第3章 MATLAB数值计算-习题 答案
matlab课后习题及答案详解
第1章 MATLAB概论1.1与其他计算机语言相比较,MATLAB语言突出的特点是什么?MATLAB具有功能强大、使用方便、输入简捷、库函数丰富、开放性强等特点。
1.2 MATLAB系统由那些部分组成?MATLAB系统主要由开发环境、MATLAB数学函数库、MATLAB语言、图形功能和应用程序接口五个部分组成。
1.3 安装MATLAB时,在选择组件窗口中哪些部分必须勾选,没有勾选的部分以后如何补安装?在安装MATLAB时,安装内容由选择组件窗口中个复选框是否被勾选来决定,可以根据自己的需要选择安装内容,但基本平台(即MATLAB选项)必须安装。
第一次安装没有选择的内容在补安装时只需按照安装的过程进行,只是在选择组件时只勾选要补装的组件或工具箱即可。
1.4 MATLAB操作桌面有几个窗口?如何使某个窗口脱离桌面成为独立窗口?又如何将脱离出去的窗口重新放置到桌面上?在MATLAB操作桌面上有五个窗口,在每个窗口的右上角有两个小按钮,一个是关闭窗口的Close按钮,一个是可以使窗口成为独立窗口的Undock按钮,点击Undock按钮就可以使该窗口脱离桌面成为独立窗口,在独立窗口的view菜单中选择Dock ……菜单项就可以将独立的窗口重新防止的桌面上。
1.5 如何启动M文件编辑/调试器?在操作桌面上选择“建立新文件”或“打开文件”操作时,M文件编辑/调试器将被启动。
在命令窗口中键入edit命令时也可以启动M文件编辑/调试器。
1.6 存储在工作空间中的数组能编辑吗?如何操作?存储在工作空间的数组可以通过数组编辑器进行编辑:在工作空间浏览器中双击要编辑的数组名打开数组编辑器,再选中要修改的数据单元,输入修改内容即可。
1.7 命令历史窗口除了可以观察前面键入的命令外,还有什么用途?命令历史窗口除了用于查询以前键入的命令外,还可以直接执行命令历史窗口中选定的内容、将选定的内容拷贝到剪贴板中、将选定内容直接拷贝到M文件中。
第三章 MATLAB数值计算
功 能
如果所有的元素都是非零值,返回1;否则,返回0。 如果有一个元素为非零值,那么返回1;否则,返回0 判断是否空矩阵 判断两矩阵是否相同 判断是否是实矩阵 返回一个由非零元素的下标组成的向量
常用的矩阵函数
矩阵的行列式、矩阵的秩、特征值等在现代控制理论 中有广泛的应用,Matlab提供了相应的函数求其值 • det(A) 方阵A的行列式 • eig(A) 方阵A的特征值和特征向量 • rank(A) 矩阵A的秩 • trace(A) 矩阵A的迹 • expm(A) 矩阵的指数 • sqrtm(A) 求矩阵的平方根 • funm(A,’fun’) 求一般的方阵函数
矩阵的修改
• (1)直接修改 可用↑键找到所要修改的矩阵,用←键移动到要 修改的矩阵元素上即可修改。
• (2)指令修改 可以用A(﹡, ﹡)=﹡ 来修改。 • (3)由矩阵编辑器修改 由Matlab提供工具栏按钮来查看工作区变量,单 击变量,可以打开或删除变量
• 例: 修改矩阵A中元素的数值 >>A=[1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]; >>A(1,1)=0;A(2,2)=A(1,2)+A(2,1);A(4,4)=cos(0); 则矩阵变为: • A= 0 2 3 4 5 7 7 8 9 10 11 12 13 14、控制理论、物理学等领域中的很多 问题都可以归结到下面的线性方程组
矩阵行列式
• 如N阶矩阵A的行列式不等于0,即时,称矩阵 A非奇异,否则A奇异。当线性方程系数矩阵 非奇异,则线性方程有唯一解。对N阶方阵A, MATLAB中由函数得到行列式
matlab第三章课后部分答案
matlab第三章课后部分答案习题三3-2 从键盘输入一个三位整数,将它反向输出。
如输入639,输出为936程序如下:m=input('请输入一个三位整数:');m1=fix(m/100);%求m的百位整数m2=rem(fix(m/10),10);%求m的十位数字m3=rem(m,10);%求m的个位数字m=m3*100+m2*10+m1%反向输出m3-3 输入一个百分制成绩,要求输出成绩等级A,B,C,D,E。
其中90~100分为A,80~89分为B,70~79分为C,60~69分为D,60分以下为E。
要求:(1)分别用if语句和switch语句实现。
(2)输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。
