原子物理讲义 第五章 多电子原子
原子物理杨家富-第五章答案
第五章 多电子原子 泡利原理
主要内容:
1.多电子原子的能级和光谱结构、多电子原子的L-S 耦 合、j-j耦合形成的原子态和对应的精细能级。
2.多电子原子的壳层结构和元素的周期性 多电子原子与氢和类氢原子不同,出现了多电子之间相 互作用。若我们先忽略这种复杂的作用,以氢的量子态 作为框架,然后再逐步考虑电子相互作用产生的影响。 这样,我们可对多电子原子系统作出定性地分析。电子 是自旋量子数为1/2的费米子,泡利指出在同一个量子 态最多只能有一个费米子占据。
J
11,1,11, S
1
S
1 0
L-S耦合得到四个原子态是 3P2,1,0;1P1。 又如3p4p电子组态的L-S耦合,
L-S耦合出十个原子态,
S=0 S=1
列表示为
S=1,0; L=2,1,0
L=0 1 2
(1S0) 3S1 1P1 (3P2,1,0) (1D2) 3D3,2,1
13
3.同科电子(等效电子)组态的原 子态 ( L-S耦合)
3
§5.1 泡利不相容原理 §5.2 双电子原子系统- 氦原子光谱和能级 §5.3 两个电子的耦合 §5.4 元素周期表 §5.5 多电子原子的塞曼效应
4
§5.1 泡利不相容原理
1925年,年仅25岁的泡利提出不相容原理:原子中每个
状态只能容纳一个电子,换言之原子中不可能有两个以上
的电子占据四个量子数(n,l,ml,ms)相同的态。后来发现凡自
每个子壳层允许填充的电子数为2×(2l+1),每个壳层 允许填充的电子数为
n1
Nn 2 (2l 1) 2n2 l 0
28
进一步考虑了电子 填充后的系统的总能 量应该最低,实际填 充壳层的顺序如图所 示。
原子物理学(第五章)
2、镁的光谱和能级
在镁的光谱中,单一态和三重态之间一般没有跃迁,但 也有个例外,就是从第一激发态中的3P1到基态1S0, λ=4571.15埃那条线。关于这问题,以后再讨论。镁的单线 主线系在紫外,它的三重态主线系在红外和可见区。三重态 的第一、第二辅线系和主线系的谱线都显出三个成分,反映 3P 3 3 2,1,0的三个能级。 D和 F的间隔较小,在光谱中不能分辨 出来。我们注意镁的3P间隔较氦的大,因为这是同Z有关的。 又这里三能级中3P0最低,同氦中的情况相反 。
原子物理学
第五章
多电子原子
前面讨论了单电子原子和具有一个价电子的原子的 光谱,从而推得这些原子的能级的情况,并说明了怎样 出现双层结构。从那些讨论,我们对最简单原子的内部 状况有了一个扼要的了解。这些知识也是进一步研究较 复杂原子结构的基础。 本章将讨论具有两个价电子的原子,并对三个及三 个以上价电子的原子作概括性的论述。
的。从波长的数值可以知道3P0能级高于3P1,后者又高于3P2。
从光谱的情况,知道三重态与单一态之间没有跃迁。有一 条很弱的λ =591.6埃线起初以为是氦的三重态和单一态之 间的跃迁,后来有人认为这是氖的谱线。
9
原子物理学
第五章
多电子原子
5.1 氦及周期系第二族元素的光谱和能级 1、氦的光谱和能级 第一激发态3S1不可能自发跃迁到基态1S0,这是由于三 重态不能跃迁到单一态,而且S态不能跃迁到S态。如果氦
别,一套谱线都是单线,另一套谱线却有复杂的结构。氦
具有两套能级,一套是单层的,另一套是三层的。这两套 能级之间没有相互跃迁的情况,它们各自内部的跃迁就产
生了两套光谱。这样,单层能级间的跃迁当然产生单线的
光谱,而三层能级间的跃迁所产生的光谱线当然有复杂的 结构了。
原子物理学5
同一电子组态在j-j耦合中和L-S耦合中形成的原子 态的数目相同,代表原子态的J值也是相同的。
例题:
若某原子的两个价电子处于2s2p组态,利用j-j耦合, 求可得到其原子态的个数。
同一电子组态在j-j耦合中和L-S耦合中形成的原 子态对应的能级间隔不同。
1P 1
( 1 3 , )1 2 2 1 3 , )2 2 2
1P 1 1S 0
三重态 2s3p 2s3s
3P 2 3P 1 3P 0 3S 1
2s2p 2s2s 1 2 3 4
1P 1 1S 0
2s2p 1 3
3P 2 3P 1 3P 0
2s2s在三层结构中没有对应的能级
例题2: 铍(Be)原子共有四个电子,已知其中三个始终处于 基态。 (1)写出铍原子的三个最低能量的电子组态; (2)用L-S耦合模型画出这三个最低能量电子组 态的全部能级; (3)画出上述能级间全部可能发生的跃迁。
1P , 3P 1 2,1,0
Pb:6p7s (j-j)
1 1 3 1 , , , 2 2 1 , 0 2 2 2 ,1
碳族元素在激发态ps的能级比较 C Si Ge Sn Pb
3 1 ( , )1 2 2 3 1 ( , )2 2 2
1P 3P
1 2
3P
3P
倒序排列:
3P > 3P > 3P 0 1 2
能级的形成:
基态:两个电子都处于最低的1s 态 激发态:所有能级都是由一个电子处于基态,另 一个电子被激发到较高能态形成的。 能级图上注明的数码就是第二个电子的主量子 数 试计算一下如果两个电子都处于激发态至少 需要多少能量?
