最新七年级下册数学经典练习题
七年级下册数学计算题30道
七年级下册数学计算题30道一、计算题30道(其中20道带解析)1. 计算:(-2)+3 - (-5)- 解析:- 首先去括号,根据去括号法则,-(-5)=5。
- 则原式变为-2 + 3+5。
- 按照从左到右的顺序计算,-2+3 = 1,1 + 5=6。
2. 计算:4 - 5×(-(1)/(2))^3- 解析:- 先计算指数运算,(-(1)/(2))^3=-(1)/(8)。
- 再计算乘法运算,5×(-(1)/(8))=-(5)/(8)。
- 最后计算减法运算,4-(-(5)/(8)) = 4+(5)/(8)=(32 + 5)/(8)=(37)/(8)=4(5)/(8)。
3. 计算:(-3)×(-4)÷(-6)- 解析:- 先计算乘法,(-3)×(-4)=12。
- 再计算除法,12÷(-6)= - 2。
4. 计算:((1)/(2)-(2)/(3)+(5)/(6))×(-18)- 解析:- 根据乘法分配律a(b + c+d)=ab+ac + ad,这里a=-18,b=(1)/(2),c =-(2)/(3),d=(5)/(6)。
- 则(1)/(2)×(-18)=-9,-(2)/(3)×(-18)=12,(5)/(6)×(-18)=-15。
- 所以原式=-9 + 12-15=-12。
5. 计算:-2^2-(-3)^3÷(-1)^2n + 1(n为整数)- 解析:- 先计算指数运算,-2^2=-4,(-3)^3=-27,(-1)^2n + 1=-1(因为2n+1是奇数)。
- 则原式=-4-(-27)÷(-1)=-4 - 27=-31。
6. 计算:(2x - 3y)+(5x + 4y)- 解析:- 去括号得2x-3y + 5x+4y。
- 合并同类项,(2x + 5x)+(-3y+4y)=7x + y。
七年级下册数学小练
七年级下册数学小练一、有理数的运算。
1. 计算:(-3)+5 (-2)嘿呀,这有理数的加减法就像在数字的小世界里玩游戏呢。
先看这个-3 + 5,就好比你欠了3块钱,然后又赚了5块钱,那你现在就有2块钱啦,也就是(-3)+5 = 2。
再看后面的(-2),这两个负号就像两个小磁铁,碰到一起就变成正的了,所以就相当于加2。
那最后的结果就是2 + 2 = 4。
2. 计算:(-2)×3 (-4)÷2咱先算乘法和除法。
(-2)×3呢,就像你有2个倒霉事,每个倒霉事的程度是3,那你就一共倒霉了6,也就是(-2)×3=-6。
再看(-4)÷2,你有4个东西,要平均分给2个人,每人就得到2个,但是因为是负数除以正数,所以结果是-2。
最后把这两个结果相减,-6 (-2),又遇到这两个负号变正号的情况啦,就相当于-6 + 2,那就是欠了6块钱,还了2块钱,还欠4块钱,所以结果是-4。
二、整式的加减。
1. 化简:3a + 2b 5a b这整式的加减就像是整理小盒子里的东西。
先看有3a和-5a,这就像有3个红色小球和5个蓝色小球(假设红色代表正,蓝色代表负),合起来就是-2a。
再看2b和-b,2个大糖果和1个小糖果(同样大的代表正,小的代表负),合起来就是b。
所以最后化简的结果就是-2a + b。
2. 先化简,再求值:(2x² 3xy + 4y²)-3(x² xy + (5)/(3)y²),其中x = -2,y = 1首先来化简这个式子。
把括号打开就像拆礼物盒一样。
第一个括号里的东西都不用变,第二个括号里的每一项都要乘以3,就变成了2x² 3xy + 4y²-3x²+3xy 5y²。
然后再把同类项合并,2x²和-3x²是同类项,合起来就是-x²;-3xy和3xy就像两个一样大但是方向相反的力,互相抵消了;4y²和-5y²合起来就是-y²。
七年级下册数学必考题
七年级下册数学必考题含答案一、选择题1.同位角识别题目:同位角是( )。
A. ∠1和∠2 B. ∠3和∠4 C. ∠2和∠4 D. ∠1和∠4答案:D解析:同位角是两条被第三条直线(截线)所截的直线中,位于截线同侧的两个内角。
2.无理数识别题目:在实数0, -1.414114111…中,无理数有( )。
A. 1个B. 2个C. 3个D. 4个答案:A(但注意原题选项未列出所有数,假设只有-1.414114111…是无理数)解析:无理数是不能表示为两个整数的比的数,且其小数部分是无限不循环的。
3.不等式表示题目:“x的3倍与y的和不小于2”用不等式可表示为( )。
A. 3x+y>2B. 3(x+y )>2C. 3x+y≥2D. 3(x+y)≥2答案:C解析:根据题意,直接翻译成不等式即可。
4.调查方式选择题目:下列问题,不适合用全面调查的是( )。
A. 了解一批灯管的使用寿命B. 学校招聘教师,对应聘人员的面试C. 旅客上飞机前的安检D. 了解全班学生的课外读书时间答案:A解析:全面调查适用于对象数量不多、易于调查的情况,而灯管使用寿命测试具有破坏性,适合抽样调查。
5.不等式性质题目:若x>y,则下列式子中错误的是( )。
A. x-3>y-3B. x/3>y/3C. x+3>y+3D. -3x>-3y答案:D解析:不等式两边同时乘以或除以一个负数,不等号方向会改变。
二、填空题1.角度计算题目:∠1=40°,如果CD∥BE,那么∠B的度数为____(假设∠B与∠1为同位角)。
答案:40°解析:由于CD∥BE,根据同位角性质,∠B=∠1=40°。
2.数的立方根与平方根题目:一个数的立方根是4,那么这个数的平方根是____。
答案:±2√2(或写作±2倍根号2)解析:立方根为4的数是64,64的平方根是±2√2。
七年级数学下册典型题习题
数学典型题汇总一、选择题1.等腰三角形的一个角为100°,则它的底角为 ( ) A 、100° B 、40° C 、100°或40° D 、不能确定2.已知方程组⎩⎨⎧=+=+22y 3x 6y 4x ,则x - y 的值是 ( ) A 、0 B 、-2 C 、2 D 、4 3.下列四组线段中,能组成三角形的是( ) A 、2 cm ,3 cm ,4 cm B 、3 cm ,4 cm ,7 cm C 、4 cm ,6 cm ,2 cm D 、7 cm ,10 cm ,2 cm 4.已知、互余,比大.设、的度数分别为、,下列方程组中符合题意的是( ) A 、B 、C 、D 、5.用一个10倍的放大镜去观察一个三角形,下列说法中正确的是( )① 三角形的每个角都扩大10倍;② 三角形的每条边都扩大10倍; ③ 三角形的面积扩大10倍; ④ 三角形的周长扩大10倍; A 、① ② B 、① ③ C 、② ④ D 、② ③ 6.如图,已知△ABC 为直角三角形,∠C=90°, 若沿图中虚线剪去∠C , 则∠1+∠2等于( ) A. 90° B. 135° C. 270° D. 315°7.三角形的两边长分别是3和5,第三边a 的取值范围是( ) A. 2≤a <8 B. 2<a ≤8 C. 2<a <8 D.2≤a ≤88.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定 9.等腰三角形的两边分别为3和6,则这个三角形的周长是 ( ). A.12 B. 15 C .9 D .12或1510.如图,已知直线a 、b 被直线c 所截,a ∥b ,∠1=130°,则 ∠2=( )A. 130°B. 50°C.40°D.60°11.如图,直线AB 与CD 交于点O,OE ⊥AB 于O,图∠1与∠2的关系是( )A.对顶角B.互余C.互补 D 相等 二、填空题B DE 13A CF 2 1. 已知(2x+3y-18)2 +|4x+5y-32|=0,则4x-3y=_______________.2. 已知四边形四个内角的度数的比是1:2:3:4,则这个四边形最大内角=________.3. 将一个正方形剪开后按如图7所示的方法拼接起来,则ABC =_______.4. 如图8所示,在△ABC 中,外角∠DCA=100°,∠A=40°,则∠B=________, ∠ACB=_________.5.在△ABC 中,若∠A =∠B ,∠C =50°,则∠A = 度。
7年级下册数学算术题
7年级下册数学算术题一、有理数运算(1 - 5题)1. 计算:(-2)+3 - (-5)- 解析:- 首先去括号,根据去括号法则,括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。
所以(-2)+3 - (-5)= - 2+3 + 5。
- 然后按照从左到右的顺序计算,-2 + 3=1,1+5 = 6。
2. 计算:-3×(-4)÷(-2)- 解析:- 先计算乘法,根据有理数乘法法则,两数相乘,同号得正,异号得负,并把绝对值相乘,所以-3×(-4)=12。
- 再计算除法,12÷(-2)= - 6(两数相除,异号得负,并把绝对值相除)。
3. 计算:(-2)^3+(-3)×[(-4)^2 - 2]- 解析:- 先计算指数运算,(-2)^3=-8,(-4)^2 = 16。
- 然后计算括号内的式子,(-4)^2-2 = 16 - 2=14。
- 接着计算乘法,-3×14=-42。
- 最后计算加法,-8+(-42)=-8 - 42=-50。
4. 计算:<=ft((1)/(2)-(2)/(3)+(5)/(6))×(-18)- 根据乘法分配律a(b + c)=ab+ac,这里a=-18,b=(1)/(2),c =-(2)/(3),d=(5)/(6)。
- 则(1)/(2)×(-18)-(2)/(3)×(-18)+(5)/(6)×(-18)。
- (1)/(2)×(-18)=-9,-(2)/(3)×(-18)=12,(5)/(6)×(-18)=-15。
- 最后计算-9 + 12-15=-12。
5. 计算:-1^2023-<=ft - 2right+( - (1)/(3))×[2-( - 3)^2]- 解析:- 先计算指数运算,因为2023是奇数,所以-1^2023=-1。
七年级下册计算题50道
七年级下册计算题50道1. 计算:公式解析:同号两数相加,取相同的符号,并把绝对值相加。
公式2. 计算:公式解析:减去一个数,等于加上这个数的相反数。
公式3. 计算:公式解析:两数相乘,异号得负,并把绝对值相乘。
公式4. 计算:公式解析:先通分,化为同分母分数再相加。
公式5. 计算:公式解析:负数的奇次幂是负数,底数不变,指数相乘。
公式6. 计算:公式解析:先算乘方,再算减法。
公式7. 计算:公式解析:先求绝对值,再计算减法。
公式8. 计算:公式解析:两数相除,同号得正,并把绝对值相除。
公式9. 计算:公式解析:先算乘方,再算乘法,最后算加减。
公式10. 计算:公式解析:通分计算。
公式11. 计算:公式解析:两数相乘,同号得正,并把绝对值相乘。
公式12. 计算:公式解析:先算乘方,再算除法。
公式13. 计算:公式解析:通分计算。
公式14. 计算:公式解析:任何非零数的 2020 次幂都是 1,0 加任何数都得原数。
公式15. 计算:公式解析:先求绝对值,再计算减法。
公式16. 计算:公式解析:先算乘方,再算乘法。
公式17. 计算:公式解析:两数相乘,异号得负,并把绝对值相乘。
