自耦变压器降压启动电路图

合集下载

三相笼型异步电动机自耦变压器降压启动

三相笼型异步电动机自耦变压器降压启动
易于加强对绕组的机械支撑, 绕组能承受较大的电磁力,适 于通过大电流。
特点:
机械强度高,制造工艺复杂, 所用材料较多。
应用: 特种变压器。
三、变压器的铭牌与额定值
额定值标注在变压器油箱表面的铭牌上,是正确、合 理、经济地使用变压器的依据。
1.额定容量SN
视在功率,是变压器在额定工作条件下输出能力的保证值。
4.额定电流I1N/I2N
指在U1N作用下,一、二次绕组在允许发热条件下工作时, 允许长期通过的最大电流值。
※ 三相变压器的额定电压和额定电流是指线电压和线电流。
5.额定频率f1
我国规定的标准工业用电频率为50Hz。
共用一个绕组, 通电工作时绕组之间不仅有磁的耦合,而 且有电的直接联系。
1.电力变压器的基本结构
主要由铁心、绕组、绝缘套管、油箱及附件等组成。
1)铁心 形成闭合磁路,也是固定绕组及其他部件的骨架。
由铁心柱和磁轭两部分组成, 大多采用厚度为0.35mm、表 面涂有绝缘漆的硅钢片叠成。

2
数1

3
4
2)绕组
变压器的电路部分。
偶2

3
层1 4
用绝缘圆导线或扁导线绕成,有铜导线和铝导线两种。 根据工作电压的高低,分为高压绕组和低压绕组。
升压变压器
远距离输送
降压变压器
发电站
超高压电
用电区
用户
1.电力变压器的基本结构
电力系统中应用最广泛的是油浸式电力变压器。
1-信号式温度计 2-吸湿器
3-储油柜
4-油表
5-安全气道
6-气体继电器
7-高压套管
8-低压套管
9-分接开关
10-油箱

18种电动机降压启动电路

18种电动机降压启动电路

图12 手动Y-△降压启动控制
• 十三、采用补偿器的启动控制
• 线路如图13所示。按下启动按钮SB1,接触器KM1、 时间继电器KT得电,KM1常开触点闭合自锁。接触 器KM1主触点闭合,使补偿器接入电动机降压启动 回路,电动机开始启动。时间继电器KT按整定时间 延时,电动机达到运转速度后,其常闭触点打开, 使接触器KM1失电,主触点打开,补偿器脱离,同 时常闭触点闭合。另外,时间继电器KT常开触点也 接通,这时接触器KM2得电,其常开触点闭合自锁, KM2常闭触点打开,时间继电器KT失电,接触器 KM2主触点闭合,电动机投入正常运转。
图13 采用补偿器的启动控制
• 十四、用两个接触器实现Y-△降压启动控制 •
图14 用两个接触器实现Y-△降压启 动控制
• 按下启动按钮SB1,KM1、KT获电动作,KM1常开辅 助触点闭合自锁,电动机绕组接成Y形降压启动。经 过一段时间,KT延时断开的常闭触点断开,KM1失 电释放,其常闭辅助触点闭合。同时KT延时闭合的 常开触点闭合,KM2获电动作,其常闭触点打开, 将Y形接线断开;其常开触点闭合,使KM1得电动作, 闭合其主回路常开触点,电动机由Y形接法转换为△ 形接法。
• 这种线路仅适应于功率在13kW以下△形接法的小容 量电动机,否则由于KM2接触器常闭辅助触点接在 主电路中,容量小,很易烧损。
• 十五、用3个接触器实现Y-△降压启动控制 • 用3个接触器的Y-△降压启动控制线路如图15所示。按下
启动按钮SB1,KM1、KT、KM3获电动作,电动机绕组接 成Y形降压启动。时间继电器达到整定延时时间后,延时 闭合的常开触点闭合,延时断开的常闭触点断开,KM3失 电释放,这时KM3常闭辅助触点闭合,使KM2获电动作, 电动机绕组由Y形接法转换成△形接法,启动过程结束。 • 这种控制线路适用于55kW以下、13kW以上的△形接法的 电动机。

