船舶电喷主机故障分析
船舶主机常见故障原因
![船舶主机常见故障原因](https://img.taocdn.com/s3/m/eb73b036eef9aef8941ea76e58fafab069dc4425.png)
船舶主机常见故障原因
船舶主机是船舶的核心组成部分,是驱动船舶进行前进、后退和转向等操作的重要装置。
船舶主机常见故障原因如下:
1. 燃油质量不良:船舶推进系统需要大量的燃油,如果燃油质量不良或掺杂有水等杂质,会影响发动机性能,导致出现故障。
2. 热媒冷却系统故障:船舶主机需要通过高温涡轮来提供推进力,同时也需要进行精密的冷却控制。
如果发动机的热媒冷却系统出现故障,会导致发动机过热、损坏等问题。
3. 润滑系统故障:船舶主机中的各个部件需要润滑油进行润滑保护,如果出现了润滑系统故障,容易导致零部件损坏和故障。
4. 电气系统故障:船舶主机的正常运行需要稳定的电力供应,如果电气系统出现短路、漏电、电源故障等问题,会影响发动机的正常运行。
5. 机械部件磨损:船舶主机长时间使用后,机械部件容易出现磨损、老化等问题,导致发动机性能下降、噪音增加等故障。
以上是船舶主机常见的故障原因,船舶操作人员需要进行定期维护和检查,及时发现和排除故障,保证船舶航行的安全和稳定。
最新船舶电喷主机故障分析资料
![最新船舶电喷主机故障分析资料](https://img.taocdn.com/s3/m/4a7a842aa76e58fafab003b3.png)
船舶电喷主机故障分析(一)船用电喷主机的原理及日常管理浅析船用电喷主机的原理及日常管理浅析摘要:随着船舶智能化的日益发展以及世界能源危机和环境污染的加重,为了节约能源、降低排放,提高柴油机燃烧工况,电控喷射技术得到了飞速的发展。
而高压共轨燃油喷射系统既对满足柴油机的经济性能,又对实现低污染、低排放发挥了重要作用,电控共轨柴油机的排放已达到相当理想的状态。
本文主要针对目前市场两大船用主机的船用柴油机高压共轨系统的结构及组成,就电子控制系统的控制策略进行了叙述以及介绍了高压共轨系统在船用柴油机领域的应用实例与管理。
本文先就电喷船用主机的电喷共轨原理进行了浅析,并列举了船用电喷柴油主机在使用过程中电喷共轨系统可能发生的几点故障,展开了分析。
关键词:船用柴油机电喷共轨原理分析1两大电喷主机的共轨工作原理分析【船舶电喷主机故障分析】1.1 Wartsila RT-flex共轨柴油机Wartsila RT-flex机型有两个公共油轨:一个输送的是200bar的滑油,它的作用是作为驱动排气阀、气缸起动阀和喷射控制装置的伺服油;另一个则是1000bar的作为柴油机燃料的重油,由曲轴通过三角凸轮带动高压共轨燃油泵把燃油加压到1000bar,然后由高压燃油管路流至高压公共供油管(如下图1中所示),再通过容积喷射控制单元(ICU),对燃油进行喷射控制,该控制单元由20Mpa的伺服油驱船舶电喷主机故障分析(二)电喷主机液压系统维护电喷主机液压系统维护1、A、利用系统中自带的压力测量点,监视系统功能电动泵输出压力监测电动泵正常的输出压力是175bar, 主机备车时这个压力可以在MOP上读出,也可以在主机备车时通过Pos.276检测点测出,此时能够观察建立压力时间,了解泵浦的工况。
该压力可以通过310、311、312阀进行调整,但调整时316阀要打开。
B、主机自带泵输出压力监测主机自带泵输出压力正常值等于系统压力,可以在MOP上读出,也可以通过Pos.203检测点测出,了解泵浦的工况。
MANBWME-CME-B电喷主机HCU故障简析
![MANBWME-CME-B电喷主机HCU故障简析](https://img.taocdn.com/s3/m/1f643acc48649b6648d7c1c708a1284ac85005af.png)
MANBWME-CME-B电喷主机HCU故障简析文章来自《上海船舶机务技术联合会》秘书处(2016-08-17)。
众所周知,ME主机的高压油泵和排气阀的滚轮都被重新设计没有了,燃油凸轮和排气凸轮也跟着一起消失了,那喷油和排气阀是靠什么驱动呢?液压油和FIVA电磁阀闪亮登场了…上图是在喷油的状态:FIVA上行,把液压油引入到高压油泵底部进行喷油图中绿色的的部分代表高压伺服液压油,两个紫色的是蓄能器,充满氮气上图是在开排气阀的状态:FIVA阀下行,把液压油引入到排气阀执行机构下方,开排气阀用来控制上图液压油的流向和流量的电磁阀叫FIVA,FIVA 的全称是Fuel Injection Valve Actuation,是通过控制200-300Bar伺服液压油来控制燃油喷油和排气阀开关的电磁阀。
每个缸一个,FIVA电磁阀的运动方向的控制信号是来自控制它的单缸CCU(Cylinder Control Unit)的J70,当然,为了知道FIVA到底听不听话,有没有运动到希望的位置,FIVA还会给一个反馈信号到控制CCU的J30. 如下图:其实CCU的MPC也就是大家在大学里学过的PLC。
CCU根据收到的曲轴位置信号和转速指令来控制FIVA进行控制喷油定时,喷油量和排气定时。
见下图的控制原理图和长相。
J30 是FIVA的反馈信号,J31是高压油泵的位置信号MPC- Multi Purpose ControllerFIVA的反馈信号会重新送回到CCU做为控制FIVA的参考信号,大家还看到排气阀,高压油泵也有反馈信号送回到CCU,但是这两个信号不参与FIVA的控制逻辑。
然而,一旦高压油泵的反馈信号和FIVA 的反馈信号出现下面的4种不正常情况时,CCU会自动把排气阀打开(安全模式):1: FIVA 的反馈信号不在4-20mA范围之内;2: FIVA给出喷油反馈信号的时候曲轴位置不在上死点附近;3: FIVA反馈信号的变化频率过快;4: 高压油泵的反馈信号指示高压油泵在压缩过程有喷油动作;同时,如果排气阀的位置反馈信号不正常,主机会自动降速,这里是不正常包括了反馈探头坏掉,排气阀开启关闭定时不正确,排气阀卡死不动作导致反馈探头监测不到反馈信号…等等。
几例船舶主机故障现象及其分析讲解
![几例船舶主机故障现象及其分析讲解](https://img.taocdn.com/s3/m/ddf2c80c4b73f242336c5fb1.png)
论文:船舶主机故障现象及分析目录目录 (1)内容提要 (2)1 主机增压器故障 (3)1. 1 故障现象 (3)1. 2 故障分析 (3)2 主机空冷器故障 (4)2. 1 故障现象 (4)2. 2 故障分析 (4)3主机排气高温故障 (4)3.1 排气温度过高故障现象 (5)3.2 排气温度过高故障原因分析 (5)3.2.1 整体排气高温 (5)3.2.2 单缸排气高温 (7)3.3 排气温度过高故障分析与处理 (7)3.3.1 整体排气高温故障分析与处理 (7)3.3.2 单缸排气高温故障分析与处理 (8)3.4 小节 (10)4主机扫气箱着火故障 (10)4.1故障介绍 (11)4.2 故障分析 (11)4.3 预防措施 (12)4.4 小节 (13)参考文献: (14)内容提要主机运行状态与船舶安全营运密切相关。