公式18. 计算:公式解析:除以一个数等于乘以这个数的倒数。
公式19. 计算:公式解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
公式20. 计算:公式解析:先算乘方,再算减法。
公式。
初一下册数学练习题及答案
初一下册数学练习题及答案一、选择题1. 已知a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 不规则三角形答案:B2. 下列哪个数是无理数?A. πB. 0.33333...C. √2D. 1答案:A二、填空题1. 如果一个数的平方根是2,那么这个数是______。
答案:42. 一个数的立方根是3,那么这个数是______。
答案:27三、计算题1. 计算下列各题,并写出计算过程。
(1) (-3)^2答案:(-3)^2 = 9(2) √(16) + √(4)答案:√(16) + √(4) = 4 + 2 = 6四、解答题1. 已知一个长方体的长、宽、高分别为a、b、c,求证:长方体的体积是abc。
证明:长方体的体积V=长×宽×高,即V=a×b×c,所以长方体的体积是abc。
2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
解:根据勾股定理,斜边c的长度为c = √(a^2 + b^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5。
五、应用题1. 某工厂生产一批零件,每个零件的成本为5元,如果工厂计划生产x个零件,那么总成本是多少元?答案:总成本为5x元。
2. 一个水池的长是15米,宽是10米,求水池的面积。
答案:水池的面积为长×宽=15×10=150平方米。
通过这些练习题,同学们可以巩固初一数学的基本概念和计算方法,提高解题能力。
希望同学们能够认真完成这些练习,并对照答案检查自己的解题过程。
七年级数学下册 二元一次方程组经典练习题+答案解析100道 人教新课标
二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组) 一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( )2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x-2y=13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a2-1)x2+(a-1)x+(2a-3)y=0是二元一次方程,则a 的值为±1( )6、若x+y=0,且|x|=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x+y=5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a+5|=5,a+b=1则32-的值为ba ………()12、在方程4x-3y=7里,如果用x 的代数式表示y ,则437yx +=( )二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解; (C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a<2; (B )34->a ; (C )342<<-a ;(D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+my x m y x 932的解是方程3x+2y=34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( ) (A )15x-3y=6 (B )4x-y=7 (C )10x+2y=4 (D )20x-4y=3 19、下列方程组中,是二元一次方程组的是( ) (A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a=-3,b=-14 (B )a=3,b=-7 (C )a=-1,b=9(D )a=-3,b=14 21、若5x-6y=0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23(C )1 (D )-1 22、若x 、y 均为非负数,则方程6x=-7y 的解的情况是( )(A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y=kx+b 的解,则k 与b 的值为( ) (A )21=k ,b=-4 (B )21-=k ,b=4 (C )21=k ,b=4(D )21-=k ,b=-4 三、填空:25、在方程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x+3y=10中,当3x-6=0时,y=_________;27、如果0.4x-0.5y=1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;29、方程|a|+|b|=2的自然数解是_____________; 30、如果x=1,y=2满足方程141=+y ax ,那么a=____________;31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a=______,m=______;32、若方程x-2y+3z=0,且当x=1时,y=2,则z=______;33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________;34、若x+y=a ,x-y=1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x:z=_______;y:z=________;36、已知a-3b=2a+b-15=1,则代数式a2-4ab+b2+3的值为__________;四、解方程组□x +5y =13 ① 4x -□y =-2 ②37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x+4y=|a|成立的x 、y 的值,满足(2x+y-1)2+|3y-x|=0,又|a|+a=0,求a 的值; 49、代数式ax2+bx+c 中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。
七年级下册数学练习题精选
七年级下册数学练习题七年级下册数学练习题精选一、选择题1、取质量相同的砂土、粘土和壤土,分别放入大烧杯中加水搅拌,其中颗粒沉降最快( )A、砂土B、粘土C、壤土2、在农业措施中,排灌对土壤的( )影响最大。
A、矿物质B、腐殖质C、水分D、空气3、下列土壤中肥力最大的是( )A、砂土B、粘土C、壤土4、土壤形成时具有下列哪个特征( )A、岩石风化B、最低等生物出现C、有地衣、苔藓植物出现D、森林和草原的出现5、占土壤固体物质质量约5%的是( )A、矿物质B、腐殖质C、水分D、空气6、植物最容易发生缺水现象的土壤是( )A、砂土B、粘土C、壤土7、下列关于砂土叙述正确的是( )A、通气性能好,保水性能差B、通气性能差,保水性能好C、通气性能差,保水性能差D、通气性能好,保水性能好8、长期单一使用化肥会破坏土壤,下列不属于使用单一化肥引起的是( )A、团粒结构破坏B、土壤容易板结C、腐殖质得到补充D、土壤容易积水9、关于植物对土壤的保护作用叙述错误的是( )A、植物的根能把土壤颗粒紧紧地粘在一起B、植物的树冠能减缓雨水对土壤的冲击C、茎叶能减缓土壤的腐殖质形成D、植物能减小风力对土壤的侵蚀10、下列不属于黄土高原水土治理的措施是( )A、开荒种地B、退耕还草C、打坝淤地D、修筑梯田11、下列不属于塑料地膜有害影响的是( )A、土壤渗水透气B、作物根系生长C、保持土壤温度D、机械作业12、下列防治土壤污染的措施中,正确的'是( )A、控制和消除工业“三废”的排放B、禁止化学农药的使用C、只能少量使用化学肥料D、禁止污水灌溉二、填空题1、土壤中的矿物质由形成的,腐殖质由在土壤表层中经过一系列复杂的分解,转化而成的。
2、我国耕地质量总体不高,分析下列土壤要以通过改变什么成分来提高土壤质量。
⑴发生龟裂的土壤;⑵沼泽地;⑶缓坡上的梯田。
3、人类开垦利用土壤,栽种各种作物,获得及各种工农业生产的。
4、高山、平原、洼地、沿海和内陆的不同地区生长着不同的天然植物,这说明植物与土壤有怎样的关系。
初一数学好用的练习题
初一数学好用的练习题1. 计算下列各题:(1) 3x + 5 = 17(2) 2y - 4 = 6(3) 4z + 12 = 32(4) 5w - 7 = 182. 化简下列各题:(1) 3x - 2x + 5x(2) 4y + 7y - 2y(3) 5z - 3z + z(4) 2w + 3w - 5w3. 求下列各题的值:(1) 当x = 2时,求3x + 4的值。
(2) 当y = 3时,求2y - 5的值。
(3) 当z = 4时,求4z - 6的值。
(4) 当w = 5时,求5w + 2的值。
4. 根据题目条件,求解下列方程:(1) 2x + 3 = 11(2) 5y - 4 = 13(3) 3z + 7 = 19(4) 4w - 8 = 245. 应用题:(1) 一个数的3倍加上4等于21,求这个数。
(2) 一个数的5倍减去6等于24,求这个数。
(3) 一个数的4倍加上7等于35,求这个数。
(4) 一个数的2倍减去8等于16,求这个数。
6. 几何题:(1) 一个长方形的长是宽的两倍,如果宽是4厘米,求长方形的周长。
(2) 一个正方形的对角线长为10厘米,求正方形的面积。
(3) 一个圆的直径是14厘米,求圆的面积。
(4) 一个三角形的底是10厘米,高是6厘米,求三角形的面积。
7. 逻辑推理题:(1) 如果一个数加上5等于10,那么这个数是多少?(2) 如果一个数减去3等于2,那么这个数是多少?(3) 如果一个数乘以4等于16,那么这个数是多少?(4) 如果一个数除以2等于4,那么这个数是多少?8. 综合应用题:(1) 一个班级有男生和女生,男生人数是女生人数的两倍,如果班级总人数是40人,求男生和女生各有多少人。
(2) 一个水果店有苹果和橙子,苹果的数量是橙子的三倍,如果总共有120个水果,求苹果和橙子各有多少个。
(3) 一个班级有学生和老师,学生人数是老师的四倍,如果班级总人数是50人,求学生和老师各有多少人。
(必考题)初中数学七年级下期末经典练习(提高培优)(1)