单层结构 n
7.62eV
原子物理
E2 L
E2
6、对氦和镁能级结构的说明 (1)氦和镁的能级图都是LS耦合由能级图可看出
L相同,S大的能级低于S小的。3S 低于 1S
3P 低于 1P
对照能级图
(2)3S 实际上是单层的。
J L 1 三重态 S 1 J L J S 1
L 0 J L 1
S只有一个值。
原子处于两个什么状态
多(价)电子原子 电子组态确定后,不过是每个价电子的轨道大小 和形状确定了,但价电子间还有相互作用,所以并 不能确定它的原子态。
六种相互作用
G1(s1s2 ) G2 (l1l2 )
G3 (l1s1) G4 (l2s2 )
静电相互作用
第一电子l1 G3 s1
G2 G5 G6 G1
4、洪特定则(LS耦合)
在同一电子组态形成的能级中
(1)L相同时,S大的能级低。(如
P 3 0,1, 2
比
1P1
能级低)
(2)S相同时,L大的能级低。(如 3D 比 3P 能级低)
(3)LS相同时,J不同时:正常次序J小的能级低。
反常次序J小的能级高。
19.77
电离电势 和氢原子比较
反常次序
亚稳态 基态
(3)镁的 3P 三能级的次序是正常的,间隔符合朗德定则。 而氦的 3P 能级间隔是反常的,间隔也不符合朗德定则。
(4)洪特定则和朗德间隔定则都是对LS耦合而言的,它们只 是一些近似规律。事实上许多原子的能级次序并不一定符合
这些规律,各能级分裂后间隔大小也因原子中电子间隔的各
轨道总角动量的大小 pL L(L 1)
30, 20, 12, 6, 2
原子的总角动量
pJ
原子物理学第五章多电子原子
原子序数增加
能级双 分配(2)
j - j 耦合
Em Ee
轻元素,低激发态 重元素,基态
能级差主要是由 于静电作用
原子态: 2S+1LJ
重元素,高激发态
能级差主要是由 于磁效应
原子态: ( j1 j2 )J
第三节:泡利原理
泡利原理
我们知道,电子在原子核外是在不同轨道上 按一定规律排布的,从而形成了元素周期表。中 学阶段我们就知道,某一轨道上能够容纳的最多 电子数为2n2,为什么这样呢?
碳族元素在激发态时,PS电子各能级比较:
C Si Ge Sn Pb
2 p3s
3 p4s
4 p5s
5 p6s
6 p7s
31 ( 2 , 2)1
1 P1 3 P2 LS 耦合 3 P1 3 P0
(
3 2
,
1 2
)
2
j - j 耦合
(
1 2
,
1 2
)1
11
(2 , 2)0
能级单 分配(3)
LS 耦合
Ee Em
Mg 原子光谱和能级结构与He原子相似,也有差异。
5.2 具有两个价电子的原子态
一.电子组态 1.电子组态的表示
处于一定状态的若干个(价)电子的组合 n1 1n2 2n3 3.... Na : 基态电子组态: 1s2 2s22p63s1 简记:3s1
激发态电子组态: 1s2 2s22p63p1 1s2 2s2 2p6 4s1
根据原子的矢量模型 Ps1 , Ps2合成 Ps,Pl1 Pl2合成PL ; 最后Pl与Ps 合成 J,所以称其为 L S耦合。 L S 耦合通常记为:
(s1s2 )(l1l2 ) (PS , PL ) PJ
原子物理学第5章 多电子原子
2 1 2
G3 (l1 , s1 )
4
2
2
5 1
2
6
2
1
两个电子的自旋相互作用: 两个电子的自旋相互作用: 两个电子的轨道相互作用: 两个电子的轨道相互作用 一个电子的自旋轨道相互作用: 一个电子的自旋轨道相互作用
G1 ( s1 , s2 )
G2 (l1, l2 )
G3 (l1 , s1 )
漫、基线系由六条谱线构成
氦原子的光谱由两套 谱线构成, 谱线构成,一套是单层 另一套是三层, 的,另一套是三层,这 两套能级之间没有相互 跃迁, 跃迁,它们各自内部的 跃迁便产生了两套独立 的光谱, 的光谱,早先人们以为 有两种氦, 有两种氦,把具有复杂 结构的氦称为正氦, 结构的氦称为正氦,而 产生单线光谱的称为仲 氦,现在认识到只有一 种氦, 种氦,只是能级结构分 为两套。 为两套。
第二辅线系: 第二辅线系:
六个成份Βιβλιοθήκη n≥3n≥3~ ν =23P0,1, 2 n3S1
三个成份
基线系: 基线系:
~ ν =33 D1 n 3F2 ~ 2 ν =3 D2 n 3F2,3 ~ 3 3 ν =3 D3 n F2,3, 4
六个成份
n≥4
三、能级和能级图的特点
1、能级分为两套,单层和三层能级间没有跃迁;氦的基态是 能级分为两套,单层和三层能级间没有跃迁; (1s1s)11S0; 2、状态(1s1s)13S1不存在,且基态(1s1s)11S0和第一激发态 状态(1s1s)1 不存在,且基态(1s1s)1 之间能差很大, 19.77eV; (1s2s)23S1 之间能差很大,为19.77eV;电离能也是所有元素中最 大的, 24.58eV; 大的,为24.58eV; 态都是单层的; 3、所有的3S1态都是单层的; 4、(1s2s)21S0和(1s2s)23S1是氦的两个亚稳态;(不能跃迁到更低能 是氦的两个亚稳态;( ;(不能跃迁到更低能 级的状态称为亚稳态,当原子处在亚稳态时, 级的状态称为亚稳态,当原子处在亚稳态时,必须将其激发到更高 能,方可脱离此态回到基态) 方可脱离此态回到基态) 5、一种电子态对应于多种原子态。不仅氦的能级和光谱有上述特 一种电子态对应于多种原子态。 点,人们发现,元素周期表中第二族元素的光谱都与氦有相同的 人们发现,元素周期表中第二族元素的光谱都与氦有相同的 线系结构。 线系结构。 由此可见,能级和光谱的形成都是二个价电子各种相互作用引起的。 由此可见,能级和光谱的形成都是二个价电子各种相互作用引起的。
原子物理学5
同一电子组态在j-j耦合中和L-S耦合中形成的原子 态的数目相同,代表原子态的J值也是相同的。
例题:
若某原子的两个价电子处于2s2p组态,利用j-j耦合, 求可得到其原子态的个数。
同一电子组态在j-j耦合中和L-S耦合中形成的原 子态对应的能级间隔不同。
1P 1
3 1 ( , )1 2 2 3 1 ( , )2 2 2
5
5 4
4 3
4
3 2
4 3
4
3
4
3
2 2
19.77eV
2
主线系 第二辅线系 第一辅线系 柏格曼线系
E 1
He原子能级图
He原子能级结构
两套结构: 单层:S=0,重数为1; 两套能级间不发生跃迁 三层:S=1,重数为3;
两个亚稳态:
21S0 和23S1
电离能和第一激发电势很大 在三层结构中没有(1s)对应的能级(?) 三重态能级低于相应的单一态能级
倒序排列:
3P > 3P > 3P 0 1 2
能级的形成:
基态:两个电子都处于最低的1s态 激发态:所有能级都是由一个电子处于1s态,另一 个电子被激发到较高能态形成的。
试计算一下如果两个电子都处于激发态至少 需要多少能量?