特别是在一些特殊海域、贸易繁忙的港口以及在狭窄的内河航道机动航行时,主机的运行装态往往对船舶安全起到至关重要的作用。
因此在船舶航行中,保持主机良好的运行状态,及时、有效的处理主机的一些突发故障,不仅可以避免重大海难事故的发生,而且也是轮机员良好素质和适任能力的体现。
本文介绍了船舶主机的几例故障现象,并对这些故障的原因进行了深刻分析,并提出了处理办法及注意事项,说明了有效的维护是船用设备可靠工作的必要保证。
本文的内容主要包括以下几个方面:1、主机增压器故障,描述了故障现象,并对故障进行了简单分析。
2、主机空冷器故障,描述了故障现象,并对故障进行了简单分析。
3、主机排气高温故障,描述了故障现象,进行了故障分析。
并根据不同情况分别分析了出现排气高温故障的原因,然后依据造成高温故障因素的不同给出了相应的处理办法。
4、主机扫气箱着火故障,描述了故障现象,进行了故障分析,并给出了预防措施。
关键词:船舶,主机,故障,分析船舶主机几例故障现象分析及处理办法1主机增压器故障1. 1 故障现象某集装箱轮,1996年中国制造,主机是WARTSILA机型,主机出厂不到一年,增压器的滑油经常变黑,公司安排专业人员拆检两次,更换油封和轴承,问题还是没有解决。
船舶电喷主机故障分析
![船舶电喷主机故障分析](https://img.taocdn.com/s3/m/26a6da7f3d1ec5da50e2524de518964bcf84d287.png)
船舶电喷主机故障分析船舶电喷主机故障分析船用电子燃油喷射发动机故障分析(1)船用电子燃油喷射发动机原理及日常管理分析()高压共轨燃油喷射系统不仅满足了柴油机的经济性,而且在实现低污染、低排放方面发挥了重要作用。
电控共轨柴油机的排放已达到相当理想的状态。
主要介绍目前市场上两种主要船用柴油机高压共轨系统的结构和组成,描述电控系统的控制策略,并介绍高压共轨系统在船用柴油机领域的应用实例和管理。
本文首先分析了电控燃油喷射船舶主机共轨系统的原理,列举并分析了电控燃油喷射船舶主机共轨系统可能出现的几种故障。
关键词:船用柴油机共轨原理分析1船用柴油机两个主机共轨工作原理分析船用柴油机主机[故障分析] 1.1瓦锡兰RT-flex共轨柴油机瓦锡兰RT-flex型号有两个共轨油轨:一个输送200巴润滑油,作为驱动排气阀、气缸启动阀和喷射控制装置的伺服油;另一种是1000巴重油作为柴油燃料。
曲轴通过三角凸轮驱动高压共轨燃油泵将燃油加压至1000巴,然后高压燃油流向高压共供油管(如下图1所示),然后通过容积喷射控制单元(ICU)喷射和控制燃油。
该控制单元由20兆帕伺服油驱动船舶电喷主机故障分析(2)电喷主机液压系统维护电喷主机液压系统维护1,a,利用系统内置的压力测量点,监控系统功能电动泵输出压力监控电动泵正常输出压力为175巴,当主机处于待机模式时可在MOP 上读取该压力,当主机处于待机状态时,也可以通过276位置检测点进行测量,此时可以观察到建立压力的时间,了解泵的工作情况压力可以通过阀310、311和312来调节,但是阀316需要在调节期间打开。
B.监控主机自带泵的输出压力主机自带泵的输出压力的正常值等于系统压力,可在MOP上读取或通过位置203检测点测量,以了解泵的工作状态C.系统压力监测: 系统压力的正常值大约等于系统压力的设定值。
该压力可在MOP 上读出或通过340位置检测点测量,以了解整个系统的压力情况2.使用系统内置的压力测量点监控系统的泄漏情况,并检查整个系统的泄漏情况。
电喷主机故障大全
![电喷主机故障大全](https://img.taocdn.com/s3/m/871b0f51c850ad02de8041d0.png)
电喷主机故障引起的思考上海远洋运输有限公司 陈勇康上海远洋海事培训中心 刘建军某集装箱船,由江苏新扬子江造船厂制造,主机型号为8K90ME-6C ,由韩国斗山船舶主机制造厂制造,功率为36560KW.作为智能化的主机,正全面取代传统的柴油机,但仍有缺点,以主机控制系统故障为例,进行分析,做到预防为主、提高柴油机使用时的安全性,确保船舶的安全。
1.故障现象某日船舶抵港备车、进行正倒车试验时,将车钟置正车启动时,主机三次启动失败报警,然后试一下倒车,主机启动正常,再试正车,所有都恢复正常。
此偶然情况没有引起轮机员足够重视。
又经过约半个月航行后,在锚地抛锚进行试车时,只听到有空气泄放的声音,但主机没有启动,换用倒车启动,也不能成功。
紧急下锚后,船长通知机舱尽快找出原因,避免在靠离码头时,再出现类似情况,给船舶带来巨大危险。
上图是ME 柴油机的控制图,所有机型几乎一样。
下面就分析系统的组成各阀的功用.118阀,手动缸头控制总阀 23号、单向选择阀 21号、空气瓶放残阀 1号、控制空气总阀 93号、启动电磁阀 94号、启动电磁阀 3号、排气阀控制空气手动阀 137号、排气阀单向止回阀 115号、盘车机连锁阀12号、主启动阀控制阀 26号、缸头启动电磁阀 92号、慢转电磁阀 68号阀、慢转控制阀1号阀:控制空气手动总阀,完车时关闭,可以将控制空气管路中的空气泄放。
平时要开启。
位置在3号阀下面3号阀:排气阀控制空气手动阀,平时常开,排气阀检修时,可以将排气阀控制空气管路中的空气泄放。
位置在4缸或5缸扫气箱道门附近。
21号阀:空气瓶手动泄放阀,目的是泄放空气瓶内的残水,在日常工作中要经常性打开手动泄放,保持系统干净,位置在7-8缸曲拐箱道门附近。
137号阀:排气阀单向止回阀,功能是保持排气阀空气弹簧的压力,位置在每个排气阀上。
115号阀:盘车机连锁阀,保证在盘车机没有脱开时,闭锁92、93、94 阀的控制空气,使得主机无法启动。
MANBW12K98ME-C电喷主机和它的七个典型故障分析处理
![MANBW12K98ME-C电喷主机和它的七个典型故障分析处理](https://img.taocdn.com/s3/m/47648d15df80d4d8d15abe23482fb4daa58d1d1a.png)
MANBW12K98ME-C电喷主机和它的七个典型故障分析处理从2007年8月开始,某公司从韩国陆续订购了4条1万籀的集装箱船,主机选用了HYUNDA-MANB及W12K98MEME-C无凸轮轴、全电喷的智能柴油机,其输出功率接近10万匹马力,技术含量较高。
称它是同类中的智能巨无霸一点也不夸张,它的一些管理、操作,维护理念与传统的带凸轮轴的MC机型有很大的区别,具体体现在它的计算机控系统以及伺服液压系统(SHS),本文重点就这两部分的日常维护与典型故障分析,与同行们一起交流分享。