程序如下:(1)if语句c=input('请输入成绩:');if c>=90&c<=100disp('A 成绩合理');elseif c>=80&c<=89disp('B 成绩合理');elseif c>=70&c<=79disp('C 成绩合理'); elseif c>=60&c<=69disp('D 成绩合理'); elseif c<60disp('E 成绩合理');elsedisp('成绩错误');end(2)switch语句c=input('请输入成绩:'); switch fix(c)case num2cell(90:100)disp('A 成绩合理'); case num2cell(80:89)disp('B 成绩合理'); case num2cell(70:79)disp('C 成绩合理'); case num2cell(60:69)disp('D 成绩合理'); case num2cell(0:59)disp('E 成绩合理');x=fix(rand(1,20)*89)+10;x1=fix(sum(x)/20);disp(['平均数是:',num2str(x1)])m=(rem(x,2)==0&x<x1);n=find(m);disp(['小于平均数的数是:',num2str(x(n))]); 3-6 输入20个数,求其中最大数和最小数。
matlab课后习题答案(1-9章)
1 数字1.5e2,1.5e3 中的哪个与1500相同吗?1.5e32 请指出如下5个变量名中,哪些是合法的?abcd-2xyz_33chan a 变量ABCDefgh 2、5是合法的。
3 在MATLAB 环境中,比1大的最小数是多少? 1+eps4 设 a = -8 , 运行以下三条指令,问运行结果相同吗?为什么?w1=a^(2/3) w2=(a^2)^(1/3) w3=(a^(1/3))^2w1 = -2.0000 + 3.4641i ;w2 = 4.0000 ;w3 =-2.0000 + 3.4641i 5 指令clear, clf, clc 各有什么用处?clear 清除工作空间中所有的变量。
clf 清除当前图形。
clc 清除命令窗口中所有显示。
第二章1 说出以下四条指令产生的结果各属于哪种数据类型,是“双精度”对象,还是“符号”符号对象?3/7+0.1双; sym(3/7+0.1)符; sym('3/7+0.1') 符;; vpa(sym(3/7+0.1)) 符;2 在不加专门指定的情况下,以下符号表达式中的哪一个变量被认为是自由符号变量. sym('sin(w*t)'),sym('a*exp(-X)'),sym('z*exp(j*th)') symvar(sym('sin(w*t)'),1) w a z3 (1)试写出求三阶方程05.443=-x 正实根的程序。
注意:只要正实根,不要出现其他根。
(2)试求二阶方程022=+-a ax x 在0>a 时的根。
(1)reset(symengine)syms x positive solve(x^3-44.5) ans =(2^(2/3)*89^(1/3))/2(2)求五阶方程022=+-a ax x 的实根 syms a positive %注意:关于x 的假设没有去除 solve(x^2-a*x+a^2)Warning: Explicit solution could not be found. > In solve at 83 ans =[ empty sym ]syms x clear syms a positivesolve(x^2-a*x+a^2) ans =a/2 + (3^(1/2)*a*i)/2 a/2 - (3^(1/2)*a*i)/24 观察一个数(在此用@记述)在以下四条不同指令作用下的异同。
《现代数值计算方法(MATLAB版)》习题解答
1.10 提示: (1) sin(x + y ) − sin x = 2 sin y cos(x + y ), (2) 1 − cos 1◦ = 2 2 √ √ = − ln( 1010 + 1 + 105 ). ln( 1010 + 1 − 105 ) = ln √ 10 1 5
−2 1 λ −3 , ρ(Bs ) = 2 > 1, 故 Gauss 2 2 =λ3 = 0, 所以 λ1 = λ2 =
λ3 = 0, ρ(BJ ) = 0 < 1, 故 Jacobi 迭代法收敛. −1 1 0 0 0 −2 2 (2) Bs = 1 1 0 0 0 −1 2 2 1 0 0 0 Seidel 迭代法发散.
