永磁同步电机矢量控制PPT课件

合集下载

三相永磁同步电动机的矢量控制

三相永磁同步电动机的矢量控制

Page 20
三相永磁同步电动机的矢量控制 将三相绕组的电压方程转换为矢量方程。
dψ s us R si s dt

间相位。 另有
j r ψ ψ e 式中转子磁链矢量 f r为ψf在ABC轴系内的空 f ,θ
di s dψ f us R si s Ls dt dt
dψ f j r d j r ψfe e jr ψ f dt dt
Page 25
三相永磁同步电动机的矢量控制
在正弦稳态下,可将定子电压的矢量方程式直接转换为
us R s I s js Ls I s js ψ f




R s I s js Ls I s js Lmf I f



R s I s js Ls I s E 0
Page 29
三相永磁同步电动机的矢量控制
将定子磁动势矢量fs(is)对主极磁场的影响和作用称为电枢 反应, 正是由于电枢反应使气隙磁场发生畸变,促使了机电能量 转换,才产生了电磁转矩。 从电磁转矩公式得知,电枢反应的结果将决定于电枢反应 磁场的强弱和其与主极磁场的相对位置。 fs(is)除产生电枢反应磁场外,还产生电枢漏磁场,但此漏 磁场不参与机电能量转换。不会影响电磁转矩的生成。
三相永磁同步电动机的矢量控制
基于转子磁场定向的矢量方程
Page 1
三相永磁同步电动机的矢量控制
主要内容
1、三相永磁同步电动机转子结构及物理模型
2、面装式三相永磁同步电动机的矢量方程 3、插入式三相永磁同步电动机的矢量方程
Page 2
三相永磁同步电动机的矢量控制
1 转子结构及物理模型
永磁同步电动机是由电励磁发展来的。用永磁体代替电励 磁系统,省去了励磁绕组、集电环和电刷,其定子与电励 磁的三相同步电动机相同,故称为永磁同步电动机 (Permanent Magnet Synchronous Motor,PMSM)。 永磁同步电动机要求其在稳态运行时能够在相绕组中产生 正弦波感应电动势,所以其永磁励磁磁场在气隙中按正弦 波分布。 永磁同步电动机的转子结构,按永磁体安装形式分为,面 装式、插入式和内装式三种。如图3-1~图3-3。永磁材料 一般是钕铁硼,也有用稀土钴的。

永磁同步电机工作原理及其控制策略PPT幻灯片课件

永磁同步电机工作原理及其控制策略PPT幻灯片课件
交通运输 电动自行车、电动汽车、混合动力车、 城轨车辆、机车牵引
家用电器 冰箱、空调等(单位体积功率密度高、 体积小)
5
PMSM和BLDC电机的结构
模拟结构图
A⊕
Z⊙ b
g

r
B
⊙Y
r g
b
⊕C
⊙X
6
PMSM和BLDC电机的结构
实物结构图
转子磁铁
定子绕组 霍尔传感器
7
PMSM和BLDC电机的结构
每次换相一个功率开关,每个功率开关导通120度电
角度。导通顺序为 VF1VF2、VF2VF3、VF3VF4、VF4VF5、VF5VF6、VF6VF1...
U1
VF1
VF3
VF5
H1

A

H2

B
H3

VF4
VF6
VF2
C
全控桥两两通电电路原理图
18
PMSM和BLDC电机的工作原理
将三只霍尔集成电路 H1
无刷直流电机 永磁体的弧极为180度,永磁体产生的气
隙磁场呈梯形波分布,线圈内感应电动 势亦是交流梯形波
定子绕组为Y或 联结三相整距绕组
由于气隙较大,故电枢反应很小
12
PMSM和BLDC电机的结构
正弦波永磁同步电机 永磁体表面设计成抛物线,极弧大体为
120度
定子绕组为短距、分布绕组
2)不计电动机中的涡流和磁滞损耗;
3)转子无阻尼绕组。
永磁同步电动机在三相定子参考坐标系中的数学
模型可以表达如下:
定子电压:
us

