初中几何动点问题

合集下载

初一数学动点问题解析

初一数学动点问题解析

初一数学动点问题解析标题:初一数学动点问题解析动点问题,作为初一数学的一个重要组成部分,往往需要学生具备扎实的基础知识和灵活的思维方式。

本文将从以下几个方面对动点问题进行分析和解答。

一、动点问题的基本概念动点问题通常涉及到几何图形中的运动变化,如点的移动、线的旋转等。

这类问题常常需要学生根据题目中的条件,结合几何图形的性质,进行推理和计算。

因此,理解动点问题的基本概念是解决这类问题的前提。

二、解题技巧和方法1. 画图分析:动点问题往往需要借助图形进行分析,因此画图是解决这类问题的第一步。

通过画图,可以直观地看到运动的过程和相关的几何关系,为解题提供思路。

2. 寻找等量关系:在动点问题中,常常存在一些不变的几何关系,如两点之间的距离、线段长度等。

通过寻找这些等量关系,可以建立方程或不等式,从而解决问题。

3. 分类讨论:对于一些复杂的问题,可能需要分情况讨论。

这时,需要根据题目的条件,对各种情况进行逐一分析,从而找到正确的答案。

三、例题解析【例题1】如图,在平面直角坐标系中,点A的坐标为(4,0),点B在x轴下方且在一、二象限,AB=3,点P从A点开始沿AC边向C点以每秒1个单位长度的速度移动,求:(1) 点B的坐标;(2) 设点P移动的时间为t秒,请用含t的代数式表示三角形ABP的面积;(3) 当t为何值时,点P在BC边上?【分析】(1)根据B点的位置得到B点的横坐标为$4 - 3t$,再根据B点的纵坐标得到$3t - 3$;(2)首先求出四边形ABCP的面积是梯形ABCE面积减去三角形PCE 的面积;(3)根据题意得到$4 - 3t = t$求解即可.【解答】(1)解:∵B在$x$轴下方且在一、二象限∴B的横坐标为$4 -3t$;∵B在第二象限∴$B( - 3t, - 3t + 3)$;(2)四边形ABCP的面积是:$\frac{1}{2}(4 + 3t)(4 - 3t) - \frac{1}{2}(4 - 3t)( - 3t + 3)$$= (9t^{2} - 6t)$;∵点C是$x$轴上的一个动点∴S_{三角形ABP} = \frac{1}{2}AB⋅CP$$=\frac{1}{2} \times 3 \times (4 - 3t) = \frac{3}{2}(4 - 3t) = \frac{3}{2}t + \frac{9}{2};\therefore t = \frac{2}{5}s时,点P在BC边上;(3)解:当$4 - 3t = t$时,解得:$t = \frac{4}{2} =2s$.答:当$t = 2s$时,点P在BC边上.四、总结反思解决动点问题需要学生具备扎实的基础知识和灵活的思维方式。

初中数学动点问题及练习题附参考答案

初中数学动点问题及练习题附参考答案

初中数学动点问题及练习题附参考答案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。

从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。

初一下册几何动点问题

初一下册几何动点问题

初一下册几何动点问题1、(1)已知AB⊥BD,ED⊥BD,AB=CD,BC=DE,要证明AC⊥CE.2)将CD沿CB方向平移得到图②③的情形,其余条件不变,要判断AC⊥CE是否成立,需要重新证明一遍。

2、(1)已知△ABC为等边三角形,动点D在边CA上,动点P边BC上,要证明当AP=BD时,Q点为定点。

2)已知动点D,P在射线CA和射线BC上运动,要证明∠BQP=60°。

3)已知动点P在AB的延长线上运动,连接PD交BC于E,要证明DE=PE。

3、已知梯形ABCD,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,CE与BD交于F,要证明CM=AB和CF=AB+AF。

