双原子分子结构图文

合集下载

生命的化学基础 (2)[可修改版ppt]

生命的化学基础 (2)[可修改版ppt]

氨基酸
氨基
羧基
不同氨基酸
丙氨酸 缬氨酸 组氨酸 苯丙氨酸
蛋白质一级结构:多肽链的氨基酸顺序
蛋白质二级结构:α螺旋和β折叠
Primary structure
Amino acid
Secondary structure
Hydrogen bond
Alpha helix
Pleated sheet
Figure 3.15, 16
糖精 阿斯巴甜 糖精钠 蔗糖素
脂质
脂肪 磷脂、蜡和固醇
脂肪(fat):甘油+脂肪酸
磷脂(phospholipids)
胆碱
卵磷脂
质膜
胆碱
磷酸
极性头 部甘油脂肪 酸 Nhomakorabea磷
非极性尾





膜脂质
固醇
固醇类激素
蛋白质
功能 组成单位:氨基酸 蛋白质一、二、三、四级结构
蛋白质功能
结构蛋白 收缩蛋白 贮藏蛋白 防御蛋白:抗体 转运蛋白 信号蛋白 酶
Glucose monomer
STARCH
Glycogen granules in muscle tissue
GLYCOGEN
Cellulose fibrils in Cellulose
a plant cell wall
molecules
Figure 3.7
CELLULOSE
纤维素
淀粉和糖原
不同糖的甜度比较
碱基
※ 戊糖
核糖核酸和脱氧核糖核酸
T T
T
※碱基
Sugar–phosphate backbone
5 end
Nitrogenous bases

中级无机化学

中级无机化学

CCl4难水解,是因C的价轨道已用于成键且又没有孤电子对之故。 NF3的分子结构与NCl3同,其中N原子也是采用sp3杂化轨道成键,其上有一对孤 对电子。然而, 1 由于F原子的电负性较大,使得NF3的碱性(给电子性)比NCl3小,因而亲电水解 很难发生; 2 由于N是第二周期元素,只有4条价轨道(没有d轨道),不可能有空轨道接受水 的亲核进攻; 3 N-F键的键能比N-Cl键的键能大,不容易断裂。 这些原因决定了NF3不会发生水解作用。
第一章 原子、分子及元素周期性
第一节 原子结构理论概述 第二节 原子参数及元素周期性 第三节 共价键理论概述 第四节 键参数与分子构型 第五节 分子对称性与点群 第六节 单质的性质及其周期性递变规律 第七节 主族元素化合物的周期性性质 以上七节主要自学,要求掌握: 1 用徐光宪的改进的Slater规则计算电子的屏蔽常数 2 了解电负性的几种标度,理解环境对电负性的影响和基 团电负性的概念 3 键参数 价层电子对互斥理论 分子对称性知识 4 单质及其化合物的一些性质的周期性变化规律 同时,还要特别注意 5 掌握周期反常现象的几种表现形式及合理解释
习题:1,2,3,4,6,7,8,10,11,12,13,15,17
原子所带电荷
电负性与电荷的关系可用式 χ = a + b 表示。 式中为分子中原子所带的部分电荷。a、b为两个 参数。其意义是: a表示中性原子的电负性(中性原 子=0), b为电荷参数,表示电负性随电荷而改变 的变化率。大的、易极化的原子有较小的b值; 小 的、难以极化的原子b值较大。
分子

是 D∞h i i? 否 C∞v
直线型 ?

否 两个或多个 Cn(n≥3) ?
否 Cn ? 否 ζ?
T,Th,Td,O,Oh 是

高一化学同位素 PPT课件 图文

高一化学同位素 PPT课件 图文
82
离子电荷 原子个数
数字的位置不同,所表示的意义就不同, 可要小心哟!
填表
微粒 质量数 质子数 中子数 电子数
氯原子 35
17
18
17
钠离子 23
11
12
10
硫离子 32
16
16
18
8305Br
80
35
45
35
练习
某元素Rn- 核外有 x 个电子,该元素的某 种
原子的质量数为A,求原子里的中子数。 阴离子Rn-核外有 x 个电子
中子数不同,质量数不同
不同种原子
质子数相同而中子数不同的同一元素的原子互称同位素
下列叙述正确的是 ( C ) (A)质子数相同的微粒之间一定互为同位素
不一定,如HF、H2O、NH3、CH4等分子质子数相同。
(B)已发现的元素有112种,因此有112种原子
大多数元素均有同位素,原子数目远远超过112种。
(C)属于同位素的原子一定为同种元素
正确,因属于同位素的原子的质子数相同。
(D)水(H2O)和重水(D2O)互称同位素ห้องสมุดไป่ตู้
同位素指的是原子之间关系,不是分子之间的关系。
本节总结:
本节课学习了两个重要概念: 质量数和同位素 此“数”不同彼“素”, 小心! 不要写错啊!
原子的质量数是指元素的一种同位素原子的核中 所含质子数和中子数之和, 在实际使用中常代替同位 素的原子量, 所以也叫做近似原子量。
则原子的核外电子数为 x - n
核内的质子数也为 x - n
A
核内的中子数N = A -(x – n )
B C
=A-x+n
D
核组成 质子数 中子数