Rsis

d s
dt

永磁同步电机矢量PPT课件

永磁同步电机矢量PPT课件


bM ba Lbb M bcibfcos2 (/3)
c M ca M cb Lccic cos2 (/3)
工作原理及其控制方法
两相静止坐标系下的数学模型
三相静止坐标系到两相静止坐标系的变换 矩阵(即Clark变换)

back
矢量控制原理
矢量控制系统的基本思想: 在普通的三相交流电动机上设法模拟直流
电机转矩控制的方法,在转子磁链定向的 坐系上,将电机定子电流矢量分解成产生 主磁场的励磁电流分量和产生转矩的转矩 电流分量且励磁电流的方向定位于永磁磁 链上,并使得两个分量相互垂直,彼此独 立,然后分别进行控制。
矢量控制原理
借助于坐标变换,将各变量从三相静止坐 标系变换到跟随转子同步旋转的两相旋转 坐标系上。然后站在同步旋转坐标系上观 察,电机的各个空间矢量都变成了静止矢 量,在同步旋转坐标系上原来的交流量也 就变成了直流量。通过对这些直流量的控 制就能使交流电机达到直流电机的控制性 能。
对于SPMSM而言,Ld Lq 则式T en (fiq (L d L q)id iq)

back
矢量控制原理
id 0 控制方法的实现
MATLAB的仿真分析
模型
700 Speed Ref
Step
Tm
is_abc (A)
PI
iqref
iabc v a
A
<Rotor speed wm (rad/s)>
4
m
idref
vbB0iab源自r iorefiref v c
C
4 <Rotor angle thetam (rad)>
工作原理及其控制方法
PMSM的空间矢量图

PMSM同步电动机矢量控制

PMSM同步电动机矢量控制
优势
矢量控制能够实现对电机的精确控制,具有较高的动态性能和稳态精度。同时, 矢量控制能够有效地抑制转矩波动,减小转矩脉动。
局限性
矢量控制需要精确的电机参数和准确的传感器测量,增加了系统的复杂性和成 本。此外,矢量控制对于电机参数的变化较为敏感,参数变化可能导致控制性 能下降。
03
PMSM同步电动机的矢 量控制策略
数据处理
对采集到的数据进行滤波、去噪、 归一化等处理,提取有用的信息 进行分析。
数据分析
利用分析软件对处理后的数据进 行分析,研究矢量控制策略对 PMSM同步电动机性能的影响。
实验结果与结论
结果展示
通过图表、曲线等形式展示实验结果, 直观地反映矢量控制策略对PMSM同 步电动机性能的影响。
结论总结
基于直接转矩控制的矢量控制策略
总结词
基于直接转矩控制的矢量控制策略是一种先进的控制方法,通过直接控制电机的输出转 矩和磁通来实现对PMSM同步电动机的高性能控制。
详细描述
基于直接转矩控制的矢量控制策略采用离散的时间采样方法,通过检测电机的输出转矩 和磁通状态,直接调节电机的输入电压或电流,实现对电机输出转矩和磁通的快速、精 确控制。这种控制方法具有响应速度快、动态性能好等优点,适用于高性能的伺服系统
基于磁场定向的矢量控制策略
总结词
基于磁场定向的矢量控制策略是PMSM同步电动机中最常用的控制策略之一,通过控制励磁和转矩电流分量,实 现对电机磁场的解耦控制。
详细描述
基于磁场定向的矢量控制策略通过将PMSM的电流分解为与磁场方向正交的励磁电流和与磁场方向一致的转矩电 流,实现了对电机磁场的完全解耦控制。通过调节励磁和转矩电流分量,可以独立地控制电机的磁通和转矩,从 而实现高性能的调速控制。

永磁同步电机无位置传感器矢量控制PPT.

永磁同步电机无位置传感器矢量控制PPT.