10 +1+10
1.11 (1) (A) 比较准确; (2) (A) 比较准确. 1.12 算法 2 准确. 在算法 1 中, ε0 ≈ 0.2231 带有误差 0.5 × 10−4 , 而这个误差在以后的每次计算中 顺次以 41 , 42 , · · · 传播到 In 中. 而算法 2 中的误差是按
2
故 Jacobi 迭代, Gauss-Seidel 迭代均收敛. 2.13 提示: ρ(J ) = 0.9 < 1, 故迭代法收敛. 1 0 . 5 0. 5 2.14 提示: 容易验证 A = 0.5 1 0.5 是对称正定的, 故 Gauss-Seidel 迭代收敛, 但 2D − A = 0.5 0.5 1 1 −0.5 −0.5 −0.5 1 −0.5 不正定, 故 Jacobi 迭代发散. −0.5 −0.5 1 0 0 −1 3 2.15 提示: BJ = 1 0 0 . 特征方程 3λ + λ + 2 = 0, 特征值 λ1 = −0.478, λ2,3 = 1 2 0 3 3 故 Jacobi 迭代收敛. −1 −1 , 因为 ρ(BS ) = 1, 故 Gauss-Seidel 迭代发散. −1 −22 11 1 2.16 提示: (1) 将原方程组的系数矩阵调整为: 1 −4 2 , 显然为严格对角占优矩阵, 故 11 −5 −33 = 0
matlab课后习题答案
第2章 MATLAB 矩阵运算基础2.1 在MA TLAB 中如何建立矩阵⎥⎦⎤⎢⎣⎡194375,并将其赋予变量a ? >> a=[5 7 3;4 9 1]2.5 计算矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡897473535与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡638976242之和。
>> a=[5 3 5;3 7 4;7 9 8]; >> b=[2 4 2;6 7 9;8 3 6];>> a+bans =7 7 7 9 14 13 15 12 142.6 求⎥⎦⎤⎢⎣⎡+-+-+-+-++=i 44i 93i 49i 67i 23i 57i 41i 72i 53i 84x 的共轭转置。
>> x=[4+8i 3+5i 2-7i 1+4i 7-5i;3+2i 7-6i 9+4i 3-9i 4+4i]; >> x’ans =4.0000 - 8.0000i 3.0000 - 2.0000i 3.0000 -5.0000i 7.0000 +6.0000i 2.0000 +7.0000i 9.0000 - 4.0000i 1.0000 - 4.0000i 3.0000 + 9.0000i 7.0000 + 5.0000i 4.0000 - 4.0000i2.7 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。
>> a=[6 9 3;2 7 5];>> b=[2 4 1;4 6 8]; >> a.*b ans =12 36 3 8 42 402.9 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。
>> A=[4 9 2;7 6 4;3 5 7];>> B=[37 26 28]’;-0.5118 4.0427 1.33182.10 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
Matlab习题答案
参考答案: (1) >> (3-5*i)*(4+2*i) ans =
22.0000 -14.0000i
(2) >> sin(2-8*i) ans =
1.3553e+003 +6.2026e+002i
5.判断下面语句的运算结果。 (1) 4 < 20 (2) 4 <= 20 (3) 4 == 20 (4) 4 ~= 20 (5) 'b'<'B' 参考答案: (1) >> 4<20 ans =
