大物习题课练习1

合集下载

大学物理静电场练习题带标准答案

大学物理静电场练习题带标准答案

大学物理静电场练习题带答案————————————————————————————————作者:————————————————————————————————日期:大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示。

试证明球形空腔中任一点电场强度为 . A 、03ρεa B 、0ρεa C 、02ρεa D 、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强A 、02πR λε-B 、0πRλε- C 、00ln 22π4λλεε+ D 、00ln 2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。

A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。

求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。

A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr)(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。

大物习题册答案及详解(山东理工大学大二上学期2020版)

大物习题册答案及详解(山东理工大学大二上学期2020版)
考点:无限大均匀带电平面的电场强度公式:E=σ/ε0,电场强度等于两个带电平行电板所产生的电场强度的矢量 和。(课本120页 例6-7 推导公式)
4.如图所示,一点电荷q位于正立方体的A角上,则通过侧面abcd的电通量Φe=q/24ε0
考点: 高斯定理公式 (课本118页 6-18) 解法:1.建立一正方体高斯面(补7个如图正方体),使A点位于正中心
考点:电势是一个与引进电荷无关,完全由电场自身的性质和相对位置决定的物理量。电场中某点电势的大小与零 电势点的选取有关。
2.在边长为a的正方体中心处放置一电量为Q的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为
(B)
(A)Q/4πε0a
(B)Q/2πε0a
(C)Q/πε0a
(D)Q/2√2πε0a
q/(1/r-1/r0)/4πε0
考点:电势的计算
解法:U=∫
r0 r
E·dr
=∫
r0 qdr r 4πε0r
2
=q/(1/r-1/r0)/4πε0
(课本122页
6-29b)
பைடு நூலகம்
3.一质量为m、电量为q的小球,在电_场__力__作__用下,从电势为U的a点移动到电势为零的b点,若已知小球在b点的 速率为Vb,则小球在a点的速率Va=√Vb2-2qU/m
②均匀带电球面内的电势UP2=Q/4πε0R(课本123页例6-8结论得), ③UP=UP1+UP2.
6.在带电量为-Q的点电荷A的静电场中,将另一带电量为q的点电荷B从a点移到b点,a、b两点距离点电荷A的距 离分别为r1和r2,如图所示,则移动过程中电场力做的功为(C) (A)-Q(1/r1-1/r2)/4πε0 (B)qQ(1/r1-1/r2)/4πε0 (C)-qQ(1/r1-1/r2)/4πε0 (D)-qQ/4πε0(r2-r1) 考点:电场力的功 解法:Aeab=q(UA-UB)=q(-Q/4πε0r1— -Q/4πε0r2)=-qQ(1/r1-1/r2)/4πε0 (课本123页 6-31)

大学物理习题集(下,含解答)

大学物理习题集(下,含解答)

大学物理习题集(下册,含解答)单元一 简谐振动一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。

2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。

3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A x ω(A) A/2 ω (B) (C)(D)o ooxxxA x ω ωAxAxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。

(4)题(5)题6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ]2153(A),or ;A;(B),;A;3326623223(C),or ;A;(D),;A442332ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。

大学物理课后习题全解及辅导

大学物理课后习题全解及辅导
解:(1)研究OA杆,受力分析,画受力图:
列平衡方程:
(2)研究AB(二力杆),受力如图:
可知:
(3)研究O1B杆,受力分析,画受力图:
列平衡方程:
第三章
习题3-1.求图示平面力系的合成结果,长度单位为m。
解:(1)取O点为简化中心,求平面力系的主矢:
求平面力系对O点的主矩:
(2)合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
由图知:
(2)研究铰C,受力分析,画力三角形:
由图知:
习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。
解:(1)研究滑块A,受力分析,画力三角形:
由图知:
研究AB杆(二力杆)和滑块B,受力分析,画力三角形:
(2)由力三角形得:
(3)列平衡方程:
由(2)、(3)得:
(4)求摩擦系数:
习题5-3.尖劈顶重装置如图所示,尖劈A的顶角为α,在B块上受重物Q的作用,A、B块间的摩擦系数为f(其他有滚珠处表示光滑);求:(1)顶起重物所需力P之值;(2)取支力P后能保证自锁的顶角α之值。
解:属平面汇交力系;
合力大小和方向:
习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。
解:(1)研究AB,受力分析:
画力三角形:
相似关系:
几何关系:
约束反力:
(2)研究AB,受力分析:
画力三角形:
相似关系:
几何关系:
约束反力:
习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。求撑杆BC所受的力。