ME概念MAN DIESELA/S公司把无凸轮轴、全电喷的智能柴油机称为ME 系列柴油机,ME柴油机与MC柴油机最大的区别是:前者使用计算机控制的伺服液压系统(SHS)取代了后者的凸轮轴单元,它是利用滑油作为动力传动的介质,由电磁阀控制各缸燃油升压器的定时、定量动作以及排气阀升压器、ALPHA汽缸油注油器的定时动作,从而完成燃油的定时、定量喷射,以及排气阀的打开和汽缸油的喷射,它类似于MC柴油机的凸轮通过液轮推动燃油高压油泵和排气阀伺服器动作,以及机械汽缸油注油器的泵油。
一、维护保养1.计算机控系统该系统主要由19个不同功能的控制箱,加上曲柄转角编码器、转速探头、压力探头、电磁主操作屏(MOP),以及机旁操纵控制箱,组成计算机控制系统。
另外,24V直流电源箱,直接为该系统提供稳定、可靠的电源。
每星期:通过试灯按钮,检查系统各个指示灯是否正常每一个月:检查、清洁各个控制箱,重点检查每一个插头是否连接牢固,接线是否松动,整个控制箱是否存在非正常的震动。
每三个月:检查曲柄转角编码器、转速探头的紧固是否可靠;转速探头的间隙是否正常(3-5mm),校验曲柄转角编码器A,B的输出是否正确,具体方法如下合上盘车机,按照主机正车方向盘车,当曲柄转角编码A的输出信号指示灯(在输出接线盒上)点亮时,査看飞轮刻度是否在0度的位置(1缸上死点),然后继续盘车,当输出信号指示灯由亮变暗时,再次查看飞轮刻度是否在180度的位置,同样的方法可以来校验曲柄转角编码器B的输出信号,只是它的起点在45度位置,如果输出信号有误差,可以按照说明书的要求进行调整转速探头的检査方法比较简单,在盘车时,通过四只探头上的发光两极管的亮、暗,即可判断是否能够正常工作在飞轮的前部,有一个成180度圆弧的触发环和一只探头,它是曲柄转角编码器A的辅助装置需要定期检查触发环是否紧固,探头的固定和间隙是否正常(1-2mm)每六个月打开曲柄转角编码器的罩壳,检查两只支承波纹管上的向心液珠轴承是否有足够的润滑脂,编码器的固定是否牢固,插头是否紧固。
船舶电动机常见故障及处理分析
![船舶电动机常见故障及处理分析](https://img.taocdn.com/s3/m/aae807a9710abb68a98271fe910ef12d2bf9a911.png)
一船舶电动机常见故障1.船舶电动机绕组接地故障这类故障出现的原因有四种:其一,只有船舶在正常运行时,电动机才有用武之地,船舶的工作地点是在水中,所以电动机的工作环境不可能一直保持干燥,另外水面上空气也是潮湿的,作用在电动机绕组上,会使该部分的绝缘层逐渐失去原来的作用。
其二,只要船舶运行,电动机就一直处于正常工作状态,没有停歇时间,所以电动机绕组会因为使用时间过长,导致绝缘层一直受高温影响,绝缘效果逐渐丧失,使用周期减短。
其三,电动机绕组和前后端盖之间保持一定的距离,绕组才会保持正常,但此距离被电动机二次组装时打破,绕组接地故障出现。
其四,绕组不出现接地故障的前提是绝缘层一直发挥正常的功能,所以当电机轴承损坏,不能对转子进行控制时,坚硬的转子直接作用在绝缘层上,使其不能保持原来的形态。
2.船舶电动机使用中出现过热或冒火主要原因有六种:其一,电动机的轴承处于正常的工作状态,定子与转子才会相安无事,两者之间应保持一定的安装间隙。
但如果轴承失常,这两者也会失控,会直接发生摩擦,热量产生。
其二,工作电压超过额定电压,铁心也不能保持正常温度。
其三,电机减压,输出功率减小,绕组过流,电动机被烧坏。
其四,电机三相不全。
其五,电机温度升高时,散热风扇失效。
其六、定子绕组和转子之间的距离为零。
3.船舶运行中电动机出现震动和噪声主要原因是:电动机和三相有关的电源箱不能保持原来的正常状态,电动机缺相运行。
在这样的情况下,转子会因为定转子之间产生的交变脉冲磁场停止运动。
这是因为该磁场均匀分解后的正反方向磁场产生的转矩,在正反方向上也是均匀的。
所以当为转子提供工作动力的合转矩为零时,转子不仅不能运行,还会发出噪声。
如果此时三相电源线再断掉一根,在额定负载的作用下,正向转矩超过反向,电机过流,相关部分会被烧坏。
4.单相电容启动电动机故障主要有两种,分别是:( 1) 电动机在接电条件下不能运行;( 2)运行后电机温度升高过快;前者出现原因是主副绕组线圈分别开路,或者电机过载。
BW电喷主机燃油喷射系统常见故障与管理要点
![BW电喷主机燃油喷射系统常见故障与管理要点](https://img.taocdn.com/s3/m/bb7d37d00408763231126edb6f1aff00bed570b9.png)
BW电喷主机燃油喷射系统常见故障与管理要点摘要:本文通过实船收集电喷主机燃油喷射系统故障,在分析故障产生原因的基础上,总结电喷主机燃油喷射系统日常管理要点。
关键词:电喷柴油机蓄压器MPC单元动力提供单元(HPS)液压控制单元(HCU)电喷柴油机具有动力性好,低污染、低油耗的优点,船东在主机选型方面也越多采用电喷柴油机,但是现阶段对于大多数轮机管理人员来说确是一种全新的机型,在管理过程中面临着不小的挑战和考验,电喷主机最大的改变就是主机的燃油系统。
去年下半年我司连续新接多条电喷主机新船,主机型号:MAN B&W 5S60ME-C7,额定功率8833KW,额定转速105rpm,常用功率7950KW,常用转速101.4rpm,我有幸借调到公司工作,在这其间对出厂投入营运的船舶电喷主机的使用情况进行了详细的跟踪,设备总体情况还比较稳定,但是在燃油喷射系统方面还是发生了一些故障,这里面虽有油品质量问题的原因,但更多的是由于管理经验不足对燃油系统设备维护保养不到位和控制燃油喷射软件参数设定值不是最佳值问题。
所有故障经MAN保修工程师指导和来船调整有关软件参数,以及主机厂家来船保修,更换部分备件之后设备恢复正常。
现在把发生的故障做一个归纳总结,与同行共勉,有不对之处敬请指正。
与sulzer共轨电喷机相比,B&W ME-C机型主机仍保留高压油泵和液压驱动排气阀,与MC-C机的区别在于用高压动力滑油替代凸轮轴传动机构提供喷射燃油和开启排气阀的动力;动力提供单元(Hydraulic Power Supply,缩写HPS),系用油泵将主机系统滑油升压至200 bar左右,称为动力油,动力油驱动燃油升压器液压活塞,燃油柱塞使燃油产生喷射高压,喷射定时和供油量由FIVA阀控制,燃油升压器只起到升压作用,没有出油阀和安全阀,结构简单。
电喷主机故障封缸运行的方法也很简单,操作方法是:在主机操作面板MOP 上,进入engine>chief limiters.将故障缸的负荷降为0,关闭该缸燃油进油阀就可以了,操作方便快捷。
船舶电喷主机故障分析
![船舶电喷主机故障分析](https://img.taocdn.com/s3/m/c7e248cd960590c69fc37645.png)