4、已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D。

1)要证明当三角形绕点P旋转到PC⊥OA时,PC=PD。

2)要说明当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD不相等。

3)要直接给出结论,当三角形绕点P旋转到PC与OA 所在直线相交的位置时,线段PC和PD相等。

5、在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB 边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,要证明△ADF≌△CEF,并试证明△DFE是等腰直角三角形。

6、(1)已知△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形。

2)当把△ADE绕A点旋转到图②的位置时,需要重新判断CD=BE是否成立。

7、已知△ABC中,AB=AC=10厘米,BC=8厘米,点D 为AB的中点。

点P在线段BC上以3厘米/秒的速度由B点向C点运动,点Q在线段CA上由C点向A点运动。

①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等。

答:是。

证明:由于AB=AC,所以∠ABC=∠ACB,又因为D是AB的中点,所以AD=BD。

怎样运用分类讨论思想解答几何中的动点问题

怎样运用分类讨论思想解答几何中的动点问题

数学篇几何动点问题一直是初中几何中的一个难点,因为点运动的位置不同,形成的图形就不同,符合结论的情况可能就不止一种.同学们在求解此类问题时常常因为考虑不周导致漏解而出错.因此,解答动点问题尤其要注意分类讨论.下面就如何运用分类讨论思想解答两类几何图形中的动点问题进行分析,以供参考.一、运用分类讨论思想解答等腰三角形中的动点问题等腰三角形具有两条边相等、底角相等的特点,在求解涉及等腰三角形的动点问题时,由于边的不确定性或角的不确定,需要运用分类讨论思想,从动态的角度逐一讨论三角形的三边两两相等的三种情况,或三角形的三个角为其顶角的三种可能性,然后综合所有分类的结果确定最终答案.例1如图1,在直角坐标系中,已知点P (-2,-1),点T (t ,0)是x 轴上的一个动点.(1)求点P 关于原点的对称点P ′的坐标;(2)当[t ]取何值时,△P ′TO是等腰三角形?图1图1-1分析:第(1)问求P 点的对称点P ′比较简单,利用对称性即可解答.第(2)问,T 是x 轴上的动点,它在运动的过程中△P ′TO 可能是等腰三角形但顶点未确定,需要分情况讨论.解:(1)∵P (-2,-1),∴P 关于原点的对称点P ′坐标为(2,-1),(2)由(1)知P ′(2,-1),作图如图1-1所示,①当△P ′TO 中,点P ′为顶点时,T 点为图1-1中T 4点,此时P ′T =P ′O ,T 坐标为T 4(4,0),②当△P ′TO 中,点T 为顶点时,T 点为图1-1中T 2点,此时TO =TP ′,又∵T (t ,0)且P ′(2,-1),∴(0-t )2+(0-0)2=(2-t )2+(-1-0)2解得,t =54,此时点T 坐标为T 2(54,0),③当△P ′TO 中,点O 为顶点时,T 点为图1-1中T 1和T 3点,此时TO =P ′O ,∵T (t ,0)且P ′(2,-1),∴(0-t )2+(0-0)2=(0-2)2+[0-(-1)]2,解得,t =±5,此时T 点坐标为T 1(-5,0)和T 3(5,0),综合①②③可知,当t 取-5、54、5、4时,△P ′TO 是等腰三角形.