大学物理习题集

大学物理习题集

大学物理习题集上册物理教研室2004年元月目录部分物理常量练习一描述运动的物理量练习二刚体定轴转动的描述相对运动练习三牛顿运动定律非惯性系中的力学练习四动量角动量练习五功和能碰撞练习六刚体定轴转动的转动定律转动惯量练习七刚体定轴转动中的动能及角动量练习八力学习题课练习九状态方程压强公式练习十理想气体的内能分布律练习十一分布律(续) 自由程碰撞频率练习十二热力学第一定律等值过程练习十三循环过程练习十四热力学第二定律熵练习十五热学习题课练习十六谐振动练习十七谐振动能量谐振动合成练习十八阻尼受迫共振波动方程练习十九波的能量波的干涉练习二十驻波多普勒效应练习二十一振动和波习题课练习二十二光的相干性双缝干涉光程练习二十三薄膜干涉劈尖练习二十四牛顿环迈克耳逊干涉仪衍射现象练习二十五单缝圆孔光学仪器的分辨率练习二十六光栅X射线的衍射练习二十七光的偏振练习二十八光学习题课23h3456789101112131415图9.1 161718192021232425(A)图15.12627图17.24. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若(B)v (m/s)O1 x (m)ωA(A)·图18.3图18.54041距离 (从地上一点看两星的视线间夹角)是(A) 5.3×10-7 rad.(B) 1.8×10-4 rad .(C) 5.3×10-5 rad .(D) 3.2×10-3 rad二.填空题1. 惠更斯引入的概念提出了惠更斯原理,菲涅耳再用的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.2. 如果单缝夫琅和费衍射的第一级暗纹发生在衍射角为30 的方位上,所用单色光波长λ =5×103 Å, 则单缝宽度为m .3. 平行单色光垂直入射于单缝上,观察夫琅和费衍射. 若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为个半波带,若将单缝宽度减小一半, P点将是级纹.三.计算题1. 用波长λ =6328Å 的平行光垂直照射单缝, 缝宽a= 0.15mm , 缝后用凸透镜把衍射光会聚在焦平面上, 测得第二级与第三级暗条纹之间的距离为1.7mm , 求此透镜的焦距.四.问答题1. 在单缝衍射实验中, 当缝的宽度a远大于单色光的波长时, 通常观察不到衍射条纹, 试由单缝衍射暗条纹条件的公式说明这是为什么.练习二十六光栅X射线的衍射一.选择题1. 一束平行单色光垂直入射到光栅上,当光栅常数(a+b) 为下列哪种情况时(a代表每条缝为宽度) ,k =3、6、9等级次的主极大均不出现?(A) a+b=3a.(B) a+b=2a .(C) a+b=4a .(D) a+b=6a .2. 若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 1.0×10-1 mm .(B) 5.0×10-1 mm .(C) 1.0×10-2 mm .(D) 1.0×10-3 mm .3. 在双缝衍射实验中,若保持双缝s1和s2的中心之间的距离d不变,而把两条缝的宽度a 42略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少.(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多.(C) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(D) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.4. 某元素的特征光谱中含有波长分别为 1 = 450 n m 和 2 = 750 n m (1 n m = 10-9 m)的光谱线. 在光栅光谱中,这两种波长的谱线有重叠现象,重叠处 2的谱线的级次数将是(A) 2、3、4、5 …….(B) 2、5、8、11 …….(C) 2、4、6、8 …….(D) 3、6、9、12 …….5. 设光栅平面、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k(A) 变小.(B) 变大.(C) 不变.(D) 的改变无法确定.二.填空题1. 用波长为5461 Å的平行单色光垂直照射到一透射光栅上,在分光计上测得第一级光谱线的衍射角 = 30 ,则该光栅每一毫米上有条刻痕.2. 可见光的波长范围是400 n m—760 n m,用平行的白光垂直入射到平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第级光谱.3. 一束平行单色光垂直入射到一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为.三.计算题1. 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱, 钠黄光包含两条谱线,其波长分别为5896 Å和5890 Å, 求在第二级光谱中这两条谱线互相分离的角度.2. 一衍射光栅,每厘米有200条透光缝,每条透光缝宽为a =2×10-3 c m ,在光栅后放一焦距f =1m 的凸透镜,现以 = 6000 Å的平行单色光垂直照射光栅,求: (1) 透光镜a的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内, 有几个光栅衍射主极大?练习二十七光的偏振一.选择题1. 一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45 角,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强I为4344454647。