单层结构 n
7.62eV
1S 1P 0 1 1D 2 1F 3 3S 1 3P 2
不同的电子组态具有不同的能量 H: 2s↔2p; 能级间隔小 2s ↔1s 能级间隔大 He: 1s1s ↔1s2s 能级间隔大 Mg: 3s3s ↔3s3p 能级间隔小 原子态 每一种电子组态都对应相应的原子态 H: 基态1s ↔ 2S1/2,激发态3p ↔ 32P1/2, 32P3/2 多电子原子的原子态是怎样的呢?
原子物理 (5)
PL Pl1 Pl2
PL L(L 1)
L:总轨道角量子数 L=l1+l2 , l1+l2-1,…..,|l1-l2|
PL
可能取值的个数
ll11
l2 , l2 ,
2l2 2l1
1 1
由小的决定
PL1
例: l1=2, l2=3. 则 L=5, 4, 3, 2, 1. 共2l+1=5
2021/1/12
PJ
PL 2
PS 2 PS1
PS
5
3、总自旋角动量和总轨道角动量合成原子的总角动量(L-S耦合)
PJ PL PS PJ J(J 1)
总角动量量子数 J=L+S,L+S-1, ……, |L-S|
可能取值的个数 L S, 2S 1 (实际能级层数) L S, 2L 1
PL
由小的决定
PJ
PL 2
G1、 G2 属于静电相互作用, G3- G6属于磁相互作用
G5-G6:很弱,一般不考虑
2021/1/12
3
二、L-S耦合(罗素-桑德斯耦合) Russell Saunders
当G1G2强,G3G4弱时采用。适用于很多轻元素的低激发态, 也适用于大多数元素。
1、两个电子的自旋角动量合成一个总的自旋角动量。
L=1 S=0 J=L=1 S=1 J=2.1.0
2 1P1 2 3P2.1.0
3P2 最低(反常次序)
2021/1/12
21
1s3s 1s3p
n2 2 l2 0
L=0 S=0 J=0 31S0 S=1 J=1 33S1
n2 3 l2 1
L=1 S=0 J=1 S=1 J=2.1.0
原子物理学教学课件5
§5.2
角动量耦合和对He光谱的解释
J L1 L2 S1 S 2
一、电子组态:原子中电子可以处的状态 如1s,1s1s(1s2) 二、一种电子组态构成不同原子态
两个电子的四种运动之间有六种相互作用: G1 ( s1 , s2 ) G2 (l1, l2 ) G3 (l1 , s1 )
J1 j1 ( j1 1)
J2
j2 ( j2 1)
J
j ( j 1)
j j1 j2 , j1 j2 1
j1 j2
例4:利用j-j耦合,求3p4d态的原子态。 1 1 3 l 1 , j s 解: 1 1 1 2 2 2 1 3 5 l2 2 s 2 , j 2 2 2 2 仍有12个态,且
1
j (0,2) 21D2
L=1 2 3
S=0 (1P1) 1D 2 (3F3)
S=1 3P 2,1,0 (3D3,2,1) 3F 4,3,2
2、j-j耦合
G4 (l2 , s2 ) 时, G2 (l1, l2 ) << G3 (l1 , s1 ) 、 当G 1(s1, s2 ) 、 J1 L1 S1 J 2 L2 S 2 J J1 J 2
若核(实)外有两个电子,由两个价电子跃迁而形 成的光谱如何?能级如何?原子态如何? He:Z=2 Be:Z=4=212+2 Mg:Z=12=2(12+22)+2 Ca:Z=20=2(12+22+22)+2 Sr:Z=38=2(12+22+32+22)+2 Ba:Z=56=2(12+22+32+32+22)+2 Ra:Z=88=2(12+22+32+42+32+22)+2 氦原子核外的两个电子处于什么状态?这些状态 有什么性质?
《多电子原子》课件
光谱学和原子结构
1
光谱学的基本原理
通过分析元素的光谱,我们可以获得关于原子结构的重要信息。
2
原子结构的测量方法
通过实验和测量,我们可以了解元素和分子的结构和性质。
3
光电效应和激光光谱
光电效应和激光光谱技术帮助我们深入研究原子和分子的行为和反应。
结论
多电子原子的研究对我们理解物质的基本性质和原理非常重要。希望本课程能对大家有所启发和帮助。
《多电子原子》PPT课件
多电子原子的基本概念和性质。电子排布和互斥原理对电子构型的影响;轨 道和能级的概念;光谱学和原子结构的应用。
电子排Байду номын сангаас和电子互斥原理
原子的层级结构
电子在各个层级中的排布情况决定了原子的化学性质和反应活性。
电子互斥原理
电子之间存在斥力,导致它们在原子中分布不均匀。
光谱学对电子排布的贡献
通过分析元素的光谱,我们可以了解其电子的排布情况。
轨道和能级
轨道和能级的基本概念
多电子原子中的轨道和能级 填充轨道和分子轨道
轨道描述了电子在原子中的运动 轨迹,能级表示电子的能量状态。
电子的排布方式受到电子互斥原 理的影响,导致轨道和能级的分 布更加复杂。
不同原子的轨道可以相互叠加形 成分子轨道,影响分子的性质。
第五章:多电子原子 泡利原理 《原子物理学》课堂课件
能级
五
章
多
实验表明,氦原子的光谱也是由这些线系
电 构成的,与碱金属原子光谱不同的是:
子
原
子
氦原子光谱的上述四个线系都出现双份,
:
泡 即两个主线系,两个锐线系等。
利
原
理
首页
上一页
下一页
氦及周期系第二族元素的光谱和能级
➢ 第二族元素:铍、镁、钙、锶、钡、镭、锌、镉、汞。 (都具有两个价电子 光谱和化学性质) ➢ 氦及第二族元素的能级都分成两套,一套是单层的,另 一套是三层的;各自形成两套光谱。
Atomic Physics 原子物理学
第五章:多电子原子 :泡利原理
第一节 氦的光谱和能级 第二节 两个电子的耦合 第三节 泡利原理 第四节 元素周期表
H原子:
Tn
R n2
En
Rhc n2
类H离子:
Tn
Z2
R n2
En
Z 2
Rhc n2
碱金属原子:
Tnl
(n
R l)2
Enl
(n
Rhc l)2
能级
五
章
即
原子实+2个价电子。
多
电
子
原
子 由此可见,能级和光谱的形成都是二个价电子
: 泡
各种相互作用引起的.
