161二次根式的定义和性质课件

合集下载

二次根式的ppt课件

二次根式的ppt课件
将二次根式化简成最简二 次根式,即根号内不含能 开方的因数或因式。
变形技巧
根据题目要求,对二次根 式进行变形,如平方差公 式、完全平方公式等。
估算方法
利用二次根式的性质进行 估算,比较大小,求取值 范围等。
易错点提醒
忽略二次根式的非负性。 运算顺序不正确。
变形过程中出错。
感谢您的观看
THANKS
总结词
有理化因式
详细描述
有理化因式是指将一个二次根式化简为最 简二次根式,其关键是将根号下的被开方 数分解为两个互为有理数乘积的因式。
方法
例子
选择与原二次根式相乘后,能够使得根号 内被开方数= sqrt(-7) = sqrt(7)
二次根式是指根号内含有 变量的表达式,其一般形 式为$\sqrt{a}$,其中$a$ 是非负数。
二次根式的性质
二次根式具有非负性,即 $\sqrt{a} \geq 0$,当且 仅当$a=0$时等号成立。
二次根式的运算
二次根式可以与有理数进 行四则运算,运算顺序先 乘方再乘除,最后加减。
方法总结
化简方法
表达式与符号
表达式
二次根式可以表示为$\sqrt{a}$(其 中a是非负数)及其变体,如 $\sqrt[3]{a}$等。
符号
$\sqrt{}$是二次根式的符号,表示求 某个数的平方根。
运算顺序与规则
运算顺序
二次根式的运算顺序与其他数学运算符相同,先乘方再乘除,最后加减。
规则总结
二次根式可以进行加减运算、乘除运算、幂运算等,运算结果需满足二次根式 的限制条件。
05
二次根式的综合例题
代数例题
总结词
二次根式的代数例题主要涉及完全平方公式 、平方差公式以及多项式展开等知识点。

人教版数学八年级下册第十六章16.1.1二次根式的定义课件

人教版数学八年级下册第十六章16.1.1二次根式的定义课件

解:(1)∵ 3 6 4 的根指数是3,∴ 3 6 4 不是二次根式. (2)∵不论x为何值,都有x2+1>0,∴ x 2 1 是二次根式.
(3)当-5a≥0,即a≤0时, - 5 a 是二次根式;
当a>0时,-5a<0,则 - 5 a 不是二次根式. ∴ 不一定是二次根式.
(4) +1(a≥0)只能称为含有二次根式的式子,不能称为 二次根式.
D.x >-1且x≠3
D. 4 个
B.
【点拨】二次根式是在初始的外在形式上定义的,不能从化简结
果上判断,如 16等都是二次根式.
4. 二次根式 a从意义上说是 a 的_算__术__平__方__根___,根据算术平方 根的意义可知,只有_非__负__数___才有算术平方根,所以二次根 式 a有意义的条件就是__a_≥__0___.
再见
1
(5)当x=-3时,( x 3)2 无意义,∴
1 ( x 3)2
也无意义;
当x≠-3时,(
x
1
3 )2
>0,∴
1 ( x 3)2
是二次根式.
1
∴ ( x 3)2 不一定是二次根式.
(6)当a=4时,a-4=0, ( - a-4)2 是二次根式;
当a≠4时,-(a-4)2<0, ( - a-4)2 不是二次根式.
8. a(a≥0)既表示一个二次根式,又表示非负数 a 的__算__术____ 平方根. a具有双重非负性,即 a___≥_____0, a____≥____0.
9. 已知 y= 2x-5+ 5-2x-3,则 2xy 的值为( A )
A. -15
B. 15
C. -125
15 D. 2
10.若实数 m,n 满足等式|m-2|+ n-4=0,且 m,n 恰好是

