西北工业大学《电磁场和电磁波》课后习题
《电磁场与电磁波》课后习题解答(第五章)
《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。
导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。
当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。
也可以用静电能计算。
在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。
因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。
5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。
解:需要加三个镜像电荷代替 导体面上的感应电荷。
在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。
)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。
图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。
证明:使用镜像法分析。
电磁场与电磁波课后习题与答案七章习题解答(2)
《电磁场与电磁波》习题解答 第七章 正弦电磁波7.1 求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。
解 E m 为常矢量。
在直角坐标中故 则 而 故可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程 故E 表示沿e n 方向传播的平面波。
7.2 试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。
解 表征沿+z 方向传播的椭圆极化波的电场可表示为 式中取显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。
7.3 在自由空间中,已知电场3(,)10sin()V/my z t t z ωβ=-E e ,试求磁场强度(,)z t H 。
解 以余弦为基准,重新写出已知的电场表示式这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90︒-。
与之相伴的磁场为 7.4 均匀平面波的磁场强度H 的振幅为1A/m 3π,以相位常数30rad/m 在空气中沿z -e 方向传播。
当t=0和z=0时,若H 的取向为y -e,试写出E 和H 的表示式,并求出波的频率和波长。
解 以余弦为基准,按题意先写出磁场表示式 与之相伴的电场为由rad/m β=30得波长λ和频率f 分别为 则磁场和电场分别为7.5 一个在空气中沿ye +方向传播的均匀平面波,其磁场强度的瞬时值表示式为(1)求β和在3ms t =时,z H =的位置;(2)写出E 的瞬时表示式。
解(1)781π10πrad /m rad /m 0.105rad /m 31030β==⨯==⨯在t =3ms 时,欲使H z =0,则要求 若取n =0,解得y =899992.m 。
考虑到波长260mπλβ==,故因此,t =3ms 时,H z =0的位置为(2)电场的瞬时表示式为7.6 在自由空间中,某一电磁波的波长为0.2m 。
当该电磁波进入某理想介质后,波长变为0.09m 。
电磁场和电磁波课后习题答案与解析__第四章习题解答
习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为U ,求槽内的电位函数。
解 根据题意,电位(,)x y ϕ满足的边界条件为① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ=③0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a a ππϕ∞==∑由条件③,有01sinh()sin()n n n b n x U A a a ππ∞==∑两边同乘以sin()n x a π,并从0到a 对x 积分,得到002sin()d sinh()an U n xA x a n b a aππ==⎰02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩,故得到槽内的电位分布1,3,5,41(,)s i n h ()s i n ()s i n h ()n U n yn xx y n n b a aa ππϕππ==∑4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。
上板和薄片保持电位U ,下板保持零电位,求板间电位的解。
设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。