《原子结构》原子结构与元素周期表课件 图文

《原子结构》原子结构与元素周期表课件 图文

年代 1911年
模型
卢瑟福 原子 模型
观点或理论
在原子的中心有一个带正电 荷的核,它的质量几乎等于 原子的全部质量,电子在它 的周围沿着不同的轨道运转, 就像行星环绕太阳运转一样。
年代 1913年
模型
玻尔原子 模型
1926~ 1935年
电子云 模型
观点或理论
电子在原子核外空间的一定 轨道上绕核做高速圆周运动。
(8)内层电子总数是最外层电子数2倍的原子有Li、P。 (9)电子层数与最外层电子数相等的原子有H、Be、Al 。 (10)电子层数是最外层电子数2倍的原子是Li。 (11)最外层电子数是电子层数2倍的原子有He、C、S。 (12)最外层电子数是电子层数3倍的原子是O。
【迁移·应用】 1.(2019·南京师大附中高一检测)下列各原子结构示 意图中所表示的核外电子排布正确的是 ( )
【解析】选D。A原子的M层比B原子的M层少3个电子,B 原子的L层电子数恰为A原子L层电子数的2倍,说明A、B 为第二、第三周期元素;L层最多排8个电子,B原子的L 层电子数恰为A原子L层电子数的2倍,说明B原子的L层 有8个电子,A原子的L层有4个电子,故A是碳原子;A原子 的M层比B原子的M层少3个电子,故B为铝原子。
2.用A+、B-、C2-、D、E、F和G分别表示含有18个电子 的七种微粒(离子或分子),请回答: (1)A元素是________,B元素是________,C元素是 ________(用元素符号表示)。 (2)D是由两种元素组成的双原子分子,其分子式是 ________。
知识点 核外电子的分层排布 【重点释疑】 1.原子核外电子排布规律及其之间的关系
2.原子核外电子排布的表示方法 (1)原子结构示意图。

中学化学 分子间力、氢键王 课件

中学化学  分子间力、氢键王  课件

4、分子变形性: ➢由于外电场的作用,会使分子中的电子和原子核发生 相对位移,使分子发生变形,分子中原有的正负电荷中 心发生改变,分子的极性也随之改变,这种过程称分子 的极化。 ➢即分子中因电子与原子核发生相对位移而使分子外形 发生变化的性质,叫做分子的变形性。 ➢分子变形性的大小可用极化率来衡量。
分子极性的判断: ➢同原子组成的双原子分子—非极性分子。 ➢异原子组成的分子: •双原子分子—必是极性分子 •多原子分子—取决于分子构型。如NH3是极性分子,而 BF3是非极性分子。
多原子分子的极性与构型
分子 杂化形式 分子构型 分子极性 示例
AB
线形
极性
AB2 sp
线形
非极性
AB3 sp2
平面三角 非极性
角形 四面体 直线形
O3
1.67 角形
HF
6.47 直线形
HCl 3.60 直线形
HBr 2.60 直线形
HI
1.27 直线形
BF3
0 平面正
三角形
二.分子的极化和变形
q
+-
μ= 0 极性分子
d
μ=q·d
1、固有偶极矩:极性分子在没有外电场作用下所具有的 偶极。只有极性分子才有固有偶极矩。(也称永久偶极)
▪若分子的电偶极矩为0,分子为非极性分子,若大于 0,分子为极性分子,电偶极矩越大,极性越大,电 偶极矩还可以判断分子的空间构型 。
如:
NH3, μ>0,三角锥型; BCl3, μ=0,平面三角形;
CO2, μ=0,直线形;
SO2, μ>0,V型。
测定分子电偶极矩是确定分子构型的一种重要实验 方法,德拜因此而获得1936年诺贝尔化学奖。
非极性分子

第九章羰基化合物

第九章羰基化合物

反应机理
H+
+ ROH
OH -H+
C=O

C=OH
C
+ OR
H
催 化
OH H+ C
OR
+ OH2 C OR
-H2O
C+ OR
ROH
H C O+R
-H+
OR
OR C OR
分子内形成半缩醛的反应机理
H+
HOCH2CH2CH2CH2CH=O
+ HO(CH2)4CH=OH
-H+
+ OH
O
OH
OH
缩醛对碱、氧化剂稳定。在稀酸溶液中易水解成醛和醇。
常见的亲核试剂按照亲核的中心 原子不同可分为:
碳为中心原子的亲核试剂 氧为中心原子的亲核试剂 硫为中心原子的亲核试剂
氮为中心原子的亲核试剂
羰基与碳为中心原子的 亲核试剂的加成
格氏试剂 HCN 炔化钠
与HCN的加成
-OH溶液
(CH3)2C=O + HCN
C C3 3H HCO C - N H 2OC C3 3H HCC ON H
-羟腈(或-氰醇)
H+ H2O
CH3 C COOH -H2O
CH3
OH
-羟基酸
CHC2H=C3 -COOH ,-不饱和酸
反应机理
C C H H 3 3C = O -C NC C H H 3 3 C O C -N H 2 O C C H H 3 3C C O N H
可逆
不可逆
反应条件
反应必须在弱碱性条件下进行。
R-CC-Na+ +