二次根式及其性质PPT课件

二次根式及其性质PPT课件

• 干扰素是一种抗病毒、抗肿瘤的药物。将人的干 扰素的cDNA在大肠杆菌中进行表达,产生的干 扰素的抗病毒活性为106 U/mg,只相当于天然 产品的十分之一,虽然在大肠杆菌中合成的β-干 扰素量很多,但多数是以无活性的二聚体形式存 在。为什么会这样?如何改变这种状况?研究发 现,β-干扰素蛋白质中有3个半胱氨酸(第17位、 31位和141位),推测可能是有一个或几个半胱 氨酸形成了不正确的二硫键。研究人员将第17位 的半胱氨酸,通过基因定点突变改变成丝氨酸, 结果使大肠杆菌中生产的β-干扰素的抗病性活性 提高到108 U/mg,并且比天然β-干扰素的贮存 稳定性高很多。
12.5 二次根式及其性质
➢ 要点、考点聚焦 ➢ 课前热身 ➢ 典型例题解析 ➢ 课时训练
➢ 要点、考点聚焦
1.二次根式的定义 (1)式子 (aa≥0)叫做二次根式. (2)二次根式 中a ,被开方数必须非负,即a≥0, 据此可以确定被开方数为非负数. (3)公式( )a2=a(a≥0).
2.积的算术平方根 (1)积的算术平方根,等于积中各因式的算术平方根的 积. (2)公式 ab= a •(ab≥0,b≥0).
4.在函数 y
1 x 4
中,自变量x的取值范围是( C )
A.x ≥4 B. x ≤4 C. x >4 D. x <4
➢ 课前热身
5.化简
5
5 5
1
5
6.直接写出下列各题的计算结果:
(1) ( 1 2 ) 2 = 1 ; (2) ( 16 ) ( 9 ) 12 ;
(3) 502 142 = 48 ; (4)(3+ 10 )2002·(3 10 )2003=3 10 .
【例3】 求代数式的值.

最新人教版八年级数学下册第16章二次根式全套课件PPT(完美版)

最新人教版八年级数学下册第16章二次根式全套课件PPT(完美版)

A≥0且B≠0.
A 1有意义的条件:
B
巩固练习
2. x取何值时,下列二次根式有意义?
(1) x 1
x≥1
(4) 1 x x>0
(2) 3x
x≤0
(5) x3
x≥0
(3) 4x2
x为全体实数
(6) 1 x2 x≠0
(7)
x 1 x3

(
x

2)0
(8)
x 2 (9) x2 1
x
∴当x=1时, x2 2x 1 在实数范围内有意义. (2)∵无论x为任何实数,-x2-2x-3=-(x+1)2-2<0, ∴无论x为任何实数, x2 2x 3 在实数范围内都无意义.
归纳小结:被开方数是多项式时,需要对组成多项式的项 进行恰当分组凑成含完全平方的形式,再进行分析讨论.
探究新知
归纳总结
一般地,我们把形如 a (a 0) 的式子叫做二 次根式. “ ”称为二次根号.
注意:a可以是数,也可以是式.
两个必备特征
①外貌特征:含有“ ” ②内在特征:被开方数a ≥0
探究新知
素养考点 1 利用二次根式的定义识别二次根式
例1 下列各式中,哪些是二次根式?哪些不是?
(1) 14 ; (2)81; (3) - 0.8 ;(4)-3x (x 0)
(1) 32

(2) -12 不是
(3)3 8
(4)4 a2
不是
不是
(5) - m (m 0) 是
(8) - x2 1
不是
(6) 2a 1 不是
(9)4 2

(7) a2 2a 3

1

最新人教版八年级数学下16.1二次根式的概念ppt公开课优质课件

最新人教版八年级数学下16.1二次根式的概念ppt公开课优质课件

(2) 2 a 3 2 (4) 5a
3 (1) a-1 0, a 1. (2) 2a 3 0, a . 2
(3) a
(3) a 0, a 0.
(4) 5 a>0, a<5.
5.要画一个面积为24cm2的长方形,使它的长与宽之比为3:2,
想一想:
当x是怎样的实数时, x2 在实数范围内有意义? x3 呢?
前者x为全体实数;后者x为正数和0.
二 二次根式的双重非负性
思考: 二次根式的实质是表示一个非负数(或式)的算术平
方根.对于任意一个二次根式 a ,我们知道: (1)a为被开方数,为保证其有意义,可知a≥0;
(2) a 表示一个数或式的算术平方根,可知 a ≥0.
问题1 上面问题的结果分别是
3, s, 65, h ,它们表示一些 5
正数的算术平方根.那么什么样的数有算术平方根呢? 我们知道,负数没有平方根.因此,在实数范围内开平 方时,被开方数只能是正数或0. 问题2 上面问题的结果分别是
3, s, 65, h ,分别从形式上 5
和被开方数上看有什么共同特点? ①含有“ ” ②被开方数a ≥0
a C D
2 2.式子 3x 6 有意义的条件是
( A ) D.x≤2
A.x>2
3.若
B.x≥2
C.x<2
95 n 是整数,则自然数n的值有 ( D )
B.8个 C.9个 D.10个
A.7个
4.当a是怎样的实数时,下列各式在实数范围内有意义?
(1)
a 1

