)与X (2) 相互独立又等价于
则称q维随机向量X (1)与p − q维随机向量X (2)相互独立。
设Y 为p维标准正态向量,即Y ~ N p (0, I p ),A为n × p阶 实数矩阵,µ 为n维实向量,令X = AY + µ , 则称X 服从 n元正态分布。记作X ~ N n ( µ , V ),其中V = AA′为n阶 非负定阵。

多元统计分析复习内容提要共114页

多元统计分析复习内容提要共114页

46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
多元统计分析复习内容提要
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲但是在法律 面前人 人是平 等的。 ——波 洛克

多元统计分析复习学习资料

多元统计分析复习学习资料

第七章 主成分分析
• 1.主成分分析的定义和基本思想 • 2. 主成分的贡献率和累计贡献率 • 3.主成分分析与重叠信息 • 4.主成分分析的步骤
第八章 因子分析
• 1. 因子分析的概念和基本思想 • 2. 因子模型中公共因子、因子载荷和变量
共同度的统计意义 • 3. 因子分析的步骤 • 4. 因子旋转以及因子旋转的原因 • 5.因子得分 • 6.因子分析与主成分分析的区别与联系 • 7.SPSS输出结果的分析
多元统计分析复习2015
第二章 多元数据的图表示法
• 1.散点图矩阵 • 2.脸谱图 定义及简单分析 • 3.雷达图定义及简单分析 • 4.轮廓图定义及简单分析
第三章 随机向量
• 1. 随机向量 • 2. 多元概率分布 • 3. 多元分布的特征指标(均值向量及性质、
协方差矩阵及性质、相关矩阵) • 4. 统计距离、采用统计距离原因
• 考试题型 • 一、单项选择(10×1) • 二、名词解释(5×4) • 三、简答题(4×10) • 四、分析题(3×10)
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
数(相关系数)
ห้องสมุดไป่ตู้
• 6. 类的特征(类的重心) • 7. 类的距离(最短距离法、最长距离法、
类平均法、重心法、离差平方和法)
• 8. 系统聚类法的基本思想 • 9. K-均值法的基本思想和步骤
第六章 判别分析
• 1. 判别分析与聚类分析的区别和联系 • 2.判别分析的定义和基本思想 • 3.距离判别的基本思想 • 4.贝叶斯(Bayes)判别的基本思想 • 5.费歇(Fisher)判别的基本思想 • 6.逐步判别法的基本思想 • 7. 判别分析的SPSS结果分析

多元统计复习题答案

多元统计复习题答案

多元统计复习题答案一、单项选择题1. 多元统计分析中,用于描述多个变量之间关系的统计方法是()。

A. 相关分析B. 聚类分析C. 因子分析D. 主成分分析答案:C2. 以下哪个不是多元统计分析中常用的降维方法?()A. 主成分分析B. 因子分析C. 聚类分析D. 典型相关分析答案:C3. 在多元统计分析中,用于识别数据集中的异常值或离群点的统计方法是()。

A. 马氏距离B. 箱线图C. 相关系数D. 卡方检验答案:B二、多项选择题1. 多元统计分析中,以下哪些方法可以用来进行变量选择?()A. 逐步回归B. 岭回归C. 偏最小二乘回归D. 主成分分析答案:A|B|C2. 多元统计分析中,以下哪些方法可以用来进行数据的分类?()A. 判别分析B. 聚类分析C. 因子分析D. 典型相关分析答案:A|B三、判断题1. 多元统计分析中的因子分析可以用于变量的降维。

(对)2. 多元统计分析中的主成分分析和因子分析是完全相同的方法。

(错)3. 多元统计分析中的聚类分析可以用于识别数据集中的异常值。

(错)四、简答题1. 简述多元统计分析中主成分分析(PCA)的主要步骤。

答:主成分分析的主要步骤包括:数据标准化、计算协方差矩阵、求解特征值和特征向量、选择主成分、构造主成分得分。

2. 描述多元统计分析中判别分析的应用场景。

答:判别分析在多元统计分析中主要应用于根据已有的分类变量来预测新样本的分类,例如在医学诊断、市场细分、信用评分等领域。

五、计算题1. 给定一组数据,计算其主成分得分。

答:首先需要对数据进行标准化处理,然后计算协方差矩阵,接着求解特征值和特征向量,最后根据特征值的大小选择前几个主成分,并计算对应的得分。

2. 利用判别分析对一组数据进行分类,并给出分类结果。

答:首先需要确定分类的依据,然后计算各类别的判别函数,接着对新样本进行判别分析,最后根据判别得分将样本分类到相应的类别中。

多元统计分析期末复习

多元统计分析期末复习

第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系)(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X均值向量:随机向量X与Y的协方差矩阵:当X=Y时Cov(X,Y) =D(X);当Cov( X,Y)=0,称X,Y不相关。