大学物理练习题

大学物理练习题

大学物理练习题一、力学部分1. 一物体从静止开始沿水平面加速运动,经过5秒后速度达到10m/s。

求物体的加速度。

2. 质量为2kg的物体,在水平面上受到一个6N的力作用,若摩擦系数为0.2,求物体的加速度。

3. 一物体在斜面上匀速下滑,斜面倾角为30°,物体与斜面间的摩擦系数为0.3,求物体的质量。

4. 一物体在水平面上做匀速圆周运动,半径为2m,速度为4m/s,求物体的向心加速度。

5. 一物体在竖直平面内做匀速圆周运动,半径为1m,速度为5m/s,求物体在最高点的向心力。

二、热学部分1. 某理想气体在标准大气压下,温度从27℃升高到127℃,求气体体积的膨胀倍数。

2. 一理想气体在等压过程中,温度从300K升高到600K,求气体体积的变化倍数。

3. 已知某气体的摩尔体积为22.4L/mol,求在标准大气压下,1mol该气体的体积。

4. 一密闭容器内装有理想气体,温度为T,压强为P,现将容器体积缩小到原来的一半,求气体新的温度和压强。

5. 某理想气体在等温过程中,压强从2atm变为1atm,求气体体积的变化倍数。

三、电磁学部分1. 一长直导线通有电流10A,距离导线5cm处一点的磁场强度为0.01T,求该点的磁感应强度。

2. 一矩形线圈,长为10cm,宽为5cm,通有电流5A,求线圈中心处的磁感应强度。

3. 一半径为0.5m的圆形线圈,通有电流2A,求线圈中心处的磁感应强度。

4. 一长直导线通有电流20A,求距离导线2cm处的磁场强度。

5. 一闭合线圈在均匀磁场中转动,磁通量从最大值减小到零,求线圈中感应电动势的变化。

四、光学部分1. 一束光从空气射入水中,入射角为30°,求折射角。

2. 一束光从水中射入空气,折射角为45°,求入射角。

3. 一平面镜反射一束光,入射角为60°,求反射角。

4. 一凸透镜焦距为10cm,物距为20cm,求像距。

5. 一凹透镜焦距为15cm,物距为30cm,求像距。

南华大学大物练习册一参考答案

南华大学大物练习册一参考答案

图3 4图第一章 力与运动练 习 一一. 选择题1. 一物体在1秒内沿半径m R 1=的圆周上从A 点运动到B 点,如图1所示,则物体的平均速度是( A )(A ) 大小为2m/s ,方向由A 指向B ; (B ) 大小为2m/s ,方向由B 指向A ; (C ) 大小为3.14m/s ,方向为A 点切线方向; (D ) 大小为3.14m/s ,方向为B 点切线方向。

2. 某质点的运动方程为6532+-=t t x (SI), 则该质点作 ( B )(A ) 匀加速直线运动,加速度沿X 轴正方向; (B ) 匀加速直线运动,加速度沿X 轴负方向; (C ) 变加速直线运动,加速度沿X 轴正方向; (D ) 变加速直线运动,加速度沿X 轴负方向。

3. 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速率2/2s m a =,则一秒钟 后质点的速度为( D )(A ) 零; (B ) s m /2-; (C ) s m /4; (D ) 不能确定。

4. 一质点作半径为R 的圆周运动,转动一周所用时间为T ,在2T 的时间间隔内,其平均速度的大小和平均速率分别是( C )(A ) T R /2π,T R /2π; (B ) T R /2π,0; (C ) 0,T R /2π; (D ) 0,0。

二. 填空题1. 悬挂在弹簧上的物体在竖直方向上振动,振动方程为t A y ωsin =,其中A 、ω为常量,则(1) 物体的速度与时间的函数关系为cos dyv A t dtωω==;(2) 物体的速度与坐标的函数关系为222()vy A ω+=。

2. 一质点从P 点出发以匀速率1cm/s 作顺时针转向的圆周运动,圆半径为1m ,如图3。

当它走过2/3圆周时,走过的路程是m 34π; 这段时间平均速度大小为s /m 40033π;方向是与X 正方向夹角3πα=。

3. 一质点作直线运动,其坐标x 与时间t 的函数曲线如图4所示,则该质点在第 3 秒瞬时速度为零;在第 3 秒至第 6 秒间速度与加速度同方向。

大学物理力学练习题及答案

大学物理力学练习题及答案

大学物理力学练习题及答案一、选择题(每题2分,共20分)1. 一个物体质量为2kg,受到的力是3N,该物体的加速度大小为多少?A. 0.3 m/s^2B. 1.5 m/s^2C. 6 m/s^2D. 1 N/kg答案:B2. 假设一个物体在重力作用下自由下落,那么它的重力势能和动能之间的关系是?A. 重力势能和动能相等B. 重力势能大于动能C. 重力势能小于动能D. 重力势能减少,动能增加答案:A3. 力的合成是指两个或多个力合并后的结果。