y_nearest(i)=interp1(x,y,scalar_x(i),'nearest'); y_linear(i) =interp1(x,y,scalar_x(i),'linear'); y_spline(i) =interp1(x,y,scalar_x(i),'spline'); y_cubic(i) =interp1(x,y,scalar_x(i),'cubic'); end subplot(2,2,1),plot(x,y,'*'),hold on,plot(scalar_x,y_nearest),title('method=nearest'); subplot(2,2,2),plot(x,y,'*'),hold on,plot(scalar_x,y_linear),title('method=linear'); subplot(2,2,3),plot(x,y,'*'),hold on,plot(scalar_x,y_spline),title('method=spline'); subplot(2,2,4),plot(x,y,'*'),hold on,plot(scalar_x,y_cubic),title('method=cubic'); 得到结果为:
matlab1-8章课后作业
MATLAB基础教程1~8章作业Matlab第一章1.阐述Matlab的功能Matlab作为一种高级计算软件,是进行算法开发、数据可视化、数据分析以及数值计算的交互式应用开发环境,已被广泛应用于不同领域。
Matlab的基本功能包括:数学计算功能、图形化显示功能、M语言编程功能、编译功能、图形用户界面开发功能、Simulink建模仿真功能、自动代码生成功能。
Matlab第二章1.创建double的变量,并进行计算。
(1)a=87,b=190,计算a+b、a-b、a*b。
(2)创建uint8 类型的变量,数值与(1)中相同,进行相同的计算。
>> a=87,b=190a =87b =190>> a+bans =277>> a-bans =-103>> a*bans =16530>> c=uint8(87), d=uint8(190)c =87d =190>> c+dans =255>> c-dans =ans =2552.计算(1)sin(60)(2)e^3(3)cos(3π/4)>> sind(60)ans =0.8660>> exp(3)ans =20.0855>> cos(3*pi/4)ans =-0.70713.设u=2,v=3,计算:(1)(2)(3)>> u=2;>> v=3;>> 4*u*v/log(v)ans =21.8457>> (exp(u)+v)^2/(v^2-u) ans =15.4189>> sqrt(u-3*v)/(u*v) ans =0 + 0.4410i 4.计算如下表达式:(1)(2)>> (3-5*i)*(4+2*i)22.0000 -14.0000i>> sin(2-8*i)ans =1.3553e+003 +6.2026e+002i5.判断下面语句的运算结果。
matlab 第3章 数值运算基础
HYIT
8
说明: 1.N阶方阵特征多项式系数矢量一定是n+1阶的 2.特征多项式系数矢量的第一个元素必须为1。
1 A 2 2
2 2 1 2 的特征多项式 2
1
2 2
2 2
2 ( )( 1) 3 9 5
HYIT
12
3.1.2 多项式运算
求多项式的值 求多项式的根 多项式的乘除运算 多项式的微积分 多项式的部分分式展开 多项式拟合
HYIT
13
求多项式的值
方法:函数polyval:按数组运算规则求值 函数polyvalm:按矩阵运算规则求值 格式: y=polyval(p,x) p为多项式,x可为标量/数组/矩阵 y=polyvalm(p,x) x可为标量/方阵
注:系数中的零不能省!