解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为: ①22(,0)(,)0x x b ϕϕ==②2(,)0()x y x ϕ=→∞③002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b d b ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()en x bn n n y x y A b ππϕ∞-==∑由条件③有00100(0)sin()()n n U U y y d n y b A U U b y yd y b d b π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑两边同乘以sin()n yb π,并从0到b 对y 积分,得到0002211(1)sin()d ()sin()d dbn d U U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d b ππ故得到(,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d n b b ππππ∞-=+∑ 4.3 求在上题的解中,除开0U y 一项外,其他所有项对电场总储能的贡献。
《电磁场和电磁波》课后习题解答(第一章)
第一章习题解答【习题Ll解】【习题L2解】【习题L3解】(1)要使ALR,则须散度A-B=O所以从Z∙5=T+3H8c=0可得:3b+8c=l即只要满足3b÷8c=l就可以使向量二和向量了垂直。
(2)要使4||月,则须旋度AxB=O所以从可得b=-3,c=-8【习题1・4解】A=I2以+9e y+6z,B=CIeX+be y,因为3JLA,所以应有A∙3=0g∣j(12久+9e y+e z^∙^ae x+Z?Gy)=12Q+9/?=0(I)又因为同=1;所以病存=1;(2)一4由⑴,⑵解得Q=±《,"=+W【习题1.5解】由矢量积运算规则4_B=A?C a x a2a3=(%Z-+(a3x-a x z)e y+(01y-a2x)e7xyz =8名+纥5+BZeZ取一线元:dl=e x dx+e y dy+e z dz则有dx_dy_dz则矢量线所满足的微分方程为丁二万一=Hιy xy"z或写成=常数)a2z-a3ya3x-a l za↑y-a2x求解上面三个微分方程:可以直接求解方程,也可以采用以下方法d(qx)="(/丁)二d(%z)a i a2z-a i a3ya2a3x-a l a2za l a3y-a2a i xxdx_ydy_ZdZx(a2z-a3y)y{a3x-a x z)z(a l y-a2x)由(1)(2)式可得d(a2y)=k(a2a3x-aλa2z)ydy=k(a3xy-a}yz)(4)对⑶⑷分别求和所以矢量线方程为【习题L6解】矢量场A=(αxz+x2)eχ+Sy+孙2)0+{z-z1-∖-cxz-2xyz)e z假设A是一个无源场,则应有divΛ=O即:divA=V•4=空L+空L+空■=O∂x∂y∂z因为A=axz+X2∕ξ=by+xy1A z=z-z1+cxz-2xyzx所以有divA=az+2x+b+2xy+l-2z+cχ-2xy=X(2+c)÷z(a-2)+b+l=0 得a=2,b=-1,c=-2【习题1.7解】设矢径r的方向与柱面垂直,并且矢径不到柱面的距离相等(r=a)f∙ds-[rds=a∖ds=a2πah所以,①=S JSJS【习题1.8解】φ=3X2y i A=X2yze v+3xy2e^而rot((∕A)=Vx(以)=×A÷V^×A又=巴?十3?+再等=6xye x+3jc2e y ox-oy∂z所以+9x3y2e v-lSx2y3e v+6x3y2ze z=3X2y2[(9X一X2)e x-9yeγ+4xze z]【习题1.9解】所以&CyCzrotA=VXA=———∂x∂y∂zA x A y A(-1+1)&+(4/Z-4xz)e、+(2y-2y)&=6由于场H的旋度处处等于0,所以矢量场A为无旋场。
西北工业大学《电磁场和电磁波》课后习题
或者 F , sin sin 六 解: 1)
cos sin 2 2
Sav
1 2 Em 100 2 m
w 2 10 7
Em 274.6 v
k1 w 0 0
15
E1 274.6 cos 2 10 7 t z a x v m 15 H1 0.728 cos 2 10 7 t z a y A m 15
2)
2 1 1 = 2 1 3
T
2 2 2 2 1 3 2 15
k2
j z ˆx E1 Em e jk1 z ax 91.5e 15 a
2 j z jk 2 z ˆx E2 TEm e a x 183e 15 a
R2 R3
2 2 2
2
v E1dr E2 dr
R1 R2
s 2 1 1 s 2 1 1 R1 R R R1 R R 3 0 2 0 3 1 2
C
Q 12 0 1 2 3 V R1 R2 R3
E E 1 E 2 j
I 0l e jkr 0 sin sin cos sin r 2
I 0l e jkr H j sin sin cos sin r 2
2) 方向性函数
F , sin sin cos sin 2
空间 P 点的电位:
( x, y , z )
其中:
q q q q , 4 0 r1 4 0 r2 4 0 r3 4 0 r4
r1 x 2 y 2 ( z d ) 2
2009B-2西北工业大学《电磁场和电磁波》课后习题
(1 分) (2 分) (2 分)