人教版初三化学九年级上册 PPT课件 图文

人教版初三化学九年级上册 PPT课件 图文
——化学真正成为一门独立的科学
英国化学家物理学家 道尔顿
意大利化学家 阿佛加德罗
门捷列夫
二 、什么是 化 学
化学是一门在分子原子
层次上研究 物质的 组成、 结构、性质以及变化规 律 的自然科学。
亿名教育修正版
三、化学与人类的 关系——生活中处
都来说说:
▲请你从日常生活中的衣、食、 住、行几方面举事例证明化学对 现代社会发展的影响?
亿名教育修正版
四、为什么要学化学?
1、化学到底给我们带来了什么?
我们为什么要学化学?
学习化学,可以使我们正确地认 识物质及其变化,并帮助我们更文明、 更健康地生活。
观察反应物的颜色、状态、气味。反应时,观 察反应发生需要的条件(是否需要加热或其他附加条 件)。
变化时
发生的现象(有无沉淀、气体生成,是否有发 光、发热或颜色变化等现象发生)。
变化后 观察生成物的颜色、状态、气味。
实验1:水的沸腾
1.请说出水的颜色、状态、气味。 2.水加热沸腾时,试管口有什么现象? 3.干冷玻璃片上有什么现象?
三、实验1、2与实验3、4有什么本质的区别?
物理变化
化学变化
概念
没有生成新物质的变化
生成新物质的变化
本质区别 (判断依据)
变化时是否有新物质生成
伴随现象
物质的外形,形状发生改变
伴随能量的变化,发光放热,颜色 改变,生成气体,产生沉淀等
相互联系 实例
化学变化中一定伴随物理变化
矿石粉碎,水蒸发,汽油挥发等
通过化学变化可知
性质 内容
颜沸发色点性,,等状硬态 度,,气溶味解,性熔,点挥,可性燃,性稳,定还性原等性,氧化
注意

极性分子和非极性分子

极性分子和非极性分子

联系 说明
1. 以非极性键结合的双原子分子必为非极性分子; 2. 以极性键结合的双原子分子一定是极性分子; 3. 以极性键结合的多原子分子,是否是极性分子, 由该分子的空间构型决定。
键有极性,分子不一定有极性。
常见分子的构型及其分子的极性
类型 实例
结构
键的极性 分子极性
X2型: H2
非极性键 非极性分子
极性键
共价键的分类 非极性键
;佛山图文店 佛山图文店