如果两个力大小相等并且方向相反,则它们的合力为A. 0B. 1C. 2D. 无法确定答案:A4. 在一个力的作用下,一个物体做匀速直线运动。

可以推断出物体的状态是A. 静止状态B. 匀速运动状态C. 加速运动状态D. 不能判断答案:B5. 牛顿运动定律中,质量的作用是用来描述物体对力的抵抗程度,质量越大,则物体对力的抵抗越小。

A. 对B. 错答案:B6. 一个物体以20 m/s的速度做匀速圆周运动,周长为40π m,物体的摩擦力大小为F,那么物体受到的拉力大小为多少?A. 0B. FC. 2FD. 4F答案:C7. 一个质量为1 kg的物体向左受到3 N的力,向右受到2 N的力,则该物体的加速度大小为多少?A. 1 m/s^2B. 2 m/s^2C. 3 m/s^2D. 5 m/s^2答案:A8. 弹力是一种常见的力,它的特点是随着物体变形而产生,并且与物体的形状无关。

A. 对B. 错答案:A9. 一个物体受到两个力,力的合力为2 N,其中一个力的大小为1 N,则另一个力的大小为多少?A. 1 NB. 0 NC. -1 ND. 无法确定答案:A10. 在竖直抛体运动过程中,物体的速度在上升过程中逐渐减小,直到达到峰值后开始增大。

A. 对B. 错答案:B二、计算题(每题10分,共40分)1. 一个物体以5 m/s的初速度被一个10 N的力加速,物体质量为2 kg,求物体在2秒后的速度。

大物习题册答案全套

大物习题册答案全套

练习一 力学导论 参考解答1. (C); 提示:⎰⎰=⇒=t3x9vdt dxtd xd v2. (B); 提示:⎰⎰+=R20y 0x y d F x d F A3. 0.003 s ; 提示:0t 3104400F 5=⨯-=令 0.6 N·s ; 提示: ⎰=003.00Fdt I2 g ; 提示: 动量定理0mv 6.0I -==3. 5 m/s 提示:图中三角形面积大小即为冲量大小;然后再用动量定理求解 。

5.解:(1) 位矢 j t b i t a rωωsin cos += (SI)可写为 t a x ωc o s = , t b y ωs i n= t a t x x ωωsin d d -==v , t b ty ωωc o s d dy-==v 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v由A →B ⎰⎰-==0a 20a x x x t c o sa m x F A d d ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b 02b 0y y t sin b m y F A dy d ωω=⎰-=-b mb y y m 022221d ωω6. 解:建立图示坐标,以v x 、v y 表示小球反射速度的x 和y 分量,则由动量定理,小球受到的冲量的x,y 分量的表达式如下: x 方向:x x x v v v m m m t F x 2)(=--=∆ ① y 方向:0)(=---=∆y y y m m t F v v ② ∴ t m F F x x ∆==/2v v x =v cos a∴ t m F ∆=/cos 2αv 方向沿x 正向.根据牛顿第三定律,墙受的平均冲力 F F =' 方向垂直墙面指向墙内.ααmmOx y练习二 刚体的定轴转动 参考解答1.(C) 提示: 卫星对地心的角动量守恒2.(C) 提示: 以物体作为研究对象P-T=ma (1);以滑轮作为研究对象 TR=J β (2)若将物体去掉而以与P 相等的力直接向下拉绳子,表明(2)式中的T 增大,故β也增大。

大学物理习题及解答(运动学、动量及能量)

大学物理习题及解答(运动学、动量及能量)