ˆ Er = −10e jkz ax 1 jkz ˆ Hr = e ay 12π
(3)总场
ˆ E = 20sin kz sin ωtax H=
(4)电流
20
η
ˆ cos kz cos ωta y(4 分)ˆ J = n × Hz =0
=
20
η
ˆ cos(109 t )ax
π
(2 分) (2 分)
(2)方向性函数:
cos( cos θ ) π 2 F (θ , ϕ ) = cos( sin θ cos ϕ ) sin θ 4
π
(2 分)
1 d 2φ = −k x2 2 X ( x) dx
变量分离得:
1 d 2φ 2 = −k y 2 Y ( y ) dy
2 k x2 + k y = 0
由边界条件得方程的解为: nπ nπ (4 分) φ = Cn sh[ ( x + a )]sin( y ) n = 1, 2, b b ∞ nπ nπ φ ( x, y ) = ∑ Cn sh[ ( x + a )]sin( y ) 则: (1 分) b b n =1 ∞ 2anπ nπ 3π φ ( a, y ) = ∑ Cn sh sin( y ) = 10 sin( y) 由 b b b n =1 得:
三解(10 分)(1)该区域无源,电位函数满足拉普拉斯方程 :
∂ 2φ ∂ 2φ + =0 ∂x 2 ∂y 2
其边界条件为:
(1 分)
φ =0 φ =0 φ =0
0 ≤ x < ∞, y = 0
(1 分)
0 ≤ x < ∞, y = b x = − a, 0 < y < b 3π φ = 10sin( y ) x = a, 0 < y < b b
西北工业大学《电磁场和电磁波》课后习题
y > 0, ε2 = 9 pF / m, µ2 = 4µ H / m, σ 2 = 0 。 在 区 域 I 内 , 一 极 化 方 向 为 aˆz ,
ω = 108 rad / s 的平面电磁波振幅为 500V/m,垂直投射到 y = 0 的边界面上,求:
v 1. 入射波 Ei ;
v 2. 反射系数 Γ 和反射波 Er ;
二、(15 分)球形电容器内外导体球之间填充介电常数为 3ε0 的介质,如图 1 所示。设内球上
面电荷密度为 ρs ,求:
1. 各区域的电位移矢量和电场强度; 2. 内外导体之间的电压; 3. 此电容器的电容。
三、(10 分)一点电荷 Q 位于两个半无限大接地导体平面形成的直角形区域内的 A 点(如图 2 所示),求区域内任一点 P 处的电位。
成 2004-2005 学年 第一学期
绩
开课学院 电子信息学院 课程 电磁场与电磁波 学时 考试日期 2004 年 12 月 16 日 考试时间 2 小时
54 开A
考试形式(闭 )( B )卷
考生班级
学号
姓名
[注: ε0
=
1 36π
×10−9
F
/
m
µ0 = 4π ×10−7 H / m ]
一、简答题(25 分)
教务处印制
第2页共2页
2. 命题教师和审题教师姓名应在试卷存档时填写。
教务处印制
第3页共2页
四、(10 分)一个金属槽如图 3 所示,侧面和底面的电位均为 0,顶盖与侧壁绝缘,其电位为
φ = sin(π x) ,求槽内电位分布。
教务处印制
第1页共2页
φ = sin(π x)
R1 R2
电磁场与电磁波课后习题及答案七章习题解答 (2)
《电磁场与电磁波》习题解答 第七章 正弦电磁波求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。
解 E m 为常矢量。
在直角坐标中故 则 而 故可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程 故E 表示沿e n 方向传播的平面波。
试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。
:解 表征沿+z 方向传播的椭圆极化波的电场可表示为式中取显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。
在自由空间中,已知电场3(,)10sin()V/my z t t z ωβ=-E e ,试求磁场强度(,)z t H 。
解 以余弦为基准,重新写出已知的电场表示式这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90︒-。
与之相伴的磁场为 均匀平面波的磁场强度H 的振幅为1A/m 3π,以相位常数30rad/m 在空气中沿z -e 方向传播。
当t=0和z=0时,若H 的取向为y -e,试写出E 和H 的表示式,并求出波的频率和波长。
解 以余弦为基准,按题意先写出磁场表示式 与之相伴的电场为由rad/m β=30得波长λ和频率f 分别为 '则磁场和电场分别为一个在空气中沿ye +方向传播的均匀平面波,其磁场强度的瞬时值表示式为(1)求β和在3ms t =时,z H =的位置;(2)写出E 的瞬时表示式。
解(1)781π10πrad /m rad /m 0.105rad /m 31030β==⨯==⨯在t =3ms 时,欲使H z =0,则要求 若取n =0,解得y =。
考虑到波长260mπλβ==,故因此,t =3ms 时,H z =0的位置为(2)电场的瞬时表示式为在自由空间中,某一电磁波的波长为0.2m 。
当该电磁波进入某理想介质后,波长变为0.09m 。