利
原
理
首页
上一页
下一页
第二节:两个电子的耦合
电子的组态
1.定义: 两个价电子处在各种状态的组合,
称电子组态。
电子的组 态
比如,氦的两个电子都在1s态,那么氦的电
第 五
子组态是1s1s;
一个电子在1s,
若核(实)外有两个电子,由两个价电子跃迁而形 成的光谱如何?能级如何?原子态如何?
原子物理—多电子原子
2.X射线的标识谱与原子的电离能级
5.5.3 莫塞莱定律 英国物理学家莫塞莱研究了从铝到金几十种元素的X射线标识谱线 波长,于1913年总结出如下规律:标识谱K线系的频率ν近似地正 比于产生该谱线的元素的原子序数Z的平方。这一规律被称为莫塞 莱定律。他给出Kα
5.5.3〓莫塞莱定律
5.2.5 多电子原子光谱的 一般规律
1.能级和光谱的 位移律
2.多重性的交
图5.2.4 碳族元素从LS耦合到jj耦合
S=1/2,双重,两个电子s=1,0,单一,三重;三个电子, s=1+1/2=3/2,s=1-1/2=1/2;双重,四重。四个电子 ?
3.多电子原子原子态的形成 用依次合成的法则:
推论:
原子中各状态能量高低次序
(1)
原子能量的主要部
分E:n
Rhc n2
Z
2
能量越低。
,n 越小,
(2
)
考虑内层电子对原子核的屏蔽作用E:nl
Rhc n2
Z *2
E是的函数: 减小 ,Z*增加,所以,同一主壳层中 (n相同而不同)E(ns)<E(np)<E(nd)<E(nf)
(3 ) 当n, 都不相同时,同时考虑 n 和 Z* 的影响, 则出现能级交错现象。既 n大小的能级,低于 n 小 大的能级。
由表5.1.3可见,n=1的K壳层只能容纳2 个电子,因此第一周期中只有氢和氦2种 元素。
n=2的L壳层有2s和2p两个支壳层,共可 容纳2+6=8个电子,因此第二周期中有 从锂到氖的8种元素。
n=3的M壳层本来有3s、3p和3d这3个 支壳层,但因3d能级高于4s,故电子填满 3p支壳层后就去田充4s壳层,从而开始了 第四个周期。第三周期中就只有从钠到氩 这8种元素,它们几乎是第二周期的重复.
第五章泡利原理
第五章多电子原子:泡利原理一、学习要点1. 氦原子和碱土金属原子:氦原子光谱和能级(正氦(三重态)、仲氦(单态))2. 重点掌握L-S耦合,了解j-j耦合3.洪特定则、朗德间隔定则、泡利不相容原理;4.两个价电子原子的电偶极辐射跃迁选择定则;5.元素周期律:元素周期表,玻尔解释.6.原子的电子壳层:主壳层:K LMNO P Q次壳层、次支壳层电子填充壳层的原则:泡利不相容原理、能量最小原理7.原子基态的电子组态(P228表27.2)1.选择题(2)氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为:A.0;B.2;C.3;D.1(4)氦原子有单态和三重态两套能级,从而它们产生的光谱特点是:A.单能级各线系皆为单线,三重能级各线皆为三线;B.单重能级各线系皆为双线,三重能级各线系皆为三线;C.单重能级各线系皆为单线,三重能级各线系皆为双线;D.单重能级各线系皆为单线,三重能级各线系较为复杂,不一定是三线.(5)下列原子状态中哪一个是氦原子的基态?A.1P1;B.3P1 ;C.3S1; D.1S0;(7)氦原子有单态和三重态,但1s1s3S1并不存在,其原因是:A.因为自旋为1/2,l 1=l2=0 故J=1/2 ;B.泡利不相容原理限制了1s1s3S1的存在;C..因为三重态能量最低的是1s2s3S1;D.因为1s1s3S1和 1s2s3S1是简并态(8)若某原子的两个价电子处于2s2p组态,利用L-S耦合可得到其原子态的个数是:A.1;B.3;C.4;D.6.(9)4D3/2 态的轨道角动量的平方值是:A.-3 2 ; B.6 2; C.-2 2; D.2 2(10)一个p电子与一个s电子在L-S耦合下可能有原子态为:A.3P0,1,2, 3S1 ;B.3P0,1,2 , 1S0;C.1P1, 3P0,1,2 ;D.3S1 ,1P1(11)设原子的两个价电子是p电子和d电子,在L-S耦合下可能的原子态有:A.4个;B.9个;C.12个;D.15个;(12)电子组态2p4d所形成的可能原子态有:A.1P 3P 1F 3F; B. 1P 1D 1F 3P 3D 3F;C.3F 1F; D.1S 1P 1D 3S 3P 3D.(13)铍(Be)原子若处于第一激发态,则其电子组态:A.2s2s;B.2s3p;C.1s2p;D.2s2p(14)若镁原子处于基态,它的电子组态应为:A.2s2s B.2s2p C.3s3s D.3s3p(15)电子组态1s2p所构成的原子态应为:A.1s2p1P1 , 1s2p3P2,1,0 B.1s2p1S0 ,1s2p3S1C.1s2p1S0, 1s2p1P1 , 1s2p3S1 , 1s2p3P2,1,0; D.1s2p1S0,1s2p1P1(16)判断下列各谱项中那个谱项不可能存在:A.3F2;B.4P5/2;C.2F7/2;D.3D1/2(18)在铍原子中,如果3D1,2,3对应的三能级可以分辨,当有2s3d3D1,2,3到2s2p3P2,1,0的跃迁中可产生几条光谱线?A.6 B.3 C.2 D.9(19)钙原子的能级应该有几重结构?A.双重; B.一、三重; C.二、四重; D.单重(20)元素周期表中:A.同周期各元素的性质和同族元素的性质基本相同;B.同周期各元素的性质不同,同族各元素的性质基本相同C.同周期各元素的性质基本相同,同族各元素的性质不同D.