HYIT
4
创建多项式的方法
系数矢量直接输入法 特征多项式输入法 由根矢量创建多项式
HYIT
5
系数矢量直接输入法
适用于: 已知系数 → 表达式
方法: 函数poly2sym +系数矢量
例: 例: >> poly2sym([1 2 3 4]) >> poly2str([1 2 3 4],‘y') ans = ans = x^3+2*x^2+3*x+4 y^3 + 2 y^2 + 3 y + 4 说明: poly2str 以习惯方式显示多项式 poly2sym 双精度多项式系数转为符号多项式
HYIT
14
例: p=[1 1 1]; x=[0 1 2 3]; xm=[0 1; 2 3]; y1=polyval(p,x) y2=polyval(p,xm) ym=polyvalm(p,xm)
数值计算课后习题答案(全)
习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
分析:求绝对误差的方法是按定义直接计算。
求相对误差的一般方法是先求出绝对误差再按定义式计算。
注意,不应先求相对误差再求绝对误差。
有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。
有了定理2后,可以根据定理2更规范地解答。
根据定理2,首先要将数值转化为科学记数形式,然后解答。
解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。
相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。
而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。
(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。
相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。
而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。
(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。
MATLAB习题及参考答案
2 9 0 1310,解方程组3 4 11 x 6。
(应用x=a\b)2 2 6 611,求欠定方程组294 73 54x68的最小范数解。
(应用pinv)5习题:6 9 3 2 4 1与b 的数组乘积。
2 7 5 4 6 81,计算a2, 对于AX B,如果A 3726,求解X。
283,已知:a 1 2 34 5 6,分别计算a的数组平方和矩阵平方,并观察其结果。
7 8 94,角度x 30 45 60,求x的正弦、余弦、正切和余切。
(应用sin,cos,4 2 7 15 95,将矩阵a 、b 和c 组合成两个新矩阵:5 7 8 36 2(1)组合成一个4 3的矩阵,第一列为按列顺序排列的a矩阵元素,第二列为按列顺序排列的元素,第三列为按列顺序排列的c矩阵元素,即b矩阵4 7 55 8 62 1 97 3 2(2)按照a、b、c的列顺序组合成一个行矢量,即4527781356926,将(x-6)(x-3)(x-8)展开为系数多项式的形式。
(应用poly,polyvalm)7,求解多项式X3-7X2+2X+40的根。
(应用roots)8,求解在x=8 时多项式(x-1)( x-2) ( x-3)( x-4)的值。
(应用poly,polyvalm)9, 计算多项式4x412x314x25x 9的微分和积分。
(应用polyder,polyint ,poly2sym)2 2计算表达式z 10 x 3 y 5 e x y 的梯度并绘图。
(应用meshgrid, gradient, con tour, holdon, quiver)15,用符号函数法求解方程a t 2+b*t +c=0。
(应用solve )16,用符号计算验证三角等式:(应用syms,simple )用 syms,ezplot)用 plot,title,text,legend)24, x= [66 49 71 56 38] ,绘制饼图,并将第五个切块分离出来。
第三章 习题(带答案)
第三章判断题T 1 Linux操作系统的源代码是公开的,它是一种“自由软件”。
(判断)T 2 MATLAB是一种能用于数值计算的高级程序设计语言。
(判断)F 3 Windows系统中,不同文件夹中的文件不能同名(判断)F 4 Windows系统中,可以像删除子目录一样删除根目录。
(判断)F 5 Windows系统中,每一个物理硬盘只能建立一个根目录,不同的根目录在不同的物理硬盘中。