设1r μ=,试求理想介质的相对介电常数r ε以及在该介质中的波速。
1 电磁场与电磁波课后习题答案第六章
6.2 自由空间中一均匀平面波的磁场强度为)cos()(0x wt H a a H z y π-+= m A /求:(1)波的传播方向;(2)波长和频率;(3)电场强度; (4)瞬时坡印廷矢量。
解:)cos()(0x wt H a a H z y π-+= m A /(1) 波沿+x 方向传播(2) 由题意得:k=π rad/m , 波长m k 22==πλ , 频率Hz c f 8105.1⨯==λ (3))cos(120)(0x wt H a a a H E z y x ππη--=⨯= m v /(4))(cos 24020x wt H a H E S x ππ-=⨯= 2/m w 6.3无耗媒质的相对介电常数4=r ε,相对磁导率1=r μ,一平面电磁波沿+z 方向传播,其电场强度的表达式为)106cos(80z t E a E y β-⨯=求:(1)电磁波的相速;(2)波阻抗和β;(3)磁场强度的瞬时表达式;(4)平均坡印廷矢量。
解:(1)s m cv r r p /105.118⨯===εμμε(2))(6000Ω===πεεμμεμηrr , m r a d c w w r r /4===εμμεβ (3))4106cos(60180z t E a E a H x z -⨯-=⨯=πηm A / (4)π120]Re[2120*E a H E S z av =⨯= 2/m w6.4一均匀平面波从海水表面(x=0)沿+x 方向向海水中传播。
在x=0处,电场强度为m v t a E y /)10cos(1007π =,若海水的80=r ε,1=r μ,m s /4=γ。
求:(1)衰减常数、相位常数、波阻抗、相位速度、波长、趋肤深度;(2)写出海水中的电场强度表达式;(3)电场强度的振幅衰减到表面值的1%时,波传播的距离;(4)当x=0.8m 时,电场和磁场得表达式;(5)如果电磁波的频率变为f=50kHz ,重复(3)的计算。
《电磁场与电磁波》课后习题解答(全)
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
【习题4.6】
解:由麦克斯韦方程 ,
引入 ,令 .在库仑规范下, ,所以有
即得
而 的解为
可得
对于线电流,有
所以
习题及参考答案
因为该齐次波动方程是麦克斯韦方程在代入 的条件下导出的,所以 作为麦克斯韦方程的解的条件是:
【习题3.22】
解:已知所给的场存在于无源( )介质中,场存在的条件是满足麦克斯韦方程组。
由 得
所以
积分得
由 ,可得
根据 ,可得
对于无源电介质,应满足 或
比较可知: ,但 又不是x的函数,故满足
同样可以证明: 也可满足
则有
而
前一式表明磁场 随时间变化,而后一式则得出磁场 不随时间变化,两者是矛盾的。所以电场 不满足麦克斯韦方程组。
(2)若
因为
两边对t积分,若不考虑静态场,则有
因此
可见,电场 和磁场 可以满足麦克斯韦方程组中的两个旋度方程。很容易证明他们也满足两个散度方程。
【习题2.7】
解:由传导电流的电流密度 与电场强度 关系 = 知:
取一线元:
则有
则矢量线所满足的微分方程为
或写成
求解上面三个微分方程:可以直接求解方程,也可以采用下列方法
电磁场和电磁波课后习题解答与提示
学科:物理教学内容:电磁场和电磁波课后习题解答与提示第二节 电磁振荡的周期和频率【练习一】(课本第240页)(1)按图18-1所示,将电容器刚要放电的瞬间视为t =0.此时极板上的电荷最多,极板间电场最强.图18-1开始放电后,由于线圈的自感作用,放电电流逐渐增大,而电容器极板上电荷逐渐减少,极板间电场逐渐减弱至零.(如图纵轴至第一纵向虚线之前所示).放电完毕时极板上电荷为零,电场也为零,线圈中电流最大,线圈的磁场也最大.由于线圈的自感作用,电流继续向原方向流动给电容器极板反向充电,此时电容器极板所带电荷与原来相反,反向电场逐渐增强.线圈中电流逐渐减弱,线圈中磁场也逐渐减弱.情况如图18-1第一至第二条虚线间所示.反向充电完毕,极板上电荷最多,电场也最强,线圈中电流为零,线圈的磁场也为零. 然后开始反向放电,过程与上面所述相仿,只是方向不同.(2)A 、C 正确.(3)根据公式LCf π=21可得 F 102)105.7(4141626222-⨯⨯⨯⨯π=π=L f C F 1025.210-⨯=225pF =.即电路中的电容应为225pF .(4)根据公式LCf π=21可得 H 103)105.5(41411025222-⨯⨯⨯⨯π=π=C f L H 1079.24-⨯=.即线圈自感系数应当为279μH .图18-2当电容变为30pF 时Hz 1031079.22121114--⨯⨯⨯π=π=LC f Hz 1074.16⨯=.(5)相同点:它们都是周期性的运动,其中一些物理量随时间做周期性变化,同时,能量发生周期性的相互转化.不同点:它们的本质不同,产生的机理不同.单摆是机械运动,做周期性变化的物理量是位移、速度、加速度,是动能和重力势能发生周期性的相互转化.而电磁振荡是电磁运动,做周期性变化的物理量是电荷和电场强度、电流和磁感应强度,是电场能和磁场能发生周期性的相互转化.