⼤学物理习题及解答(运动学、动量及能量)1-1.质点在Oxy 平⾯内运动,其运动⽅程为j t i t r )219(22-+=。

求:(1)质点的轨迹⽅程;(2)s .t 01=时的速度及切向和法向加速度。

1-2.⼀质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置⽮量i r 100=。

求:(1)在任意时刻的速度和位置⽮量;(2)质点在oxy 平⾯上的轨迹⽅程,并画出轨迹的⽰意图。

1-3. ⼀质点在半径为m .r 100=的圆周上运动,其⾓位置为342t +=θ。

(1)求在s .t 02=时质点的法向加速度和切向加速度。

(2)当切向加速度的⼤⼩恰等于总加速度⼤⼩的⼀半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则⾓速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=??==ωr a22s t t s m 80.4d d -=?==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的⾓位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所⽰,在⽔平地⾯上,有⼀横截⾯2m 20.0=S 的直⾓弯管,管中有流速为1s m 0.3-?=v 的⽔通过,求弯管所受⼒的⼤⼩和⽅向。

解:在t ?时间内,从管⼀端流⼊(或流出)⽔的质量为t vS m ?=?ρ,弯曲部分AB 的⽔的动量的增量则为()()A B A B v v t vS v v m p -?=-?=?ρ依据动量定理p I ?=,得到管壁对这部分⽔的平均冲⼒()A B v v I F -=?=Sv t ρ从⽽可得⽔流对管壁作⽤⼒的⼤⼩为N 105.2232?-=-=-='Sv F F ρ作⽤⼒的⽅向则沿直⾓平分线指向弯管外侧。

大学物理 力学习题课

大学物理 力学习题课
和是正确的b和是正确的只有是正确的d只有是正确的5有一个小块物体置于一个光滑的水平桌面上有一绳其上一端连结此物体另一端穿过桌面中心的小孔该物体原以角速度在距孔为r的圆周上转动今将绳从小孔缓慢往下拉则物体6几个力同时作用在一个具有固定转轴的刚体上如果这几个力的矢量和为零则此刚体a动能不变动量改变b角动量不变动量不变c动量不变动能改变d角动量不变动能动量都改变a必然不会转动b转速必然不变c转速必然改变d转速可能改变也可能不变
i j y My k z Mz
4、基本概念:
1)质心:
2)惯性力: 3)力矩:
F惯 ma0
M r F
m
rc
i
M r F x Mx
4)角动量: 5)功:
L r P x
i
j y Py
k z Pz
表示速度, a
表示加速度,S表示路程,a t 表示切向加速度,下列表达式中, (1) dv / dt at (2) dv / d t a
[D (4) dr / dt v (B) 只有(2)、(4)是对的. (D) 只有(3)是对的.
]3、某人骑自行车以速率V源自正西方向行驶,遇到由北向南刮的 风(设风速大小也为V),则他感到的风是从 [C] A)东北方向吹来 B)东南方向吹来 C)西北方向吹来 D)西南方向吹来
dA F dr
b
Px
b F dr F cosds
a
A dA a 6)保守力: F dr 0
7)势能:
E p (r )
r0
r
F dr
0 z
①重力势能:
EP (m gdz m gz )

大物习题课练习1

大物习题课练习1

E Ⅱ
EⅢ
I 有 电场的分布为: 由 E 0 Q 在Ⅰ区, EⅠ 方向向左 2 0 S Q 在Ⅱ区, EⅡ 方向向右 2 0 S Q 在Ⅲ区, E Ⅲ 方向向右 2 0 S

II I
Q Q E1 E2 20 2S 20 2S
1 2 3 4
(2)如果把第二块金属板接地 ,其右表面上的电荷就会分散到 地球表面上,所以
R
4
B
14.一半径为R的无限长半圆柱面导体,其上电流与其轴 线上一无限长直导线的电流等值反向。电流I在半圆柱面 上均匀分布。(1)求轴线上导线单位长度所受的力;(2)若 将另一无限长直导线(通有大小、方向与半圆柱面相同的 电流I)代替圆柱面,产生同样的作用力,该导线应放在 何处? 解:(1)在半圆柱面上沿母线取宽为dl dl 的窄条,其电流 d dI I I R dI dl d x R 它在轴线上一点产生的 I dB I 磁感应强度: y
qH e
qO 2e
1 m H mO 16
1 2 mH vH eU 2 1 1 2 2 m H v H mO v O 2 4
1 2 mO v O 2eU 2
vH mO 2 2 vO 2mH
3. 求无限长均匀带电圆柱面的电场强度(轴对称) 已知:线电荷密度
R + + + + + + + S + + +
对称性分析:E 垂直柱面
选取闭合的柱型高斯面
rR
s ( 柱)
E ds
s ( 上底)
E ds
E ds 0
S
s ( 下底)