,每一片沙滩,每一缕幽林里的气息,每一种引人自省、鸣叫的昆虫,都是神圣的你我的生活完全不同,印第安人的眼睛一见你们的城市就疼痛。你们没有安静,听不见春天里树叶绽开的声音、昆虫振翅的声音,听不到池塘边青蛙在争论你们的噪音羞辱我的双耳,这种生活,算活着? 我是印第 安人,我不懂。” 我是印第安人,我不懂。 后来,华盛顿州首府取了这位酋长的名字:西雅图。 有个当代故事:一个长年住山里的印第安人,受纽约人邀请,到城里做客。出机场穿越马路时,他突然喊:“你听到蟋蟀声了吗?”纽约人笑:“您大概坐飞机久了,是幻听吧。”走了两步,印第 安人又停下:“真的有蟋蟀,我听到了。”纽约人乐不可支:“瞧,那儿正在施工打洞呢,您说的不会是它吧?”印第安人默默走到斑马线外的草地上,翻开了一段枯树干,果真,趴着两只蟋蟀。 城市人的失聪,因为其器官只向某类事物敞开,比如金钱、欲望、键盘、电话、券、计算器从而关 闭了灵性。印第安人的听力不是“好”,而是正常和清澈,未被污染和干扰的正常,没有积垢和淤塞的清澈。一个印第安人耳朵里常年居住的,都是纯净而纤细的东西,所以只要对方一闪现,他就会收听到。 作为忠告,作为签约的条件,西雅图酋长继续对白人们说 “记得并教育你们的孩子, 河川是我们的兄弟,也是你们的,今后,你们须以手足之情对待它你们须把地上的野兽当兄弟,我听说,成千上万的野牛横尸草原,是白人从火车中射杀了它们。我们只为求活才去捕猎,若没了野兽,人又算是什么呢?若兽类尽失,人类亦将寂寞而死。发生在野兽身上的,必将回到人类身上若 继续弄脏你的床铺,你必会在自己的污秽中窒息。” 可惜,这些以火车和枪弹自负的工业主义者,并未被插着羽毛的话给吓住。他们不怕,什么都不怕。 清晨之人的声音,傍晚之人怎能听得进呢? 犹太作家以萨·辛格说:“就人类对其他生物的行为而言,人人都是纳粹。” 北美大陆的野牛, 盛时有4亿至5 亿只,19世纪中叶有4000万只,随着白人的火车行驶,50年后,仅剩数百只。 果真,野兽的命运来到了人身上。1874年,印第安人的领地发现了金矿,白人断然撕毁和平协议,带上炸药、地图和酒瓶出发了。很快,野牛的血泊变成了人的血泊。 印第安人的清晨陨落了,剩下的, 是星条旗的黄昏和庆祝焰火。 李奥帕德说过:“许多供我们打造出美国的各种野地已经消 失了。” 美利坚,基于北美的童年基因而诞生,乃流落欧洲几世纪的自由精神遇到辽阔大陆和清新野地的结果。而它功成之日,却蹂躏了赋予它容貌、体征、气质和恩泽的母腹。从此,它再也无法复制古 希腊的童话,只能以现代名义去铸造一个以理性、逻辑和法律见长而非以美丽著称的国家。 我常想,印第安人的挽歌,是否人类童年的丧钟? 若世间没有了孩子,还有诗意的未来吗? 叶芝在《偷走的孩子》中唱道 “走吧,人间的孩子! 与一个精灵手拉着手,走向荒野和河流。 这世界哭声 太多,你不懂。” 如果能选择,我也想做一个印第安人。 那些很少很少的人。 哪怕清晨开始,清晨死去。 谁偷走了夜里的“黑” ? 1 你见过真正的黑夜吗?深沉的、浓烈的、黑魆魆的夜? 儿时是有的,小学作文里,我还用过“漆黑”,还说它“伸手不见五指”。 从何时起?昼夜的边界模 糊了,夜变得浅薄,没了厚度和深意,犹如墨被稀释渐渐,口语中也剥掉了“黑”字,只剩下“夜”。 夜和黑夜,是两样事物。 夜是个时段,乃光阴的运行区间;黑夜不然,是一种境,一种栖息和生态美学。一个是场次,一个是场。 在大自然的原始配置中,夜天经地义是黑的,黑了亿万年。 即使有了人类的火把,夜还是黑的,底蕴和本质还是黑的。 “夜如何其?夜未央。庭燎之光。” 这是《诗经·庭燎》开头的话,给我的印象就是:夜真深啊。 那会儿的夜,很纯。 一位苗寨兄弟进京参加“原生态民歌大赛”,翻来覆去睡不着,为什么?城里的夜太亮了。没法子,只好以厚毛 巾蒙面,诈一回眼睛。在他看来,黑的浓度不够,即算不上夜,俨然掺水的酒,不配叫酒。 习惯了夜的黑,犹如习惯了酒之烈,否则难下咽。 宋时,人们管睡眠叫“黑甜”,入梦即“赴黑甜”。意思是说,又黑又甜才算好觉,睡之酣,须仰赖夜之黑:夜色浅淡,则世气不宁;浮光乱渡,则心 神难束。所以古代养生,力主亥时(约晚10点)前就寝,唯此,睡眠才能占有夜的深沉部分。 现代人的“黑甜”,只好求助于厚厚的窗帘了,人工围出一角来。 伪造黑夜,虚拟黑夜 难怪窗帘生意如此火爆。 2 昼夜轮值,黑白往复;日出而作,日落而息 乃自然之道、人生正解。 夜,是上天 之手撒下的一块布,一座氤氲的罩体,其功能即覆护万物、取缔喧哗、纳藏浮尘,犹若海绵吸水、收杂入屉。无夜,谁来叫停芸众的熙攘纷扰和劳顿之苦?何以平息白昼的手舞足蹈与嘈沸之亢?夜,还和精神的营养素 “寂”“定”“谧”相通,“夜深人静”意思是夜深,心方静远而这一切,须 靠结结实实的“黑”来完成:无黑,则万物败露,星月萎怠;无黑则无隐,无隐则无宁。 所以我一直觉得,黑,不仅是夜之色相,更是夜的价值核心。 