第四节 电磁波【练习二】(课本第244页)(1)设地球到月亮的距离为d ,则电磁波在地球与月球间往返一次所用时间t 为:s 100.31084.32288⨯⨯⨯==c d t =2.56s .(2)根据公式fc =λ有 m 10009.20109979.26811⨯⨯==f c λ =14.983m .m 10995.19109979.26822⨯⨯==f c λ =14.993m .(3)由公式λ=c f 有 Hz 7.560100.3811⨯=λ=c f Hz 1035.55⨯=.Hz 9.186100.3812⨯==λcf Hz 1005.165⨯=即这台收音机在中波波段接收的频率范围从535kHz 到1605kHz .第六节 电视 雷达【习题】(课本第250页)(1)A 、D 正确根据公式 LCf π=21 要增大频率,必须减小LC 之积.关于自感系数L 的大小跟线圈的形状、长短、匝数以及插不插入铁芯等因素有关系.线圈的横截面积越大,线圈越长,匝数越密,它的L 就越大.有铁芯时线圈的L 比没有铁芯时要大得多.对于平行板电容器有kdS C πε4= 采用本题中A 、D 两种方法可分别减小电容C 和自感系数L ,能达到增大频率的目的.(2)根据公式LCf π=21,收音机短波段线圈的电感L 固定.设频率为1f 时的电容为1C ,频率为2f 时的电容为2C .则 1221C C f f =, 所以 91)124()(222112===f f C C . 即最高频率的电容是最低频率的电容的1/9倍.(3)采用C 的做法.(4)A 、C 、D 正确.LC 振荡电路中,电场能和磁场能是相互转化的,电荷量增大时,是电容器充电过程,也是磁场能转化为电场能过程,还是电流减小的过程,反过来,电荷量减小时,是电容器放电过程,也是电场能转化为磁场能过程,还是电流增大的过程.所以,电荷量最小时,电场能最小,但电流最大,磁场能最大;电荷量最大时,电场能最大,但电流最小,磁场能最小.故本题A 、C 、D 均正确.图18-3(5)根据回旋加速器的工作原理,带电粒子做圆周运动的周期应等于高频电源的振荡周期.即LC qBm π=π22, 由此可得 2)(qBm LC =. 解题方法指导应用变化的电磁场的解题思路.变化的磁场在周围空间激发的电场,其电场线呈涡旋状,这种电场叫做涡旋电场,涡旋电场与静电场一样,对电荷有力的作用,但涡旋电场又与静电场不同,它不同静电荷产生的,它的电场线是闭合的,在涡旋电场中,移动电荷时,电场力做的功与路径有关,因此不能引用“电势”、“电势能”等概念.。
《电磁场与电磁波》习题参考答案
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
电磁场与电磁波课后习题及答案三章习题解答
三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。
解 由点电荷q 和q -共同产生的电通密度为33[]4q R Rπ+-+-=-=R R D22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e则球赤道平面上电通密度的通量d d z z SSS Φ====⎰⎰D S D e22322232()[]2d 4()()aq a a r r r a r a ππ--=++⎰221211)0.293()aqa q q r a =-=-+3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。
解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZ erπ=D e原子内电子云的电荷体密度为 333434a aZe Zer r ρππ=-=-电子云在原子内产生的电通量密度则为 32234344r rarZe r rr ρπππ==-D e e故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。
求空间各部分的电场。
解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。
但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。
电磁场与电磁波_西北工业大学中国大学mooc课后章节答案期末考试题库2023年
电磁场与电磁波_西北工业大学中国大学mooc课后章节答案期末考试题库2023年1.矢量场中某点的散度是标量,其大小是该点的()答案:通量密度2.矢量场中某点的旋度是一个矢量,其大小等于该点的(),其方向为()答案:最大环量密度,取得最大环量的环面的法线方向。
3.三个非零矢量相加为零,说明这三个矢量()答案:共面_构成三角形4.在静电场中的导体达到静电平衡状态,下列说法错误的是答案:导体内部电场处处不等。
5.矢量是既有大小又有方向的量。
答案:正确6.电磁场是矢量场。
答案:正确7.空间某点梯度的大小是该点的最大的方向导数,梯度的方向是该点等值面的法线方向。
答案:正确8.若入射波的传播方向与分界面的法线平行时,这种入射方式称为()。
答案:垂直入射9.当电磁波的入射方向与分界面的法线有一定夹角时,这种入射方式称为()。
答案:斜入射10.在分界面上,透射波电场强度与入射波电场强度之比称为()。