评注:本题看似简单,实则非常复杂.由于题目中没有明确等腰三角形的顶点,且T 为坐标轴上的一个动点,所以点T 、O 、P 均有可能为等腰三角形顶角的顶点,需要对此进怎样运用分类讨论思想解答几何中盐城市新洋初级中学吉华丽解法荟萃32数学篇行分类讨论.二、运用分类讨论思想解答圆中的动点问题圆既是轴对称图形,又是中心对称图形,还具有旋转不变性.圆的这些特性决定了与圆有关的动点问题可能存在多解.在解题时,我们可以根据题目要求初步绘制“圆”可能存在的位置,然后依据分类标准(比如x 轴、y 轴等)逐一分类讨论,做到不重不漏,最后综合所有情况得到完整答案.例2如图2,直线y =-43x +4与x 轴、y 轴分别交于点M ,N .(1)求M ,N 两点的坐标;(2)如果点P 在坐标轴上,以点P 为圆心,125为半径的圆与直线y=-43x +4相切,求点P 的坐标.图2图2-1分析:这是一个直线与圆相结合的题目.第(1)问,我们借助直线方程y=-43x +4可以直接求出M 、N 的坐标.第(2)问P 点在坐标轴上,到底在x 轴还是y 轴不确定,所以以P 点为圆心,半径为125的圆也具有不确定性,需要借助分类讨论思想加以讨论.解:(1)∵直线y =-43x +4与x 轴、y 轴分别交于点M ,N ,∴令x =0,y =4,即N (0,4).同理可得M (3,0).(2)经过分析发现P 点可能在x 轴上或y 轴上,通过作图发现可能有4种情况,如图2-1所示.①当P 在x 轴上时,设P (x 0,0),则圆P可能是图2-1中的两个虚线圆.125=43x ,解得x 0=0或6,此情况下P 点坐标为P 1(0,0)P 2(6,0);②当P 在y 轴上时,设P (0,y 0),则圆P可能是图2-1中的两个实线圆.125=|-43×0-y 0+4|4,解得y 0=0或8,此情况下P 坐标为P 3(0,0)和P 4(0,8),由此可见P 1和P 3重合,是同一个点.综合①②,符合条件的P 点一共有3个,分表为(0,0)、(6,0)、(0,8).评注:审题时一定要充分挖掘隐含条件,“点P 在坐标轴上”就是一个不确定的表述,可能存在多种情况.另外作图要准确,可以通过作图的方式大致确定点的位置,预估答案.此外,该题还有一个关键之处,即“点到直线的距离公式”.考试中常用的有两种公式,分别为:①设直线方程为一般式Ax +By +C =0,点P 的坐标为(x 0,y 0),则点P 到直线L 的距离为:d =|Ax 0+By 0+C |A 2+B2;②当P (x 0,y 0),直线L 的方程为截距式y =kx +b ,则P 点到直线的距离为d =|kx 0-y 0+b |1+k2.总之,动点问题常常要借助分类讨论思想辅助解题.一般涉及到与“直角三角形”“等腰三角形”“相似三角形”“圆”等相关的动点问题,往往具有不确定性,存在多解的情况.解法荟萃。