船舶电喷主机故障分析(一)船用电喷主机的原理及日常管理浅析船用电喷主机的原理及日常管理浅析摘要:随着船舶智能化的日益发展以及世界能源危机和环境污染的加重,为了节约能源、降低排放,提高柴油机燃烧工况,电控喷射技术得到了飞速的发展。
而高压共轨燃油喷射系统既对满足柴油机的经济性能,又对实现低污染、低排放发挥了重要作用,电控共轨柴油机的排放已达到相当理想的状态。
本文主要针对目前市场两大船用主机的船用柴油机高压共轨系统的结构及组成,就电子控制系统的控制策略进行了叙述以及介绍了高压共轨系统在船用柴油机领域的应用实例与管理。
本文先就电喷船用主机的电喷共轨原理进行了浅析,并列举了船用电喷柴油主机在使用过程中电喷共轨系统可能发生的几点故障,展开了分析。
关键词:船用柴油机电喷共轨原理分析1两大电喷主机的共轨工作原理分析【船舶电喷主机故障分析】1.1 Wartsila RT-flex共轨柴油机Wartsila RT-flex机型有两个公共油轨:一个输送的是200bar的滑油,它的作用是作为驱动排气阀、气缸起动阀和喷射控制装置的伺服油;另一个则是1000bar的作为柴油机燃料的重油,由曲轴通过三角凸轮带动高压共轨燃油泵把燃油加压到1000bar,然后由高压燃油管路流至高压公共供油管(如下图1中所示),再通过容积喷射控制单元(ICU),对燃油进行喷射控制,该控制单元由20Mpa的伺服油驱船舶电喷主机故障分析(二)电喷主机液压系统维护电喷主机液压系统维护1、A、利用系统中自带的压力测量点,监视系统功能电动泵输出压力监测电动泵正常的输出压力是175bar, 主机备车时这个压力可以在MOP上读出,也可以在主机备车时通过Pos.276检测点测出,此时能够观察建立压力时间,了解泵浦的工况。
该压力可以通过310、311、312阀进行调整,但调整时316阀要打开。
B、主机自带泵输出压力监测主机自带泵输出压力正常值等于系统压力,可以在MOP上读出,也可以通过Pos.203检测点测出,了解泵浦的工况。
船舶机械设备维修保养环节的常见故障与排除措施
![船舶机械设备维修保养环节的常见故障与排除措施](https://img.taocdn.com/s3/m/84d9cb4500f69e3143323968011ca300a7c3f643.png)
船舶机械设备维修保养环节的常见故障与排除措施船舶机械设备是船舶运输的重要组成部分,其维修保养工作非常关键。
在日常操作中,机械设备可能会出现各种各样的故障,如何快速准确诊断和排除故障不仅能保障船舶运输安全,还能延长机械设备的使用寿命。
现将船舶机械设备维修保养环节的常见故障与排除措施简要介绍如下:一、主机故障1.故障现象:主机启动时不能转动或转速异常可能原因:船舶电力系统故障、燃料油路堵塞、冷却系统故障等解决方法:检修电力系统、清理燃油系统、检查冷却水路等,找出故障原因并进行修理或更换相应零部件。
2.故障现象:主机滑缸漏气可能原因:气缸、活塞环磨损、缸盖密封损坏等解决方法:检查并更换磨损零部件、修补密封损坏处、重新安装气缸等。
3.故障现象:主机燃油泵故障1.故障现象:柴油发电机排气管冷却水温度过高可能原因:排气管内部沉积物增多、冷却水循环不畅等解决方法:清理排气管沉积物、检查冷却水路等。
可能原因:空气管路松动、喉管老化等解决方法:检查松动部位并紧固、更换老化喉管等。
可能原因:泵体磨损、泵轴弯曲等解决方法:更换泵体和泵轴等。
三、其它故障1.故障现象:系统压力异常可能原因:管路堵塞或泄漏、调节器故障等解决方法:清理堵塞或更换管路零部件、更换调节器等。
可能原因:电路短路或接触不良、电器设备故障等解决方法:检查电路和接触处,更换故障设备。
综上所述,船舶机械设备维修保养环节的常见故障包括主机故障、辅机故障和其它故障等,需要根据情况采取相应的排除措施。
在日常操作中,船舶工作人员需要注意设备使用情况,并定期进行维护保养和检查,确保船舶在海上航行期间能够保持稳定的运行状态。
船舶主机常见故障原因
![船舶主机常见故障原因](https://img.taocdn.com/s3/m/cb967f4bf68a6529647d27284b73f242336c31fc.png)
船舶主机常见故障原因船舶主机是船舶的动力装置,负责驱动船舶航行。
然而,在使用过程中,船舶主机可能会出现各种故障,影响船舶的正常运行。
本文将介绍船舶主机常见故障的原因。
1. 燃油供应故障:船舶主机燃油供应故障是主机故障的常见原因之一。
可能是燃油泵故障,导致燃油供应不足或中断。
另外,燃油过滤器堵塞也会导致燃油供应不畅,影响主机的正常运行。
2. 冷却系统故障:船舶主机的冷却系统故障也是常见的故障原因。
冷却水泵故障或冷却水管堵塞会导致冷却系统失效,主机过热,进而造成主机故障。
3. 润滑系统故障:船舶主机的润滑系统故障也是常见原因之一。
润滑油泵故障或润滑系统管道堵塞会导致主轴承等关键部件润滑不良,增加磨损和摩擦,进而引发主机故障。
4. 点火系统故障:船舶主机的点火系统故障也会导致主机无法正常运行。
点火线圈故障、点火塞磨损或点火时机调整不准确等问题都可能引发点火系统故障。
5. 压缩系统故障:船舶主机的压缩系统故障也是常见的原因之一。
可能是气缸密封不良,导致压缩气体泄漏;或者是活塞环磨损,导致气缸压力下降。
这些问题都会导致主机性能下降,甚至无法正常工作。
6. 传动系统故障:船舶主机的传动系统故障也会导致主机无法正常运行。
可能是传动带断裂、传动轴断裂或齿轮损坏等问题,这些故障都会导致主机传动不畅或传动力不足。
7. 电气系统故障:船舶主机的电气系统故障也是主机故障的常见原因之一。
可能是电缆断路、电机绕组短路或电气控制器故障等问题,这些故障会导致主机电气系统失效,无法正常工作。
8. 过载运行:船舶主机长时间高负荷运行也会导致故障。
过载运行会使主机各部件的工作状态长时间处于高负荷状态,容易引发故障。
船舶主机常见故障的原因包括燃油供应故障、冷却系统故障、润滑系统故障、点火系统故障、压缩系统故障、传动系统故障、电气系统故障和过载运行等。
船舶运营者应定期检查维护主机,及时排除故障,确保船舶主机的正常运行。
船舶电喷机的常见故障
![船舶电喷机的常见故障](https://img.taocdn.com/s3/m/95644262cec789eb172ded630b1c59eef8c79afc.png)
船舶电喷机的常见故障船舶电喷机是船舶动力系统中的重要组成部分,负责提供动力和推进力。
然而,由于长期使用和各种外部因素的影响,船舶电喷机常常会遭遇各种故障。
下面将介绍一些常见的船舶电喷机故障,以及如何解决这些问题。
可能会出现电喷机无法启动的故障。
这可能是由于电源故障、电缆连接问题或电喷机控制系统故障引起的。
解决这个问题的方法是首先检查电源是否正常,然后检查电缆连接是否松动或损坏。