自耦变压器

自耦变压器

相关变压器
中和变压器 屏蔽变压器
分隔变压器 吸流变压器
中和变压器
中和变压器(Neutralizing Transformer):降低强电线对通信线产生影响的一种装置。它的次级线圈个 数与通信导线数相同,并且直接串入通信导线;它的初级线圈串接入两端接地的领示线。这样强电线与领示线中 的电流,会对通线线路产生相应的对地电位。它改变了通信导线的电位分布情况,确保通信线路沿线的对地电位 都不超过限定值。这种串接的方法不会改变通信线路的对地绝缘,同时起到了保护通信线路的作用。它的缺点就 是需要多加一根领示线。
1.自耦变压器是输出和输入共用一组线圈的特殊变压器,升压和降压用不同的抽头来实现,比共用线圈少的 部分抽头电压就降低,比共用线圈多的部分抽头电压就升高。
自耦变压器零序差动保护原理图
⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈。一般的变压器是左边一个原线圈通过 电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。
随着电力系统向大容量、高电压的方向快速发展,自耦变压器以低成本、高效率等特点,被广泛应用于高压 电力网络中,成为传递重要电能的电压转换设备。作为高压电网中最重要的设备之一,自耦变压器对于确保电网 安全可靠运行、灵活分配电能有重大意义。
随着高铁的快速发展,自耦变压器的可靠性对高铁的安全运行至关重要。而直击雷、接触网异物等引起高铁 短路跳闸事故频发,其产生的短路冲击电流极易引起自耦变压器绕组故障,大大降低了变压器运行的可靠性,严 重影响高铁安全运行。
分隔变压器(Isolating Transformer):防止强电线对通信线产生影响的一种保护装置。又称为绝缘变 压器。它的工作原理是把变比1:1的初、次级线圈分别插接到一对通信导线上,这样将导线分隔为多段,降低了 导线上的感应纵电势,对通信线路起到了保护作用。适用于音频通信线路,但使用分隔变压器的通信线路上不能 进行直流测试和传送直流信号了。

降压启动ppt课件

降压启动ppt课件
*
ቤተ መጻሕፍቲ ባይዱ 时间继电器的选择
(1)类型选择。 时间继电器分为空气阻尼式、数字式和电动式等类型 凡是对延时要求不高的场合,一般采用价格较低的JS7系列空气阻尼式时间继电器; 如对延时要求较高,则可采用JS11数字式、JS10电动式等系列的时间继电器。 (2)延时方式的选择。 时间继电器有通电延时和断电延时两种,应根据控制线路的要求来选择哪一种延时方式的时间继电器。
直流电磁式时间继电器
*
2.双金属片时间继电器
由于热惯性的原因,双金属片在受热后会慢慢弯曲,那么安装在其上的触点的动作就有延时的特性。双金属片时间继电器就是利用这个原理工作的,其延时时间在1min 以内。
*
时间继电器
常用的时间继电器外观如图2-1所示。
a) b) c) d) 图2-1 时间继电器 a)JS7系列 b)JS11系列 c)JSZ3系列 d)JS14A
*
1.通电延时时间继电器
通电延时时间继电器的结构
*
当线圈1通电时,衔铁3被吸引,推板5使微动开关16立即动作;而微动开关15还没有动作。推板5与活塞杆6之间有一段距离,活塞杆6在塔形弹簧8的作用下向上移动。在活塞12的表面固定有一层橡皮膜10。因此当活塞带动橡皮膜向上移动时,空气室11容积扩张,形成局部真空,这样橡皮膜的上、下表面就有一定的压力差,正是这个压力差导致活塞12不能迅速上移。当有空气从进气口14进入时,活塞才逐渐上移,而且移动的速度取决于进气口的开口大小。移动到最后位置时,杠杆7使微动开关15动作。 而当线圈1断电后,推板5在复位弹簧4的作用下,活塞12迅速向下移动,15、16两组微动开关迅速复位,没有延时。
*
时间继电器的使用
对通电延时型时间继电器,调节延时时间必须在断开电磁离合器线圈电源后才能进行; 对断电延时型时间继电器,调节整定延时时间必须在接通电磁离合器线圈电源后才能进行。 (3)JS11、JS23系列时间继电器在使用前必须核对额定工作电压与将接入的电源电压是否相符 直流型的不要将电源的正负极性接错; 接线时必须按接线端子图正确接线,触点电流不允许超过额定电流。