一、选择题1.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .602.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°3.已知关于x 的不等式组{x >1x <m的解中有3个整数解,则m 的取值范围是( ) A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤54.已知实数a ,b ,若a >b ,则下列结论错误的是A .a-7>b-7B .6+a >b+6C .55ab > D .-3a >-3b5.下面不等式一定成立的是( )A .2a a <B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b > 6.10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间7.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.若不等式组20{210x a x b +---><的解集为0<x <1,则a ,b 的值分别为( ) A .a =2,b =1 B .a =2,b =3 C .a =-2,b =3 D .a =-2,b =19.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.8 10.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm 11.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 12.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)13.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,4 14.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限. A .一 B .二 C .三 D .四15.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题16.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为______________.17.某小区地下停车场入口门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD =120° ,则∠ABC = ________.18.已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N (下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知) ∴ AB ∥ ( )∴∠BAE= ( 两直线平行,内错角相等 )又∵∠1=∠2∴∠BAE ﹣∠1= ﹣∠2即∠MAE=∴ ∥NE ( )∴∠M=∠N ( )19.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向 右平移到△A′B′D′的位置得到图②,则阴影部分的周长为_________.20.若二元一次方程组3354x y x y +=⎧⎨-=⎩的解为x a y b=⎧⎨=⎩,则a ﹣b=______. 21.二项方程32540x +=在实数范围内的解是_______________22.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;23.关于x 的不等式组352223x x x a-≤-⎧⎨+>⎩有且仅有4个整数解,则a 的整数值是______________.24.如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA=6cm ,PB=5cm ,PC=7cm ,则点P 到直线l 的距离是_____cm.25.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.三、解答题26.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽样调查的学生有______人,并补全条形统计图;(2)每天户外活动时间的中位数是______(小时);(3)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?27.某工厂现有甲种原料3600kg ,乙种原料2410kg ,计划利用这两种原料生产A ,B 两种产品共500件,产品每月均能全部售出.已知生产一件A 产品需要甲原料9kg 和乙原料3kg ;生产一件B 种产品需甲种原料4kg 和乙种原料8kg .(1)设生产x 件A 种产品,写出x 应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A 产品每件获得利润1.15万元,B 产品每件获得利润1.25万元;第二种定价方案可使A 和B 产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)28.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.29.某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?30.为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.A3.C4.D5.D6.B7.D8.A9.C10.C11.A12.A13.C14.B15.D二、填空题16.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C(32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大17.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得CD∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过18.见解析【解析】【分析】由已知易得AB∥CD则∠BAE=∠AEC又∠1=∠2所以∠MAE=∠AEN则AM∥EN故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线19.2【解析】【分析】根据两个等边△ABD△CBD的边长均为1将△ABD沿AC方向向右平移到△ABD的位置得出线段之间的相等关系进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2即可20.【解析】【分析】把xy的值代入方程组再将两式相加即可求出a﹣b的值【详解】将代入方程组得:①+②得:4a﹣4b=7则a﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而21.x=-3【解析】【分析】由2x3+54=0得x3=-27解出x值即可【详解】由2x3+54=0得x3=-27∴x=-3故答案为:x=-3【点睛】本题考查了立方根正确理解立方根的意义是解题的关键22.62【解析】【分析】【详解】∵∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°23.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a的不等式组求出即可【详解】解不等式3x-5≤2x-2得:x≤3解不能等式2x+3>a得:x>∵不等24.【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度可得答案【详解】解:∵PB⊥lPB=5cm∴P到l的距离是垂线段PB的长度5cm故答案为:5【点睛】本题考查了点到直线的距离的定25.145【解析】【分析】如图:延长AB交l2于E根据平行线的性质可得∠AED=∠1根据可得AE//CD根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB交l2于E∵l三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB∥CE所以∠B=∠3=30故选B【点睛】熟练运用平行线的判定和性质.2.A解析:A【解析】∠︒∴∠︒∴∠∠︒ .故选A.1=1303=502=23=1003.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.D解析:D【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 5.D解析:D【解析】【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 当0a ≤时,2a a ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误; C. 若ab >,当0cd =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确;故选D .【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.6.B解析:B【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.7.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.8.A解析:A【解析】试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.解:20210x ax b+->⎧⎨--<⎩①②,由①得,x>2﹣a,由②得,x<12b+,故不等式组的解集为;2﹣a<x<12b +,∵原不等式组的解集为0<x<1,∴2﹣a=0,12b+=1,解得a=2,b=1.故选A.9.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.10.C解析:C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C .考点:平移的性质.11.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.12.A解析:A【解析】【分析】根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系进行解答即可.【详解】解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1).故选:A .【点睛】考查坐标问题,关键是根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系解答.13.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.14.B解析:B【解析】【分析】由点P在x轴上求出a的值,从而得出点Q的坐标,继而得出答案.