如果以上两个方面都没有问题,那么可能是电喷机控制系统出现了故障,需要及时联系专业技术人员进行维修。
船舶电喷机可能会出现漏油的情况。
这可能是由于油封老化、密封件磨损或油管松动等原因引起的。
解决这个问题的方法是更换油封或密封件,并检查油管连接是否牢固。
如果问题依然存在,可能需要对电喷机进行更彻底的检修。
船舶电喷机还可能会出现功率不足的故障。
这可能是由于燃油供应不足、喷油嘴堵塞或燃烧室积碳等原因引起的。
解决这个问题的方法是检查燃油供应系统,确保燃油供应充足,并清洁或更换堵塞的喷油嘴。
如果问题仍然存在,可能需要对燃烧室进行清洁或维修。
船舶电喷机还可能会遭遇传动系统故障。
这可能是由于传动带损坏、齿轮磨损或传动轴断裂等原因引起的。
解决这个问题的方法是更换损坏的传动带或齿轮,并对传动轴进行检查,确保其完整性。
如果传动系统故障严重,可能需要更换整个传动系统。
船舶电喷机的故障可能涉及启动问题、漏油问题、功率不足问题和传动系统故障等。
解决这些故障需要仔细检查和维修,以确保船舶正常运行。
船舶电喷机是船舶的重要组成部分,只有保持其正常运行,才能确保船舶的安全和有效运营。
一次船用电喷主机爆缸问题的分析和处理
![一次船用电喷主机爆缸问题的分析和处理](https://img.taocdn.com/s3/m/4a6ceb5167ec102de2bd8990.png)
2018.4 CHINA SHIP SURVEY 中国船检67一次船用电喷主机爆缸问题的分析和处理我们考虑到,低速主机MOP系统除对FIVA阀控制系统基本情况进行实时监控外,在系统发生错误时,对错误发生时间的前后总计5秒内所有监控点的电信号形成HCU Events 曲线图予以记录,通过此曲线图,可全面了解当前故障情况下,各个部件前后共计5秒时间段内的具体位置,供维护人员进行分析参考。
将一个完整冲程曲线图放大,可以精确地反映出CCU发出控制信号后,FIVA阀、喷油泵柱塞、排气阀三者对于控制信号的反应情况,主机自动降速,手动控制主机停车。
于是,我们再次查找原因,根据两次现象初步分析,主机服务商判断可能是4缸CCU处理系统出现问题,用备件对4缸CCU进行更换。
重新开始试验后,在主机低速试车及CSR 等工况下,主机正常运行。
在主机达到额定转速工况后约20分钟,系统再次发出同样的报警。
为防止再次出现爆缸等现象,造成船舶更大危险,试验终止,等待拖轮补充备件。
接下来,继续分析、查找原因。
FIVA 阀是电喷主机中最重要的部件之一,其运行是否安全稳定,对船舶的安全航行至关重要。
有一次,本人在对某船试航检验过程中遇到的电喷主机爆缸问题,至今记忆犹新,在此,把当时的事件还原,希望能给予业界以思考和启示。
当时,我在对某船进行试航主机耐久试验时,在主机达到额定转速工况后约20分钟,系统发出成组报警:Group :Illegal ELFI/FIVA Position (CCU4) (Slowdown),引发主机自动降速,增压器喘振,遂手动控制主机停车。
随后,我们进行初步查找和排查原因,主机服务商对4缸CCU 进行循环测试,4缸排气阀反馈信号显示排气阀没有关闭,各方初步认为可能是4缸FIVA 阀卡滞故障。
由于试航时检测条件相对较差,因此各方商议决定直接用备件对4缸FIVA 阀总成进行更换。
更换完成重新开始试验,在主机低速试车及CSR等工况下,主机正常运行。
船舶主机推进控制系统的故障分析
![船舶主机推进控制系统的故障分析](https://img.taocdn.com/s3/m/7259fe2215791711cc7931b765ce05087632752e.png)
船舶主机推进控制系统的故障分析船舶主机推进控制系统是指用来控制船舶主机和推进器的系统,保证船只航行的安全和稳定。
由于船舶的复杂性和恶劣的海洋环境,这种控制系统可能会出现各种各样的故障。
下面将对船舶主机推进控制系统的故障进行分析。
1.传感器故障船舶主机推进控制系统中传感器是起到采集和传递信息的重要组成部分,如果传感器出现问题就会影响整个控制系统的正常运行。
例如,温度传感器损坏或浸泡在油中,导致反馈的信号不准确,船员会错误地认为发动机温度正常,但实际上发动机温度已经升高。
这种情况下,船员应及时检查传感器,并更换出故障的传感器。
2.操作台故障控制台是控制系统中的核心部件之一,其上的各种按钮、开关、显示屏都是操作者进行控制的重要场所。
如果操作台故障,就可能导致船员无法对发动机进行实时监控和控制。
例如,显示屏出现故障或短路,操作员可能无法读取关键的运行数据,导致运行控制不准确。
在这种情况下,船员应及时检查和维修控制台。
3.调速器故障调速器是控制发动机转速的重要设备。
如果调速器故障,就会影响发动机的运转和船舶的行驶速度。
例如,调速器的控制杆损坏或杆座磨损严重,导致发动机转速无法控制,可能会导致推进器突然停止运转,危及船舶安全。
在这种情况下,船员应立即停止发动机,检查调速器,并更换任何有问题的设备。
4.电气故障船舶主机推进控制系统中的电气故障是比较常见的问题之一。
电气故障可能包括电线受损、电缆短路、电磁干扰等。
电气故障可能会导致控制系统无法正常运转,例如出现异响、电路过载等情况。
在这种情况下,船员应及时检查电气设备及其接线,并确定原因,然后修复故障。
总的来说,船舶主机推进控制系统的故障可能会引发许多不同的问题,因此船员需要对各种类型的故障加以预防和解决。
及时检查和维修控制系统中的各种组成部分,保证控制系统正常运行是非常重要的。
船舶电喷主机故障分析
![船舶电喷主机故障分析](https://img.taocdn.com/s3/m/3db6e0491fb91a37f111f18583d049649a660e4b.png)
船舶电喷主机故障分析通过燃油喷射控制单元 ICU 和排气阀控制单元 VCU 的共轨阀 Rail Vavle来进行控制的。
MAN-B&W柴油机排气阀共轨系统的基本原理基本如图4中所示,其结构形式与该机型燃油共轨大同小异, 电控电磁阀 NC 控制动力滑油, 其启闭是根据气缸燃烧状况由微处理器控制程序系统ECSP 发出信号,分别控制各缸排气阀的开启和关闭。
这种采用电子控制排气阀启闭的方式, 同样不仅能够使排气阀以相当于均匀速度的敲击排气阀阀座, 减少了气阀关闭时的摩擦声与噪音,而且也可以有效地降低排放,控制主机排烟温度。
2 船用电控共轨柴油机常见故障相对于传统的凸轮轴式柴油机,电喷柴油机在使用方面有诸如上述的几种优点。
但是, 船用电喷主机的高度自动化以及智能化的特点也是一把双刃剑, 它对船舶使用者管理能力也相应的提高了要求。
船用电控共轨柴油机集成化的燃油以及滑油高压共轨和控制柴油机燃油喷射, 汽缸油注入以及排气阀启闭的电子系统, 由于柴油机的高温高压工作环境, 因此常见故障也是较老式机型多,同时也需要使用人员有较高的自动化故障分析能力。