同周期的各元素和同族的各元素性质都不同(21)当主量子数n=1,2,3,4,5,6时,用字母表示壳层依次为:A.K LMONP;B.KLMNOP;C.KLMOPN;D.KMLNOP;(23)在原子壳层结构中,当l=0,1,2,3,…时,如果用符号表示各次壳层,依次用下列字母表示:A.s,p,d,g,f,h....B.s,p,d,f,h,g...C.s,p,d,f,g,h...D.s,p,d,h,f,g...(24)电子填充壳层时,下列说法不正确的是:A.一个被填充得支壳层,所有的角动量为零;B.一个支壳层被填满半数时,总轨道角动量为零;C.必须是填满一个支壳层以后再开始填充另一个新支壳层;D.一个壳层中按泡利原理容纳的电子数为2n2(25)实际周期表对K.L.M.N.O.P主壳层所能填充的最大电子数依次为:A.2,8,18,32,50,72;B.2,8,18,18,32,50;C.2,8,8,18,32,50;D.2,8,8,18,18,32.(26)按泡利原理,主量子数n确定后可有多少个状态?A.n2; B+1); C.2j+1; D.2n2(27)某个中性原子的电子组态是1s22s22p63s3p,此原子是:A.处于激发态的碱金属原子;B.处于基态的碱金属原子;C.处于基态的碱土金属原子;D.处于激发态的碱土金属原子;(28)氩(Z=18)原子基态的电子组态及原子态是:A.1s22s22p63p81S0; B.1s22s22p62p63d83P0C.1s22s22p6 3s23p61S0; D. 1s22s22p63p43d22D1/2(29)某个中性原子的电子组态是1s22s22p63s23p65g1,此原子是:A.处于激发态的碱土金属原子;B.处于基态的碱土金属原子;C.处于基态的碱金属原子;D.处于激发态的碱金属原子.(30)有一原子,n=1,2,3的壳层填满,4s支壳层也填满,4p支壳层填了一半,则该元素是:A.Br(Z=35); B.Rr(Z=36); C.V(Z=23); D.As(Z=33)(31)由电子壳层理论可知,不论有多少电子,只要它们都处在满壳层和满支壳层上,则其原子态就都是:A.3S0;B.1P1;C.2P1/2;D.1S0.(32)氖原子的电子组态为1s22s22p6,根据壳层结构可以判断氖原子基态为:A.1P1;B.3S1;C.1S0;D.3P0.2.简答题(1)简要解释下列概念:泡利不相容原理、洪特定则、朗德间隔定则、能量最小原理、莫塞莱定律.(2)L-S耦合的某原子的激发态电子组态是2p3p,可能形成哪些原子态?若相应的能级顺序符合一般规律,应如何排列?并画出此原子由电子组态2p3p向2p3s可能产生的跃迁.(首都师大1998)(3)写出铍原子基态、第一激发态电子组态及相应光谱项.(1991中山大学)3.计算题(1)已知氦原子基态的电子组态是1s1s,若其中一个电子被激发到3s态,问由此激发态向低能态跃迁时,可以产生几条光谱线?要求写出相关的电子组态及相应的原子态,并画出能级跃迁图。
第五章多电子原子
uuv Pj1
和
uuv Pj2
合成
uuv PJ
,故称此种耦合过程
为 J − J 耦合。
①.原子态
每个电子合成的总角动量为
v Pl
+
v Ps
=
v Pj
j 可以去下列数值
j = l + s,K, l − s
因为每个电子的自旋量子数 s = 1 ,上式变为 2
j=l+1或 j=l−1。
2
2
最后每个电子的总角动量
作用比两个电子间的自旋和轨道运动相互作用强。这是每个电子的自旋角动量和
轨道角动量就要合成各自的总自旋角动量,即
uuv ps
+
uuv pl
=
uuv Pj
,每个电子的自旋角动
量和轨道角动量都绕着各自的总角动量旋进。然后两个电子的总角动量合成原子
的总角动量,即
uv P
j1
+
uuv Pj2
=
uuv PJ
。由于最后是
⎨ ⎪
J=1 2
⎪⎩J越小,能级越低,倒转次序,如
朗德间隔定则:在一个多重能级的结构中,ΔE1 ∝ J1 能级的间隔同有关的 J 值中较大的一个成正比。
如:
P3 0,1,2
中,
ΔE01 ΔE12
∝ ∝
=
1 2
,3D1,
中,ΔE12
2,3
ΔE23
=
2 等 。反过来再看氦和镁的能级图。 3
2). JJ耦合:即G3和G4比G1和G2强,也就是说电子的自旋同自己的轨道运动相互
①形成的原子态
pr s1 + pr s2 = pr s rr r Pl1 + Pl2 = PL rr r Ps + PL = PJ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 多电子原子:泡利原理(YCS )§5-1 氦光谱和能级氦原子是1868年分析日全蚀光谱时发现的,30年后在地球矿物中找到.实验表明,氦及元素周期表第二族元素铍、镁、钙、锶、钡、镭、锌、镉、汞的光谱结构相仿.氦原子光谱的特点(详见P.213氦原子能级图)(氦能谱的以上4个特点分别包含着4个物理概念):1)明显地分成两套谱线系,左边一套为单层,右边一套多为三层;两套能级间无跃迁,各自内部的跃迁产生了两套独立的光谱.每一套都象碱金属原子光谱一样含有主线系,辅线系和伯格曼系等.但两套线系的构成截然不同.2)存在几个亚稳态,表明某种选择规则限制了这些态以自发辐射的形式发生衰变;3)基态01S 1与第一激发态13S 2间能量相差很大,为eV.7719;电离能也是所有元素中最大的,为eV .5824;4)在三层结构那套能级中没有来自2(1S)的能级.§5-2 电子组态和原子态1.电子组态:原子中各电子状态的组合描述一个电子的状态可用s l m m l n 、、、四个量子数.考虑电子的自旋-轨道相互作用,s l m m 、不再有确定值,则电子的状态用j j m l n 、、、描述.氢原子只有一个电子,在不考虑原子核运动时,电子状态就表示原子状态.