自耦降压启动柜二次图-模型

自耦降压启动柜二次图-模型

1
熔断器
2
FU
RT18-32 6A
数量 序号 标 号
二次图
名称
日期 出厂编号
型号规格
人工 数量
3
4
1 3 1 3
3 D
3 数量
第张 共张
5
1-17
N
手动
启停
4KH 4KM
本图适用于第四回路 4KM
I
1 4-17 外接压力表 2 4-21 外接压力表 3 4-23 外接压力表
4KM
未定义
未定义
N 电源 保险
B
4HR 启动 指示
4SA
4SF
4-13
4-15 4SB 4-17
12
4SA
34
4-21
4-23
外接压力表 4KM
4KH
4KM
4-19
N
4KT
手动 启停 延时 启动
C
启动
13 QZB 自耦变压器 QZB-115KW
指示
1HR,4~5
5
信号灯
ND16-22 AC220V 红
HR
3 4 5HY 信号灯
ND16-22 AC220V 黄
2
1SB,4~5
3
按钮
2
SB
NP4-11 绿
1
1SF,4~5
2
按钮
2
SF
NP4-11 红
1
1FU,4~5
0
1
2
5L11
5L11
A
5FU
N
5JD 5KA
A1 A2
5-111
B
5SA
5SF
5JD
QZB

自耦降压启动介绍

自耦降压启动介绍

自耦降压启动介绍自耦变压器降压启动是指电动机启动时利用自耦变压器来降低加在电动机定子绕组上的启动电压。

待电动机启动后,再使电动机与自耦变压器脱离,从而在全压下正常运动。

这种降压启动分为手动控制和自动控制两种。

1.2 特点设自耦变压器的变比为K,原边电压为U1,副边电压U2=U1/K,副边电流I2(即通过电动机定子绕组的线电流)也按正比减小。

又因为变压器原副边的电流关系I1=I2/K,可见原边的电流(即电源供给电动机的启动电流)比直接流过电动机定子绕组的要小,即此时电源供给电动机的启动电流为直接启动时1/K2 倍。

由于电压降低为1/K 倍,所以电动机的转矩也降为1/K2 倍。

自耦变压器副边有2~3 组抽头,如二次电压分别为原边电压的80%、60%、40%。

1.3 优点可以按允许的启动电流和所需的启动转矩来选择自耦变压器的不同抽头实现降压启动,而且不论电动机的定子绕组采用Y 或Δ接法都可以使用。

1.4 缺点设备体积大,投资较贵。

2自动控制电动机自耦降压起动(自动控制)电路原理图如图是交流电动机自耦降压启动自动切换控制电路,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故。

2.1 控制过程1、合上空气开关QF接通三相电源。

2、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头(例如65%)将三相电压的65%接入电动。

3、KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁。

4、由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,主触头断开,使自耦变压器线圈封星端打开;同时KM2线圈断电,其主触头断开,切断自耦变压器电源。

星三角起动与自耦降压起动

星三角起动与自耦降压起动

星三角起动与自耦降压起动星三角启动KM ™2r 眄通电蔓叫丸辄斷电->阴逼唱0験為;诃 星三角启动又叫降压启动,多用于20KW 以上电机的空载启动。

星形运行实际上就是把三角形的尾巴连在一起。

因为三相电流相加等于0。

这时线圈承受的电压为实际上比正常电压低根号3。

380V 的额定电压,在星形运行时的电压为220V ,电流也就同比下降。

星形运行,也并不是改变相序,而是改变线圈绕组的接法,电机的六根线,也就是三个独立绕组线圈的引出线,有的电机只有三根线,这只是把其中的三个头接电机里面了。

星三角启动电路图,据我所知,最少有五种接法。

但都以达到最终目的为准。

我做的星三角启动方式为:先吸合星形接触器,再吸合主接触器,再延时断开星形,然后接能三角形。

对于我的这种接法有优点,(1)星形接触器可以选用小型号的。

(2)星形接触器的寿命很高,因为在吸合的时候没有火花产生,不容易烧触头,虽然火花是放开的时候最大,但最少减少一个吸合时产生火花机会。

U1-V2,V1-W2,W1-U2。

对于这种接法,可以换一下,但是1是指一个方向,比如1是头,那2就是尾。

一般头尾最好不要搞乱了。

如果要正反转,这就只能控制主回路,也不是控制星三角电动机自耦降压启动电动机自耦降压启动(自动控制电路)翱动 作次序ry 旦 4瓦矚斷电 L^KMJ 通腹诧起动)曰 FU LKM X KM 2KT n-KM.SB 2 U电动机自耦降压起动(自动控制)电路原理图上图是交流电动机自耦降压启动自动切换控制电路,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故控制过程如下:1、合上空气开关QF接通三相电源。