黑,是夜的光华,是夜的能量,是夜的灵魂,也是夜的尊严。 “不夜城”,绝对是个贬义词。等于把夜的独立性给废黜了,把星空给挤兑和欺 负了。它侵略了夜,丑化了夜,羞辱了夜,仿佛闯到人家床前掀被子。 将白昼肆意加长,将黑夜胡乱点燃,是一场美学暴乱、一场自然事故。无阴润,则阳萎;无夜育,则昼疲。黑白失调,糟蹋了两样好东西。 往实了说,这既伤耗能源,又损害生理。我一直纳闷为何现代鸡发育那么快。真相 是:笼舍全天照明,鸡无法睡觉,于是拼命吃。见光吃食,乃鸡的秉性,人识破了这点,故取缔了黑,令其不舍昼夜地膨胀身子。 现代鸡是在疯狂的植物神经紊乱中被速成的。它们没有童年,没有青春,只有起点和终点。人享用的,即这些可怜的被篡改了生命密码的鸡,这些一声不吭、无一日 之宁的鸡。毕其一生,它们连一次黑夜都没体会,连鸣都没打过。 我想,应给其重新起个名:昼鸡,或胃鸡。 无黑,对人体的折磨更大,可谓痛不欲生。据说逼供多用此法,不打不骂,只用大灯泡照你,一两日挺过去,第三天,你会哭喊着哀求睡一会儿,哪怕随后拉出去枪毙。 3 黑夜,不仅 消隐物象,它还让生命睁开另一双眼,去感受和识别更多无形而贴心的东西。 成年后,我只遇上一回真正的夜。 那年,随福建的朋友游武夷山,在山里一家宾舍落脚。夜半,饥饿来了,大伙驱车去一条僻静的江边寻夜宵。 吃到一半,突然一片漆黑,断电了。 等骚动过去,我猛然意识到:它 来了,真正的夜来了。 亿万年前的夜,秦汉的夜,魏晋的夜,唐宋的夜 来了。 此时此刻,我和一个古人面对的一模一样? 山河依旧?草木依旧?虫鸣依旧? 是,应该是。那种弥漫天地、不含杂质、水墨淋漓的黑,乃我前所未遇。 星月也恢 复了古意,又亮又大,神采奕奕。还有脚下那条江, 初来时并未听到哗哗的流淌,此刻,它让我顿悟了什么叫“川流不息”,什么叫“逝者如斯”,它让我意识到它已在这儿住了几千年 我被带入了一幅古画,成了其中一员,成了高山流水的一部分。 其实,这不过是夜的一次显形,恢复其本来面目罢了。 而我们每天乃至一生的面对,皆为被改造 过的不实之夜。 几小时后,灯火大作,酒消梦散。 21世纪又回来了。 这是一次靠“事故”收获的夜。 对都市人来说,这样的机会寥寥无几。第一,你须熄掉现代光源,遭遇或制造一次停电。第二,你须走出足够远,甩掉市声人沸的跟踪,最好荒山野岭、人烟稀少,否则一束过路车灯、一架 红眼航班,即会将梦惊飞。 所以,这是运气。 4 夜的美德还在于,其遮蔽性给人生营造了一种社会文化:个体感和隐私性。 如果说,白昼之人,不得不在光天化日、众目睽睽下演绎集体生活模式,那么,黑则让人生从“广场状态”移入角落状态,夜成了除住宅空间外更辽阔的私生活舞台。所 以,“夜生活”即同义于“私生活”。 我向来觉得,生活的本质即私生活,私生活才是真正的生活。白天,人属于人群,不属于自我,正是夜,让世界还原成一个个私人领地和精神单元,正是黑的降临,才预示着生活帷幕的拉开。 但棘手的是:现代之夜的“黑”,明显减量了,不足值了。 现 代生活和城市发展的一个趋向是:愈发地白昼化,愈发地广场性。风靡各地的“灯光工程”“不夜工程”、无孔不入的摄像头,即为例。 凡诱惑之物,必成为一种资源,进而孕育一份产业。 终于,有人瞄上了“黑”,并把它变成巧克力一样的东西 2005年,商务区开了一家名为“巨鲸肚”的黑 暗餐厅,顾名思义,这是个伸手不见五指的人造空间。该餐厅分亮光区和黑暗区,客人先在亮区点餐,将手机、打火机、表链等发光品存储,再由佩夜视镜的侍者引入暗区。 一时间,该餐厅生意火爆,预订期长达一周。说是进餐,不如说猎奇,因为没人把吃当回事,据说饭菜并不可口,大家消 费的是黑绝对的、久违的、正宗的、业已消逝的“黑”。 我想,谁要打造一个名叫“夜未央”的诗意空间,肯定更卖座。 我也会去消费。夜如何其?夜未央,夜未央 说了这么多,其实我一点不厌光,相反,我深爱星月之华、烛火之灿。 夜里,微光最迷人,最让人心荡漾。 我厌倦的是“白夜 城市”“不夜工程”,它恶意篡改了大自然的逻辑和黑白之比,将悦目变成了刺眼。 对“黑”的偏见和驱逐,让这个时代有点蠢。 我觉得,人类应干好两件事 一是点亮黑夜,一是修复黑夜。 同属文明,一样伟大。 生活在险境中 ? 打开电视,一警官大学教授在教人同短信诈骗作斗争。另一 频道,专家正详解新版百元假钞的破绽,其仿真度已让验钞机歇了菜;紧接着,主持人纳闷为何黄瓜顶花戴刺、娇若新娘,谜底是避孕药的滋润。再换个频道,说了两件事:一是银行卡里的钱为何不翼而飞,专家提醒,操作ATM机时一定要警惕可疑摄像头,以防密码被钓;二是购房纠纷,律师告 诫,一定要反复推敲合同的每一句、每一字、每一标点 好了,我都铭记在心、烂熟于心了。感谢,感恩涕零。 站起来,朝电视机深鞠一躬。 我们生活在险境中,我们居住在楚歌里。 我们警惕地、愤怒地,如履薄冰、担惊受怕地过日子。 是不是有点悲壮? 我想,我若是个傻瓜,可怎么活啊! 这么多陷阱,这么多圈套和天罗地网