不是
当m>0时被开 方数是负数
不是
xy<0
(4) -m

【最新】人教版八年级数学下册第十六章《二次根式的概念和性质》公开课课件.ppt

【最新】人教版八年级数学下册第十六章《二次根式的概念和性质》公开课课件.ppt

时的高度 h(单位:m)满足关系 h=5t2.如果用含有 h 的式子表示 t,则 t=
________.
【答案】(1) 17 (2) 65 (3) 65 (4) 3
h a (5) 5
活动 2:二次根式的非负性 (多媒体展示) (1)式子 a表示的实际意义是什么?被开方数 a 满足什么条件时,式子 a才有意义? (2)当 a>0 时, a________0;当 a=0 时, a________0;二次根式是 一个________. 【答案】(1)a 的算术平方根,被开方数 a 必须是非负数 (2)> = 非 负数 老师结合学生的回答,强调二次根式的非负性. 当 a>0 时, a表示 a 的算术平方根,因此 a>0; 当 a=0 时, a表示 0 的算术平方根,因此 a=0. 也就是说,当 a≥0 时, a≥0.
2Rh2 师:那么怎么去化简它呢?这要用到二次根式的运算和化简.如何进行二 次根式的运算?如何进行二次根式的化简?这将是本章所学的主要内容.
二、新课教授
活动 1:知识迁移,归纳概念
ห้องสมุดไป่ตู้
(多媒体演示)用含根号的式子填空. (1)17 的算术平方根是________; (2)如图,要做一个两条直角边长分别为 7 cm 和 4 cm 的三角形,斜边长应
三、例题讲解 【例】当 x 是怎样的实数时, x-2在实数范围内有意义? 解:由 x-2≥0,得 x≥2. 所以当 x≥2 时, x-2在实数范围内有意义.
四、巩固练习 1.已知 a-2+ b+12=0,求-a2b 的值. 【答案】 a-2≥0, b+12≥0,又∵它们的和为 0,∴a-2=0 且 b+12= 0,解得 a=2,b=-21. ∴-a2b=-22×(-12)=2. 2.若 x,y 使 x-1+ 1-x-y=3 有意义,求 2x+y 的值. 【答案】-1

二次根式(第一课时二次根式的概念)(课件)(共17张PPT)八年级数学下册(人教版)

二次根式(第一课时二次根式的概念)(课件)(共17张PPT)八年级数学下册(人教版)

−1 2 ≥0
−1 2 =0
=1
又∵
−2≥0 ∴
−2= 0 ∴ =2
= 5
− 5 ≥0
− 5 =0
∴2 + 2 = 2 ∴△ABC为直角三角形,故选:D.
C.钝角三角形
D.直角三角形
课后回顾
课后回顾
01
02
03
谢谢~
⑹ − (<)
⑺ 2 + 2 + 2
⑻ ( − 5)2
课堂测试
2.求下列二次根式中字母 a 的取值范围:
⑴ +5
⑵ −4
1)由a+5 ≥0,得a ≥-5,当a ≥-5时, + 5 在实数范围内有意义。
2)由a-4 ≥0,得a ≥ 4 ,当a ≥ 4时, − 4 在实数范围内有意义。
课堂测试
3.下列各式中,一定是二次根式的是(

A. + 2
B. − 2
C. 2 − 2
D. 2 + 2 + 2
【答案】D
【详解】
A、被开方数可能为负数,二次根式无意义,故选项错误;
B、被开方数可能为负数,二次根式无意义,故选项错误;
C、被开方数可能为负数,二次根式无意义,故选项错误;
(3) 一个物体从高处自由下落,落到地面所用的时间 t ( 单位:s ) 与开始
落下时离地面的高度 h ( 单位:m ) 满足关系h=5t2,如果用含有h 的式子
表示 t,那么 t

5
为_________
探索与思考
、 、 、


被开方数和根指数有什么特点?
1.根指数为 2 ;
2.被开方数是非负数 .