初中数学几何的动点问题专题练习_附答案解析版

初中数学几何的动点问题专题练习_附答案解析版

动点问题专题训练1、如图,已知ABCBC=厘米,点D为AB的中点.==厘米,8△中,10AB AC(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△的哪条边上相遇?△三边运动,求经过多长时间点P与点Q第一次在ABC2、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.3、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.(备用图)4、如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?5、如图,在梯形ABCD中,3545AD BC AD DC AB B====︒∥,,,.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长.(2)当MN AB∥时,求t的值.(3)试探究:t为何值时,MNC△为等腰三角形.C6、如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.7、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.90AEF∠=,且EF交正方形外角DCG∠的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AME ECF△≌△,所以AE EF=.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C 外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.A DFG B图1 A DFGB图2A DFC GB图38、已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设O B x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.1.解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ························· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒. ····················· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米. ∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇. ············ (12分) 2.解(1)A (8,0)B (0,6) ···· 1分 (2)86OA OB ==, 10AB ∴=点Q 由O 到A 的时间是881=(秒) ∴点P 的速度是61028+=(单位/秒) 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = ·································· 1分当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ········· 1分 21324255S OQ PD t t ∴=⨯=-+ ······················· 1分(自变量取值范围写对给1分,否则不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, ······························ 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ················ 3分3.解:(1)⊙P 与x 轴相切.∵直线y =-2x -8与x 轴交于A (4,0),与y 轴交于B (0,-8), ∴OA =4,OB =8. 由题意,OP =-k , ∴PB =PA =8+k .在Rt△AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P在线段OB 上时,作PE ⊥CD 于E .∵△PCD 为正三角形,∴DE =12CD =32,PD =3,∴PE . ∵∠AOB =∠PEB =90°, ∠ABO =∠PBE ,∴△AOB ∽△PEB ,∴2,AO PE AB PB PB =,∴PB =∴8PO BO PB =-=,∴8)P -,∴8k =-.当圆心P 在线段OB 延长线上时,同理可得P (0,8),∴k =8,∴当k8或k=8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.4.5.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°.由△APQ ∽△ABC ,得AQ APAC AB =, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. ①点P 由C 向A 运动,DE 经过点C .连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 经过点C ,如图7. 22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6.解(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC //ED .∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2,∴∠A =300.图4P图5∴AB =4,AC∴AO =12AC……………………8分 在Rt △AOD 中,∠A =300,∴AD =2. ∴BD =2. ∴BD =BC .又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分7.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. ·························· 1分在Rt ABK △中,sin 4542AK AB =︒==.2cos 454242BK AB =︒==··················· 2分 在Rt CDH △中,由勾股定理得,3HC∴43310BC BK KH HC =++=++= ················ 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD ==∴1037GC =-= ························· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG = ··························· 5分 即10257t t -= (图①) A D C B K H (图②)A D CB G M N解得,5017t =··························· 6分 (3)分三种情况讨论:①当NC MC =时,如图③,即102t t =- ∴103t =····························· 7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -== 又在Rt DHC △中,3cos 5CH c CD == ∴535t t -= 解得258t = ···························· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC = 即553t t -= ∴258t = ····························· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025tFC C MC t ===- 解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△A DCB M N (图③) (图④) A D CB M NH E(图⑤)ADCBH N MF∴FC MCHC DC = 即1102235tt-=∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ···· 9分8.解(1)如图1,过点E 作EG BC ⊥于点G . ······ 1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ··· 2分∴112BG BE EG ====,即点E 到BC··········· 3分 (2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ·························· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM == ∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN == ∴PMN △的周长=4PM PN MN ++=. ············ 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =. ∴23MN MR ==. ··························· 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ··········· 8分图1A DE BF C G图2A D EBF CPNMG H当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形.∴tan 301MC PM =︒=.此时,6114x EP GM ===--=.综上所述,当2x =或4或(5-时,PMN △为等腰三角形. ····· 10分 9解:(1)Q (1,0) ··························· 1分 点P 运动速度每秒钟1个单位长度. ····················· 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB中,10AB = 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF .∴AP AM MP AB AF BF ==. 1068t AM MP∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t ==-==.设△OPQ 的面积为S (平方单位)∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) ·············· 5分说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大. ········ 6分 图3A D E BFCPN M 图4A D EBF CPM N 图5A D EBF (P )CMN GGRG此时P 的坐标为(9415,5310) . ······················ 7分 (4) 当 53t =或29513t =时, OP 与PQ 相等. ················ 9分10.解:(1)正确. ··············· (1分) 证明:在AB 上取一点M ,使AM EC =,连接ME . (2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ······················ (5分) AE EF ∴=. ····························· (6分) (2)正确. ················· (7分) 证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . ··········· (8分)BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠.NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ····················· (10分) AE EF ∴=. (11分)11.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+,即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ·························· 4分(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△.AD F G B M A D FC G B N由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ······························ 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. ······················ 7分(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OCOA OB''=,得2OC OB ''=. ····················· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C 的坐标为()016. ····················· 10分。