转速阶跃给定时dq 轴电流瞬态波形
随着转速的升高,交直轴电流的 动态过渡过程越来越长。
02 电流环控制器设计
电流环+ 等效控C s制 器U为s : Gs
Y s
+
- Y s*
Y s*
U s C s
Gs Y s
- - F s =F结PI s论 +F:dec表s明= qRs轴s +0上 L的s 电Gˆ s流Rs s 0+波 L动s +对d0轴sr L电s 流无0sr L影s 响,实现GFˆ 了ss dq轴电流的
Rs
i i
+2r
L信波Lcsois器号n22来,rr 实需LL现要csoins信使22号rr用 分ii多 离个。r滤f
f sinr cosr
01 主要工作
转速环
电流环
r*
控制器
PI
iq*s
控制器
PI
d , q u

r
在中高速段,研究id*s了 0
u
④ 针对P全I 速范围 内
一种具有电机参数在 的无位置传感器
i
uq +
-a b c
ib 态耦合关系。
1
iq
-
r f
Rs sLs
PMSM
PMSM矢量控制框图
02 电流环控制器设计
为 了 观 察 电 机 d-q 轴 电 流 的 耦 合
影响,进行了仿真分析。图所示 的工况为初始转速为零,在0.2s 时 刻 转 速 阶 跃 给 定 为 0-300rad/s , 在0.4s时刻给定 300-600 rad/s 的 转 速 阶 跃 , 在 0.6s 时 刻 给 定 600900 rad/s转速阶跃。

《永磁同步电动机》课件

《永磁同步电动机》课件

面临的挑战与解决方案
成本问题
随着高性能永磁材料价格的上涨,永磁同步电动机的成本 也随之增加。解决方案包括采用替代性材料、优化设计等 降低成本。
控制精度问题
在某些高精度应用场景中,永磁同步电动机的控制精度仍 需提高。解决方案包括采用先进的控制算法和传感器技术 提高控制精度。
可靠性问题
在高温、高湿等恶劣环境下,永磁同步电动机的可靠性可 能会受到影响。解决方案包括加强散热设计、提高材料耐 久性等提高可靠性。
总结词
风力发电系统中应用永磁同步电动机,具有 高效、可靠、低噪音等优点。
详细描述
风力发电系统需要能够在风能不稳定的情况 下高效、可靠运行的电机,永磁同步电动机 能够满足这些要求。其高效、可靠、低噪音 的特性使得风力发电系统在能源利用效率和
可靠性方面具有显著优势。
THANKS
感谢观看
工作原理
永磁同步电动机通过控制器调节电机电流,使电机转子与定子磁场保持同步, 从而实现电机的运转。其工作原理基于磁场定向控制和矢量控制技术。
种类与特点
种类
永磁同步电动机根据结构可分为 表面贴装式、内置式和无铁心式 等类型。
特点
永磁同步电动机具有效率高、节 能效果好、运行稳定、维护方便 等优点,广泛应用于工业自动化 、新能源、电动汽车等领域。
05
CATALOGUE
永磁同步电动机的发展趋势与挑战
技术发展趋势
高效能化
随着技术的不断进步,永磁同步电动机的效率和性能不断提升, 能够满足更多高效率、高负载的应用需求。
智能化
随着物联网、传感器等技术的发展,永磁同步电动机的智能化水平 不断提高,可以实现远程监控、故障诊断等功能。
紧凑化
为了适应空间受限的应用场景,永磁同步电动机的尺寸和重量不断 减小,同时保持高性能。