(判断)T 6 操作系统三个重要作用体现在:管理系统硬软件资源、为用户提供操作界面、为应用程序开发提供平台。
(判断)T 7 操作系统通过各种管理程序提供了“任务管理”、“存储管理”、“文件管理”、“设备管理”等多种功能。
(判断)T 8 计算机软件通常指的是用于指示计算机完成特定任务的,以电子格式存储的程序、数据和相关的文档。
(判断)T 9 软件产品是交付给用户使用的一整套程序、相关的文档和必要的数据。
(判断)T 10 软件是以二进位表示,且通常以电、磁、光等形式存储和传输的,因而很容易被复制。
T 11 为了延长软件的生命周期,常常要进行软件版本升级,其主要目的是减少错误、扩充功能、适应不断变化的环境。
(判断)T 12 在Windows系统中,按下Alt+PrintScreen键可以将桌面上当前窗口的图像复制到剪贴板中。
(判断)F [01]. 数据库管理系统是最接近计算机硬件的系统软件。
(判断)T [05]. 用Pentium4 的指令系统编写的可执行程序在PentiumⅢ中不一定能被执行;反之,用PentiumⅢ的指令系统编写的可执行程序在Pentium4 中一定能被执行。
(判断)F [07]. 所有存储在磁盘中的MP3音乐都是计算机软件。
(判断)F [09]. P3是世界著名的项目管理软件。
由于使用P3能管理一个大型工程系统的有关资源,因此,它应属于系统软件。
(判断)T [10]. 计算机软件包括软件开发和使用所涉及的资料。
matlab课后习题答案刘
matlab课后习题答案刘MATLAB课后习题答案刘在本学期的MATLAB课程中,我们学习了MATLAB的基础知识和一些高级功能。
为了帮助同学们更好地复习和巩固所学知识,以下是针对课后习题的一些参考答案。
1. 向量和矩阵的基本操作- 创建一个3x3的单位矩阵。
```matlabA = eye(3);```- 计算矩阵A和B的乘积,其中B是A的转置。
```matlabB = A';C = A * B;```2. 条件语句和循环- 编写一个循环,打印出1到10的所有奇数。
```matlabfor i = 1:2:10disp(i);end```- 编写一个条件语句,检查一个数是否为素数。
```matlabfunction isPrime(n)if n <= 1isPrime = false;elsefor i = 2:sqrt(n)if mod(n, i) == 0isPrime = false;return;endendisPrime = true;endend```3. 函数和脚本- 编写一个函数,计算给定半径的圆的面积。
```matlabfunction area = circleArea(radius)area = pi * radius^2;end```- 编写一个脚本来调用上述函数,并打印出半径为5的圆的面积。
```matlabradius = 5;disp(['Area of circle with radius ', num2str(radius), ' is ', num2str(circleArea(radius))]);```4. 数据结构和文件I/O- 读取一个文本文件中的数据到一个cell数组。
```matlabfilename = 'data.txt';fileID = fopen(filename, 'r');data = textscan(fileID, '%s');fclose(fileID);```- 将一个矩阵写入到一个CSV文件中。
MATLAB第三章数值数组及其运算
行向量
如:array=[2, pi/2, sqrt(3), 3+5i]
x=[1,2,3,4,5都已知.如对 少量实验数据的处理可用此种方法.
4
(2) 冒号生成法: array=a: inc: b
<向量>
a---数组的第一个元素
inc---采样点之间的间隔, 即步长. 最后一个元素不一定等于b, 其大小为b’=a +inc*[(b-a)/inc]; 步长可以省略, 默认为 1; inc可以取正数或负数, 但要注意当取正时,要保证b>a, 数 组最后一个元素不超过b, 取负时b<a, 最后一个元素不小于b.
(2) 数值计算解法
delt=0.01; x=0:delt:4;
y=exp(-sin(x));
sx=delt*cumtrapz(y);
plot(x,y, 'r', 'LineWidth', 6); hold on;
plot(x, sx, '.b', 'MarkerSize', 15);
plot(x, ones(size(x)), 'k');
a inc>0 b
b inc>0 a
特点: 等差数列
方便对数据之间的间隔(步长)进行控制.但要注意三个数值之 间的关系,可能得到空数组.另外要注意生成的数组的元素的 个数.如x=a: (b-a)/n :b (b>a)得到n+1个元素的数组.