对于碱金属原子,理论上可证明原子实的总角动量为0且不易被激发,被激发的只是价电子,可认为价电子的状态就表示碱金属原子状态.多电子原子则必须考虑电子间的相互作用,原子的状态是价电子运动状态的耦合.由于轨道运动的能量只取决于量子数l n 、,所以常用nl 来标记电子状态.例如:氢原子处于基态时,电子处于01=、=l n 的状态,记为s 1;氦原子处于基态时,两个电子都处于s 1态,则用两个电子状态的组合s 1s 1或21s 来表示;若一个原子有3个电子,其中两个处在0,2==l n 的状态,另一个处在1,2==l n 的状态,则电子组态为p s222.在给定的电子组态中,各电子的轨道角动量大小是确定的,但其轨道角动量和自旋角动量的方向不确定.因此每一个电子组态可耦合成若干原子态,由同一电子组态耦合成的不同原子态将且具有不同的能量,因为不同的角动量耦合产生的附加能量不同. 2.价电子间的相互作用价电子间的相互作用除电子自身的轨道与自旋耦合外,电子间的轨道与轨道、自旋与自旋、轨道与自旋等角动量都要发生耦合作用.如两个价电子间可有6种耦合方式(如图示):),(),(),(),(),(),(126215224113212211s l G s l G s l G s l G s s G l l G 、、、、、.这6种耦合的强弱不等,一般情况下,65G G 、较弱可不考虑.下面考虑两种极端情况. 1)S L -耦合:21G G 、较43G G 、强得多,将两个轨道角动量和两个自旋角动量分别合成总轨道角动量L 和总自旋角动量S ,再将L 和S合成总角动量J .(S L -耦合对于较轻元素的低激发态成立,适用性较广)2)j j -耦合:43G G 、较21G G 、强得多,将各个电子的轨道与自旋耦合成各个电子的总角动量1j 和2j,再将其耦合成原子的总角动量J .(j j -耦合则较少见,只在较重元素的激发态中出现)对于多电子耦合的情况可记为:⎩⎨⎧==-==-J j j j l s l s l s j j JL S l l l s s s S L )())()((:),(),,)(,,(:3233221132132113.S L-耦合的原子态21l l L +=.L的大小为: 212121,,1,,)1(l l l l l l L L L L --++=+= 21s s S +=.S 的大小为:⎩⎨⎧=±=+=01,)1(21s s S S S S原子的总角动量S L J+=,量子数S L S L S L J --++=,,1,对于具有两个价电子的原子,当L 给定时,对应于0,1==S S 的两种情况,J 的取值分别为:1)0=S时,L J =,表示原子只有一个可能的角动量状态,所以是单态. 2)1=S 时,1,,1-+=L L L J ,所以原子是三重态.由以上分析知,具有两个价电子的原子都有单态和三重态的能级结构. 例:原子有两个价电子,其角动量状态分别为 21,2;21,12211====s l s l ,用S L-耦合确定其原子态.总自旋量子数1,0=S ,3,2,1=L ,则当0=S 时,3,2,1==L J ;原子态为11P 、21D 、31F当1,1==L S 时,⎪⎩⎪⎨⎧=012J ,原子态为⎪⎩⎪⎨⎧031323P P P ;当2,1==L S 时, ⎪⎩⎪⎨⎧=123J ,原子态为⎪⎩⎪⎨⎧132333D D D ;当3,1==L S 时,⎪⎩⎪⎨⎧=234J ,原子态为⎪⎩⎪⎨⎧233343F F F共有12种可能的原子态.为了简洁,可排列成右上表.S L-耦合方法用于氦原子,即可证实其状态.(此略) 4.j j -耦合组成的原子态当每个电子自身的自旋-轨道耦合作用强,而电子间的耦合作用很弱时,采用j j -耦合.设第i 个电子的轨道角动量和自旋角动量分别为i l 和i s ,则第i 个电子的总角动量为i i i s l j +=,按量子力学规则,每个电子的总角动量的量子数为:ii i i i i i s l s l s l j --++=,,1,原子的总角动量为:21j j J +=其大小为)1(+=J J J ,212121,,1,j j j j j j J --++=j j -耦合组成的原子态常用符号J j j ),(21表示.如pd 电子组态形成的原子态为:1,22,30,1,2,31,2,3,4)23,21(;)25,21(;)23,23(;)25,23(,也是12种可能的原子态.结论:同一电子态,用S L -耦合形成的原子态与用j j -耦合形成的原子态的个数相等.5.两个角动量耦合的一般法则(以轨道角动量为例说明)⎪⎪⎩⎪⎪⎨⎧--++=+=+=+=⇒+=21212122211121,1,,)1()1()1(l l l l l l l l l L l l L l l L L L L其中若21l l >,则l 共有)12(2+l 个取值.(见下例)例:两个电子的角动量为⎩⎨⎧-=-=⎩⎨⎧==101101z ,112111,,m ,,m l l l l 方向的投影分别为在.因角动量相加只要将其投影值相加即可(详见教材中例子).6.电子组态变动的跃迁选择定则: 原子中各电子的量子数之和∑il为偶(奇)数时原子具有偶(奇)宇称.辐射跃迁只能发生在不同的宇称状态之间.即:偶宇称态⇔奇宇称态 7.耦合的选择定则:S L -耦合的选择定则:⎪⎩⎪⎨⎧→±=∆±=∆=∆)00(1,010除外J L Sj -j 耦合的选择定则:⎩⎨⎧→±=∆±=∆)00(1010j 除外,,J耦合的选择规则决定了氦原子的能谱.由于S L -耦合中0=∆S ,决定了氦的两套能级间不可能发生相互跃迁.