初中几何中动点问题

初中几何中动点问题
初中几何中的动点问题
小殇
动点题的分类:
1、动点在一条直线上运动。
2、动点在多条直线上运动。 3、图形的运动产生的问题。
一、动点在一条线上运动:
如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点 P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从 点D出发沿DA方向向终点A运动,其中一个动点到达端点时, 另一个动点也随之停止运动. (1)求AD的长; AD=5 (3)探究:在BC边上是否存在点M使得四边形PDQM是菱形? 若存在,请找出点M,并求出BM的长;不存在,请说明理由. (2)设CP=x,问当x为何值时△PDQ的面积达到最大,并求 出最大值; S 1 PD DQ sin D 1 ( 9 x ) x sin 60 要使得四边形PDQM是菱形,不变的量是:点M必在∠D的平 2 2 分线上。那么PQ与DM互相垂直平分,△PQD是正三角形, 先求出DM的值,再求出DQ,最后作出判断即可。
M Q O P
类似的问题
1.如图,抛物线的顶点为P(1,0),一条直线与抛物线相交于 A(2,1),B(-0.5,m)两点. ⑴求抛物线和直线AB的解析式; ⑵若M为线段AB上的动点,过M作MN∥y轴,交抛物线于点 N,连接NP、AP,试探究四边形MNPA能否为梯形,若能, 求出此点M的坐标;若不能,请说明理由.
D M N A C
Q
P
B
D M
C
N A
Q
B
这类动态问题,题目要求面积与运动时间的函数关系式,这就需要我们根 据题目,综合分析,分类讨论. P点从A→B→C一共用了12秒,走了12 cm,Q 点从A→B用了8秒,B→C 用了2秒,所以t的取值范围是 0≤t≤10 不变量:P、Q 点走过的总路程都是12cm,P点的速度不变,所以AP始 终为:t+2 若速度有变化,总路程 =变化前的路程+变化后的路程=变化前的速度×变 化点所用时间+变化后的速度×(t-变化点所用时间). ① 当0≤t≤6时,点P与点Q都在AB上运动,此时两平行线截平行四边形 ABCD是一个直角梯形 ,只需用梯形的面积公式表示即可; ②当6≤t≤8时,点P在BC上运动,点Q仍在AB上运动.两平行线截平行四边 形ABCD的面积为平行四边形的面积减去两个三角形面积 ; ③当8≤t≤10时,点P和点Q都在BC上运动 ,作出相应图形解决即可。

初二动点问题(全等三角形)

初二动点问题(全等三角形)

初二动点问题(全等三角形中的动点问题)
思路:
1.利用图形想到三角形全等
2.分析题目,了解有几个动点,动点的路程,速度
3.结合图形和题目,得出已知或能间接求出的数据
4.分情况讨论,把每种可能情况列出来,不要漏
5.动点一般都是压轴题,步骤不重要,重要的是思路
6.动点类问题一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论.
【典型例题】
如图1,在△ABC中,△ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD 的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,△BAC=90°,点D在射线BC上运动时(与点B不重合),如图,线段CF,BD之间的位置关系为_____________,数量关系为______________.请利用图2或图3予以证明(选择一个即可).。

初一几何动点问题的解题技巧(一)

初一几何动点问题的解题技巧(一)

初一几何动点问题的解题技巧(一)创作标题:初一几何动点问题的解题技巧引言•动点问题是初中学习几何的一种常见题型,通过解动点问题,可以培养学生的几何思维和问题解决能力。