【详解】∵点P(a,a-1)在x轴上,∴a-1=0,即a=1,则点Q坐标为(-1,2),∴点Q在第二象限,故选:B.【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.15.D解析:D【解析】解:∵直线l1∥l2,∴∠3=∠1=44°.∵l3⊥l4,∠2=90°-∠3=90°-44°=46°.故选D.二、填空题16.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C(32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大解析:(1,3)或(5,1)【解析】【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1)【点睛】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.17.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得CD∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过解析:150°【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=120°,求得答案.如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o.【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.18.见解析【解析】【分析】由已知易得AB∥CD则∠BAE=∠AEC又∠1=∠2所以∠MAE=∠AEN则AM∥EN故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线解析:见解析【解析】【分析】由已知易得AB∥CD,则∠BAE=∠AEC,又∠1=∠2,所以∠MAE=∠AEN,则AM∥EN,故∠M=∠N.【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补,两直线平行)∠BAE=∠AEC(两直线平行,内错角相等)又∵∠1=∠2,∴∠BAE−∠1=∠AEC−∠2,即∠MAE=∠NEA,∴AM∥EN,(内错角相等,两直线平行)∴∠M=∠N(两直线平行,内错角相等)【点睛】考查平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.19.2【解析】【分析】根据两个等边△ABD△CBD的边长均为1将△ABD沿AC方向向右平移到△ABD的位置得出线段之间的相等关系进而得出OM+MN+NR+GR+E G+OE=A′D′+CD=1+1=2即可【解析】【分析】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【详解】解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为2.20.【解析】【分析】把xy的值代入方程组再将两式相加即可求出a﹣b的值【详解】将代入方程组得:①+②得:4a﹣4b=7则a﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而解析:7 4【解析】【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【详解】将x ay b=⎧⎨=⎩代入方程组3354x yx y+=⎧⎨-=⎩,得:3354a ba b+=⎧⎨-=⎩①②,①+②,得:4a﹣4b=7,则a﹣b=74,故答案为74.【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值.21.x=-3【解析】【分析】由2x3+54=0得x3=-27解出x值即可【详解】由2x3+54=0得x3=-27∴x=-3故答案为:x=-3【点睛】本题考查了立方根正确理解立方根的意义是解题的关键【解析】【分析】由2x 3+54=0,得x 3=-27,解出x 值即可.【详解】由2x 3+54=0,得x 3=-27,∴x=-3,故答案为:x=-3.【点睛】本题考查了立方根,正确理解立方根的意义是解题的关键.22.62【解析】【分析】【详解】∵∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°解析:62【解析】【分析】【详解】∵OE AB ⊥,28EOC ∠=,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°. 23.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a 的不等式组求出即可【详解】解不等式3x -5≤2x -2得:x≤3解不能等式2x+3>a 得:x >∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a 的不等式组,求出即可.【详解】解不等式3x-5≤2x -2,得:x≤3,解不能等式2x+3>a ,得:x >32a -, ∵不等式组有且仅有4个整数解,∴-1≤32a -<0, 解得:1≤a <3,∴整数a 的值为1和2,故答案为:1,2.【点睛】本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度可得答案【详解】解:∵PB⊥lPB=5cm∴P 到l 的距离是垂线段PB 的长度5cm 故答案为:5【点睛】本题考查了点到直线的距离的定解析:【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【详解】解:∵PB ⊥l ,PB=5cm ,∴P 到l 的距离是垂线段PB 的长度5cm ,故答案为:5.【点睛】本题考查了点到直线的距离的定义,熟练掌握是解题的关键.25.145【解析】【分析】如图:延长AB 交l2于E 根据平行线的性质可得∠AED=∠1根据可得AE//CD 根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB 交l2于E ∵l解析:145【解析】【分析】如图:延长AB 交l 2于E ,根据平行线的性质可得∠AED=∠1,根据αβ∠∠=可得AE//CD ,根据平行线的性质可得∠AED+∠2=180°,即可求出∠2的度数.【详解】如图:延长AB 交l 2于E ,∵l 1//l 2,∴∠AED=∠1=35°,∵αβ∠∠=,∴AE//CD ,∴∠AED+∠2=180°,∴∠2=180°-∠AED=180°-35°=145°,故答案为145【点睛】本题考查了平行线的判定和性质,通过内错角相等证得AE//CD 是解题关键.三、解答题26.(1)500;(2)1;(3)该校每天户外活动时间超过1小时的学生有800人.【解析】【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.【详解】(1)0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:10020%500÷=,27.(1)94(500)360038(500)2410x x x x +-≤⎧⎨+-≤⎩;(2)符合的生产方案为①生产A 产品318件,B 产品182件;②生产A 产品319件,B 产品181件;③生产A 产品320件,B 产品180件;(3)第二种定价方案的利润比较多.【解析】分析:(1)关系式为:A 种产品需要甲种原料数量+B 种产品需要甲种原料数量≤3600;A 种产品需要乙种原料数量+B 种产品需要乙种原料数量≤2410,把相关数值代入即可;(2)解(1)得到的不等式,得到关于x 的范围,根据整数解可得相应方案;(3)分别求出两种情形下的利润即可判断;详解:(1)由题意()94(500)3600385002410x x x x +-≤⎧⎨+-≤⎩. (2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x 为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A 产品318件,B 产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.点睛:本题考查理解题意能力,生产不同产品所用的原料不同,关键是在原料范围内求得生产的产品,从而求解.找出题目中的不等量关系列出不等式组是解答本题的关键.28.证明见解析.【解析】【分析】由∠1=∠2,得BD∥CE,所以∠4=∠E,又∠3=∠E,所以∠3=∠4,可得AD∥BE.【详解】证明:∵∠1=∠2,又∵∠3=∠E,∴BD∥CE,∴∠3=∠4,∴∠4=∠E,∴AD∥BE.【点睛】本题考核知识点:平行线的判定.解题关键点:理解平行线的判定.29.(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润大,最多为7550元.【解析】【分析】(1)设购进甲种型号的电视机x台,则乙种型号的电视机y台.数量关系为:两种不同型号的电视机50台,金额不超过76000元;(2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.【详解】解:(1)设购进甲种型号的电视机x台,则乙种型号的电视机(50-x)台.则1500x+2100(50-x)≤76000,解得:x≥4813.则50≥x≥4813.∵x是整数,∴x=49或x=50.故有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润为:49×(1650-1500)+(2300-2100)=7550(元)方案二的利润为:50×(1650-1500)=7500(元).∵7550>7500∴方案一的利润大,最多为7550元.【点睛】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.30.(1)40;(2)答案见解析;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【解析】【分析】(1)由两个统计图可以发现第一次22名优秀的同学占55%,故该班总人数为2255%=40÷;(2)第四次优秀人数为:4085%=34⨯,第三次优秀率为3240×100%=80%,据此可以补全统计图;(3)根据图像可以写出优秀人数逐渐增多,增大的幅度逐渐减小等信息.【详解】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:3240×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点睛】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.。
完整)人教版七年级数学下册练习题