永磁电机矢量控制技术与应用 共40页PPT资料

永磁电机矢量控制技术与应用 共40页PPT资料

iS

IS

1
i
i


2 0 3
1 2 3
2
2312iiBA
32TABCiiBA
iS As
i0
1 1 1 iC

2
2
2
iC

Cs
IS iS jiS

1

T ABC
• 第1代——V/f恒定和正弦脉宽调制(SPWM)控制 • 第2代——电压空间矢量控制(又称SVPWM、磁通轨迹法) • 第3代——矢量控制 • 第4代——直接转矩控制
• 矢量控制硬件基础:20世纪60年代起,微处理器、大规模集成电路等微
电子技术、快速电力半导体变流装置迅速发展;
• 矢量控制理论基础:20世纪70年代初期两项突破性研究成果:
iS
iS
7
iSd
i Sq
矢量控制基础——矢量控制的基本思想
矢量控制是一种高性能交流电机控制方式,它基于交流电机 的动态数学模型,通过对电机定子变量(电压、电流、磁链)进 行三相/2相坐标变换,将三相正交的交流量变换为两相正交的交 流量,再通过旋转变换,将两相正交的交流量变换为两相正交的 直流量,采用类似于他激直流电机的控制方法,分别控制电机的 转矩电流和励磁电流来控制电机转矩和磁链,具有直流电动机类 似的控制性能。
(4)定子绕组参数不随温度和 频率变化。
Bs q
A
d
Z
S B
Y N

P As
C
X Cs
9
永磁电机动态数学模型与基本控制方法
——假定条件与状态方程
定子电压方程矩阵形式: usRisdsd t,I

永磁同步电机矢量控制ppt课件

永磁同步电机矢量控制ppt课件

18
a) 稳态矢量图
b) 相量图
图3-9 面装式PMSM矢量图和相量图
19
此时,可将式(3-17)直接转换为
U s Rs Is jωs Ls Is jωsΨ f Rs Is jωs Ls Is jωs Lm If Rs Is jωs Ls Is E0
fC

(3-4)
式中, fA 、 fB 和 fC 分别为永磁励磁磁场链过 ABC 绕组产生的磁链。
12
同电励磁三相隐极同步电动机一样,因电动机气隙均匀,故 ABC 绕组
的自感和互感都与转子位置无关,均为常值。于是有
LA LB LC Ls Lm1 式中, Ls 和 Lm1 分别为相绕组的漏电感和励磁电感。另有
3.1.1 转子结构及物理模型
永磁同步电动机是由电励磁三相同步电动机发展而来。它用永磁体代替了电 励磁系统,从而省去了励磁线圈、集电环和电刷,而定子与电励磁三相同步电动 机基本相同,故称为永磁同步电动机(Permanent Magnet Synchronous Motor, PMSM)。
用于矢量控制的 PMSM,要求其永磁励磁磁场波形是正弦的,这也是 PMSM 的一个基本特征。
B (Lsσ Lm ) iB fB
C
iC fC
(3-9)
同三相感应电动机一样,由三相绕组中的电流 iA 、iB 和 iC 构成了定子电流矢 量 is (如图 3-6b 所示)。
14
同理由三相绕组的全磁链可构成定子磁链矢量 ψs ,由 fA 、 fB 和 fC 可构成转子磁链矢量 ψf ,即有
图 3-6b 中,将永磁励磁磁场轴线定义为 d 轴,q 轴顺着旋转方向超 前 d 轴 90°电角度。 fs 和 is 分别是定子三相绕组产生的磁动势矢量和定 子电流矢量,产生 is ( fs ) 的等效单轴线圈位于 is ( fs ) 轴上,其有效匝数为 相绕组的 3 2 倍。于是,图 3-6b 便与图 1-17 具有了相同的形式,即面 装式 PMSM 和三相隐极同步电动机的物理模型是相同的。