16,1 二次根式 第一课时八年级数学下册课件(人教版)

16,1 二次根式 第一课时八年级数学下册课件(人教版)

例2 当x 是怎样的实数时, x 2 在实数范围内有意义? 解:由x-2≥0,得x ≥2.
当x ≥2时, x 2 在实数范围内有意义.
1 当a 是怎样的实数时,下列各式在实数范围内有意义?
(1) a 1; (2) 2a 3;
(3) a;
(4) 5 a .
解:(1)由a-1≥0,得a≥1,所以当a≥1时, a 1 在实数范围内有意义.
当a>0时,-5a<0,则 -5a 不是二次根式.
∴ -5a 不一定是二次根式.
(4) a+1(a≥0)只能称为含有二次根式的式子,不能称为二次根式.
1
1
(5)当x=-3时,(x 3)2 无意义,∴ (x 3)2 也无意义;
1
1
当x≠-3时,(x 3)2 >0,∴ (x 3)2 是二次根式.
3 式子 a+1 有意义,则实数a 的取值范围是( C )
a-2
A.a≥-1
B.a≠2
C.a≥-1且a≠2
D.a>2
知识点 3 二次根式的“双重”非负性(a≥0, a≥0)
同时 a (a≥0)也是一个非负数,我们把这个性质叫做二次根
式的双重非负性.
例3 若 x y 1 (y 3)2 0,则x-y 的值为 ( C )
长的等腰三角形的周长是( B )
A.20或16
B.20
C.16
D.以上答案均不对
若式子
x1 ( x 3)2
有意义,则实数x 的取值范围是( B
)
A.x≥-1
B.x≥-1且x≠3
C.x >-1
D.x >-1且x≠3
本题易错在漏掉分母不为0这个条件,由题意
知x+1≥0且(x-3)2≠0,解得x ≥-1且x≠3.

16.1二次根式定义_取值范围_性质

16.1二次根式定义_取值范围_性质
求xyz的 值 。
(-5)×2×(-2)=20
1.若 a 2 2b 7 =0,则 a 2b =__3___。
2.已知a.b为实数,且满足
a 2b 1 1 2b 1 你能求出a+b 的值吗?
3、已知 1有意义,那A(a,
aa )在 第二象限.4、2+√3-x的最小值为_2_,此时x的值为__3。
1、16的平方根是什么? 算术平方根是什么? 2、0的平方根是什么?算术平方根是什么? 3、-7有没有平方根?有没有算术平方根?
正数和0都有算术平方根; 负数没有算术平方根。
如图所示的值表示正方形的面
积,则正方形的边长是 b 3
b-3
你认为所得的代数式有哪些共同特点?
b3
表示一些正数的算术平方根.
说一说:
下列各式是二次根式吗?
(1) 32, (2) 6, (3) 12, (4) - m (m≤0), (5) xy (x,y 异号), (6) a2 1 , (7) 3 5
在实数范围内,负数没有平方根
1、判断下列代数式中哪些是二次根式?

1 2
, ⑵ 16
(3) a2 2a 2 ,(4) x
已知 :a b 6与 a b 8 互为相反数, 求: a,b的值。
检测:指出下列哪些是二次根式?
1 5 2 3 33 21
4 bb 0
5 a 2a 2 6 a bab
73 5m2 8 x2 1
检测:2 要使下列式子有意义,x需要满 足什么条件?
(1) 3 x (2) x 3 8 x
我 们 称 这 样 的 式 子 为代 数 式 .
化简下列各式:
(1)(3 2)2 (2 3)2 (2) (5)2 ( 5)2 (3) m2 16m 64(m 8) (4) a2b2 (a 0,b 0)