对于氦,两个价电子的原子态有单态(0S =)和三重态(1S =)两类,选择定则0=∆S 要求两类能级之间不能发生跃迁(须注意0=∆S 这一规则并非对所有原子适用),好像这两类能级属于不同原子一样,因而产生两套谱线系.人们把产生单重线的叫仲氦,产生多重线的叫正氦.实际上,仲氦是两电子自旋取向相反(0S =)的氦原子,而正氦是两电子自旋取向相同(1S =)的氦原子.氦原子之间可通过相互碰撞来交换能量,这不必服从选择规则,故正常的氦气是“正氦”与“仲氦”的混合.关于氦的三重态谱线,有著名的黄色3D 线,1868年8月18日在太阳日珥的光谱中观察到这条线,从而发现了氦.用高分辨仪器可看出此线有三成分.从光谱看三重态和单态间没有跃迁,有一条很弱的06.591A =λ的线,最初认为是氦的三重态和单态间间的跃迁,后来证实这是氖的谱线.§5-3 泡利不相容原理1.历史回顾:玻尔对元素周期系的解释作了很多工作,曾特别讨论了氦原子内层轨道的“填满”问题,关于为什么每一轨道上只能放有限数目电子的问题,玻尔猜测:“只有当电子和睦时,才可能接受具有相同量子数的电子”,否则就“厌恶接受”.(牵强解释)泡利于1921年(时年21岁)涉足原子内电子的填充问题,他意识到,元素周期系的背后隐藏着一个重要的原理.至1925年,泡利通过对原子光谱和强磁场内的塞曼效应的分析,建立了他的不相容原理,使玻尔的解释有了牢固的基础.1940年泡利又证明了不相容原理对自旋为半整数的粒子不是附加的新原理,而是相对论性波动方程的必然结果. 2.不相容原理(1925年):在一个原子中不可能有两个或两个以上的电子具有完全相同的四个量子数(s l m m l n ...),即原子中的每一个状态只能容纳一个电子.另一种更普通的表述:在费米子(自旋为21的奇数倍的微观粒子)组成的系统中,不能有两个或更多的粒子处于完全相同的状态.(电子、质子、中子等均为费米子)泡利不相容原理是微观粒子运动的基本规律之一.利用它可解释原子内部的电子分布状况和元素周期律.泡利不相容原理反映的这种严格的排斥性的物理本质是什么?至今仍是个谜. 3.泡利不相容原理的应用1)氦原子的基态按L -S 耦合规则,氦的基态应有01S 和13S 两个态,但实际上只有1S ,这是因为两个电子的lm l n ,,相同(0,0,1===l m ln ),但s m 必定不能相同之故,不可能出现三重态13S .2)原子的大小玻尔曾认为原子的半径随Z 的增大而减小(核外电子都要占据能量最低的轨道,故受到的引力相等;Z 增大,核外电子受到的引力增大导致离核的距离减小).这是错误的.按泡利原理,虽第一层的轨道半径小了,但电子是分层排列的,但轨道层数增加了,原子的大小随Z 而变的变更甚微.所以原子的大小几乎都一样.(这是经典物理和旧量子论解释不了的)3)金属中的电子对金属加热过程中,核与核外电子得到的能量不均匀,几乎全由原子核得到.为什么?金属中,要使底层电子得到能量而激发十分困难,因为它附近的能态已被占满.而加热1万度才能给电子约1eV 的能量,但实际上,当加热到几百度时,金属的晶格点阵就被破坏而熔解了.所以金属中除最外层电子能从加热中得到少许能量外,其余能量均被核吸收了.4)原子核内独立核子运动按泡利原理,密度甚高的原子核内,基态附近的状态均被占满,核子之间没有相互碰撞,表现为独立的运动. 5) 核子内的有色夸克基本粒子中约95%的粒子为强子,强子的性质比较有规律,这说明强子的内部结构有相似之处.在海森堡的核子同位旋概念、坂田昌一(1956年)的强子内部对称性模型基础上,1961年美国的盖尔曼和奈曼提出对强子进行分类的“八重法”,据其理论预言的重子-Ω于1964年被实验所证实.盖尔曼进一步的研究使他提出了“夸克模型”,使这种对称性理论得到真正的进展.盖尔曼用具有一定对称性的上夸克(u )、下夸克(d )和奇异夸克(s )替换了坂田模型中的三种粒子.夸克是自然界中更为基本的物质微粒,所有的强子都由这三种夸克u 、d 、s 及其反粒子粲夸克(c )、底夸克(b )和顶夸克(t )组成.人们推测具有相同性质的粒子必定成批出现的,并且根据已知的一些粒子的性质可以预见尚未发现的其它粒子.夸克模型能成功地解释许多事实,把曾经很复杂的问题简单化了.夸克是自旋为21的费米子,设这三个夸克均处于基态,当两个夸克的自旋方向确定后,第三个夸克的取向必与前两个中的一个相同,这显然违反了泡利原理.但这种危机并未发生,这是因为基于夸克有适当的全同粒子的对称性,人们以红、绿、蓝三种颜色作为描写夸克量子状态的量子数(即三维自由度),解决了这一问题,并由此生发了描述强相互作用的量子色动力学. 4.同科电子*n 和l 相同的电子称同科电子.由于受泡利原理的限制,同科电子形成的原子态要少得多,这是因为对于同科电子,本来可能有的角动量状态由于泡利原理被去除了,从而使同科电子产生的状态数目大大减少.例如:0111S s s →,而1301,21S S s s →斯莱特图解法:例如:具有相同n 的两个电子,其组态为2np ,依泡利原理,两组量子数),,,(s l m m l n 不能全同,因1,0±=l m 有3个取值,21±=s m 有两个取值,则得到可能的l m 和s m 的取值见表26.1(教材P.223)(注意:经典物理中两个粒子可区分,但量子物理中两个全同电子是不可区分,不可加以“标记”的,这是经典物理与量子物理的原则区别之一)将表26.1数据用LS M M -图表示,图中每一小方块相应于不同的L S M M -值,方块中数字代表状态数,(a )一共有15种可能的状态,与表相符.(b)、(c)、(d)分别代表三种态项.3np 组态的电子合成的态项详见P.225.