答案:透射系数11.镜像法的理论依据有()答案:唯一性定理12.一点电荷q放置在接地导体球(半径为【图片】)外,与球心的距离为d,则镜像电荷的位置和电量为()答案:13.静态场是指电磁场中的源量和场量都不随时间发生变化的场,其包括()答案:恒定电场_恒定磁场_静电场14.静态场的位函数满足的方程有()答案:无源区,满足拉普拉斯方程_有源区,满足泊松方程15.对于镜像法下列描述正确的是()答案:实际电荷和镜像电荷作用在边界处保持原有边界条件不变。
_镜像电荷必须在待求场域的边界以外。
_待求场域的场由实际电荷和所有镜像电荷产生的场叠加得到。
_将有边界的不均匀空间处理成和待求场域媒质特性一致的无限大均匀空间。
16.在直角坐标系下,拉普拉斯方程的解中的本征函数有()答案:三角函数_常数或线性函数_双曲函数或指数函数17.对偶原理的含义是:如果描述两种物理现象的数学方程具有相同的形式,并具有对应的边界条件,那么方程中具有同等地位的量的解的数学形式也将是相同的。
电磁场与电磁波课后习题及答案七章习题解答
《电磁场与电磁波》习题解答第七章正弦电磁波7.1求证在无界理想介质内沿任意方向飾(勺为单位矢量)传播的平面波可写成E = E m eiSz")o解E”为常矢量。
在直角坐标中e n = e x cos a + e y cos p + e: cos 丫r = e x x+e v y^e:zej r = (e x cos a + e x cos/3 + e: cos /)・(g、x+e y y + e: z) =xcos a +ycos 0 + z cos yE = E= E£丿[0©8”十二《«”-初]V2E = e V2E + eV2E v + eN2E.=E〃Q0)2R〔0(・gW0+g”5】=(j 0)2 E护卩p2°—j[0(AC8d十〉8“+二CO”)-期]! _ _力2£亍一乔/;,&E、r / _ rV2E 一应—={jpyE + psarE = (joJ“e)2E + peorE = 0 可见,已知的匕一匕满足波动方程歹学=0dr故E表示沿勺方向传播的平面波。
7.2试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。
解表征沿+Z方向传播的椭圆极化波的电场可表示为E = (e x E x+e y jE y)e~Jfiz =E^E2式中取E产扣M +耳)+ e J© + &)]宀2E2-^[e x(E x-E y)-e y j(E x-E y)]e-^显然,Ei和E2分别表示沿+z方向传播的左旋圆极化波和右旋圆极化波。
7.3在自由空间中,已知电场氐小讣皿曲-血冋!!!,试求磁场强度O解以余弦为基准,重新写出已知的电场表示式E(Z,f)=乞10’ cos(曲一0z-彳)V/m这是一个沿+z方向传播的均匀平面波的电场,其初相角为一90°。
与之相伴的磁场为] 1 / n H(z.t) = —e.xEQ) = 一e. xe 103cos cot-/3z- — 〃o 、 仏、• I2103 = -e v ------- c osT20龙1 A/—A« ill7.4均匀平面波的磁场强度H 的振幅为衍 ,以相位常数30iad/m 在空气中沿一© 方向传播。
电磁场含电磁波课后答案第1章.doc
第一章习题解答给定三个矢量 A 、B和C如下:A e x e y 2 e z 3B e y 4 e zC e x 5 e z 2求:( 1)a A;( 2)A B;(3)AgB;(4)(7)Ag( B C )和( A B )gC;( 8)( AA e x e y 2 e z 3 解( 1)a A12 22 e xA ( 3)2 AB;( 5)A在B上的分量;( 6)A C;B) C 和 A (B C ) 。
1 2 314e y e z14 14(2)A B (3)AgB ( 4 )(e x e y 2 e z3) ( e y 4 e z ) e x (e x e y 2e z 3) g( e y 4 e z ) -11由cosAgBAB A Be y 6 e z 4531111,得1417238AB cos 1 ( 11 ) 135.5o 238( 5)A在B上的分量A B A cosAgB 11 AB B 17e x e y e z( 6)A C 1 2 3 e x 4 e y13 e z 105 0 2e x e y e z( 7)由于B C 0 4 1 e x 8 e y 5 e z 205 0 2e x e y e zA B 1 2 3 e x 10 e y 1 e z 40 4 1所以Ag( B C ) ( xe y 2 z 3) x y z42e e g(e 8 e 5 e 20)( A B )gC ( e x10 e y 1 e z 4)g(e x 5 e z 2) 42e x e y e z( 8)( A B ) C 10 1 4 e x 2 e y 40 e z 55 0 2e x e y e zA (BC ) 1 2 3 e x 55 e y 44 e z118 5 20三角形的三个顶点为P1 (0,1, 2) 、 P2 (4,1, 3) 和 P3 (6, 2,5) 。
( 1)判断PP12 P3是否为一直角三角形;( 2)求三角形的面积。
电磁场与电磁波课后习题及答案
电磁场与电磁波课后习题及答案14exeyez1,R23r3r22exey4ez8,R31r1r36exeyez3,由于R12R23411)21430,R 23R31214)61384,R31R12613)41136,故PP 2不是一直角三角形。