5
x=1:5x=[1,2,3,4,5]
y=5:-1:1y=[5, 4, 3, 2, 1]
2. 在命令窗中输入MyMatrix
11
3.5 二维数组的标识 (mxn, m>1, n>1)
数值计算引论(第二版)三四五章习题解答
close all clear all clc n=10; x=zeros(n+1,1); for k=1:n+1 x(k)=cos((2*k-1)*pi/2/(n+1)); end y=1./(1+25*x.^2); x0=-1:0.1:1; y0=interp1(x,y,x0,'spline'); plot(x0,y0,'r')
h2 1.5, h3 0.5, h4 1.5, h5 0.5
b [0
h2 h3 3 h3 A 6 0 h3 6 h3 h4 3 h4 6
2
0]
0
T
2 3 h4 1 12 6 h4 h5 0 3
(d)样条函数插值具有比较好的数值稳定性。 √
习题
3.以0.1,0.15,0.2为插值节点,计算 f ( x ) x 的二次Lagrange插值多 项式 P2 ( x ) ,比较 P2 (0) 和 f (0) ,问定理4.1的结果是否适用于本问题。 解答: 首先构造二次Lagrange插值多项式
R=chol(A)
0 -0.8165 1.1547 0 0 0 -0.8660 1.1180
-0.7071 1.2247 0 0
方法2: 利用Cholesky定义求解
6.矩阵
1 A1 1 2 2 1 2
2 2 1 , A2 2 1 1
2 2 0
(B) 0 1
2 1 2
Gauss-Seidel迭代
0 1 M (D L) U 0 0
(M ) 2 1
MATLAB课后习题集附标准答案
第2章MATLAB概论1、与其他计算机语言相比较,MA TLAB 语言突出的特点是什么?答:起点高、人机界面适合科技人员、强大而简易的作图功能、智能化程度高、功能丰富,可扩展性强.2、MA TLAB 系统由那些部分组成?答:开发环境、MATLAB数学函数库、MATLAB语言、图形功能、应用程序接口3、安装MATLAB 时,在选择组件窗口中哪些部分必须勾选,没有勾选的部分以后如何补安装?答:在安装MATLAB时,安装内容由选择组件窗口中各复选框是否被勾选来决定,可以根据自己的需要选择安装内容,但基本平台(即MATLAB选项)必须安装. 第一次安装没有选择的内容在补安装时只需按照安装的过程进行,只是在选择组件时只勾选要补装的组件或工具箱即可. 矚慫润厲钐瘗睞枥庑赖。
4、MATLAB 操作桌面有几个窗口?如何使某个窗口脱离桌面成为独立窗口?又如何将脱离出去的窗口重新放置到桌面上?聞創沟燴鐺險爱氇谴净。
答:在MATLAB 操作桌面上有五个窗口,在每个窗口的右下角有两个小按钮,一个是关闭窗口的Close 按钮,一个是可以使窗口称为独立的Undock 按钮,点击Undock 按钮就可以使该窗口脱离桌面称为独立窗口,在独立窗口的view 菜单中选择Dock,菜单项就可以将独立的窗口重新防止的桌面上.残骛楼諍锩瀨濟溆塹籟。
5、如何启动M 文件编辑/调试器?答:在操作桌面上选择“建立新文件”或“打开文件”操作时,M 文件编辑/调试器将被启动.在命令窗口中键入edit 命令时也可以启动M 文件编辑/调试器.酽锕极額閉镇桧猪訣锥。
6、存储在工作空间中的数组能编辑吗?如何操作?答:存储在工作空间的数组可以通过数组编辑器进行编辑:在工作空间浏览器中双击要编辑的数组名打开数组编辑器,再选中要修改的数据单元,输入修改内容即可.彈贸摄尔霁毙攬砖卤庑。
7、命令历史窗口除了可以观察前面键入的命令外,还有什么用途?答:命令历史窗口除了用于查询以前键入的命令外,还可以直接执行命令历史窗口中选定的内容、将选定的内容拷贝到剪贴板中、将选定内容直接拷贝到M文件中. 謀荞抟箧飆鐸怼类蒋薔。
MATLAB习题参考答案(胡良剑
