中考数学第8章分式复习题

合集下载

中考数学总复习《分式综合》专项测试卷(带参考答案)

中考数学总复习《分式综合》专项测试卷(带参考答案)

中考数学总复习《分式综合》专项测试卷(带参考答案)(考试时间:90分钟,试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题,每小题3分,共30分)。

1.(2023•鄞州区一模)要使分式有意义,则x的取值范围是()A.x≠﹣1B.x≠1C.x≠±1D.x≠02.(2023•济南二模)计算的结果正确的是()A.B.C.D.3.(2023•唐山一模)若÷运算的结果为整式,则“□”中的式子可能是()A.y﹣x B.y+x C.2x D.4.(2023•温州二模)化简的结果为()A.a B.a﹣1C.D.a2﹣a5.(2023•振兴区校级一模)若x,y的值均扩大到原来的3倍,则下列分式的值一定保持不变的是()A.B.C.D.6.(2023•靖宇县一模)某生产车间生产m个机械零件需要a小时完成,那么该车间生产200个同样的零件需要的时间()A.小时B.小时C.小时D.小时7.(2023•永修县三模)若a≠b,则下列分式化简正确的是()A.B.C.D.8.(2023•竞秀区二模)在复习分式的化简运算时,老师把甲、乙两位同学的解答过程分别展示如下.则()甲:=……①乙:=……=……②=……③=1……④①=……②=……③=1……④A.甲、乙都错B.甲、乙都对C.甲对,乙错D.甲错,乙对9.(2023•利辛县模拟)若2m=5,5n=2,则的值为()A.B.1C.D.210.(2023•安徽模拟)已知实数x,y,z满足++=,且=11,则x+y+z 的值为()A.12B.14C.D.9二、填空题(本题共6题,每小题2分,共12分)11.(2023•碑林区校级模拟)若分式的值为0,则x 的值为.12.(2023•惠安县模拟)计算20+3﹣1的结果等于.13.(2023•长岭县模拟)计算结果是.14.(2023•广饶县校级模拟)若+=3,则的值为.15.(2023•鹿城区校级模拟)计算:=.16.(2023•宁波模拟)对于任意两个非零实数a、b,定义新运算“*”如下:,例如:.若x*y=2,则的值为.三、解答题(本题共7题,共58分)。