完整)人教版七年级数学下册练习题1.七年级数学第五章《相交线与平行线》班级: ___________ 姓名: ___________ 坐号: ___________成绩: ___________一、选择题(每小题3分,共30分)1、如图所示,∠1和∠2是对顶角的是()A、12.B、1 2.C、1 2.D、1 22、如图AB∥CD可以得到()A、∠1=∠2.B、∠2=∠3.C、∠1=∠4.D、∠3=∠43、直线AB、CD、EF相交于O,则∠1+∠2+∠3=()A、90°。
B、120°。
C、180°。
D、140°4、如图所示,直线a、b被直线c所截,现给出下列四种条件:①∠2=∠6.②∠2=∠8.③∠1+∠4=180°。
④∠3=∠8。
其中能判断是a∥b的条件的序号是()A、①②。
B、①③。
C、①④。
D、③④5、某人在广场上练驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A、第一次左拐30°,第二次右拐30°B、第一次右拐50°,第二次左拐130°C、第一次右拐50°,第二次右拐130°D、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的()第2题)。
(第三题)。
(第4题)7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的比是()ABA、3:4.B、5:8.C、9:16.D、1:2第7题)8、下列现象属于平移的是()①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走A、③。
B、②③。
C、①②④。
D、①②⑤9、下列说法正确的是()A、有且只有一条直线与已知直线平行B、垂直于同一条直线的两条直线互相垂直C、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
数学试题及答案七下
数学试题及答案七下一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.33333D. √4答案:B2. 如果一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 一个数的绝对值是它本身,这个数可能是:A. 任何数B. 非负数C. 非正数D. 负数答案:B4. 以下哪个表达式等于x^2 - 2x + 1?A. (x-1)^2B. (x+1)^2C. (x-2)^2D. (x+2)^2答案:A5. 一个等腰三角形的底边长为6,腰长为5,其周长为:A. 16B. 17C. 18D. 19答案:C6. 一个数的立方根是2,这个数是:A. 6B. 8C. -8D. 0答案:B7. 一个角的补角是它的两倍,这个角是:A. 30°B. 60°C. 90°D. 120°答案:A8. 一个数除以-1/2等于它本身,这个数是:A. 0B. 2C. -2D. 1答案:A9. 一个数的平方等于16,这个数可能是:A. 4B. -4C. 4或-4D. 0答案:C10. 一个数的倒数是-1/3,这个数是:A. 3B. -3C. 1/3D. -1/3答案:B二、填空题(每题2分,共20分)11. 如果一个数的平方是25,那么这个数是______。
答案:±512. 一个数的绝对值是5,这个数可能是______。
答案:5或-513. 一个角的余角是45°,这个角是______。
答案:45°14. 一个等腰三角形的底边长为8,腰长为10,其周长为______。
答案:2815. 一个数的立方根是-2,这个数是______。
答案:-816. 一个角的补角是它的三倍,这个角是______。
答案:45°17. 一个数除以-1/3等于它本身,这个数是______。
答案:018. 一个数的平方等于9,这个数可能是______。
(必考题)初中数学七年级下期末经典习题(提高培优)(1)
一、选择题1.已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( ) A .1 B .0C .-2D .-1 2.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .3.如图,数轴上表示2、5的对应点分别为点C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5-B .25-C .45-D .52-4.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°5.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.如图,在平面直角坐标系xOy 中,点P(1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位至点P 3,第4次向右跳动3个单位至点P 4,第5次又向上跳动1个单位至点P 5,第6次向左跳动4个单位至点P 6,….照此规律,点P 第100次跳动至点P 100的坐标是( )A .(﹣26,50)B .(﹣25,50)C .(26,50)D .(25,50)8.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩ 9.已知{x =1y =2 是关于x ,y 的二元一次方程x-ay=3的一个解,则a 的值为( ) A .1B .-1C .2D .-2 10.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b=⎧⎨=⎩,则a 、b 分别为( ) A .a=8,b=﹣2B .a=8,b=2C .a=12,b=2D .a=18,b=8 11.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个12.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -= B .321a b += C .491b a -=- D .941a b +=13.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个14.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3 B .5C .7D .9 15.若0a <,则下列不等式不成立的是( )A .56a a +<+B .56a a -<-C .56a a <D .65a a < 二、填空题16.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.17.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为______________.18.某小区地下停车场入口门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD =120° ,则∠ABC = ________.19.如果a 的平方根是3±,则a =_________20.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B , 则点B 的坐标为_______.21.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________ 22.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .23.如图,直线//a b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55°,则∠2的度数为______.24.已知方程组236x yx y+=⎧⎨-=⎩的解满足方程x+2y=k,则k的值是__________.25.关于x的不等式111x-<-的非负整数解为________.三、解答题26.某运输公司现将一批152吨的货物运往A,B两地,若用大小货车15辆,则恰好能一次性运完这批货.已知这两种大小货车的载货能力分别为12吨/辆和8吨/辆,其运往A,B 两地的运费如下表所示:目的地(车型)A地(元/辆)B地(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆.(用二元一次方程组解答)(2)现安排其中的10辆货车前往A地,其余货车前往B地,设前往A地的大货车为x辆,前往A,B两地总费用为w元,试求w与x的函数解析式.27.如图,直线AB与CD相交于点O,∠BOE=∠DOF=90°.(1)写出图中与∠COE互补的所有的角(不用说明理由).(2)问:∠COE与∠AOF相等吗?请说明理由;(3)如果∠AOC=15∠EOF,求∠AOC的度数.28.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a 辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.29.问题情境在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG =α,则∠CFG 等于______(用含α的式子表示).30.解不等式-3+3+121-3-18-xxx x⎧≥⎪⎨⎪<⎩()【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.C4.B5.A6.B7.C8.A9.B10.C11.B12.D13.C14.B15.C二、填空题16.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+2根据题意得m+2>0解得m>17.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C(32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大18.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得CD∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过19.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义20.(﹣1﹣1)【解析】试题解析:点B的横坐标为1-2=-1纵坐标为3-4=-1所以点B的坐标是(-1-1)【点睛】本题考查点的平移规律;用到的知识点为:点的平移左右平移只改变点的横坐标左减右加;上下平21.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=422.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D23.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【24.