二次根式ppt课件

二次根式ppt课件

通过案例讲解二次根式在实际问 题中的应用
分析数学模型和实际问题之间的 关系
课程安排
4. 课堂练习和总结(10分钟)
提供课堂练习,检验学生对所 学内容的掌握情况
总结本节课的重点和难点,进 行回顾和总结
PART 02
二次根式的基本概念
二次根式的定义
总结词:非负数
详细描述:二次根式是指根号内含有未知数的数学表达式,它必须满足被开方数为非负数,否则没有 意义。
要点二
培养学生的数学思维和解决问题 的能力,例如
让学生自己设计一个与二次根式相关的问题并解决它等。
PART 06
总结与回顾
主要知识点回顾
二次根式的定义
二次根式是一种可以用来解决各 种实际问题的数学工具,它表示 一个非负数通过开方得到的平方
根。
二次根式的性质
二次根式具有非负性、有界性、正 值性等性质,这些性质在解决实际 问题时具有重要的应用价值。
PART 04
二次根式的应用
代数领域的应用
01
02
03
根式与方程的解
通过二次根式,我们可以 求解一元二次方程的解, 确定其实数根和虚数根。
根式的化简
在代数运算中,对根式进 行化简可以简化表达式, 提高运算效率。
根式与不等式
利用根式可以求解一元二 次不等式,通过确定不等 式的解集,解决实际问题 。
- \sqrt{3}$等。
解决与二次根式相关的实际问题,例如 :计算圆的面积或周长等。
掌握和运用二次根式的运算法则和公式 ,例如:$(a+b)\sqrt{a} = a\sqrt{a}
+ b\sqrt{a}$等。
综合练习题
要点一
通过综合题目,考察学生对二次 根式的全面理解和运用,例如

人教版八年级数学下册课件:16.1二次根式1.1二次根式的定义(共24张PPT)

人教版八年级数学下册课件:16.1二次根式1.1二次根式的定义(共24张PPT)

.
6.已知∣a+1∣+
=0,则a+b=
.
7.已知
+
=b+8.
(1)求a的值;
(2)求a2-b2的平方根
19
知识点三:二次根式的“双重”非负性
归纳总结
二根式的双重非负性:“a≥0, a ≥0”
在解题中的应用有两种情况: 一是当一个式子有两个二根式,且被开方数互为相反
数时,通常先利用二次根式的被开方数的非负性 , 建立不等式组,再解不等式组确定未知数的值.
20
知识点三:二次根式的“双重”非负性
归纳总结
ニ是当一个式子含有几个非负数:“绝对值的非负性, 偶次方的非负性,二次根式的非负性,即:
“∣a∣≥0, a2n≥0, a ≥ 0.”式子的和为0时,通常
先利用每个式子都为0建立方程组,再解这个方程 组确定未知数的值.
21
思维导图 二次根式
二次根式的定义以及 二次根式有意义的条件
()
A.12 B.10 C.8 D.6
2.已知y=
+
-3,则2xy的值为( )
A.-15 B.15 C .-
D.
3.若∣3x-2y-1∣+
=0,则x= ,y=
.
ቤተ መጻሕፍቲ ባይዱ18
知识点三:二次根式的“双重”非负性
学以致用
4.若(x-2)2+
=0,则xy的值为( )
A.6 B.-6 C.1 D.-1
5.若
+
=0,则x的值为
(1)
; (2)
; (3)
;
(4)
+
; (5)
; (6) + .

《二次根式的概念》课件

《二次根式的概念》课件
2023-2026
ONE
KEEP VIEW
《二次根式的概念》 ppt课件
REPORTING
CATALOGUE
目 录
• 二次根式的定义 • 二次根式的简化 • 二次根式的运算 • 二次根式的应用 • 总结与回顾
PART 01
二次根式的定义
平方根的定义
总结词
理解平方根是二次根式的基础
详细描述
平方根的定义是,对于非负实数a,若某数的平方等于a,则这个数称为a的平方 根。例如,4的平方根是±2,因为2^2=4和(-2)^2=4。
详细描述
在进行二次根式简化时,首先观察根号内的表达式是否 可以提取平方因子或进行因式分解,以消去根号。如果 无法直接提取平方因子或进行因式分解,可以尝试使用 配方法,将表达式转化为完全平方形式,从而消去根号 。接下来观察各项是否为同类项,如果是,则合并同类 项。最后化简各项的系数和根指数,使二次根式达到最 简形式。通过综合运用这些方法,可以逐步化简二次根 式,使其达到最简形式。
PART 04
二次根式的应用
二次根式在几何学中的应用
二次根式在勾股定理中的 应用
勾股定理是几何学中的重要定理,而二次根 式是解决勾股定理问题的重要工具。通过使 用二次根式,我们可以计算直角三角形的斜 边长度。
二次根式在面积和周长计 算中的应用
在几何学中,许多形状(如矩形、圆形、椭 圆形等)的面积和周长可以通过使用二次根
PART 02
二次根式的简化
根号的简化
总结词
根号的简化主要是通过因式分解、配方法等手段,将根号内的表达式化简为最简二次根式。
详细描述
在进行二次根式简化时,首先观察根号内的表达式是否可以提取平方因子或进行因式分解,以消去根号。如果无 法直接提取平方因子或进行因式分解,可以尝试使用配方法,将表达式转化为完全平方形式,从而消去根号。