2、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头(例如65%)将三相电压的65%接入电动。

二、自耦变压器降压启动控制线路

二、自耦变压器降压启动控制线路

L1 L2 L3
KH SB1 SB2 KM1
KM3
KM2
KM2 KT
KM3
KT延时断开的动 断触头延时分断 KM1线圈失电 KH 3 KT延时闭合的动 V1 合触头延时闭合 U1 M 3~ TM
KT KM1 KM1 KM2 KM1 KM3 KT KM3
W1
QS
FU1
FU2
L1 L2 L3
KH SB1 SB2 KM1
KM1 KM3
U1
W1
QS
FU1
FU2
L1 L2 L3
KH SB1 SB2 KM1 KM2 KT
KM3
KM2
KM3
停:
按SB1
KH 3 V1 M 3~ KT TM KM1 KM2 KM1 KM3 KT
KM1 KM3
U1
W1
二、自耦变压器降压启动控制线路
自耦变压器降压启动:在电动机启动时利用
自耦变压器来降低加在电动机定子绕组上的启动
电压。待电动机启动后,再使电动机与自耦变压
器脱离,从而在全压下正常运行。
自耦变压器降压启动原理图
1. 手动自耦降压启动器
QJD3系列手动自耦降压启动器外形及电路图
QJ10系列空气式手动自耦降压启动器电路图
QS
FU1
FU2
L1 L2 L3
KH SB1 SB2 KM1 KT TM 3 V1 M 3~ KM1 KM2 KM1 KM3 KT KM1 KM3
KM3 KM2主触头闭 合,电动机M 接入电机降压 启动
KM2
KM2 KT
KM3
KM2动合辅助 KH 触头闭合,自 锁,松开SB2
U1
W1
QS

中职电力拖动教案:自耦变压器降压启动控制线路(全2课时)

中职电力拖动教案:自耦变压器降压启动控制线路(全2课时)

江苏省XY中等专业学校2022-2023-1教案教学内容教学内容手动自耦降压启动器电路原理图自耦降压启动箱继续电动机降压启动XJ01系列自耦降压启动箱教学内容【布置作业】课本80页,课后填空题、问答题板书设计教后札记江苏省XY中等专业学校2022-2023-1教案一、自耦变压器降压启动控制线路电路原理图教学内容二、工作原理分析(1)合上电源开关QS(2)按SB2KM1线圈得电(3)KM1联锁触头分断,对KM3联锁KM1主触头闭合自耦变压器TM联结成星形(4)KM1动合辅助触头闭合KM2线圈得电KT线圈得电(5)KM2主触头闭合电动机M接入电机降压启动KM2动合辅助触头闭合,自锁松开SB2教学内容(6)KT延时断开的动断触头延时分断KM1线圈失电KT延时闭合的动合触头延时闭合(7)KM1线圈失电KM1动合触头分断,KM1主触头分断电动机M失电惯性运行KM1联锁触头闭合(8)KM3线圈得电KM3 自锁触头闭合,自锁M3主触头闭合电动机M全压运行(9)KM3联锁触头分断,KM2线圈失电KM2主触头分断KM2自锁触头分断(10)KT延时断开的动断触头瞬时闭合KT延时闭合的动合触头瞬时断开(11)停:按SB1三.空气式手动自耦降压启动器电路图教学内容四、练习绘制自耦变压器降压启动控制线路电路原理图【布置作业】课后习题。