《简明无机化学》课件

《简明无机化学》课件

课件演示流程设计
开场白:介绍课程主题、目的和主 要内容
基础知识:介绍无机化学的基本概 念、原理和规律
实例分析:通过实例讲解无机化学 的应用和实践
总结回顾:总结课程要点,强调重 点和难点
互动环节:提问、讨论、答疑,增 强学生参与度
结束语:感谢学生参与,鼓励学生 继续学习无机化学
课件交互功能介绍
课件支持多种交互方式,如点击、拖动、滚动等 课件支持多媒体播放,如视频、音频、图片等 课件支持实时反馈,如答题、评分、排名等 课件支持个性化设置,如字体大小、颜色、背景等
知识点全面,覆 盖无机化学主要 内容
结合实例,便于 学生理解
课件设计美观, 易于观看
03
课件内容
无机化学基本概念
化学元素:构成物质的基本单位 化学键:原子间相互作用的力 化学平衡:化学反应达到平衡状态
化学反应速率:化学反应进行的快慢 程度
化学热力学:研究化学反应的热力学 性质
化学动力学:研究化学反应的动力学 性质
解决方案:通过制定学习计划、合理安排时间等方式,提高无机化 学的学习效率。
课件更新与维护说明
更新频率:每季度 更新一次
更新内容:根据最 新科研成果和教学 需求进行更新
维护方式:定期检 查课件运行情况, 及时修复发现的问 题
用户反馈:欢迎用 户提出意见和建议, 我们将及时采纳并 改进课件内容
感谢观看
无机化学元素性质
原子结构:电子排布、原子半径、电负性等 化学性质:氧化还原性、酸碱性、配位能力等 物理性质:熔点、沸点、密度、硬度等 应用:在工业、农业、医学等领域的应用
无机化学反应原理
化学反应的 基本原理: 原子、分子、 离子的相互
作用

双原子分子结构图文

双原子分子结构图文

氢分子
解离能(eV) 键长(Å) 方法
1927年海特勒-伦敦
3.14 0.896 价键函数当源自实验值:4.74 0.74
1968年Kolos与Wolniewicz 4.7467 0.74127 100项变分函数
1970年,G. Herzberg实验 4.7467 0.7412
MP2/6-31G
4.018 0.7375
E
*Hˆ d * d
E0
• 用求极值方法调节参数,找出能量最低时对应 的波函数,即为和体系基态相近似的波函数。
• 常用的变分法是线性变分法。
6
3.2.2 变分法解Schrödinger方程
➢ 线性变分法
• 选择已知的品优线性变分函数:
n
c11 c2 2 ... cn n ci i
分子体系
Hˆ Kˆ N Kˆe VˆNN VˆNe Vˆee
1927年玻恩和奥本海默指出,核的运动的速度远小 于电子,因此在考虑电子的运动时,可以把重的、运动 缓慢的核看成是近似不动的点电荷,因此一旦核的位置 确定,在求解Schrödinger方程时就无须考虑核的运动。
Hˆ Kˆe VˆNN VˆNe Vˆee
• Sab越大(轨道重叠程度越大), β越大,键越强。
29
③ 轨道最大重叠 • 重叠程度与核间距和接近方向有关。
核间距不变,沿不同方向Sab不同 共价键方向性的基础
30
3. 反键轨道
① 是整个分子轨道中不可缺少的组成部分
② 具有和成键轨道相似的性质
③ 在形成化学键的过程中,有时反键轨道也和其他
轨道相互重叠,形成化学键,降低体系的能量,
1. 库仑积分 Haa (α)
Haa

热力学第二定律-耗散结构_图文

热力学第二定律-耗散结构_图文

生物 生命
生物是远离平衡态的开放系统 生命过程是一种耗散结构 物种的产生 偶然性 物种的保护
麦克斯韦分布
麦克斯韦分布
其中 di S > 0:熵产生,由系统内部的不可逆过 程引起。 de S : 熵流,可正可负。由系统与外部的能量和物
质交换引起。
自组织现象的解释
开放系统从外界接收负熵流 de S<0 且 |de S|>di S 系统的熵 d S = di S + de S<0 使系统由无序变到有序
负熵流
贝纳特实验中,流体系统是一个开放系统,随着热 量的流进流出,系统的熵在变化。若流进流出的热 量相等,为dQ 。
热力学第二定律-耗散结构_图文.ppt
第四章 热力学第二定律
*耗散结构介绍
耗散结构理论: 普利高津(I.Prigoging, 比利时)
1967年创立, 1977年获诺贝尔化学奖。
• 自组织现象 • 开放系统的熵变 • 远离平衡态的分叉现象
• 通过涨落达到有序
有序与无序
热力学第二定律说明了孤立系统中 的自然过程有方向性:
流进的熵
流出的熵
因为
所以
即流出的熵大于流进的熵 。
若净流出的熵超过了系统内部的“熵产生”,系统 的熵就减少,系统就从无序有序。
远离平衡态的分叉现象
1.平衡态热力学(经典热力学)
主要研究平衡态的性质.例如,贝纳特实验中 T=0 的情形。
2. 线性非平衡态热力学(近平衡态热力学)
外界的影响较小,外界的作用与系统状态的变化可 以看成简单的线性关系.
激光
激光器出激光,要输入足够的功率(开放系统) 才能造成粒子数反转的状态(远离平衡态)。
当有能量