-3【解析】分析:解出已知方程组中xy的值代入方程x+2y=k即可详解:解方程组得代入方程x+2y=k得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义25.012【解析】【分析】先解不等式确定不等式的解集然后再确定其非负整数解即可得到答案【详解】解:解不等式得:∵∴∴的非负整数解为:012故答案为:012【点睛】本题主要考查了二次根式的应用及一元一次不三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:24 23m nm n-=⎧⎨-=⎩①②②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.2.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①②∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 3.C解析:C【解析】【分析】首先可以求出线段BC 的长度,然后利用中点的性质即可解答.【详解】∵表示25C ,B , 5,∵点C 是AB 的中点,则设点A 的坐标是x ,则5∴点A 表示的数是5故选C .【点睛】本题主要考查了数轴上两点之间x 1,x 2的中点的计算方法.4.B解析:B【解析】分析:先根据平行线的性质得出∠2+∠BAD =180°,再根据垂直的定义求出∠2的度数. 详解:∵直线a ∥b ,∴∠2+∠BAD =180°.∵AC ⊥AB 于点A ,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B .点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.5.A解析:A【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.6.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 7.C解析:C【解析】【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数). 故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50.故选:C .【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.8.A解析:A【解析】【分析】【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩, 故选D .考点:由实际问题抽象出二元一次方程组. 9.B解析:B【解析】【分析】把{x =1y =2代入x-ay=3,解一元一次方程求出a 值即可. 【详解】∵{x =1y =2是关于x ,y 的二元一次方程x-ay=3的一个解, ∴1-2a=3解得:a=-1故选B.【点睛】本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.10.C解析:C【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.11.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.12.D解析:D【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.13.C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.15.C解析:C【解析】【分析】直接根据不等式的性质进行分析判断即可得到答案.【详解】A .0a <,则a 是负数,56a a +<+可以看成是5<6两边同时加上a ,故A 选项成立,不符合题意;B .56a a -<-是不等式5<6两边同时减去a ,不等号不变,故B 选项成立,不符合题意;C .5<6两边同时乘以负数a ,不等号的方向应改变,应为:56a a >,故选项C 不成立,符合题意;D .65a a<是不等式5<6两边同时除以a ,不等号改变,故D 选项成立,不符合题意. 故选C .本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;不等式两边同乘以(或除以)同一个负数,不等号的方向改变.二、填空题16.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+2根据题意得m+2>0解得m>解析:m>-2【解析】【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-=+⎧⎨+=⎩①②,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.17.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C (32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大解析:(1,3)或(5,1)【解析】【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1)【点睛】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.18.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得CD∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过解析:150°【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=120°,求得答案.【详解】如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o.【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.19.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义解析:81【解析】【分析】根据平方根的定义即可求解.【详解】∵9的平方根为3±,,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.20.(﹣1﹣1)【解析】试题解析:点B的横坐标为1-2=-1纵坐标为3-4=-1所以点B的坐标是(-1-1)【点睛】本题考查点的平移规律;用到的知识点为:点的平移左右平移只改变点的横坐标左减右加;上下平解析:(﹣1,﹣1)【解析】试题解析:点B的横坐标为1-2=-1,纵坐标为3-4=-1,所以点B的坐标是(-1,-1).【点睛】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.21.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4;【解析】试题解析:把21xy=⎧⎨=⎩代入方程组得:25{21a bb a++=①=②,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,22.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.23.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【解析:【解析】【分析】先根据∠1=55°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出结论【详解】解:∵AB⊥BC,∠1=55°,∴∠3=90°-55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等。
七年级下学期数学练习题及答案 (100)
七年级下学期数学练习题及答案
7.(3分)解方程组时,①﹣②,得()
A.﹣3t=1B.﹣3t=3C.9t=3D.9t=1
【分析】应用加减消元法,求出①﹣②,得多少即可.
【解答】解:解方程组时,①﹣②,得:
9t=3.
故选:C.
【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.
8.(3分)三元一次方程组的解是()
A.B.
C.D.
【分析】方程组中前两个方程相加消去y,与第三个方程联立求出x与z的值,进而求出y的值即可.
【解答】解:,
①+②得:x﹣z=2④,
③+④得:2x=8,
解得:x=4,
把x=4代入④得:z=2,
把x=4代入①得:y=3,
则方程组的解为,
故选:D.
【点评】此题考查了三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。
(完整版)七年级下册数学试题及答案
火车站李庄一、选择题: 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <22.下列各式中,正确的是( ) A.16=±4 B.±16=4 C.327-=-3 D.2(4)-=-43.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx a x4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40°(C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000 B .1100 C .1150 D .1200PC B A小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2 B .12 c m 2 C .15 cm 2 D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题11.49的平方根是________,算术平方根是______,-8的立方根是_____.12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. C A 1 A B B 1 C D15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______. 17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)18.若│x 2-25│则x=_______,y=_______. 三、解答题: 19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来. 20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