随机向量X与Y的相关系数矩阵:2、均值向量协方差矩阵的性质(1) .设X,Y为随机向量,A,B为常数矩阵E ( AX)二AE( X);E ( AXB =AE (X)B;D(AX)=AD(X)A ';Cov(AX,B Y)二ACov(X, Y)EX ' ( EX^EX?, , EX p) ( 2,…,P )'cov( X ,Y ) E ( X EX )( YEY )' (2) .若X,Y独立,则Cov(X,Y) =0,反之不成立.(X,Y) (r j)pq(3) .X的协方差阵D(X)是对称非负定矩阵。

例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质特别地,当为对角阵时,相互独立。

(2) .若,、为sxp阶常数矩阵,d为s阶向量,AX+ d〜即正态分布的线性函数仍是正态分布.(3) .多元正态分布的边缘分布是正态分布,反之不成立.(4) .多元正态分布的不相关与独立■等价.,X pX ~ N p(,) '例3 .见黑板.N s( A d , A A )三、多元正态分布的参数估计⑴“为来自p兀总体X的(简单)样本”的理解---独立同截面.X(1),,X(n)(2)多兀分布样本的数字特征- —常见多兀统计量X n(X i,X2,,X p)' 1(X (i)X )( X (i) X )' —样本均值向量i 1X样本离差阵S = 样本协方差阵V = S ;样本相X X X ~ N p(,-)关阵R W p(n1,)X n(3) , V分别是和的最大似然估计;⑷估计的性质是的无偏估计;,V分别是和的有效和一致估计;S〜,与S相互独立;第五章聚类分析:一、什么是聚类分析:聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。

多元统计分析复习材料3页word文档

多元统计分析复习材料3页word文档

多元统计分析: 通过对多个随机变量观测数据的分析,来研究变量之间的相互关系以及揭示这些变量内在的变化规律。

多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律性的一门统计学科。

随机向量:将p 个随机变量X1,X2,…,Xp 的整体称p 维随机向量,记为X=(X1,X2,…,Xp)’。

随机向量的数字特征:X=(X1,X2,…,Xp)’,若EXi (i=1,…,p )存在且有限,则称E(X)=(EX1,EX2,…,EXp)’为X 的均值(向量)或数学期望。

性质①E(AX)=AE(X) ②E(AXB)=AE(X)B ③E(AX+BY)=AE(X)+BE(Y)。

协差阵:设(X1,…,Xp)’ ,Y=(Y1,…,Yp)’,称D(X)=E(X-EX)(X-EX)’=Cov(X1,X1)…Cov(X1,Xp) 为X 的方差或协差阵,D(X)简记∑,Cov(Xi,Xj)简记σij ,Cov(XP,X1)…Cov(Xp,Xp) 从而有∑=(σij)pxp 。

称随机向量X 和Y的协差阵为Cov(X,Y)=E(X-EX)(Y-EY)’= Cov(X1,Y1)…Cov(X1,Yq)Cov(XP,Y1)…Cov(Xp,Yq)。

多元正态分布:若p 维随机向量(X1,…,Xp)’的密度函数为:其中x=(x1,…,xp)’,μ是p 维向量,∑是p 阶正定阵,则称X 服从p 元正态分布,简记为X~Np(μ,∑)。

一个样本:从多元总体中随机抽取n 个个体:X(1),X(2),…,X(n),若他们相互独立且与总体分布相同,则称X(1),X(2),…,X(n)为该总体的一个多元样本。

一个样品:每个X(α)=(X α1,X α2,…,X αp)’,(α=1,2,…,n)称为一个样品。

n ×p 阶样本资料阵:X= X11…X1p = X(1)’ Xn1…Xnp X(n)多元样本数字特征: 样本均指向量、样本离差阵、样本协差阵用最大似然法求出μ和∑的估计量分别为 多元数据图:①使高维空间的点与平面上的某种图形对应这种图形能反映高维数据的某些特点或数据间的某些关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、聚类分析的基本思想:
我们认为,所研究的样品或指标之间存在着程度不同的相似性。