光合作用-植物生理-图文

光合作用-植物生理-图文

光合作用-植物生理-图文第三章植物的光合作用碳素营养是植物的生命基础,这是因为,第一,植物体的干物质中90%以上是有机化合物,而有机化合物都含有碳素(约占有机化合物重量的45%),碳素成为植物体内含量较多的一种元素;第二,碳原子是组成所有有机化合物的主要骨架,好象建筑物的栋梁支柱一样。

碳原子与其他元素有各种不同形式的结合,由此决定了这些化合物的多样性。

按照碳素营养方式的不同,植物可分为两种:1)只能利用现成的有机物作营养,这类植物称为异养植物(heterophyte),如某些微生物和少数高等植物;2)可以利用无机碳化合物作营养,并且将它合成有机物,这类植物称为自养植物(autophyte),如绝大多数高等植物和少数微生物。

异养植物与自养植物相比,后者在植物界中最普遍,而且非常重要。

这里我们着重讨论自养植物。

自养植物吸收二氧化碳,将其转变成有机物质的过程,称为植物的碳素同化作用(carbonaimilation)。

植物碳素同化作用包括细菌光合作用、绿色植物光合作用和化能合成作用3种类型。

在这3种类型中,绿色植物光合作用最广泛,合成的有机物质最多,与人类的关系也最密切,因此,本章重点阐述绿色植物光合作用(以下简称光合作用)。

第一节光合作用的重要性绿色植物吸收阳光的能量,同化二氧化碳和水,制造有机物质并释放氧气的过程,称为光合作用(photoynthei)。

光合作用所产生的有机物质主要是糖类,贮藏着能量。

光合作用的过程,光合作用的重要性,可概括为下列3个方面:1.把无机物变成有机物植物通过光合作用制造有机物的规模是非常巨大的。

据估计,地球上的自养植物每年约同化2某lOt碳素,其中40%是由浮游植物同化的,余下60%是由陆生植物同化的(图3-1)。

如以葡萄糖计算,整个地球每年同化的碳素相当于四五千亿吨有机物质,难怪人们把绿色植物喻为庞大的合成有机物的绿色工厂。

绿色植物合成的有机物质,可直接或间接作为人类和全部动物界的食物(如粮、油、糖、牧草饲料、鱼饵等),也可作为某些工业的原料(如棉、麻、橡胶、糖等)。

物理化学6.5-2 活化络合物理论

物理化学6.5-2 活化络合物理论

活化络合物理论(ACT)
要点:化学反应不只是通过简单碰撞就变成产物, 而是经历两步反应:
① 由具有足够能量的反应物分子经过碰撞形成 活化络合物,后者与反应物分子之间迅速建立 化学平衡;
② 活化络合物转化为产物, 速率很慢(速控步).
活化络合物理论(ACT)
即 A + B-C Kc‡ [A…B…C]‡ kA A-B + C 速控步
Ep= f (RAB,RBC, RAC )
或 Ep= f ( RAB,RBC,θ)
(1)超分子
固定某一参量,如θ=180°
(A分子与BC分子发生共线碰撞),即为共线三原子体系,
Ep = f (RAB,RBC)
C 建立超分子的薛定谔方程,
解薛定谔方程,
R
BC
A
B
C
绘制势能面。
RAB
RAB
图6-13 超分子构型
孙承谔
(1911—1991)
孙承谔,物理化学家和化学教育家。 主要从事化学动力学的研究工作,是中国 早期从事化学动力学研究的先驱之一,并 曾长期担任北京大学化学系主任。
1935年与E. Eyring等共同发表研究成果 “H2+H→H+H2反应的势能面”而享有
盛名。为化学反应速率过渡态理论的 建立做出了贡献。
(1)超分子
设双分子反应 A+BCAB+C
反应过程中A接近B-C分子时,B-C键减弱,RBC↑, RAB ↓ , 三 原 子 相 对 位 置 改 变 , 形 成 活 化 络 合 物 (A…B…C) (过渡状态)
——看做一个量子力学实体,称为超分子。
C
RAC
R BC
A
B
RAB
图6.13 超分子
体系的势能变化要用三个 参数描述,即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于H2+来说,两个核等同,所以Haa=Hbb
求 解 结
E1
Haa H ab 1 Sab

E2
Haa Hab 1 Sab
成键轨道 反键轨道
1
( a b )
2 2Sab
2
( a b )
2 2Sab
• 使用变分法可以在不解薛定谔方程的情况下,解得接近 体系基态的能量和波函数。
10
3.2.3 三种积分
12
3. 重叠积分 Sab
Sab a* bd
其大小与两原子轨道的重叠程度有关
13
3.2.4 能量曲线和分子轨道能级
1. 能量曲线:E~R
E1
EH
J K 1 S
E2
EH
J 1
K S
J
1
1 R
e2
R
K
1 R
2R 3
e
R
S
1
R
R2 3
e
R
计算:Re=132pm De=170.8kJ/mol
Haa E
H
ab
ESab
Hab ESab Hbb E
ca cb
0
• 使ca, cb有不完全为0的解, 得久期行列式 :
Haa E Hab ESab 0 Hab ESab Hbb E
9
3.2.2 变分法解Schrödinger方程
Haa E Hab ESab 0 Hab ESab Hbb E
实验:Re=106pm De=269.5kJ/mol
Re:平衡核间距 De:平衡解离能
反键分子轨道 成键分子轨道
14
3.2.4 能量曲线和分子轨道能级
由于只选取了两个氢原子的基态—1s轨道的波函数作 为尝试函数,因此得到的分子轨道不能定量地说明H2+的成 键,但随着尝试函数的改进(如加入两个氢原子的2s和2p轨 道或更多),可以得到与薛定谔方程精确求解接近乃至一致 的结果。
2
原子的结构----从最简单的氢原子开始; 双原子分子的结构----从最简单H2+分子离子开始。
1930年,Mulliken(马尼肯)等人用量子力 学变分法处理了H2+体系,在这个基础之上就建 立了分子轨道理论。
3
§3.2 H2+ 的结构和共价键的本质
Born-Oppenheimer 近似 (定核近似)