2)三角形的面积可以用矢量积求得:S12R12R23的模长,即S122411)214214613)411411613)21461332begin{n}1)三个顶点P、$P_2$(4,1,-3)和$P_3$(0,1,-2)的位置矢量分别为$r_1=e_y-e_z$,$r_2=e_x+4e_y-e_z$,$r_3=e_x+6e_y+2e_z$,则$R_{12}=r_2-r_1=4e_x+e_y+e_z$,$R_{23}=r_3-r_2=2e_x+e_y+4e_z$,$R_{31}=r_1-r_3=-6e_x+e_y-e_z$,由于$R_{12}\cdotR_{23}=(4+1+1)(2+1+4)=30$,$R_{23}\cdotR_{31}=(2+1+4)(6+1+3)=84$,$R_{31}\cdot R_{12}=(-6+1-3)(4+1+1)=-36$,故$\triangle PP_2P_3$不是一直角三角形。
2)三角形的面积可以用矢量积求得:$S=\frac{1}{2}|R_{12}\times R_{23}|$的模长,即$S=\frac{1}{2}\sqrt{(4+1+1)(2+1+4)(2+1+4)-(-6+1-3)(4+1+1)(4+1+1)-(-6+1-3)(2+1+4)(6+1+3)}=\frac{3\sqrt{2}}{2}$。
end{n}根据给定的矢量,计算得到:R_{12}=\sqrt{(e_x^4-e_z)(e_x^2+e_y+e_z/8)}$R_{23}=r_3-r_2=e_x^2+e_y+e_z/8-r_3$R_{31}=r_1-r_3=-e_x/6-e_y-e_z/7$由此可以得到,$\Delta P P$为一直角三角形,且$R_{12} \times R_{23}=17.13$。
电磁场与电磁波 课后习题答案
习题1.1 已知z y x B z y x A ˆ2ˆˆ;ˆˆ3ˆ2-+=-+=,求:(a) A 和B 的大小(模); (b) A 和B 的单位矢量;(c)B A⋅;(d)B A⨯;(e)A 和B 之间的夹角;(f) A 在B 上的投影。
解:(a) A 和B 的大小74.314132222222==++=++==z y x A A A A A45.26211222222==++=++==z y x B B B B B(b) A 和B 的单位矢量z y x z y x A A aˆ267.0ˆ802.0ˆ535.0)ˆˆ3ˆ2(74.31ˆ-+=-+==z y x z y x B B bˆ816.0ˆ408.0ˆ408.0)ˆ2ˆˆ(45.21ˆ-+=-+==(c)A B ⋅7232=++=++=⋅z z y y x x B A B A B A B A(d) B A ⨯ z y x zyxB B B A A A z y xB A zyxz y xˆˆ3ˆ5211132ˆˆˆˆˆˆ-+-=--==⨯(e)A 和B 之间的夹角α根据αcos AB B A =⋅得764.0163.97cos ==⋅=AB B A α 019.40=α (f) A 在B 上的投影86.245.27ˆ==⋅=⋅B B A bA1.2如果矢量A 、B 和C 在同一平面,证明A ·(B ⨯C )=0。
证明:设矢量A 、B 和C 所在平面为xy 平面y A x A A y x ˆˆ+=y B xB B y x ˆˆ+=y C xC C y x ˆˆ+=z C B C B y C B C B x C B C B C C C B B B zy xC B x y y x z x x z y z z y zyxz y xˆ)(ˆ)(ˆ)(ˆˆˆ-+-+-==⨯zC B C B x y y x ˆ)(-= 0ˆˆ)(0)(=⋅-⨯=⨯⋅z zC B C B C B A x y y x1.3已知A =ααsin ˆcos ˆy x+、B ββsin ˆcos ˆy x -=和C ββsin ˆcos ˆy x +=,证明这三个矢量都是单位矢量,且三个矢量是共面的。
电磁场与电磁波课后习题及答案九章习题解答
九章习题解答9.1 设元天线的轴线沿东西方向放置,在远方有一移动接收台停在正南方而收到最大电场强度,当电台沿以元天线为中心的圆周在地面移动时,电场强度渐渐减小,问当电场强度减小到解:元天线(电基本振子)的辐射场为j k rjθ-=E e可见其方向性函数为(),sin f θφθ=,当接收台停在正南方向(即090θ=)时,得到最大电场强度。
由s i n θ=得 045θ=此时接收台偏离正南方向045±。
9.2 上题中如果接收台不动,将元天线在水平面内绕中心旋转,结果如何?如果接收天线也是元天线,讨论收发两天线的相对方位对测量结果的影响。
解: 如果接收台处于正南方向不动,将天线在水平面内绕中心旋转,当天线的轴线转至沿东西方向时,接收台收到最大电场强度,随着天线地旋转,接收台收到电场强度将逐渐变小,天线的轴线转至沿东南北方向时,接收台收到电场强度为零。
如果继续旋转元天线,收台收到电场强度将逐渐由零慢慢增加,直至达到最大,随着元天线地不断旋转,接收台收到电场强度将周而复始地变化。
当接收台也是元天线,只有当两天线轴线平行时接收台收到最大电场强度;当两天线轴线垂直时接收台收到的电场强度为零;当两天线轴线任意位置,接收台收到的电场强介于最大值和零值之间。