本文将介绍初一几何动点问题的解题技巧,帮助学生更好地应对这类题目。

技巧一:图形变换法•利用图形变换法解题是初一几何动点问题的常用方法。

根据题目给出的条件,可以通过平移、旋转、翻转和放缩等图形变换,找到问题的求解路径。

1.平移–如果题目中给出的条件是关于两个点之间的距离不变,可以采用平移来解决。

根据题目中的条件,通过平移图形,使得问题简化为求某个点到原点的距离。

2.旋转–当题目中给出的条件是角度不变时,可以考虑使用旋转来解决。

通过旋转图形,使得问题转化为求某个角度的问题。

3.翻转–如果题目中给出的条件是关于对称的问题,可以选择使用翻转来解题。

通过将图形翻转到易于求解的位置,简化问题。

4.放缩–当题目中给出的条件为依比例或长度成比例时,可以考虑使用放缩来解决。

通过放缩图形,使得问题转化成为求比例或长度的问题。

技巧二:直线方程法•使用直线方程法解决几何动点问题,主要是利用直线的特性和方程求解问题。

1.坐标法–如果题目中给出了几何图形的坐标或点的位置,可以考虑使用坐标法解题。

建立坐标系,根据点的坐标和直线的关系,列方程求解问题。

2.斜率法–当题目需要根据直线的斜率或与直线的关系来求解问题时,可以使用斜率法。

根据直线的斜率和截距或两点间的斜率关系,列方程求解问题。

3.联立方程法–当题目中给出了多个对象的关系时,可以使用联立方程法解决问题。

根据对象之间的关系,列方程联立求解。

技巧三:面积比法•部分几何动点问题可以通过面积比法解决。

通过观察题目,找出几何图形之间的面积关系,建立比例关系解决问题。

结论•初一几何动点问题的解题技巧主要包括图形变换法、直线方程法和面积比法。

运用这些技巧,我们可以更快地解决几何动点问题,提高解题效率和准确性。

希望本文介绍的技巧对初一学生的学习有所帮助。

七年级数学几何动点问题

七年级数学几何动点问题

七年级数学几何动点问题一、点在直线上运动。

题目1:已知数轴上点A表示的数为 - 3,点B表示的数为1,点P以每秒2个单位长度的速度从点A出发向左运动,同时点Q以每秒4个单位长度的速度从点B出发向左运动。

设运动时间为t秒。

当t为何值时,点P与点Q重合?当t为何值时,点Q到原点的距离是点P到原点距离的2倍?解析:点P表示的数为-3 - 2t,点Q表示的数为1-4t。

当点P与点Q重合时,-3-2t = 1 - 4t移项得:4t-2t=1 + 32t=4,解得t = 2。

点P到原点的距离为|-3-2t|,点Q到原点的距离为|1-4t|。

由题意得|1 - 4t|=2|- 3-2t|情况一:当1-4t = 2(-3 - 2t)1-4t=-6 - 4t,此方程无解。

情况二:当1-4t=-2(-3 - 2t)1-4t = 6 + 4t移项得:-4t-4t=6 - 1-8t=5,解得t=-(5)/(8)题目2:在数轴上,点A表示的数为20,点B表示的数为 - 10,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒。

当t = 5时,求点P表示的数;点P到点A和点B的距离相等时,求t的值。

解析:当t = 5时,点P向左运动的距离为3×5=15点P表示的数为20-15 = 5点P表示的数为20-3t,点P到点A的距离为|20-(20 - 3t)|=3t,点P到点B的距离为|20-3t+ 10|=|30 - 3t|当点P到点A和点B的距离相等时,3t=|30 - 3t|情况一:3t=30 - 3t6t=30,解得t = 5情况二:3t=-(30 - 3t)3t=-30 + 3t,此方程无解。

二、点在三角形边上运动。

题目3:在ABC中,BC = 8,AC = 6,∠ C = 90^∘,点P从点B出发,沿BC方向以每秒2个单位长度的速度向点C运动,点Q从点C出发,沿CA方向以每秒1个单位长度的速度向点A运动,设运动时间为t秒(0)。

(完整版)初中数学动点问题归纳

(完整版)初中数学动点问题归纳

BB动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1单位和2个长度单位的速度沿OC 和BO 之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。

中考数学动点问题专题练习(含答案)

中考数学动点问题专题练习(含答案)