2.1 高压管件以及共轨管发生漏泄一般在主机以常规负荷正常运行时时,燃油共轨单元系统油压通常是维持在1000bar 左右,伺服油共轨单元因为他的控制特性,所以也基本保持在 200bar ,较高的共轨管压力导致主机在长时间的使用后,由于燃油的高温高压特性, 会产生泄漏。
根据使用经验, 我们会发现,经常容易出现漏泄的地方如下。
(1)伺服油泵的轴封;伺服油泵需要向主机提供较高的伺服油压, 保证燃油燃油正常喷射及排气阀按正时启闭, 伺服油泵内径向压力较大, 在长时间运行磨损后, 轴封处会产生泄漏, 发生泄漏时, 需轮机管理人员及时更换轴封, 保证主机正常伺服油压。
(2) 高压油管, 管路合拢处, 焊缝以及弯头薄弱处; 高压管路在合拢处极易发生泄漏。
由于油管内均为高压流体, 长时间冲刷会导致焊接处和弯头薄弱处产生砂眼和裂缝, 导致管路内流体大量泄漏。
船舶电喷主机故障分析报告
![船舶电喷主机故障分析报告](https://img.taocdn.com/s3/m/f094338c4b73f242326c5f88.png)
船舶电喷主机故障分析(一)船用电喷主机的原理及日常管理浅析船用电喷主机的原理及日常管理浅析摘要:随着船舶智能化的日益发展以及世界能源危机和环境污染的加重,为了节约能源、降低排放,提高柴油机燃烧工况,电控喷射技术得到了飞速的发展。
而高压共轨燃油喷射系统既对满足柴油机的经济性能,又对实现低污染、低排放发挥了重要作用,电控共轨柴油机的排放已达到相当理想的状态。
本文主要针对目前市场两大船用主机的船用柴油机高压共轨系统的结构及组成,就电子控制系统的控制策略进行了叙述以及介绍了高压共轨系统在船用柴油机领域的应用实例与管理。
本文先就电喷船用主机的电喷共轨原理进行了浅析,并列举了船用电喷柴油主机在使用过程中电喷共轨系统可能发生的几点故障,展开了分析。
关键词:船用柴油机电喷共轨原理分析1两大电喷主机的共轨工作原理分析【船舶电喷主机故障分析】1.1 Wartsila RT-flex共轨柴油机Wartsila RT-flex机型有两个公共油轨:一个输送的是200bar的滑油,它的作用是作为驱动排气阀、气缸起动阀和喷射控制装置的伺服油;另一个则是1000bar的作为柴油机燃料的重油,由曲轴通过三角凸轮带动高压共轨燃油泵把燃油加压到1000bar,然后由高压燃油管路流至高压公共供油管(如下图1中所示),再通过容积喷射控制单元(ICU),对燃油进行喷射控制,该控制单元由20Mpa的伺服油驱船舶电喷主机故障分析(二)电喷主机液压系统维护电喷主机液压系统维护1、A、利用系统中自带的压力测量点,监视系统功能电动泵输出压力监测电动泵正常的输出压力是175bar, 主机备车时这个压力可以在MOP上读出,也可以在主机备车时通过Pos.276检测点测出,此时能够观察建立压力时间,了解泵浦的工况。
该压力可以通过310、311、312阀进行调整,但调整时316阀要打开。
B、主机自带泵输出压力监测主机自带泵输出压力正常值等于系统压力,可以在MOP上读出,也可以通过Pos.203检测点测出,了解泵浦的工况。
探讨船舶检验中常见船舶机械故障及处理措施
![探讨船舶检验中常见船舶机械故障及处理措施](https://img.taocdn.com/s3/m/cd18d16d4a73f242336c1eb91a37f111f1850dfa.png)
探讨船舶检验中常见船舶机械故障及处理措施船舶作为海上运输工具,其机械设备的运行情况直接关系到船舶的安全性和航行的顺利进行。
船舶机械的检验显得尤为重要,而在船舶检验中常见的船舶机械故障也是需要引起重视的问题。
本文将探讨船舶检验中常见的船舶机械故障及其处理措施。
一、主机故障1. 故障表现:主机因长期使用和磨损而出现机械故障,表现为功率下降、振动增大、噪音异常等情况。
2. 处理措施:对于主机的故障,首先需要进行全面的检查,找出故障的具体原因。
在排除机械故障的要做好主机的维护保养工作,确保其正常运行。
二、船用发电机故障1. 故障表现:船用发电机是船舶上重要的电力设备,常见的故障包括电磁线圈短路、绝缘破损、轴承损坏等。
2. 处理措施:及时对船用发电机进行维护和检修,保持其正常运行。
定期进行绝缘测试和轴承磨损检查,发现问题及时处理。
三、船舶空调故障1. 故障表现:船舶在航行过程中,由于海水腐蚀、设备老化等原因,船舶空调易出现故障,包括制冷效果不佳、系统漏水、噪音过大等问题。
2. 处理措施:对船舶空调系统进行定期的清洁和维护工作,保持其清洁、畅通,避免发生故障。
发现问题及时检修,更换老化部件。
四、船舶轴封泄漏1. 故障表现:船舶轴封是防止海水渗入船舱的重要设备,一旦发生泄漏会对船舶造成严重危害。
五、船舶货舱门故障1. 故障表现:船舶货舱门是防止海水侵入货舱的重要设备,常见故障包括门封损坏、密封失效等问题。
六、其他机械故障除上述常见的船舶机械故障外,船舶还可能出现其他机械故障,如船舶油水分离器故障、船用压缩机故障等。
对于这些故障,需要及时发现并进行处理,确保船舶设备的正常运行。
在处理船舶机械故障时,首先要做好预防工作,对船舶设备进行定期的检查和维护,确保其在良好的状态下运行。
在发现故障时,要及时进行处理,不能拖延。
在处理过程中,要根据不同的故障情况采取相应的措施,确保船舶机械故障得到有效的解决。
船舶机械故障在船舶检验中是一个重要的问题,需要引起足够的重视。
船舶主机推进控制系统的故障分析
![船舶主机推进控制系统的故障分析](https://img.taocdn.com/s3/m/6963ba1a182e453610661ed9ad51f01dc281572d.png)
船舶主机推进控制系统的故障分析船舶主机推进控制系统是用于控制船舶主机推进力的重要设备,它的故障可能会导致船舶无法正常行驶。
对于船舶主机推进控制系统的故障进行准确的分析是维修人员解决问题的关键。
我们需要对整个控制系统的组成进行了解。
船舶主机推进控制系统由控制台、传感器、执行器和控制器等部件组成。
控制台是人机交互界面,船员通过它来控制推进力的大小和方向。
传感器用于实时监测主机的运行状态,如转速、温度等参数。
执行器则负责将控制信号转化为实际的推进力。
控制器是整个系统的核心,负责接收和处理各种信号,并输出相应的控制信号。
1. 确定故障现象:首先需要准确描述故障的现象和表现,如主机无法启动、推进力不稳定等。
通过详细的现象描述可以帮助维修人员更好地定位问题。
2. 检查传感器:传感器是控制系统中的重要组成部分,负责实时监测主机的运行状态。
如果传感器故障,会导致控制系统无法正确感知主机的状态信息。
需要检查传感器的连接是否正常,信号是否稳定。
也可以通过替换传感器或使用测试仪器进行测试,以确定传感器是否存在故障。