大学基础教育《大学物理(一)》综合练习试题 附答案

大学基础教育《大学物理(一)》综合练习试题 附答案

大学基础教育《大学物理(一)》综合练习试题附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

一、填空题(共10小题,每题2分,共20分)1、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。

2、一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度_____。

3、两列简谐波发生干涉的条件是_______________,_______________,_______________。

4、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。

5、质量为M的物体A静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为的小球B以沿水平方向向右的速度与物体A发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L=__________。

6、质量为m的物体和一个轻弹簧组成弹簧振子,其固有振动周期为T.当它作振幅为A的自由简谐振动时,其振动能量E=__________。

7、简谐振动的振动曲线如图所示,相应的以余弦函数表示的振动方程为__________。

8、静电场中有一质子(带电荷) 沿图示路径从a点经c点移动到b点时,电场力作功J.则当质子从b点沿另一路径回到a点过程中,电场力作功A=___________;若设a点电势为零,则b点电势=_________。

9、两根相互平行的“无限长”均匀带正电直线1、2,相距为d,其电荷线密度分别为和如图所示,则场强等于零的点与直线1的距离a为_____________ 。

10、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。

(完整版)《大学物理》练习题及参考答案.doc

(完整版)《大学物理》练习题及参考答案.doc
D .
卡 循 是由两个平衡的 程和两个平衡的等 程 成的
11.如 所示,在E的匀 中,有一个半径
R的半
球面,若E的方向与半球面的 称 平行, 通 个半球面
的 通量大小 ⋯⋯⋯⋯⋯⋯⋯(

参看 本P172-173
A .
R2E
B .2 R2E
C.
2 R2E
D. 0
12.一点 荷,放在球形高斯面的中心 ,下列情况中通 高斯面
的速度为200m/s,则子弹受到的冲量为_____________.参看课本P55-56
41.将电荷量为2.0×10-8C的点电荷, 从电场中A点移到B点,电场力做功6.0×10-6J.
则A、B两点的电势差
UAB=__________ __ .
参看课本P181
42.
如图所示,图中
O点的磁感应强度大小
34.一人从10 m深的井中提水,起始 ,桶中装有10 kg的水,桶的 量1 kg,由
于水桶漏水,每升高1m要漏去0. 1 kg的水, 水桶匀速地从井中提到井口,人所作的功
____________.参看 本P70 (2-14)
35.量m、半径R、自 运 周期T的月球,若月球是密度均匀分布的 球体, 其 自 的 量是__________,做自 运 的 能是__________.参看 本
24.下列关于机械振 和机械波的 法正确的是⋯⋯⋯()参看 本P306
A.点做机械振 ,一定 生机械波
B.波是指波源 点在介 的 播 程
C.波的 播速度也就是波源的振 速度
D.波在介 中的 播 率与波源的振 率相同,而与介 无关
25.在以下矢量 中,属保守力 的是⋯⋯⋯⋯⋯⋯⋯()
A.静B.旋参看 本P180,212,258

大物第一章习题及答案

大物第一章习题及答案

第一章章节测试题一、选择题(每小题3分,共计15分)1.以下四种运动形式中,a保持不变的运动是 ( D ) (A) 单摆的运动 (B) 匀速率圆周运动 (C) 行星的椭圆轨道运动 (D) 抛体运动2.一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为 t v,那么它运动的时间是 ( C ) (A) gt 0v v - (B) gt 20v v -(C) ()gt2/1202v v- (D) ()gt22/1202v v-3.下列说法中,哪一个是正确的? ( C )(A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m 的路程 (B) 斜向上抛的物体,在最高点处的速度最小,加速度最大 (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零 (D) 物体加速度越大,则速度越大4.一质点沿x 轴运动,其运动方程为2353x t t =-,其中t 以s 为单位。

当t=2s 时,该质点正在 ( A ) (A )加速 (B )减速 (C )匀速 (D ) 静止5.下列关于加速度的说法中错误的是 ( C ) (A )质点加速度方向恒定,但其速度的方向仍可能在不断的变化着 (B )质点速度方向恒定,但加速度方向仍可能在不断的变化着(C )某时刻质点加速度的值很大,则该时刻质点速度的值也必定很大(D )质点作曲线运动时,其法向加速度一般不为零,但也有可能在某时刻法向加速度为零 二、填空题(每空2分,共计20分)1.一辆作匀加速直线运动的汽车,在6 s 内通过相隔60 m 远的两点,已知汽车经过第二点时的速率为15 m/s ,则汽车通过第一点时的速率v 1 =__5.00m/s_。