人教版七年级下册数学第六章实数-测试题含答案
人教版数学七年级下册第六章《实数》测试卷一、单选题1.下列说法错误的是()A .5是25的算术平方根B .1是1的一个平方根C .(-4)2的平方根是-4D .0的平方根与算术平方根都是02)A .9B .±9C .±3D .33.14的算术平方根是()A .12±B .12-C .12D .1164的值约为()A .3.049B .3.050C .3.051D .3.0525.若a 是(﹣3)2()A .﹣3BC 或﹣D .3或﹣36.在22π72-,六个数中,无理数的个数为()A .4B .3C .2D .17.正方形ABCD 在数轴上的位置如图所示,点D、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A .点CB .点DC .点AD .点B8.已知﹣2,估计m 的值所在的范围是()A .0<m<1B .1<m<2C .2<m<3D .3<m<49.的相反数是()A .2-B .22C .D .10.判断下列说法错误的是()A .2是8的立方根B .±4是64的立方根C .-13是-127的立方根D .(-4)3的立方根是-4二、填空题11.若a 2=(-3)2,则a=________。
12________.13=-7,则a =______.14______15.在实数220,-π13,0.1010010001…(相邻两个1之间依次多一个0)中,有理数的个数为B ,无理数的个数为A ,则A -B =_____.16.若两个连续整数a、b 满足a b <<,则a b +的值为________三、解答题17.若|a|=4,b =34,求a -b +c 的值18.如果一个正数m 的两个平方根分别是2a -3和a -9,求2m -2的值.19.(1)(3x+2)2=16(2)12(2x﹣1)3=﹣4.20.求下列各式的值:;21.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)OA=,BD=;(2)|1﹣(﹣4)|表示哪两点的距离?(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP=,当BP=4时,x=;当|x﹣3|+|x+2|的值最小时,x的取值范围是.22.将一个体积为0.216m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.参考答案1.C【解析】一个正数的平方根有两个,是成对出现的.【详解】(-4)22.D【解析】根据算术平方根的定义求解.【详解】,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.3.故选:D .【点睛】考核知识点:算术平方根.理解定义是关键.3.C【解析】分析:根据算术平方根的概念即可求出答案.本题解析:∵211()24=,∴14的算术平方根为12+,故选C.4.B【解析】首先根据数的开方的运算方法,然后根据四舍五入法,把结果精确到0.001即可,求出≈3.050.故选B .5.C【解析】分析:由于a 是(﹣3)2的平方根,则根据平方根的定义即可求得a 的值,进而求得代数式的值.详解:∵a 是(﹣3)2的平方根,∴a =±3,.故选C .点睛:本题主要考查了平方根的定义,容易出现的错误是误认为平方根是﹣3.6.B【解析】【分析】根据无理数的概念解答即可.【详解】π2,是无理数.故选B .【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.B【解析】【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B .【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.8.B【解析】分析:根据被开方数越大算术平方根越大,不等式的性质,可得答案.,得:3<4,3﹣2﹣2<4﹣2,即1<m <2.故选B .点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题的关键.9.D【解析】【分析】根据相反数的定义,即可解答.【详解】,故选D.【点睛】本题考查了实数的性质,解决本题的关键是熟记实数的性质.10.B【解析】根据立方根的意义,由23=8,可知2是8的立方根,故正确;根据43=64,可知64的立方根为4,故不正确;根据(﹣13)3=﹣127,可知﹣13是﹣127的立方根,故正确;根据立方根的意义,可知(﹣4)3的立方根是﹣4,故正确.故选:B.点睛:此题主要考查了立方根,解题关键是明确一个数的立方等于a,那么这个数就是a的立方根,由此判断即可.11.±3【解析】【分析】利用a2=(-3)2求得a2的值,再求a的平方根即可.【详解】a2=(-3)2=9,a=±3,故答案为:±3【点睛】本题考查了平方根的概念.关键是两边平方,根据平方根的意义求解.12【解析】【分析】,再求出3的算术平方根即可.【详解】,3.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.13.-343【解析】解:∵3(7)343-=-,∴a =-343.故答案为-343.14.0【解析】【分析】原式各项利用立方根定义计算后,利用有理数减法法则计算即可得到结果.【详解】原式=0.3﹣0.2﹣0.1=0.故答案为0.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.15.-1【解析】【分析】根据无理数、有理数的定义即可得出A 、B 的值,进而得出结论.2,﹣π,0.1010010001…(相邻两个1之间多一个0)是无理数,故A =3.013,是有理数,故B =4,∴A -B =3-4=-1.故答案为:-1.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.16.5【解析】【分析】,求出a 、b 的值,即可求出答案.【详解】∵23,∴a =2,b =3,∴a +b =5.故答案为5.【点睛】本题考查了估算无理数的大小的应用,.17.17或9.【解析】【分析】根据绝对值的性质,可得a ,根据实数的运算,可得答案.【详解】a 4=,得a 4=或a 4=-,4c 16==,,当a 4=时a b c 431617-+=-+=,当a 4=-时a b c 43169-+=--+=.故a b c -+的值为17或9.本题考查了实数的性质,利用绝对值的性质得出a 的值是解题关键.18.48【解析】【分析】根据一个正数的两个平方根互为相反数求出a 的值,利用平方根和平方的关系求出m,再求出2m-2的值.【详解】解:∵一个正数的两个平方根分别是2a-3和a-9,∴(2a-3)+(a-9)=0,解得a=4,∴这个正数为(2a-3)2=52=25,∴2m-2=2×25-2=48;故答案为48.【点睛】本题考查平方根.19.(1)x 1=23,x 2=﹣2;(2)x=﹣12.【解析】【分析】运用开平方、开立方的方法解方程即可.【详解】(1)(3x +2)2=16;开平方得:3x +2=±4,移项得:3x =﹣2±4,解得:x 123=,x 2=﹣2.(2)312142x -=-().两边乘2得:(2x ﹣1)3=﹣8,开立方得:2x ﹣1=﹣2,移项得:2x =﹣1,解得:x 12=-.【点睛】本题考查了立方根和平方根,解题的关键是根据开方的方法求解.20.(1)-10;(2)4;(3)-1.【解析】【分析】利用立方根定义计算即可得到结果.【详解】(1)原式=﹣10;(2)原式=﹣(﹣4)=4;(3)原式=﹣9+8=-1.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.21.(1)4,5;(2)点A与点C间的距离;(3)|x+2|;2或﹣6;﹣2≤x≤3.【解析】【分析】(1)根据两点间的距离公式解答;(2)根据两点间的距离的几何意义解答;(3)根据两点间的距离公式填空.【详解】(1)BD=|﹣2﹣3|=5;(2)数轴上表示数x和数﹣3两点之间的距离可表示为|x+3|;(3)当x<﹣1时,有﹣x+3﹣x﹣1=6,解得:x=﹣2;当﹣1≤x≤3时,有﹣x+3+x+1=4≠6,舍去;当x>3时,有x﹣3+x+1=6,解得:x=4.(4)当x=1时,|x+1|+|x﹣1|+|x﹣3|有最小值,此最小值是4.故答案为5,|x+3|,﹣2或4.4,1.【点睛】本题考查了绝对值,实数与数轴,解题的关键是了解两点间的距离公式和两点间距离的几何意义.22.每个小立方体铝块的表面积为0.54m2.【解析】试题分析:设小立方体的棱长是xm,得出方程8x3=0.216,求出x的值即可.试题解析:解:设小立方体的棱长是xcm,根据题意得:8x3=0.216,解得:x=0.3则每个小立方体铝块的表面积是6×(0.3)2=0.54(m2),答:每个小立方体铝块的表面积是0.54m2.点睛:本题考查了立方根的应用,关键是能根据题意得出方程.。
七年级下册数学实数练习题
七年级下册数学实数练习题一、选择题(每题3分,共30分)1. 下列哪个数是实数?A. √2B. -√2C. √-1D. √42. 下列哪个选项表示的是负数?A. 0B. 3.5C. -3D. 23. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 104. 计算下列哪个选项的结果为正数?A. 3 + (-2)B. -4 + 2C. 5 - (-3)D. -6 - 45. 一个数的绝对值是4,这个数可以是:A. 4B. -4C. 4或-4D. 06. 下列哪个选项是无理数?A. 2.5B. 3C. πD. 0.33337. 计算下列哪个选项的结果为0?A. 5 - 5B. 0 + 3C. -2 × 2D. 2 ÷ 28. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 99. 计算下列哪个选项的结果为负数?A. 4 - 2B. -3 + 3C. 2 × (-3)D. (-2) ÷ (-1)10. 下列哪个数是实数?A. √16B. √-4C. 2πD. √9二、填空题(每题4分,共20分)11. 一个数的立方是-27,这个数是______。
12. 一个数的绝对值是5,这个数可以是______或______。
13. 计算:(-3) × (-3) = ______。
14. 计算:√25 = ______。
15. 一个数的相反数是它本身,这个数是______。
三、解答题(每题10分,共50分)16. 计算并化简:(-2) × 3 + 4 × (-1) - √9。
17. 求出下列方程的解:x + 4 = 1。
18. 计算并化简:(-5) ÷ 2 × (-4) + √16。
19. 一个数的平方等于25,求这个数。
20. 已知一个数的相反数是-7,求这个数。
初一数学下册试题及答案