动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥O A,垂足为H,△OPH 的重心为G .(1)当点P在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设P Hx =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PG H是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC =1,点D,E在直线B C上运动.设BD=,x CE=y . (1)如果∠B AC=30°,∠DA E=105°,试确定y 与x 之间的函数解析式;(2)如果∠B AC的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG PO A B 图1 x yC三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△A BC中,∠BAC =90°,AB=AC =22,⊙A 的半径为1.若点O在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A相切时, △AO C的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.AB C O 图8HAB CDEOlA ′(二)线动问题2,在矩形A BCD 中,AB =3,点O 在对角线A C上,直线l过点O ,且与AC 垂直交AD于点E .(1)若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形A BCD的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F,且AO=41AC,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.解决动态几何问题的常见方法有:C一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O 1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C,PB 切⊙O2于点B ,则PCBP的值为(A)2 (B)3 (C)23(D)26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O中,C 为弧AB 的中点,D 为弧A C上任一点(与A 、C 不重合),则(A)A C+CB=AD+DB (B) A C+C B<AD+DB(C) AC+CB >A D+D B (D) AC+C B与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和C D与大圆分别交于点B 、E,则下列结论中正确的是( * ) (A)AB DE = (B )AB DE >(C)AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M在边DC 上,且DM=1,N为对角线A C上任意一点,则DN +MN 的最小值为 .BMND CBA以圆为载体的动点问题中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重例1.在Rt ABC合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。

八年级数学动点问题解题技巧

八年级数学动点问题解题技巧

八年级数学动点问题解题技巧
动点问题是初中数学中常见的问题,这类问题通常涉及到图形和点的运动,需要我们运用几何和代数知识来解决。

以下是一些解决动点问题的基本技巧:
1.建立坐标系:对于涉及运动的点,一个有效的方法是使用坐标系
来表示它们的位置。

这有助于将问题转化为数学表达式,从而更容易地找到解决方案。

2.确定关键点:在解决动点问题时,确定关键点(如起点、终点、
转折点等)的位置非常重要。

这些点的位置通常决定了整个问题的解决方向。

3.运用速度、时间、距离关系:在动点问题中,速度、时间和距离
之间的关系是非常重要的。

这些关系可以帮助我们理解点的运动轨迹和方向。

4.运用函数关系:在许多情况下,点的运动可以用函数来表示,如
一次函数、二次函数等。

这有助于我们预测点的未来位置和运动轨迹。

5.运用几何知识:解决动点问题时,几何知识如平行线、垂直线、
角等是非常有用的。

这些知识可以帮助我们理解点的运动规律和轨迹。

6.逻辑推理:在解决动点问题时,逻辑推理是非常重要的。

我们需
要根据已知条件和信息,推断出未知的信息和结果。

7.数形结合:数形结合是解决动点问题的常用方法。

通过将数学表
达式和图形结合起来,我们可以更直观地理解问题的本质和解决方案。

8.反复练习:解决动点问题需要大量的练习和经验积累。

只有通过
反复练习,我们才能熟练掌握解决这类问题的方法和技巧。

以上是解决八年级数学动点问题的一些基本技巧。

希望对你有所帮助!。

初中数学动点问题

初中数学动点问题

动态探究题这种题型包括有动点问题,动线问题和动圆问题三类。

主要是考查学生对几何元素的运动变换的性质,它主要揭示“运动”与“静止”,“一般”与“特殊”的内在联系,以及在一定条件下可以相互转化的唯物辨证关系。

解决此类问题的关键是将运动的几何元素当作静止来加以解答,即“化动为静”的思路;并能在从相对静止的瞬间清晰地发现图形变换前后各种量与量之间的关系,通过归纳得出规律和结论,并加以论证。

中考题中的动态型试题是考查学生创新意识的重要题型之一。

【典型例题】(一)动点型动态探究题例1. 如图,在直角坐标系中,O是原点,A、B、C三点的坐标分别为A (18,0),B(18,6),C(8,6),四边形OABC是梯形,点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q 沿OC、CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动。

(1)求出直线OC的解析式及经过O、A、C三点的抛物线的解析式。

(2)试在(1)中的抛物线上找一点D,使得以O、A、D为顶点的三角形与△AOC全等,请直接写出点D的坐标。

(3)设从出发起运动了t秒,如果点Q的速度为每秒2个单位,试写出点Q 的坐标,并写出此时t的取值范围。

(4)设从出发起,运动了t秒钟,当P、Q两点运动的路程之和恰好等于梯形OABC周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分,如有可能,请求出t的值;如不可能,请说明理由。