画原理图,分析工作原理。

板书设计教后札记。

步电动机自耦变压器降压启动控制线路

步电动机自耦变压器降压启动控制线路
应用优势
通过降低电动机启动时的电压,减小 启动电流对电网的冲击,延长电动机 使用寿命,提高设备运行效率。
BIG DATA EMPOWERS TO CREATE A NEW ERA
02
步电动机自耦变压器降压启动控制线 路的组成
自耦变压器
自耦变压器是一种特殊类型的变压器,其初级和次级线圈在同一个绕组上, 因此具有更低的电压和电流输出。
维护建议
定期检查
定期检查控制线路的连接是否良好,元件是 否有损坏。
记录运行状态
记录步电动机的运行状态,以便及时发现异 常情况。
保持清洁
保持控制线路的清洁,避免灰尘和杂物影响 线路的正常运行。
定期维护
根据实际情况,定期对控制线路进行维护, 如更换元件、紧固接线等。
BIG DATA EMPOWERS TO CREATE A NEW ERA
03
时间控制方式的优点是简单可靠,缺点是对于不同的负载和电动机参数,需要 调整时间设定,以确保良好的启动效果。
电流控制方式
电流控制方式是通过控制电动机启动电流的大小和持续时间来实现降压启动和正常运行切换的。
在启动阶段,自耦变压器接入,电动机在降低的电压下启动,同时电流被限制在设定的范围内,随着电 动机加速,当电流减小到一定值时,自耦变压器断开,电动机在全压下正常运行。
电流控制方式的优点是能够根据负载和电动机参数自动调整控制参数,缺点是需要检测和控制电流信号, 电路相对复杂。
电压控制方式
电压控制方式是通过控制电动机启动时的输入电压来实现 降压启动和正常运行切换的。
在启动阶段,自耦变压器接入,电动机在降低的电压下启 动,随着电动机加速,当电压达到一定值时,自耦变压器 断开,电动机在全压下正常运行。

自耦变压器的原理、接线、结构

自耦变压器的原理、接线、结构

自耦变压器的原理、接线、结构自耦变压器降压启动控制线路在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。

通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为1.5:1~2:1。

因为初级和次级线圈直接相连,有跨级漏电的危险。

所以不能作行灯变压器。

区别在电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。

220KV以下几乎没有自耦变压器。

自耦变压器在较低电压下是使用最多是用来作为电机降压启动使用。

对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。

干式变压器由于散热条件差,所以容量不能做得很大,一般只有中小型变压器,电压等级也基本上在35KV及以下,但国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。

工作原理自耦变压器零序差动保护原理图自耦变压器1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高.⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。

⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。

通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。

因此随着电力系统的发展、电压等级的提高和输送容量的增大,自耦变压器由于其容量大、损耗小、造价低而得到广泛应用.。

自耦变压器的原理、接线、结构

自耦变压器的原理、接线、结构

自耦变压器的原理、接线、结构自耦变压器降压启动控制线路在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。

通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为1.5:1~2:1。

因为初级和次级线圈直接相连,有跨级漏电的危险。

所以不能作行灯变压器。

区别在电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。

220KV以下几乎没有自耦变压器。

自耦变压器在较低电压下是使用最多是用来作为电机降压启动使用。

对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。

干式变压器由于散热条件差,所以容量不能做得很大,一般只有中小型变压器,电压等级也基本上在35KV及以下,但国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。

工作原理自耦变压器零序差动保护原理图自耦变压器1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高.⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。

⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。

通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。

因此随着电力系统的发展、电压等级的提高和输送容量的增大,自耦变压器由于其容量大、损耗小、造价低而得到广泛应用.。

自耦变压器的原理、接线、结构

自耦变压器的原理、接线、结构

自耦变压器降压启动控制线路在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。

通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为:1~2:1。

因为初级和次级线圈直接相连,有跨级漏电的危险。

所以不能作行灯变压器。

区别在电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。

220KV以下几乎没有自耦变压器。

自耦变压器在较低电压下是使用最多是用来作为电机降压启动使用。

对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。

干式变压器由于散热条件差,所以容量不能做得很大,一般只有中小型变压器,电压等级也基本上在35KV及以下,但国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。

工作原理自耦变压器零序差动保护原理图自耦变压器1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高.⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。

⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。

通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。

因此随着电力系统的发展、电压等级的提高和输送容量的增大,自耦变压器由于其容量大、损耗小、造价低而得到广泛应用.。

自耦变压器的原理、接线、结构

自耦变压器的原理、接线、结构

自耦变压器的原理、接线、结构自耦变压器降压启动控制线路在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。