初一数学下册试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 6D. -6答案:A3. 计算下列算式:2x - 3 = 7,x的值是:A. 5B. 2C. 10D. 3答案:A4. 一个等腰三角形的两个底角相等,如果一个底角是50°,那么顶角的度数是:A. 80°B. 50°C. 100°D. 30°答案:A5. 一个数的平方是36,这个数是:A. 6B. ±6C. 36D. ±36答案:B6. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C7. 下列哪个选项是不等式?A. 3x + 4 = 7B. 2x - 5 > 0C. 6x = 12D. 7x - 3答案:B8. 一个数的立方是-8,那么这个数是:A. -2B. 2C. -8D. 8答案:A9. 计算下列算式:(-3)^2,结果是:A. -9B. 9C. -6D. 6答案:B10. 下列哪个选项是二次方程?A. 2x + 3 = 0B. x^2 - 4x + 4 = 0C. 3x - 7D. 5x^3 + 2x^2 - 6 = 0答案:B二、填空题(每题4分,共20分)11. 一个数的平方根是3,那么这个数是______。
答案:912. 一个数的立方根是-2,那么这个数是______。
答案:-813. 一个数的倒数是1/2,那么这个数是______。
答案:214. 一个数的绝对值是7,那么这个数可以是______或______。
答案:7,-715. 一个等腰三角形的底角是30°,那么顶角的度数是______。
答案:120°三、解答题(每题10分,共50分)16. 解方程:3x - 5 = 10。
七年级下数学计算题
七年级下数学计算题一、整式的运算类1. 计算:(2x + 3y)(3x - 2y)- 解析:- 根据多项式乘法法则,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加。
- 原式=2x×3x - 2x×2y+3y×3x - 3y×2y- = 6x^2-4xy + 9xy-6y^2- =6x^2+5xy - 6y^2。
2. 计算:(3a - 2b)^2- 解析:- 根据完全平方公式(a - b)^2=a^2-2ab + b^2,这里a = 3a,b = 2b。
- 原式=(3a)^2-2×3a×2b+(2b)^2- = 9a^2-12ab + 4b^2。
3. 化简:3x(2x^2-x + 1)-2x^2(3x - 2)- 解析:- 先分别进行单项式乘多项式运算。
- 原式=3x×2x^2-3x× x+3x×1-(2x^2×3x - 2x^2×2)- = 6x^3-3x^2+3x-(6x^3-4x^2)- 去括号得6x^3-3x^2+3x - 6x^3+4x^2- 合并同类项得x^2+3x。
4. 计算:(x + 2y)(x - 2y)(x^2+4y^2)- 解析:- 先利用平方差公式(a + b)(a - b)=a^2-b^2计算前两个括号。
- 原式=(x^2-4y^2)(x^2+4y^2)- 再利用平方差公式得x^4-16y^4。
5. 化简:(2m + n - 1)(2m - n - 1)- 解析:- 把式子变形为[(2m - 1)+n][(2m - 1)-n]- 利用平方差公式得(2m - 1)^2-n^2- 再根据完全平方公式展开(2m - 1)^2=4m^2-4m + 1- 所以原式=4m^2-4m + 1 - n^2。
二、一元一次方程类6. 解方程:3x+5 = 2x - 1- 解析:- 移项,将含x的项移到等号左边,常数项移到等号右边,得3x - 2x=-1 - 5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
D
C B A
例1 如图,直线AB,CD,EF 相交于点O ,∠AOE=54°,∠EOD=90°,求∠EOB ,∠COB 的度数。
例2 如图AD 平分∠CAE ,∠B = 350°,∠DAE=600°,那么∠ACB 等于多少?
例3 三角形的一个外角等于与它相邻的内角的4倍,等于与它不 相邻的一个内角的2倍,则这个三角形各角的度数为( )。
A .450、450、900 B .300、600、900
C .250、250、1300
D .360、720、720
例4 已知如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度
数。
例5 如图,AB ∥CD ,EF 分别与AB 、CD 交于G 、H ,MN ⊥AB 于G ,∠CHG=1240,则∠EGM 等于多少度?
E
D C
B
A
21
F
E
D
C
B
A
N
M
H
G
F
E D
C B
A
例1 一个机器人从O 点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5•点,如果A1求坐标为(3,0),求点 A5•的坐标。
例2 如图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可表示为( ) A 、(0,3) B 、(2,3) C 、(3,2) D 、(3,0)
例3 如图2,根据坐标平面内点的位置,写出以下各点的坐标: A( ),B( ),C( )。
例4 如图,面积为12cm2的△ABC 向x 轴正方向平移至△DEF 的位置,相应的坐标如图所示(a ,b 为常数), (1)、求点D 、E 的坐标 (2)、求四边形ACED 的面积。
A B
C
例2
例5过两点A(3,4),B(-2,4)作直线AB,则直线AB( )
A、经过原点
B、平行于y轴
C、平行于x轴
D、以上说法都不对
例2 如图,结合图形作出了如下判断或推理:
①如图甲,CD⊥AB,D为垂足,那么点C到AB的距离等于C、D两点间的距离;
②如图乙,如果AB∥CD,那么∠B=∠D;
③如图丙,如果∠ACD=∠CAB,那么AD∥BC;
④如图丁,如果∠1=∠2,∠D=120°,那么∠BCD=60°.其中正确的个数是( )个.
(A)1 (B)2 (C)3 (D)4
例5 在直角坐标系中,已知A(-4,0)、B(1,0)、C(0,-2)三点.请按以下要求设计两种方案:作一条与轴不重合,与△ABC的两边相交的直线,使截得的三角形与△ABC相似,并且面积是△AOC面积的.分别在下面的两个坐标中系画出设计图形,并写出截得的三角形三个顶点的坐标。
三、经典例题
例1用加减消元法解方程组,
例2 如果是同类项,则、的值是()
A、=-3,=2
B、=2,=-3
C、=-2,=3
D、=3,=-2
例3 计算:
例4 王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。
其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元。
问王大伯一共获纯利多少元?
例5 已知关于x、y的二元一次方程组的解满足二元一次方程,求的值。
例1 当x 时,代数代2-3x的值是正数。
例2 一元一次不等式组的解集是()A.-2<x<3 B.-3<x< 2 C.x<-3 D.x<2
例3已知方程组的解为负数,求k的取值范围。
例4 某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0。
5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)
例5 某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。
年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元。
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可进入该园林的次数最多的购票方式。
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。
例1 某班有50人,其中三好学生10人,优秀学生干部5人,在扇形统计图上表示三好学生和优秀学生干部人数的圆心角分别是( ) A.720,360 B.1000,500 C.1200,600 D.800,400
例2 某音乐行出售三种音乐CD ,即古典音乐、流行音乐、民族音乐,为了表示这三种音乐唱片的销售量的百分比,应该用( )
A.扇形统计图 B.折线统计图 C.条形统计图 D.以上都可
以
例3 在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:
⑴已知最后一组(89.5-99.5)出现的频率为15 %,则这一次抽样调查的容量是________ .
⑵第三小组(69.5~79.5)的频数是_______,频率是________.
例4 如图,是一位护士统计一位病人的体温变化图:根据统计图回答下列问题:
⑴病人的最高体温是达多少?
⑵什么时间体温升得最快?
例5 在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:
⑴已知最后一组(89.5~99.5)出现的频率为15 %,则这一次抽样调查的容量是________ .
⑵第三小组(69.5~79.5)的频数是_______,频率是________.
31
Le voleur et Balzac
小偷与巴尔扎克
Je me rappelle toujours les anecdotes de grands auteurs que mon grand-père m'a racontée dans mon enfance. En voici une:
Une nuit, un voleur est entrédans la maison de Balzac qui avait l'habitude de se coucher très tard et de ne pas fermer la porte.
Cette nuit-là, Balzac était déjàau lit et semblait dormir profondément. Le voleur acherché à ouvrir le bureau. Mais tout à coup, il a été interrompu par un gros rire. Il a vu Balzac qui riait de tout son cœur. Très effrayé, le voleur n'a pas; pu s'empêcher de lui demander:
— Pourquoi donc riez -vous ?
— Je ris, lui a répondu l'auteurs, parce que vous venez la nuit, sans lumière, chercher de l'argent dans un bureau où, moi, je n'ai jamais pu en trouver en plein jour.。