4. 检查控制器:控制器是整个系统的核心,负责接收和处理各种信号,并输出相应的控制信号。
如果控制器故障,可能导致信号处理或控制输出异常,影响船舶的推进力。
需要检查控制器的电源供应是否稳定,连接是否正常。
如果有条件,也可以通过检查控制器的软硬件参数,以确定控制器是否存在故障。
5. 排查其他可能的问题:如果以上步骤都没有找到明显的故障原因,可以进一步检查其他可能的问题,如电路连接是否松动、电子元件是否老化等。
可以借助专业的测试仪器和设备,进行更深入的故障排查。
船舶主机推进控制系统的故障分析需要维修人员具备扎实的电气知识和相关设备的使用技能。
通过逐步排查和测试,可以准确地确定故障原因,并采取相应的修复措施,以确保船舶主机推进控制系统的正常运行。
船舶主机常见故障的诊断技术分析
![船舶主机常见故障的诊断技术分析](https://img.taocdn.com/s3/m/2b420fb1783e0912a3162a45.png)
船舶主机常见故障的诊断技术分析为快速查明船舶主机故障问题,应当对相关的诊断技术进行合理运用。
文章以抚仙湖中的某船舶作为研究对象,针对其常见故障问题,设计开发一款诊断系统,期望能够为船舶主机故障的快速处理提供帮助。
标签:船舶;主机;故障;诊断主机作为船舶的动力装置,其重要性不言而喻,一旦出现故障,会对船舶的正常运行造成影响。
为在最短的时间内找出故障原因,应当对诊断技术进行合理运用。
借此,下面就船舶主机常见故障的诊断技术展开分析探讨。
1船舶主机故障诊断机理故障是一种现象,可将之简单地理解为非正常状态,如果将船舶主机视作为一个系统,那么当这个系统的运行与正常状态发生偏离时,便可判断系统出现故障问题。
伴随着故障的出现,船舶主机中的某个或是某些功能将会随之失效。
通常情况下,所有故障的发生都有特定的原因,找出这个诱发故障原因的过程,即故障诊断,是故障维修中不可或缺的关键技术之一。
在船舶领域中,主机故障诊断是业内专家学者研究的重点内容,通过不断研究,在诊断机理与方法等方面均取得显著的成果,业内对于船舶主机的故障诊断过程也达成共识,具体如图1所示。
船舶主机由多个部件组合而成,从整体结构上看具有一定的复杂性,基于这一前提,想要对船舶主机运行状态进行全面监测难度非常大,正因如此,使得船舶主机故障诊断的研究主要集中在如下几个方面:活塞气缸、配气系统以及燃油喷射系统。
2船舶主机常见故障的诊断技术在对船舶主机的一些常见故障问题诊断时,为在确保诊断结果准确的基础上,提高诊断效率,可对相应的故障诊断系统进行应用。
下面以抚仙湖中的某船舶作为研究对象,该船舶设计持水量为20.4t,服务航速为9.72kn,最大载客量为250人,1台主机,型号为6135ACaB3柴油机。
该船舶主机的柴油机系统故障率相对较高,约为45%左右。
下面针对柴油机设计开发的一套状态监测与故障诊断系统。
2.1系统的设计思路为对船舶主机的故障进行快速诊断,需要对主机的运行状态进行实时监测,基于这一前提对诊断系统进行设计开发。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
船舶电喷主机故障分析船舶电喷主机故障分析(一)船用电喷主机的原理及日常管理浅析船用电喷主机的原理及日常管理浅析摘要:随着船舶智能化的日益发展以及世界能源危机和环境污染的加重,为了节约能源、降低排放,提高柴油机燃烧工况,电控喷射技术得到了飞速的发展。
而高压共轨燃油喷射系统既对满足柴油机的经济性能,又对实现低污染、低排放发挥了重要作用,电控共轨柴油机的排放已达到相当理想的状态。
本文主要针对目前市场两大船用主机的船用柴油机高压共轨系统的结构及组成,就电子控制系统的控制策略进行了叙述以及介绍了高压共轨系统在船用柴油机领域的应用实例与管理。
本文先就电喷船用主机的电喷共轨原理进行了浅析,并列举了船用电喷柴油主机在使用过程中电喷共轨系统可能发生的几点故障,展开了分析。
关键词:船用柴油机电喷共轨原理分析1两大电喷主机的共轨工作原理分析【船舶电喷主机故障分析】1.1 Wartsila RT-flex共轨柴油机观察MOP上的双壁管压力,如果压力明显上升,表明双壁管有泄漏。
如何确定具体的泄漏位置呢?主机停止工作,起动电动泵,关闭1缸和7缸的430阀,打开1~7缸的431阀。
通过Pos.332检测点测量压力双壁管中的压力,待压力泄放光,关闭1~7缸的431阀,开启1缸和7缸的430阀,通过Pos.332检测点测量压力双壁管中的压力,如果压力持续上升,表明漏的部位在1~7缸之间,然后用排除法,最终确定具体的泄漏位置。
同理,也可查出6~12缸双壁管的泄漏部位。
4、更换FIVA阀【船舶电喷主机故障分析】主机停止工作,停主滑油泵、电动泵放手动关闭420阀,打开421阀通过Pos.425检测点测量系统压力待压力泄放完,就可拆装FIVA阀【船舶电喷主机故障分析】更换工作完成后,复位各阀,但开启420阀必须慢慢A、B、C、D、E、进行5、上述工作基本上都要求主机停车、停泵进行,这主要是出于安全考虑。
虽然说明书上讲,在主机正常运行时,也可以进行FIVA更换、系统检漏等工作,但服务工程师要求最好是在主机停止运转时进行。
6、日常巡回检查时,ME主机液压系统主要是观察其振动和泄漏情况,定期收紧HCU的固紧螺丝;加强主机滑油的分离,认真分析动力油自动清洗滤器的工况是否良好。
船舶电喷主机故障分析(三)船用电喷主机的原理及日常管理浅析摘要:随着船舶智能化的日益发展以及世界能源危机和环境污染的加重,为了节约能源、降低排放,提高柴油机燃烧工况,电控喷射技术得到了飞速的发展。
而高压共轨燃油喷射系统既对满足柴油机的经济性能,又对实现低污染、低排放发挥了重要作用,电控共轨柴油机的排放已达到相当理想的状态。
本文主要针对目前市场两大船用主机的船用柴油机高压共轨系统的结构及组成,就电子控制系统的控制策略进行了叙述以及介绍了高压共轨系统在船用柴油机领域的应用实例与管理。
本文先就电喷船用主机的电喷共轨原理进行了浅析,并列举了船用电喷柴油主机在使用过程中电喷共轨系统可能发生的几点故障,展开了分析。
关键词:船用柴油机电喷共轨原理分析中图分类号:U664 文献标识码:A 文章编号:1672-3791(2014)04(c)-0111-031 两大电喷主机的共轨工作原理分析1.1 Wartsila RT-flex共轨柴油机Wartsila RT-flex机型有两个公共油轨:一个输送的是200bar的滑油,它的作用是作为驱动排气阀、气缸起动阀和喷射控制装置的伺服油;另一个则是1000bar的作为柴油机燃料的重油,由曲轴通过三角凸轮带动高压共轨燃油泵把燃油加压到1000bar,然后由高压燃油管路流至高压公共供油管(如下图1中所示),再通过容积喷射控制单元(ICU),对燃油进行喷射控制,该控制单元由20 MPa的伺服油驱动,伺服油的触发信号来自于WECS-9520的气缸控制单元,气缸控制单元通过曲轴角度传感器,测出曲轴的位置和负荷,再进行判断和计算以选择最佳的时刻进行燃油喷射。