永磁同步电机及转子磁场定向矢量控制ppt课件

永磁同步电机及转子磁场定向矢量控制ppt课件
(3)可靠性高。从电机本体来对比,永磁同步变频调速电机与 异步电机的可靠性相当,但由于永磁同步电机结构的灵活性,便于实 现直接驱动负载,省去可靠性不高的减速箱。在某些负载条件下甚至 可以将电机设计在其驱动装置的内部,从而可以省去传统电机故障率 高的轴承,大大提高了传动系统的可靠性。
8
12 伺服系统概述
永磁同步电机及转子磁场定向矢量控制
电气工程 王俊鹏
1
12 伺服系统概述
永磁同步电机结构和工作原理 永磁同步电机的优势与应用 永磁同步电机的数学模型 永磁同步电机的控制方式 PMSM的转子磁场定向矢量控制 总结
2
12 伺服系统概述
1. 永磁同步电机的结构和工作原理
1.1 永磁同步电机(P M S M )的结构 ermanent agnetic ynchronous achine
AGV列车—V150,创下列车速度世界新纪录574.8km/h。
2015年6月24日,历时11年,累计1000万次试验,积累150G数据, 耗资1亿元,中国中车旗下株洲电力机车研究所有限公司攻克了第三 代轨道交通牵引技术,即永磁同步电机牵引系统,掌握完全自主知 识产权,成为中国高铁制胜市场的一大战略利器。
图1-2 旋转磁动势波形图
5
12 伺服系统概述
2. 永磁同步电机的优势与应用
2.1 永磁同步电动机的优势
我国电动机保有量大,消耗电能大,设备老化,效率较低。永 磁同步电动机(PMSM)具有体积小、效率高、功率因数高、起动力矩 大、力能指标好、温升低等特点。
6
12 伺服系统概述
永磁同步电机相比交流异步电机优势: (1)效率高、更加省电。由于永磁同步电机的磁场是由永磁 体产生的,从而避免通过励磁电流来产生磁场而导致的励磁损耗。 永磁同步电机的外特性效率曲线相比异步电机,其在轻载时效 率值要高很多,这是永磁同步电机在节能方面,相比异步电机最 大的一个优势。 由于永磁同步电机功率因数高,这样相比异步电机其电机电流 更小,相应地电机的定子铜耗更小,效率也更高。 永磁电机参数,不受电机极数的影响,因此便于设计成多极电 机,这样对于传统需要通过减速箱来驱动负载电机,可以做成直 接用永磁同步电机驱动的直驱系统,从而省去了减速箱,提高了 传动效率。

永磁同步电机无位置传感器矢量控制课件

永磁同步电机无位置传感器矢量控制课件
实验验证和实际应用案例。
通过本课件的学习,学生可以掌 握永磁同步电机无位置传感器矢 量控制的基本知识和技能,为进
一步研究和应用打下基础。
展望
随着技术的不断发展,永磁同步电机 无位置传感器矢量控制技术将不断优 化和完善,进一步提高电机的性能和 可靠性。
希望本课件能够为广大学生和研究者 提供有益的参考和帮助,共同推动永 磁同步电机无位置传感器矢量控制技 术的发展和应用。
永磁同步电机无位置 传感器矢量控制课件
contents
目录
• 永磁同步电机简介 • 无位置传感器矢量控制技术 • 永磁同步电机无位置传感器矢量控制策
略 • 永磁同步电机无位置传感器矢量控制的
实现
contents
目录
• 永磁同步电机无位置传感器矢量控制的 应用案例
• 总结与展望
CHAPTER 01运行。来自软件实现方案01
坐标变换
将三相静止坐标系转换为两相旋 转坐标系,实现电机电流的解耦 控制。
02
矢量控制算法
03
无位置传感器技术
采用基于PI调节器的矢量控制算 法,实现电机的转矩和磁通控制 。
利用电机参数、电流检测值和转 速观测器等,估算电机的位置和 转速。
实验验证与结果分析
实验平台搭建
根据硬件实现方案搭建实验平台,包 括电机、逆变器、传感器等。
未来,该技术将在更多领域得到应用 ,如电动汽车、机器人、航空航天等 ,为人类的生产和生活带来更多便利 和效益。
THANKS FOR WATCHING
感谢您的观看
永磁同步电机简介
永磁同步电机的定义与特点
总结词
永磁同步电机是一种基于永磁体励磁产生磁场的高效电机,具有高效率、高功率密度、低维护成本等特点。