例2. 如图,已知在等腰梯形ABCD中,AB//CD,AB<CD,AB=10,BC=3(1)如果M为AB上一点,且满足∠DMC=∠A,求AM的长。

(2)如果点M在AB上移动,(点M与A、B不重合)且满足∠DMN=∠A,MN 交BC延长线于N,设AM=x,CN=y,求y关于x的函数解析式,并写出x的取值范围(写取值范围不需推理)例3. 已知,如图①,E、F、G、H按照AE=CG,BF=DH,BF=nAE(n是正整数)的关系,分别在两邻边长为a,na的矩形ABCD各边上运动,设AE=x,四边形EFGH的面积为S(1)当n=1,2时,如图②,如图③,观察运动情况,写出四边形EFGH各顶点(2)当n=3时,如图④,求S与x之间的函数关系式(写出自变量x的取值范围)探索S随x增大而变化的规律,猜想四边形EFGH各顶点运动到何位置使(3)当n=k(k≥1)时,你所得到的规律和猜想是否成立?为什么?(二)线动型动态探究题例4. 如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD,一动点P从A出发以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD于点E(1)当点P运动2S时,设直线PM与AD相交于点E,求△APE的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思 化动为静 路: 数形结合
分类讨论 构建函数模型、方程模型
(2)利用相似建立等式,找到y与 x的函数关系式.根据函数关系式求 出最大值.
动态问题解决的一般方法是抓住变化中的“不 变量”,以不变应万变,首先根据题意理清题目中 两个变量X、Y的变化情况并找出相关常量,第二, 按照图形中的几何性质及相互关系,找出一个基本 关系式,把相关的量用一个自变量的表达式表达出 来,然后再,确定自变量的取值范围,画出相应的 图象。
分别是M,N,若点P从O点出发,沿OM做匀速运动,1 分钟可到达M点,同时点Q从M点出发,沿MA做匀速 运动,1分钟可到达A点,问点P,Q出发多长时间后, 线段PQ的长度为2?
y
解:设点P,Q出发x分钟后,线段PQ 的长度为2,依题意得:
N
A
Q
(2 2x)2 (4x)2 22
解得:x1 0(舍),x2 0.4
几何动点问题
我们一起聊聊… … …
遵义十中 肖剑桦
所谓“动点型问题”是指题设图形 中存在一个或多个动点,它们在线段、 射线或弧线上运动的一类开放性题目. 解决这类问题的关键是----
一、问题引入
例1.如图,已知 ABCD中,AB=7,BC=4,∠A= 30
若点P从点A沿射线AB运动,速度是1cm/s. 当t 为何值时,△PBC为等腰三角形?
D
A 30°
P 7
小组合作交流讨论
C
4 B
二、类似问题
例2. 如图,在边长为4cm的正方形ABCD中,现有一 动点P,从点A出发,以2cm/s的速度,沿正方形的边 经A-B-C-D到达点D。设运动时间为t秒。 (1)当点P运动3秒时,点P到达什么位置?
(2)当t为何值时,点P到点D的距离为5cm.
OP M
x
2、正方形ABCD边长为4,M、N分别是BC、CD上的两个 动点,当M点在BC上运动时,保持AM和MN垂直. (1)证明:Rt△ABM∽Rt△MCN; (2)设BM=x,梯形ABCN的面积为y,求y与x之间的函 数关系式;当M点运动到什么位置时,四边形ABCN面积
最大,并求出最大面积;
提示:(1)∠B = ∠C, ∠BAM= ∠CMN, 得到RtΔABM∽RtΔMCN
(3)设△APD的面积为S,求S关于t的函数关系式.
D
C
A
B
(4)如图,另有一动点Q,以1cm/s的速度从点D出 发,沿正方形的边按顺时针方向运动,点P、Q分 别从点A、D同时出发,相遇后同时停止运动,连 结AP、PQ、QA. 请你尝试提出问题,至少一个.
D
C
A
B
三、趁热打铁
1、如图,过点 A2, 4 分别作x轴、y轴的垂线,垂足
相关文档
最新文档