2.质点沿半径为R 的圆周运动,运动学方程为 223t +=θ,则t时刻质点的法向加速度大小为a n = 16Rt 2。

3.一质点沿x 方向运动,其加速度随时间变化关系为:a = 3+2 t ,如果初始时刻质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度 v = 23m/s 。

大学物理练习一

大学物理练习一

练习一 力学(质点和刚体、运动学和动力学)一、选择题:1.某质点的运动方程为6533+-=t t x (SI),则该质点作(A)匀加速直线运动,加速度沿X 轴正方向. (B)匀加速直线运动,加速度沿X 轴负方向. (C)变加速直线运动,加速度沿X 轴正方向.(D)变加速直线运动,加速度沿X 轴负方向. 2.某物体的运动规律为t kv t v 2d d -=,式中的k 为大于零的常数.当0=t 时,初速为0v ,则速度v 与时间t 的函数关系是(A)0221v kt v +=(B)0221v kt v +-= (C)021211v kt v += (D)021211v kt v +-=.3.如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为 (A)θcos mg . (B)θsin mg . (C)θcos mg . (D) θsin mg. 4.如图,物体A 、B 质量相同,B 在光滑水平桌面上,滑轮与绳的质量以及空气阻力均不计,滑轮与其轴之间的摩擦也不计.系统无初速地释放,则物体A 下落的加速度是(A)g . (B)2/g . (C)3/g . (D)5/4g . 5.对于一个物体系来说,在下列条件中,那种情况下系统的机械能守恒?(A)合外力为0. (B)合外力不作功.(C)外力和非保守内力都不作功. (D)外力和保守内力都不作功.6.质量为m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M ,万有引力恒量为G .则当它从距地球中心1R 处下降到2R 处时,飞船增加的动能应等于 (A)2R GMm (B)22R GMm(C)2121R R R R GMm - (D)2121R R R GMm - (E)222121R R R R GMm - 7.如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉.则物体(A)动能不变,动量改变. (B)动量不变,动能改变. (C)角动量不变,动量不变.(D)角动量改变,动量改变. (E)角动量不变,动能、动量都改变.8.光滑的水平桌面上有长为l 2、质量为m 的匀质细杆,可绕过其中点O 且垂直于桌面的竖直固定轴自由转动。

大学物理静电场练习题带答案

大学物理静电场练习题带答案

大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O指向球形空腔球心O'的矢量用a表示。

试证明球形空腔中任一点电场强度为 .A、3ρεa B、ρεaC、2ρεa D、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R.试求环中心O点处的场强A、2πRλε- B、πRλε-C、00ln22π4λλεε+ D、00ln2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。

A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。

求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。

A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。

6、在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面,则对此球形闭合面: (A )高斯定理成立,且可用它求出闭合面上各点的场强;(B )高斯定理成立,但不能用它求出闭合面上各点的场强; (C )由于电介质不对称分布,高斯定理不成立; (D )即使电介质对称分布,高斯定理也不成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
方向是y方向
0 π
E 2π 0a
5.半径为R的无限长圆柱形带电体,电荷体密度为Ar (r≤R),r为距轴线距离,A为常数。选距轴线距离为 L(L > R)处为电势零点。计算圆柱体内外各点的电势。
解:内部场强,取半径为r < R,
高为l的同轴圆柱面为高斯
R
面。
2πrlE

q
0
r l
联立求解可得:
Q
σ1 S σ2 σ3 σ4
1

Q 2S
, 2

Q 2S
,
3


Q 2S
, 4

Q 2S
EⅠ
EⅡ
EⅢ
电场的分布为: 由 E 有 I

II
I
在Ⅰ区,
EⅠ

Q
2 0S
0
方向向左
E1

E2

Q
20 2S

Q
20 2S
在Ⅱ区,
EⅡ
Q
2 0S
方向向右
在Ⅲ区,
的速率为一静止的氧离子在同一电场中,且
通过相同的路径被加速所获得速率的
_________。
qH e
qO 2e
mH

1 16 mO
1 2
mH
vH2

eU
1 2
mO
vO2

2eU
1 2
mH
vH2

1 4
mO
vO2
vH mO 2 2 vO 2mH
3. 求无限长均匀带电圆柱面的电场强度(轴对称)