PMSM同步电动机矢量控制PPT课件

PMSM同步电动机矢量控制PPT课件

iB2
LBB
1 2
iC2
LCC
iAiB
LAB
iBiC
LBC
iCiA
LCA
p iAif
LAf
iBi f
LBf
iCi f
LCf
iAiD
LAD
iBiD
LBD
iCiD
LCD
iAiQ
LAQ
iBiQ
LBQ
iCiQ
LCQ
(8-15)
pLs2 iA2 sin 2 iB2 sin(2 120o ) iC2 sin(2 120o ) 2iAiB sin(2 120o )
Ld
0 0 Lsf LsD 0
d
0
Lq
00
0
LsQ
id
q
0 f
D Q
3 2 3 2
0 Lsf LsD
0
0 0
0
3 2
LsQ
L0 0 0 0
0 L ff LDf 0
0 L fD LDD 0
0
iq
0
i0 if
0
iD iQ
LQQ
从式(8-18)可以看出,经过坐标变换后
1. 磁链方程
励磁同步电动机经过等效变换后,
定转子在dq坐标系下的磁链方程为
d Ldid Lsf i f LsDiD
q Lqiq LsQiQ
0 L0i0
f
3 2 Lsf id
Lff i f
LfDiD
D
3 2 LsDid
LDf i f
LDDiD
Q
3 2
LsQiq
LQQiQ
行胜于言 敢为人先 和而不同 居安思危

永磁同步电机控制技术PPT.

永磁同步电机控制技术PPT.
一搞卫生时要注意安全 2、了解常用头部受的急救知识。
如工作某方面有安全要求(譬如银行工作),需要尽早核实应聘者的背景信息。 1、如果乘船过程中遇到事故不幸溺水,应学会现场急救知识。 虽然客户跟你谈了,但是他对你没有好感。在汽车销售公司经常有这样的工作安排,就是男客户进来以后,销售经理会安排女销售人 员上去接待,其目的就是想在最短的时间里让客户对销售人员产生好感,尽快促成交易。 绕车介绍(下) 上述情况目前在我们国内并不常见,原因有两个: 三、课堂小结 出示投影片。("看一看"中的图) 注意力不集中
52
弱磁控制
• 电压与电流限制
id2s
iq2s
d 永磁体和交、直轴电流共同 44 激励时的磁力线分布
基于Ansoft的电机电感计算
Ld
Lmq
Lmd Lq
CT
Luvw
C
N PB
2
a
l
600kW电机电感随交轴电流变化图
45
电感变化对IPMSM控制的影响分析
永磁同步电机转矩闭环控制
Te* +
-
Te
Calculation
id iq
电感变化对输出转矩影响
Te (N m)
电磁转矩 励磁转矩
励磁转矩
磁阻转矩
设计转矩 设计转矩
1500N·m
Te p直f轴iq电流p Ld -9L9q.7i4d8iqA
实际转矩 交轴电流
164.785A
Te' p固定f iq电感p Ld 15L.3q8'miHdiq
实际电感 10.5655mH
额定电流
143.882A
铁心长度
225mm
查看各参数结果