第一章 MATLAB 入门4、求近似解解:>> x=-2:0.05:2;y=x.^4-2.^x两个近似解:y1=f(-0.85)= -0.0328; y2=f(1.250)= 0.0630第二章 MATLAB 编程与作图1、 设x 是数组,求均值和方差解:函数文件如下:function [xx,s]=func1(x)n=length(x);xx=sum(x)/n;s=sqrt((sum(x.^2)-n*xx^2)/(n-1));命令窗口:>> x=[1 2 3 4 5];[xx,s]=func1(x)2、求满足的最小m 值 100)1ln(0>+∑=m n n s=0;n=0;while(s<=100)s=s+log(1+n);n=n+1;endn,s3、用循环语句形成Fibonacci 数列,....4,3,,12121=+===−−k F F F F F k k k 。
并验证极限2511+→−k k F F (提示:计算至两边误差小于精度1e-8为止) 解: 求Fibonacci 数列的函数文件:function f=fun(n)if n<=2f=1;elsef=fun(n-1)+fun(n-2);end验证极限的函数文件:function [k,a]=funTest(e)a=abs(1-(1+sqrt(5))/2);k=2;while(a>e)k=k+1;a=abs(fun(k)/fun(k-1)-(1+sqrt(5))/2);end命令行:>> [k,a]=funTest(10^-8)k =21a =9.7719e-009或者M 文件如下:clear; F(1)=1;F(2)=1;k=2;x=0;e=1e-8; a=(1+sqrt(5))/2;while abs(x-a)>ek=k+1; F(k)=F(k-1)+F(k-2); x=F(k)/F(k-1);enda,x,k4、分别用for 和while 循环结构编写程序,求出∑==610123i i K ,并考虑一种避免循环语句的程序设计,比较各种算法的运行时间。
数值计算与MATLAB方法课后答案
第一章习题1. 序列满足递推关系,取及试分别计算,从而说明递推公式对于计算是不稳定的。
n1 1 0.01 0.00012 0.01 0.0001 0.0000013 0.0001 0.000001 0.000000014 0.000001 0.0000000110-105 0.00000001 10-10n1 1.000001 0.01 0.0000992 0.01 0.000099 -0.000099013 0.000099 -0.00009901-0.010000994 -0.00009901 -0.01000099-1.00015 -0.01000099-1.0001初始相差不大,而却相差那么远,计算是不稳定的。
2. 取y0=28,按递推公式,去计算y100,若取(五位有效数字),试问计算y100将有多大误差?y100中尚留有几位有效数字?解:每递推一次有误差因此,尚留有二位有效数字。
3.函数,求f(30)的值。
若开方用六位函数表,问求对数时误差有多大?若改用另一等价公式计算,求对数时误差有多大?设z=ln(30-y),,y*, |E(y)| 10-4z*=ln(30-y*)=ln(0.0167)=-4.09235若改用等价公式设z=-ln(30+y),,y*, |E(y)|⨯10-4z*=-ln(30+y*)=-ln(59.9833)=-4.094074.下列各数都按有效数字给出,试估计f的绝对误差限和相对误差限。
1)f=sin[(3.14)(2.685)]设f=sin xyx*=3.14, E(x)⨯10-2, y*=2.685, E(y)⨯10-3,sin(x*y*)=0.838147484, cos(x*y*)=-0.545443667⨯(-0.5454) ⨯⨯10-2+3.14(-0.5454) ⨯⨯10-3|⨯10-2⨯10-2|E r(f)| ⨯10-2⨯10-2<10-22)f=(1.56)设f = x y ,x*=1.56, E(x)⨯10-2, y*=3.414, E(y)⨯10-3,⨯⨯⨯10-2⨯⨯⨯10-3|⨯⨯⨯10-2⨯⨯⨯10-3|=0.051|E r(f)| =0.01125.计算,利用下列等式计算,哪一个得到的结果最好,为什么?6.下列各式怎样计算才能减少误差?7. 求方程x2-56x+1=0的二个根,问要使它们具有四位有效数字,至少要取几位有效数字?如果利用伟达定理, 又该取几位有效数字呢?解一:若要取到四位有效数字,如果利用伟达定理,解二:由定理二,欲使x1,x2有四位有效数字,必须使由定理一知,∆至少要取7位有效数字。