根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间的相似程度的统计量,以这些统计量为划分类型的依据,把一些相似程度较大的样品聚合为一类,把另一些彼此之间相似程度较大的样品又聚合到另外一类。

把不同的类型一一划分出来,形成一个由小到大的分类系统。

最后,用分群图把所有的样品间的亲疏关系表示出来。

二、聚类分析的方法
系统聚类法、模糊聚类法、K-均值法、有序样品的聚类、分解法、加入法
三、系统聚类法的种类
最短距离法、最长距离法、重心法、类平均法、离差平方和法
四、判别分析的基本思想
判别分析用来解决被解释变量是非度量变量的情形,预测和解释影响一个对象所属类别。

识别一个个体所属类别的情况下有着广泛的应用
判别分析将对象进行分析,通过人们选择的解释变量来预测或者解释每个对象的所属类别。

五、判别分析的假设条件
判别分析的假设条件之一是每一个判别变量不能是其他判别变量的线性组合;判别分析的假设之二是各组变量的协方差矩阵相等。

判别分析最简单和最常用的形式是采用线性判别函数。

判别分析的假设之三是各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布。

当违背该假设时,计算的概率将非常的不准确。

六、判别分析的方法
距离判别法、Bayes判别法、Fisher判别法、逐步判别法
七、距离判别法的判别准则
设有两个总体1G 和2G ,x 是一个p 维样品,若能定义样品到总体1G 和2G 的距离d (x ,1G )和d (x ,2G ),则用如下规则进行判别:若样品x 到总体1G 的距离小于到总体2G 的距离,则认为样品x 属于总体1G ,反之,则认为样品x 属于总体样品x 属于总体2G ,若样品x 到总体1G 和2G 的距离相等,则让它待判。

八、Fisher 判别的思想
Fisher 判别的思想是投影,将k 组p 维数据投影到某一个方向,使的它们的投影与组之间尽可能地分开。

九、Bayes 判别的思想
Bayes 统计的思想是:假定对研究的对象已有一定的认识,常用先验概率分布来描述这种认识,然后我们取得一个样本,用样本来修正已有的认识,得到后验概率分布,各种统计推断都通过后验概率分布来进行。

将Bayes 统计的思想用于判别分析,就得到Bayes 判别。

十、判别分析的方法和步骤
1.判别分析的对象
2.判别分析的研究设计
3.判别分析的假定
4.估计判别模型和评估整体拟合
5.结果的解释
6.结果的验证
十一、提取主成分的原则
1.累计方差贡献率大于85%,
2.特征根大于1 ,3碎石图特征根的变化趋势。

十二、因子分析的步骤
1.根据研究问题选取原始变量。

2.对原始变量进行标准化并求其相关阵,分析变量之间的相关性。

3.求解初始公共因子及因子载荷矩阵。

4.因子旋转。

5.因子得分。

6.根据因子得分值进行进一步分析。

十三、主成分分析与因子分析的区别。

1.因子分析把展示在我们面前的诸多变量看成由对每一个变量都有作用的一些公共因子和一些仅对某一个变量有作用的特殊因子线性组合而成;主成分分析则简单一些,它只是从空间生成的角度寻 找能解释诸多变量变异绝大部分的几组彼此不相关的新变量。

2.因子分析中是把变量表示成各因子的线性组合,而主成分分析则是把主成分表示成各变量的线性组合。

3.主成分分析中不需要假设,因子分析则需要一些假设。

4.抽取主因子的方法不仅有主成分法,还有极大似然法等,而主成分只能用主成分提取法。

5.主成分分析中,当协方差矩阵或相关阵的特征值唯一时,主成分是固定的;因子分析中因子不是固定的。

6.在因子分析中,因子个数需要分析者指定;在主成分分析中,成分的数量是一定的。

7.和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。

十四、因子载荷的统计含义
1.因子载荷ij a 的统计含义:
由模型
1cov(,)cov(,)m
i j ij j i j j X F a F F ε==+∑
=1cov(,)cov(,)m
ij j j i j j a F F F ε=+∑
=ij a
即ij a 是i X 与j F 的协方差,而注意到,i X 与j F (i=1,2,3,…, p ; j=1,2… m )都是均值为0,方差为1的变量,因此,ij a 同时也是i X 与j F 的相关系数。

十五、求解因子载荷有哪些方法
如主成分法,主轴因子法,最小二乘法,极大似然法, 因子提取法;常用的主要是主成分法,主轴因子法与极大似然法。

相关文档
最新文档