9.3 如题9.3图所示一半波天线,其上电流分布为()11cos 22m I I kz z ⎛⎫=-<< ⎪⎝⎭(1)求证:当0r l >>时,020cos cos 22sin jkr m z I eA kr πθμπθ-⎛⎫ ⎪⎝⎭=⋅ (2)求远区的磁场和电场;(3)求坡印廷矢量; (4)已知22cos cos 20.609sin d ππθθθ⎛⎫ ⎪⎝⎭=⎰,求辐射电阻; (5)求方向性系数。
题9.3(1)图解:(1)沿z 方向的电流z I 在空间任意一点()0,P r θ产生的矢量磁位为 ()/20/2,4l jkrz z l I eA r dz rμθπ--=⎰假设0r l >>,则 1020cos cos r r z r r z θθ≈-⎧⎨≈+⎩120111r r r ≈≈ 将以上二式代入()0,z A r θ的表示式得()()()()()()()()12000/20000/2cos cos /20000/2cos cos 00cos cos ,4cos cos 4cos 4l jkrjkr m z l jk r z jk r z l ml jkr jkz jkz mkz ekz eI A r dz dz r r kz e kz e I dz r r I ekz e e dz r θθθθμθπμπμπ------+--⎧⎫⎡⎤⎡⎤⎪⎪=+⎨⎬⎢⎥⎢⎥⎪⎪⎣⎦⎣⎦⎩⎭⎡⎤=+⎢⎥⎢⎥⎣⎦⎡⎤=+⎣⎦⎰⎰⎰⎰()()()()(){}()()0/20000/20002200,2cos cos cos 4cos 1cos cos 1cos 41cos cos cos 1cos cos cos 224sin sin cos 2l jkr mz l jkr mjkr mjkr mI A r ekz kz dzr I ekz kz dz r I er I ekr μθθπμθθπππθθθθμπθθπμπ----=⎡⎤⎣⎦=++-⎡⎤⎡⎤⎣⎦⎣⎦⎡⎤⎛⎫⎛⎫-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭=+⎢⎥⎢⎥⎢⎥⎣⎦=⎰⎰2cos 2sin θθ⎛⎫ ⎪⎝⎭由此得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、(10 分)一个金属槽如图 3 所示,侧面和底面的电位均为 0,顶盖与侧壁绝缘,其电位为
φ = sin(π x) ,求槽内电位分布。
教务处印制
第1页共2页
φ = sin(π x)
2. 磁场强度的瞬时值和复数形式;
六、( 15 分 ) 区 域 I : y < 0,ε1 = 10 pF / m, µ1 = 2.5µ H / m,σ1 = 0 ; 区 域 II :
y > 0, ε2 = 9 pF / m, µ2 = 4µ H / m, σ 2 = 0 。 在 区 域 I 内 , 一 极 化 方 向 为 aˆz ,
考生班级
学号
姓名
[注: ε0
=
1 36π
×10−9
F
/
m
µ0 = 4π ×10−7 H / m ]
一、简答题ቤተ መጻሕፍቲ ባይዱ25 分)
1. 请写出一般形式麦克斯韦方程组的微分形式。
2. 请写出两种理想介质分界面上电磁场的边界条件。
3. 什么是均匀平面波?
4. 请判断下列平面波的传播方向和极化类型:
v (1) E = aˆye− jkx
R1 R2
3ε 0
φ =0
φ =0
φ =0
图 1 第二题图
图 2 第三题图
图 3 第四题图
v 五、(10 分)在自由空间中传播的均匀平面波电场强度为 E = aˆx100 sin(2π ×106 t − kz) +
aˆy 200 cos(2π ×106 t − kz)V / m ,求:
1. 频率 f,相位常数 k,波长 λ ,相速 vp ;
ω = 108 rad / s 的平面电磁波振幅为 500V/m,垂直投射到 y = 0 的边界面上,求:
v 1. 入射波 Ei ;
v 2. 反射系数 Γ 和反射波 Er ;
v 3. 透射系数 Τ 和透射波 Et 。
七、(15 分)电偶极子长 10m,电流振幅为 1A,频率为 1MHz,求:
1. 电偶极子的远区辐射电场和方向性函数;
v
vv
2. 在垂直于电偶极子轴线方向上 (θ = 90°) 10m 处的 Sav 及 100km 处的 E和Sav 。
注:1. 命题纸上一般不留答题位置,试题请用小四、宋体打印且不出框。
教务处印制
第2页共2页
2. 命题教师和审题教师姓名应在试卷存档时填写。
教务处印制
第3页共2页
诚信保证
本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场
规则,诚实做人。
本人签字:
编号:
西北工业大学考试试题(卷)
成 2004-2005 学年 第一学期
绩
开课学院 电子信息学院 课程 电磁场与电磁波 学时 考试日期 2004 年 12 月 16 日 考试时间 2 小时
54 开A
考试形式(闭 )( B )卷
v (2) E = (aˆx + jaˆy )e jkz
5. 电偶极子的近区场和远区场的性质有何不同?
二、(15 分)球形电容器内外导体球之间填充介电常数为 3ε0 的介质,如图 1 所示。设内球上
面电荷密度为 ρs ,求:
1. 各区域的电位移矢量和电场强度; 2. 内外导体之间的电压; 3. 此电容器的电容。