通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为:1~2:1。

因为初级和次级线圈直接相连,有跨级漏电的危险。

所以不能作行灯变压器。

区别在电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。

220KV以下几乎没有自耦变压器。

自耦变压器在较低电压下是使用最多是用来作为电机降压启动使用。

对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。

干式变压器由于散热条件差,所以容量不能做得很大,一般只有中小型变压器,电压等级也基本上在35KV及以下,但国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。

工作原理自耦变压器零序差动保护原理图自耦变压器1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高.⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。

⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。

通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。

因此随着电力系统的发展、电压等级的提高和输送容量的增大,自耦变压器由于其容量大、损耗小、造价低而得到广泛应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自耦变压器降压起动, 又称为补偿器降压起动, 可用抽头调节自耦变压器的变比以改变起动电流和启动转矩大小。

传统自耦变压器起动大多数是用加时间继电器来控制。

以下是根据某本中级电工培训指导书上自耦变压器降压起动控制线路所存在的弊病做了改进。

改进后的控制线路投入使用以来, 运行稳定、可靠, 没有出现故障。

一、原动作原理
原电路的控制原理如图1 所示
自耦变压器降压启动电路图【改进版】
控制电路的本意是, 按下起动按钮SB2, 交流接触器1KM和2KM线圈得电, 触头1KM和2KM闭合, 自耦变压器串入电动机降压起动; 同时时间继电器KT 线圈也得电, KT 的触头延时动作, KT 常闭触头延时先断开, 1KM、2KM和KT 线圈先后失电, 1KM和2KM主触头断开, 变压器脱离电动机电路, 而KT 常开触头后闭合,1KM常闭闭合, 3KM线圈在1KM和2KM失电之后得电, 3KM主触头闭合, 电动机进入全压运行。

再按下停止按钮使电动机停转。

采用这种控制电路, 电动机的“ 起动- 自动延时- 运行”一次操作完成, 非常方便和安全。

但是在正式运行时, 会产生这种现象: 在接线完全正确的情况下线路有时便可正常运行,有时便不能正常运行, 即按下起动按钮SB2 之后, 电动机降压起动了, 当转到全压运行时,便停
下来, 3KM线圈通不了电。

二、线路的弊病- 竞争冒险现象
分析其图1 控制线路的弊病是遇到了电磁元件之间的“ 触点竞争”问题, 即出现了
竞争冒险现象, 造成整个电路工作的不可靠。

电路运行过程中, 当KT延时到后, 其延时常闭触点总是由于机械运动原因先断开而延时常开触点后闭合, 当延时常闭触点先断开后,
1KM 线圈随即断电, 1KM1 常闭闭合为3KM 线圈通电做准备, 同时1KMr 常开断开, KT 线圈随即断电, 由于磁场不能突变为零和衔铁复位需要时间, 故有时候延时常开触点来得及闭合, 这时3KM线圈可通电, 3KM常开触点闭合自锁, 电动机转入全压运行。

但有时候因受到某些干扰而失控, KT 延时常开触点来不及闭合, KT 的磁场已消失和衔铁已复位, 3KM线圈通不了电, 从而导致了前面所提到的故障问题。

此线路造成竞争冒险即上述现象的主要原因是设计过程中只考虑了电磁系统与触点系统的逻辑联系, 而忽略了触点系统动作时间性和滞后性对系统的影响, 从而造成竞争冒险。

三、改进后的接线方法
经过分析, 主要是控制电路中辅助触点使用不合理造成线路设计的不完善, 针对此线路存在的缺点对原控制电路部分进行改进, 其接线方法见图2。

四、改进后的工作原理
接通电源后, 按下起动按钮SB2, 交流接触器1KM、2KM线圈得电吸合, 1KM和2KM主触头闭合, 自耦变压器串入电动机降压起动; 同时, 时间继电器KT 线圈也得电吸合, KT 瞬时常开触点闭合自锁。

经一定时间延时后, KT 延时常开触头闭合, KT 延时常闭触头断开, 1KM线圈断电, 1KM1 常闭闭合, 3KM 线圈通电,3KM1 常开触头闭合自锁, 3KM1 常闭触头断开联锁, 使2KM及KT 线圈断电复位, 电动。

相关文档
最新文档