《永磁同步电机》课件

《永磁同步电机》课件
总结永磁同步电机的优点和潜力,强调其在节 能和环保方面的重要作用。
未来发展前景
展望永磁同步电机在未来的发展前景,以及对 社会经济发展的积极影响。
设计与控制
设计与优化
深入研究永磁同步电机的设计原则,以实现最佳性 能。
控制技术ቤተ መጻሕፍቲ ባይዱ
了解永磁同步电机的控制技术,包括传统控制和现 代变频技术。
未来发展
1
永磁同步电机的趋势
探索永磁同步电机在未来的趋势,包括技术创新和应用扩展。
2
问题和挑战
展示目前永磁同步电机领域面临的问题和挑战,并探索解决方案。
结论
优点和潜力
了解永磁同步电机相较于其他类型电机在功率密度方面的优势。
3 无感应起动
探索永磁同步电机无需外力引起的起动特点,及其在应用中的优势。
应用
家用电器
了解永磁同步电机在空调、洗衣 机和冰箱等家电中的应用。
工业设备
探索永磁同步电机在工业设备领 域的广泛应用,如机床、泵和风 机。
汽车行业
学习永磁同步电机在电动汽车和 混合动力汽车中的应用。
《永磁同步电机》PPT课 件
欢迎来到《永磁同步电机》的课件。本课件将介绍永磁同步电机的概念、工 作原理、特点、应用、设计与控制以及未来发展等内容。让我们一起探索这 一令人着迷的领域。
永磁同步电机的含义
简介
什么是永磁同步电机?了解其基本定义和特点。
种类
不同类型的永磁同步电机有哪些?学习它们的特点和应用领域。
与异步电机的对比
对比永磁同步电机和异步电机的优缺点,探讨它们的应用差异。
原理
1
磁场理论基础
通过理解磁场的基本原理来认识永磁同步电机的工作原理。
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.1 转子结构及物理模型
永磁同步电动机是由电励磁三相同步电动机发展而来。它用永磁体代替了电 励磁系统,从而省去了励磁线圈、集电环和电刷,而定子与电励磁三相同步电动 机基本相同,故称为永磁同步电动机(Permanent Magnet Synchronous Motor, PMSM)。
用于矢量控制的 PMSM,要求其永磁励磁磁场波形是正弦的,这也是 PMSM 的一个基本特征。
但有一基本原则,即除了考虑成本、制造和可靠运行外,应尽量产生正弦分 布的励磁磁场。
. 4
图 3-4 和图 3-5 分别是二极面装式和插入式 PMSM 的结构简图。图中,标出了 每相绕组电压和电流的正方向,并取两者正方向一致(电动机原则),电压和电流可 为任意波形和任意瞬时值;将正向电流流经一相绕组产生的正弦波磁动势的轴线定义 为相绕组的轴线,并将 A 轴作为 ABC 轴系的空间参考坐标,同样可以将三相绕组表 示为位于 ABC 轴上的线圈;假定相绕组中感应电动势的正方向与电流的正方向相反 (电动机原则);取逆时针方向为转速和电磁转矩的正方向,负载转矩正方向与此相反。
. 9