子 间 相 互
化 学 键


1
分子中原子间的强烈相互作用——即化学键的本质是 结构化学要研究的中心问题之一。以量子力学和原子结构 理论为基础发展起来的化学键(共价键)理论有三个分支
价键理论(VB) 共价键理论 分子轨道理论(MO)*
配位场理论(LF)
• 价键理论可以看成量子力学处理 H2 结果的延伸和推广; • 分子轨道理论可以看成是量子力学处理 H2+ 结果的推广; • 配位场理论是针对配合物的结构特征发展起来的 。 • 本章主要介绍分子轨道理论和价键理论。
4
3.2.1 H2+ 的Schrödinger方程
• 最简单的分子 • 虽然不稳定,但存在
H
2
原子单位制定核近似下H2+的 薛定谔方程:
1 2
2
1 ra
1 rb
1 R
E
• 椭球坐标系下可严格求解
• 用近似方法---变分法求解
5
3.2.2 变分法解Schrödinger方程
变分原理: 对任意一个品优函数 ,用体系的哈密顿算符 求得的能量平均值,将大于或接近于体系基态的 能量E0, 即
1. 库仑积分 Haa (α)
Haa
a

a
d
a

a
d
a
1 2 2
1 ra
1 rb
1 R
a
d
a
1 2
2
1 ra
a d
1 R
a ad
a
1 rb
a d
1
EH R
2 a
rb
d
EH
J
J 1
R
1
rb
a2d
电子处在轨道a时受到核b的库仑吸引能
Haa中包括了原子核b与以原子核a为中心的电子的 库仑相互作用,因此称库仑积分。
E
*Hˆ d * d
E0
• 用求极值方法调节参数,找出能量最低时对应 的波函数,即为和体系基态相近似的波函数。
• 常用的变分法是线性变分法。
6
3.2.2 变分法解Schrödinger方程
➢ 线性变分法
• 选择已知的品优线性变分函数:
n
c11 c2 2 ... cn n ci i
i 1
选定某种函数类型后, 用它们的线性组合作为尝试
变分函数ψ,线性组合系数就是变分参数, 而函数本身
则不再改变。这样的尝试变分函数叫做线性变分函数, 相应的变分法叫线性变分法。
E
*Hˆ d
* d
n
*
ciiHˆFra biblioteknci
i
d
i1
i1
n
*
ci
i
n
ci
i
d
i1
i1
分子体系
Hˆ Kˆ N Kˆe VˆNN VˆNe Vˆee
1927年玻恩和奥本海默指出,核的运动的速度远小 于电子,因此在考虑电子的运动时,可以把重的、运动 缓慢的核看成是近似不动的点电荷,因此一旦核的位置 确定,在求解Schrödinger方程时就无须考虑核的运动。
Hˆ Kˆe VˆNN VˆNe Vˆee
* d
ca a cbb * Hˆ caa cbb d caa cbb * caa cbb d
8
3.2.2 变分法解Schrödinger方程
E(ca , cb )
ca2 H aa ca2 Saa
2cacbHab cb2Hbb 2cacbSab cb2Sbb
• E对ca ,cb求偏导数来求极值, 得到久期方程 :
11
2. 交换积分 Hab (β)
Hab aHˆbd
a

b
d
a
1 2 2
1 rb
1 ra
1 R
b
d
EH Sab
1 R
Sab
1
ra
a
b
d
EH Sab
K
在分子的核间距条件下,K<0,1>Sab>0, < EH
交换积分表明当电子同时属于两个或两个以上
轨道时(如对于H2+体系,电子同属于a和b),比 它只属于单一轨道(a或b)具有更低的能量。
7
3.2.2 变分法解Schrödinger方程
• 写出尝试变分函数:
电子仅属于a
a
1 era
电子仅属于b
b
1 erb
采用原子轨道的线性组合
(LCAO — Linear Combination of ca a cb b
Atomic Orbitals)作为尝试变分函数:
E
*Hˆ d
2. 分子轨道能级
计算:CISD/aug-cc-pvqz Re=105.7 pm De=269.2 kJ/mol
实验:Re=106pm De=269.5kJ/mol
15
变分法
使用变分法可以在不解Schrödinger方程的情况下, 解得接近体系基态的能量及波函数。变分法是量子力 学中最常用的近似方法之一。
相关文档
最新文档