《二次根式的概念》PPT课件

《二次根式的概念》PPT课件

∵正方形的面积等于3
∴a•a=3,即2 = 3
∴1 = 3, 2 = − 3(无意义)
a
.
01
情景思考
用带有根号的式子填空:
(2) 一个长方形的围栏,长是宽的 2 倍,面积为130m2,则它的宽为
65
∵长方形围栏的面积等于130
a
∴2a•a=130,即2 = 65
∴ 1 = 65, 2 = − 65(无意义)
故选:C
5.若代数式
A.x>0

在实数范围内有意义,则x的取值范围为(

B.x≥0
C.x≠0
D.x≥0且x≠1
【答案】D
【解析】
根据分式有意义的条件和二次根式有意义的条件,可知x-1≠0,x≥0,解
得x≥0且x≠1.故选D.

PA RT 0 3
课后回顾
01
二次根式概念
02
探索二次根式的取值范围
⑺ 2 + 2 + 1
⑻ ( − 2)2
02
练一练
2.求下列二次根式中字母 a 的取值范围:
⑴ +2
⑵ −4
1)由a+2 ≥0,得a ≥-2,当a ≥-2时, + 2 在实数范围内有意义。
2)由a-4 ≥0,得a ≥4 ,当a ≥4时,
− 4 在实数范围内有意义。
3.当 x 分别取下列值时,求二次根式 9 − 3x的值 .
谢谢倾听
2a
.
01
情景思考
用带有根号的式子填空:
(3) 一个物体从高处自由下落,落到地面所用的时间 t ( 单位:s ) 与开始落下时离地面的

高度 h ( 单位:m ) 满足关系h=5t2,如果用含有h 的式子表示 t,那么 t 为_________

人教版八年级下册数学16.1.2二次根式的性质课件 (共18张PPT)

人教版八年级下册数学16.1.2二次根式的性质课件 (共18张PPT)

计算:
(3)
(10)2
(4)
(
2 )2 3
通过上面的计算,你对 a2的化简结果
有一个怎样的认识?
拓展延伸:
a
a2 = a 0
-a
(a>0) (a=0)
(a<0)
练一练
说出下列各式的值
(1) 0.32
(2)
(
1 )2 7
(3) ( )2 (4) 102
议一议:
( a )2与 a2有何区别 ?
(4) ( 2 )2 7
探究新知
二次根式性质3: a2 a (a 0)
填空:
22 = ___2____;
0.12 __0__.1______;
2
( 2 )2 3
___3____;
02
__0______ .
例3:化简
(1) 16 (2) (-5)2
解:(1)16= 42 =4 (2) (-5)2 = 52 =5
也就是说a是非负数,a也是非负数。
例题讲解
若几个非负数相加的和等于0, 则每一个非负数都为0.
已知 a 3 (b+2)2 0,求a+b的值.
探究新知
完成下列填空,并说说你是怎样得到的。 二次根式性质2:( a )2 a (a 0)
( 4)2 ___4_____;( 2)2 ___2_____;
人民教育出版社 八年级下册数学
16.1.2二次根式的性质
复习回顾
什么样的式子叫二次根式?
形如 a(a 0)的式子叫二次根式.
说一说:
下列各式哪些是二次根式?
(1) 32, (2) 6, (3) 12, (4) - m (m≤0), (5) xy (x,y 异号), (6) a2 1 , (7) 3 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档