轮机员还能够通过主机的反馈信息,同时利用WECS的辅助单元,对FQS和VIT进行重新设定。
WECS-9520也可以按照预先设定的曲线,对不同负荷下的燃油喷射量以及喷射时间进行自动控制,RT-flex机型每个气缸有3个喷油阀,当柴油机在低负荷运行时,WECS-9520控制系统可以关闭其中的1或2个喷油器来减少喷油量,进而达到节省燃油和减少排放的目的,同时还能保持良好的低负荷运行特性。
排气阀液压驱动系统的工作原理,与燃油共轨工作原理大体相近,只是驱动方式由轴带三角凸轮变为无需换向操作的丹尼克斯变量泵控制(既伺服油泵)。
(如图2所示)。
该系统的工作原理是高压伺服油泵将液压油压入液压总管内,然后WECS-9520发出信号,控制共轨阀(Rail vavle)通过液压执行器来驱动排气阀。
图2中的瓦锡兰FLEX柴油机的电控液压排气装置相对于机械(凸轮轴式)的优点是:(1)各个气缸的排气阀都能够独立打开和关闭,所以当当主机在部分负荷时,WECS-9520能自动依次关闭柴油机的部分气缸,这样可以很大程度上的降低能耗;(2)由于该系统是由软件控制的,各缸喷油量由共轨阀得电时间长短控制,这样一来,每缸燃烧工况会交以往凸轮轴式柴油机改善很多,气阀磨损均匀细腻,在降低排放上有很大的意义。
1.2 MAN-B&W共轨柴油机相对于瓦锡兰FLEX电喷柴油机,MAN-B&W柴油机燃油电喷系统泵的控制如下图3所示。
该控制系统在缸头平台每缸燃油侧均设置了新型的高压油泵,油泵的柱塞不再由凸轮轴驱动,而是清洁度较高经过增压的的主滑油驱动,它通过顶动高压油泵内部活塞来带动柱塞上下运动。
主滑油来自于柴油机的滑油系统,区别于MAN B&W MC机型的是,主滑油除了润滑运动部件和冷却高温部件外,即去往主轴承十字头轴承曲柄销轴承的润滑的和活塞头的冷却;还需经过主机自带的自清功能的细滤器,经过过滤后,在柴油机自带的增压泵增压下,将这路主滑油加压到20 MPa,再到各缸高压油泵的两个大的储存器内,高压滑油系统通常需要保持恒压,保证压力波动较小,所以各高压油泵均配置了2个充氮蓄能器。
各缸高压油泵的燃油喷射,是通过电控阀NC快速控制高压滑油的进出来驱动活塞快速上下运动,带动高压油泵柱塞瞬间增压,让油压升至产生高压(75~120 MPa),最后经过喷油器喷射雾化。
电控电磁阀NC是由微处理器控制程序系统ECSP,根据柴油机状况分析系统ECA和控制操作系统OMCP的综合信息发出指令而动作,其燃油共轨是指驱动各缸高压油泵的动力滑油来自共轨管中(即下图3中的蓄压器),而Wartsila RT-flex的燃油共轨则是通过燃油喷射控制单元ICU和排气阀控制单元VCU的共轨阀Rail Vavle来进行控制的。
MAN-B&W柴油机排气阀共轨系统的基本原理基本如图4中所示,其结构形式与该机型燃油共轨大同小异,电控电磁阀NC控制动力滑油,其启闭是根据气缸燃烧状况由微处理器控制程序系统ECSP发出信号,分别控制各缸排气阀的开启和关闭。
这种采用电子控制排气阀启闭的方式,同样不仅能够使排气阀以相当于均匀速度的敲击排气阀阀座,减少了气阀关闭时的摩擦声与噪音,而且也可以有效地降低排放,控制主机排烟温度。
2 船用电控共轨柴油机常见故障相对于传统的凸轮轴式柴油机,电喷柴油机在使用方面有诸如上述的几种优点。
但是,船用电喷主机的高度自动化以及智能化的特点也是一把双刃剑,它对船舶使用者管理能力也相应的提高了要求。
船用电控共轨柴油机集成化的燃油以及滑油高压共轨和控制柴油机燃油喷射,汽缸油注入以及排气阀启闭的电子系统,由于柴油机的高温高压工作环境,因此常见故障也是较老式机型多,同时也需要使用人员有较高的自动化故障分析能力。
2.1 高压管件以及共轨管发生漏泄一般在主机以常规负荷正常运行时时,燃油共轨单元系统油压通常是维持在1000bar左右,伺服油共轨单元因为他的控制特性,所以也基本保持在200bar,较高的共轨管压力导致主机在长时间的使用后,由于燃油的高温高压特性,会产生泄漏。
根据使用经验,我们会发现,经常容易出现漏泄的地方如下。
(1)伺服油泵的轴封;伺服油泵需要向主机提供较高的伺服油压,保证燃油燃油正常喷射及排气阀按正时启闭,伺服油泵内径向压力较大,在长时间运行磨损后,轴封处会产生泄漏,发生泄漏时,需轮机管理人员及时更换轴封,保证主机正常伺服油压。
(2)高压油管,管路合拢处,焊缝以及弯头薄弱处;高压管路在合拢处极易发生泄漏。
由于油管内均为高压流体,长时间冲刷会导致焊接处和弯头薄弱处产生砂眼和裂缝,导致管路内流体大量泄漏。
主机运行时,振动现象一直都有,在管路合拢处如果密封面出现未完全贴合的状况(一般由于密封面安装不好或主机振动导致),也会产生大量的泄漏。
(3)阀件的密封处,包括活动部件阀杆密封等。
电喷主机的NC阀或RAIL VAVLE,由于长时间高频率的快速被触发,阀块密封处O型圈极易损坏,这时轮机管理人员需经常检查各阀块,一旦发生泄漏,马上更换密封圈。
2.2 电子控制系统故障共轨的油压、高压燃油喷射、排气阀启闭正时、气缸油注入、启动和换向等操作均由原始的凸轮轴或VIT控制改变为现在的电子控制系统控制。
而电子控制系统由控制单元模块、信息采集传感器以及电磁阀等构成。
(1)信息采集传感器故障:主机振动会引起各种传感器的接线或者插头松动;探头脏污,会引起传感器检测精度,造成控制系统误动作。
在电喷柴油机中,曲轴转角传感器相当于人类大脑的神经元,整个柴油机燃油喷射,汽缸油喷油,排气阀启闭等等各项动作,均由曲轴角度传感器将角度信号发送给控制单元,一般安装在主机自由端,一般每机会配2个各为主备,一旦发生故障,主机将会:“死机”;燃油油量传感器,常见的故障一般包括测量柱塞运动受阻或咬死,主要原因是燃油杂质多、粘度大,测量油缸的内外温差大,油温过高导致积碳而污染传感器等。
在发生故障时可拆出清洁。
为避免此类事故,可将燃油分油机长时间溢流运行,保证燃油清洁度。
(2)电磁阀故障(燃油电磁阀和排气电磁阀)。
故障表现为动作频率高、过电流(可能烧毁电磁阀)等。
原因可能有:工作环境振动剧烈,导致电磁阀接头松动、复位弹簧断裂等,烧坏线圈;燃油杂质多,加剧电磁阀磨损,甚至卡死阀芯。
(3)气缸喷油控制单元的燃油油量传感器故障。
由于燃油含渣质较多,或含水量过大,燃油油量传感器极易发生柱塞咬死现象;控制元件若发生故障则会造成测量柱塞无法正常运动,无法采集油量信号;同样的,如果燃油油量传感器复位弹簧失效也会引起测量柱塞不返回,导致控制单元没有油量信号反馈。
(4)排气阀位置传感器故障。
各个气缸排气阀处均有两个排气阀位置传感器,检测排气阀动作时间和位置,监测排气阀启闭状态。