同科电子的态项与非同科电子的态项(详见P.225表)§5-4 元素周期表1.元素性质的周期性19世纪中叶人们已认识到元素的许多性质随着原子核的电荷数Z 的增加呈周期性的变化,这是原子结构随Z 的增加而呈周期性变化的结果.如摩尔体积、熔点、线胀系数、原子光谱、电离能等.元素的电离能随Z 的变化关系(详见P.226图示):表明元素的化学性质的周期变化特性. 2.元素周期表人们将化学性质相近的金属元素和卤族元素分别列为两个元素族.1869年,门捷列夫提出元素周期表,将当时所知道的62个元素按原子量(现在认识到应按原子序数)增加的次序排列,则原子的属性表现出有规律的重复,从而完成对所有元素的分族.当时有不少空缺的元素尚待发现,但可预言这些未知元素的性质.1874-1875年,化学家据预言发现了三个元素:钪、镓、锗,随后又陆续发现一些,元素周期表不断得到充实.到目前这止,公认的共109种元素.元素周期表中,每行称为一个周期,共有七个周期.同一列的元素称为一族,同族元素具有具有相似的化学性质和物理性质.左起第一族为碱金属,化合价为正1价,原子光谱都具有双重结构,电离能最小.第二族为碱土金属,化合价为正2价,原子光谱有单重和三重结构两套线系.最右一族为惰性气体,化学性质不活泼,电离能最大.元素周期表提出后的50余年内.人们不能对元素的周期性做出满意解释.玻尔在提出氢原子的量子理论后,就致力于周期表的解释.他凭直觉提出原子内的电子是按壳层排列的,同一壳层的电子具有相同的主量子数n.他的设想被证实,但他未说明为什么每一壳层只能容纳一定数量的电子.直至1925年泡利提出不相容原理后,才认识到元素的周期性是电子组态的周期性反映,而电子组态的周期性则联系于特定轨道的可容性.这样,化学性质的周期性用原子结构的物理图象得到了说明,使化学概念“物理化”,化学不再是一门和物理学互不相通的学科了.3.原子中电子的壳层中结构(结合元素电离能随Z 而变的规律分析)决定原子壳层结构(即电子所处状态)的两条准则: 1)泡利不相容原理.它决定壳层中电子的数目.2)能量最小原理.体系能量最低时,体系最稳定,它决定壳层的次序. 元素周期表就是按以上两条准则排列的.主量子数n 决定能量的主要部分,n 相同的电子分布在一个壳层上, ,3,2,1=n 的壳层分别称为K,L,M,N,O, …壳层.n 一定时,角量子数可取n 个值,对应于1,,3,2,1,0-=n l的支壳层分别用s,p,d,f,g,h …表示.l一定时,s m 有两种取向,l m 有)12(+l )种取值.因此每一角量子数为l 的支壳层中最多可容纳的电子数为:)12(2+=l N ln 一定时,)1(,,2,1,0-=n l ,共有n 个取值,因此每一壳层最多可容纳的电子数为:2122)12(22)12(2n n n l N n l n =-+=+=∑-=各支壳层和壳层中最多可容纳的电子数(见表)电子壳层的填充:按泡利原理从能量最低的状态开始填充,填满最低能态后才依次填充更高的能态.一般说来,n 越小或n 一定时l 越小,则能量越低. 某一特定壳层的电子能量,不仅取决于n ,还与l 有关,实际判断原子能级高低的经验规则:1))(l n +的值相同,则n 小的能级低;2) )(l n +的值不同,若n 相同,则l 小的能级低;若n 不同,则n 小的能级低.具体次序为: p d f s p d f s p d s p d s p s p s s 7,6,5,7,6,5,4,6.5,4,5,4.3,4,3.3,2,2,14.原子基态对于某一特定的原子,可按照其Z 确定其电子组态.一个电子组态可合成若干原子态,需按照泡利原理选出物理上允许的原子态,然后按洪特定则确定这些原子态的能量次序.其中能量最低的即为原子基态.1) 洪特定则(1925提出的经验规则):同一电子组态形成的原子态,(1)具有相同L 值的能级中, S 值最大(即重数最高)的能级位置最低;(2)具有相同S 值的能级中,具有最大L 值的能级位置最低.针对同科电子的洪特附加定则:对于同一l 值而J 值不同的能级,有以下两种情况 1)正常次序:当同科电子数小于或等于闭壳层占有数的一半时,具有最小J 值的能级(即SL -)处在最低;2)倒转次序:当同科电子数大于闭壳层占有数的一半时,具有最大J 值的能级(即SL -)处在最低2)朗德间隔定则:在三重态中,一对相邻能级间的间隔与两个J 值中较大的那个值成正比. 3)矢量合成法对由同科电子构成的组态,考虑到必须遵从泡利原理,通常不直接用S L-耦合的方法,而用合成投影合成法.要点如下:(1)按洪特定则,同科电子填入同一支壳层时,表现为尽可能以相同方向的自旋分别填入lm 不同的态,写出各电子的自旋量子数的值,求出总的自旋量子数:∑===Ni siS m M S1(2)在不违背泡利原理的前提下(即同科电子的si m 和li m 不全同),将各同科电子可能取的轨道磁量子数lim 的最大值相加,即得原子基态的总轨道量子数:∑===Ni li L m M L1(3)按洪特定则,决定原子基态光谱项的总角动量量子数,最后写出原子基态的光谱项.5.电离能变化的解释He 2:同一壳层的两个电子都受到e 2+的库仑力作用,结合能都很大;Li 3:由于静电屏蔽作用,最外层电子只受到e 1+的库仑力作用,且外层电子距核较远,结合能较小;而内层的两个电子受到e 3+的库仑力作用,其结合能较He 2中的电子要大;Be 4:最外层的两个电子受到e 2+的库仑力作用,…可见,随着壳层的增加,外层电子的结合能依次增高.如右图所示,Na 11的外层电子只受到一个有效正电荷的作用,而Ar 18外层的8个电子中的每一个都受到8个有效电荷的作用,因此,Ar 18要远比Na 11稳定.。