图中当 0o 时,将 is ( fs ) 在气隙中产生的正弦分布磁场称为直轴电枢反应 磁场;
当 90o 时,将 is ( fs ) 在气隙中产生的正弦分布磁场称为交轴电枢反应磁场。 显然,在幅值相同的 is ( fs ) 作用下,直轴电枢反应磁场要弱于交轴电枢反应 磁场,于是有 Lmd Lmq , Lmd 和 Lmq 分别为直轴等效励磁电感和交轴等效励磁电 感。 对比图 3-7b 和图 1-19 可以看出,插入式 PMSM 与电励磁三相凸极同步电动 机相比较,两个物理模型主要的差别表现在后者的 Lmd Lmq ,两者恰好相反。 对于内装式 PMSM,因直轴磁路的磁导要小于交轴磁路的磁导,故有 Lmd Lmq ,其物理模型便和插入式 PMSM 的基本相同。 对于如图 3-6b 所示的面装式 PMSM,则有 Lmd Lmq Lm , Lm 称为等效励磁 电感。且有, Lm Lmf 。
第3章 三相永磁同 步电动机矢量控制
.
1
第 3 章 三相永磁同步电动机矢量控制
3.1 基于转子磁场定向矢量方程 3.2 基于转子磁场定向矢量控制及控制系统 3.3 弱磁控制与定子电流最优控制
. 2
3.1 基于转子磁场定向矢量方程
3.1.1 转子结构及物理模型 3.1.2 面装式三相永磁同步电动机矢量方程 3.1.3 插入式三相永磁同步电动机矢量方程
. 3
PMSM 的转子结构,按永磁体安装形式分类,有面装式、插入式和内装式三 种,如图 3-1、图 3-2 和图 3-3 所示。
图 3-1 面装式转子结构
图 3-2 插入式转子结构
图 3-3 内装式转子结构
对于每种类型转子结构,永磁体的形状和转子的结构形式,根据永磁材料的 类别和设计要求的不同,可以有多种的选择,可采取各式各样的设计方案。
. 10
a) 转子等效励磁绕组
b) 物理模型
图3-7 二极插入式P.MSM的等效物理模型
11
3.1.2 面装式三相永磁同步电动机矢量方程
1.定子磁链和电压矢量方程
图 3-6b 中,三相绕组的电压方程可表示为
uA
RsiA
d A
dt
(3-1)
uB
弦分布; (5) 相绕组中感应电动势波形为正弦波。 对于面装式转子结构,由于永磁体内部磁导率很小,接近于空气,可以将置于 转子表面的永磁体等效为两个空心励磁线圈,如图 3-6a 所示,假设两个线圈在气 隙中产生的正弦分布励磁磁场与两个永磁体产生的正弦分布磁场相同。进一步,再
将两个励磁线圈等效为置于转子槽内的励磁绕组,其有效匝数为相绕组的 3/ 2 倍, 通入等效励磁电流为 if 在气隙中产生的正弦分布励磁磁场与两励磁线圈产生的相 同。 ψf Lmf if , Lmf 为等效励磁电感。图 3-6b 为等效后的物理模型,图已将等效 励磁绕组表示为位于永磁励磁磁场轴线上的线圈。
图 3-4 二极面装式 PMSM 结构简图
图 3-5 二极插入式 PMSM 结构简图
.
5
在建立数学模型之前,先做如下假设: (1) 忽略定、转子铁心磁阻,不计涡流和磁滞损耗; (2) 永磁材料的电导率为零,永磁体内部的磁导率与空气相同; (3) 转子上没有阻尼绕组; (4) 永磁体产生的励磁磁场和三相绕组产生的电枢反应磁场在气隙中均为正
. 8
同理,可将插入式转子的两个永磁体等效为两个空心励磁线圈,再 将它们等效为置于转子槽内的励磁绕组,其有效匝数为相绕组有效匝数 的 3 / 2 倍,等效励磁电流为 if ,如图 3-7a 所示。与面装式 PMSM 不同 的是,电动机气隙不再是均匀的,此时面对永磁体部分的气隙长度增大 为 g+h,h 为永磁体的高度,而面对转子铁心部分的气隙长度仍为 g,因 此转子 d 轴方向上的气隙磁阻要大于 q 轴方向上的气隙磁阻,可将图 3-7a 等效为图 3-7b 的形式。
. 6
a) 转子等效励磁绕组
b) 物理模型
图3-6 二极面装式PMSM物理模型
.
7
如图 3-6a 所示,由于永磁体内部的磁导率接近于空气,因此对于定 子三相绕组产生的电枢磁动势而言,电动机气隙是均匀的,气隙长度为 g。于是,图 3-6b 相当于将面装式 PMSM 等效为了一台电励磁三相隐极 同步电动机,惟一的差别是电励磁同步电动机的转子励磁磁场可以调节, 而面装式 PMSM 的永磁励磁磁场不可调节。在电动机运行中,若不计及 温度变化对永磁体供磁能力的影响,可认为 f 是恒定的,即 if 是个常值。
图 3-6b 中,将永磁励磁磁场轴线定义为 d 轴,q 轴顺着旋转方向超 前 d 轴 90°电角度。 fs 和 is 分别是定子三相绕组产生的磁动势矢量和定 子电流矢量,产生 is ( fs ) 的等效单轴线圈位于 is ( fs ) 轴上,其有效匝数为 相绕组的 3 2 倍。于是,图 3-6b 便与图 1-17 具有了相同的形式,即面 装式 PMSM 和三相隐极同步电动机的物理模型是相同的。
相关文档
最新文档