解:
E

2

0

20
x0 x0

O
x
在 x 0区域

0 x 2 0
d
x


2 0
x
在 x 0区域

0

x
2 0
dx

2 0
x
7.半径为r1的导体球带有电荷+q, 球外 有一个内外半径分别为r2 、r3的同心 导体球壳,壳上带有电荷+Q ;
q r Ar 2πrldr 2 πAlr 3
0
3
E 1 Ar 2 (r R)
3 0
外部场强,取半径为r>R ,长
R
为l的同轴圆柱面为高斯面。
q

2πrlE

q
0
R
Ar 2πrldr
2
πA AR3 / r (r R)
3 0
内部电势
Qq
(2)用导线连接球和球壳:球面上的电 荷与 球壳内表面电荷中和;
r r3
E1 E2 E3 0
r r3
E4

qQ
40r 2




r3
r1
r2

Qq
E1 E3 E4 0
E2

q
40r2
q


q


8.有一块大金属平板,面积为S,带有总电量 Q,今在 其近旁平行地放置第二块大金属平板,此板原来不带 电。(1)求静电平衡时,金属板上的电荷分布及周围空 间的电场分布。(2)如果把第二块金属板接地,最后情 况又如何?(忽略金属板的边缘效应。)
EⅢ
Q
2 0S
方向向右
12 34
(2)如果把第二块金属板接地 ,其右表面上的电荷就会分散到 σ1 Sσ2 σ3 σ4 地球表面上,所以
4 0
第一块金属板上的电荷守恒仍给出
1


2

Q S
I
EⅡ P

III
由高斯定律仍可得 2 3 0
金属板内P点的场强为零,所以 1 2 3 0
解: q
dl
a 0
dE

dl 4π 0a2
方向如图
根据电荷分布的对称性 Ex 0
θ a θ0 a
dE y
x
dE y

dE cos

ad 4π 0 a2
cos


0
a
cosd
E E y
0
2
0
2
4π 0a
cosd

2π 0a
sin 0
联立求解可得: 1
r3
r1 r2
求:1)电场分布 2)用导线将球和球壳连接时电场分布怎样? 3)外球壳接地时怎样?
r r1
r1 r r2
r2 r r3
r r3
E1 0
E2

q
40r 2
E3 0
E4

qQ
40r 2



q

q
r1



r3 r2
1. 直线MN长为2l,弧OCD以N为中心,l为半径。 N点有点电荷+q,M点有点电荷-q。今将试验电 荷q0从O点出发沿OCDP移到无限远处。设无限 远处电势为零,则电场力的功为________。
C
-q
q
MO N D
P
A q0 (O ) q0 (0 0) 0
2. 一个静止氢离子在匀强电场中被加速而获得
R
已知:线电荷密 度
对称性分析:E 垂直柱面
+
+
选取闭合的柱型高斯面
+
+
+ S+
+
+
+
+
r R SE ds 0
E ds E ds E ds 0
s ( 柱)
s ( 上底)
s (下底)
r R, E 0
+RRR +
+
+
+
+
+

L
Edr r A (R3
R1
r 3
r3)
0

Ar 2dr L R
AR3 L ln
1
3
0
A
R3 r
dr
3 0
30 R
外部电势

L
Edr
r
L r
AR 3
3 0
1 dr r

AR 3
3 0
ln
L r
6.一无限大均匀带电平面,电荷面密度为 。若以
该平面为电势零点,求平面周围空气电势分布。
P
闭曲面作为高斯面。由于板间电场与板面垂直,且板
内的电场为零,所以通过此高斯面的电通量为零。
2 3 0 (3)
金属板内任一点P的场强是4个带电平面的电场的叠
加,并且为零,所以
1 2 3 4 0 (4) 2 0 2 0 2 0 2 0
即: 1 2 3 4 0
+
+
+
l
+ +
+
S+
+
r+
+ +
+
+
+
+
+
+
r R, E 0
当 r R 时,取高斯面如图
E ds Eds l
S
s(柱面) 0
2πrlE l 0
r R, E 2π0r
4.半径为a的细圆弧对圆心的张角为 ,0 其上均匀分布
着电荷q。求圆心处的场强。
解:(1)由于静电平衡时导 体内部无净电荷,所以电 荷只能分布在两金属板的 表面上。设四个表面上的
面电荷密度分别为σ1、σ 2、σ3和σ4。
Q
σ1 σ2 σ3 σ4
S
由电荷守恒定律可知:
1


2

Q S
(1)
3 4 0 (2)
选一个两底分别在两个金属
板内而侧面垂直于板面的封
Q
σ1 S σ2 σ3 σ4
相关文档
最新文档