计算专题——分式综合 2023年九年级数学中考复习

计算专题——分式综合  2023年九年级数学中考复习

计算专题——分式综合 九年级数学中考复习1.阅读下列材料学习“分式方程及其解法”的过程中,老师提出一个问题:若关于x 的分式方程14ax =-的解为正数,求a 的取值范围.经过独立思考与分析后,小明和小聪开始交流解题思路,小明说:解这个关于x 的方程,得到方程的解为4x a =+,由题目可得40a +>,所以4a >-,问题解决.小聪说:你考虑的不全面,还必须0a ≠才行. (1)请回答: 的说法是正确的,正确的理由是 . 完成下列问题: (2)已知关于x 的方程233m xx x-=--的解为非负数,求m 的取值范围; (3)若关于x 的方程322133x nx x x --+=---无解,求n 的值.2.阅读下列材料:关于x 的方程11x c x c +=+的解是1211,(x c x x c==,2x 表示未知数x 的两个实数解,下同);22x c x c +=+的解是122,x c x c ==;33x c x c +=+的解是123,x c x c==. 请观察上述方程与解的特征,比较关于x 的方程(0)m mx c m x c+=+≠与它们的关系,猜想它的解是 .由上述的观察、比较、猜想,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解.请用这个结论解关于x 的方程: (1)1265x x +=; (2)2211x a x a +=+--; (3)2131462a a x x a+++=-.3.我们把形如(mnx m n m x+=+,n 不为零),且两个解分别为1x m =,2x n =的方程称为“十字分式方程”. 例如65x x +=为十字分式方程,可化为2323x x ⨯+=+,12x ∴=,23x =. 再如78x x +=-为十字分式方程,可化为(1)(7)(1)(7)x x-⨯-+=-+-. 11x ∴=-,27x =-.应用上面的结论解答下列问题: (1)若107x x+=-为十字分式方程,则1x = ,2x = . (2)若十字分式方程45x x -=-的两个解分别为1x a =,2x b =,求1b aa b++的值. (3)若关于x 的十字分式方程232321k k x k x --=--的两个解分别为1x ,212(3,)x k x x >>,求124x x +的值.4.新定义:对非负实数x “四舍五入”到个位数的值记为x <> 即:当n 为非负整数时,如果1122n x n -+,则x n <>=. 反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+ 例如:00.480<>=<>=,0.64 1.491<>=<>=,22<>=, 3.5 4.124<>=<>=,⋯ 试解决下列问题: 填空:①π<>= (π为圆周率);②如果13x <->=,则实数x 的取值范围为 ;③若关于x 的不等式组24130x x a x -⎧-⎪⎨⎪<>->⎩的整数解恰有4个,求a 的取值范围;④关于x 的分式方程112221m x x x -<>+=--有正整数解,求m 的取值范围; ⑤求满足65x x <>=的所有非负实数x 的值.5.定义:若分式M 与分式N 的和等于它们的积,即M +N =MN ,则称分式M 与分式N 互为“关联分式”.如21x x +与21x x -,因为()222422111(1)11x x x x x x x x x x x +==⋅+-+-+-所以21xx +与21xx -互为“关联分式”,其中一个分式是另外一个分式的“关联分式”. (1)分式221a + 分式221a -的“关联分式”(填“是”或“不是”); (2)求分式()02aab a b≠-的“关联分式”; (3)若分式224ab a b -是分式22aa b+的“关联分式”,ab ≠0,求分式222a b ab -的值.6.阅读材料:对于非零实数a ,b ,若关于x 的分式()()x a x b x--的值为零,则解得1x a =,2x b =.又因为2()()()()x a x b x a b x ab abx a b x x x---++==+-+,所以关于x 的方程()ab x a b x +=+,的解为1x a =,2x b =.(1)理解应用:方程22233x x +=+的解为:1x = ,2x = ;(2)知识迁移:若关于x 的方程35x x+=的解为1x a =,2x b =,求22a b +的值;(3)拓展提升:若关于x 的方程41k x x =--的解为1x ,2x ,且121x x =,求k 的值.7.由完全平方公式222()2a b a ab b -=-+可知,222()2a b a b ab +=-+,而2()0a b -,所以,对所有的实数a ,b 都有:222a b ab +,且只有当a b =时,才有等号成立:222a b ab +=. 应用上面的结论解答下列问题:(1)计算21()x x-= ,由此可知221x x + 2(填不等号);(2)已知m ,n 为不相等的两正数,试比较:(1%)(1%)m n ++与(1%)(1%)22m n m n++++的大小;(3)试求分式24224x x x -+的最大值.8.如果两个分式M 与N 的和为常数k ,且k 正整数,则称M 与N 互为“和整分式”,常数k 称为“和整值”.如分式1x M x =+,11N x =+,111x M N x ++==+,则M 与N 互为“和整分式”,“和整值” 1k =.(1)已知分式72x A x -=-,22696x x B x x ++=+-,判断A 与B 是否互为“和整分式”,若不是,请说明理由;若是,请求出“和整值” k ; (2)已知分式342x C x -=-,24G D x =-,C 与D 互为“和整分式”,且“和整值” 3k =,若x 为正整数,分式D 的值为正整数t .①求G 所代表的代数式; ②求x 的值;(3)在(2)的条件下,已知分式353x P x -=-,33mx Q x-=-,且P Q t +=,若该关于x 的方程无解,求实数m 的值.9.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如21,11x x x x -+-这样的分式就是假分式;再如:232,11xx x ++这样的分式就是真分式类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:1(1)221111x x x x x -+-==-+++;再如:2211(1)(1)1111111x x x x x x x x x -++-+===++----. 解决下列问题:(1)下列分式中属于“真分式”的有 ;(填序号)①2x ;②211x x -+;③211x x x -+-(2)将假分式22x x +化为带分式的形式;(3)如果211x x -+的值为整数,求x 的整数值.10.对于形如kx m x+=的分式方程,若k ab =,m a b =+,容易检验1x a =,2x b =是分式方程ab x a b x +=+的解,所以称该分式方程为“易解方程”.例如:23x x+=可化为1212x x ⨯+=+,容易检验11x =,22x =是方程的解,∴23x x +=是“易解方程”:又如65x x +=-可化为(2)(3)23x x --+=--,容易检验13x =-,22x =-是方程的解,∴65x x+=-也是“易解方程”.根据上面的学习解答下列问题: (1)判断56x x+=-是不是“易解方程”,若是“易解方程”,求该方程的解1x ,212()x x x <;若不是,说明理由.(2)若1x m =,2x n =是“易解方程” 34x x -=的两个解,求11m n+的值; (3)设n 为自然数,若关于x 的“易解方程” 223352n nx n x ++=+-的两个解分别为1x ,212()x x x <,求211x x -的值.答案版: 1【解答】解:(1)分式方程的解不能是增根,即不能使分式的分母为0,∴小聪说得对,分式的分母不能为0;(2)233m xx x-=--, 233m xx x +=--, 2(3)m x x +=-, 6x m =+,解为非负数,60m ∴+,即6m -,又30x -≠,63m ∴+≠,即3m ≠-,6m ∴-且3m ≠-;(3)322133x nx x x --+=---, 322(3)x nx x -+-=--, (1)2n x -=,原方程无解, 10n ∴-=或3x =,①当10n -=时,解得1n =; ②当3x =时,解得53n =; 综上所述:当1n =或53n =时原方程无解. 2. 【解答】解:11x c x c +=+的解是121,x c x c==; 22x c x c +=+的解是122,x c x c ==; 33x c x c +=+的解是123,x c x c==; ∴(0)m m x c m x c +=+≠的解是1x c =,2mx c=,故答案为:1x c =,2m x c=; (1)1265x x +=, 1155x x ∴+=+, 15x ∴=,215x =; (2)2211x a x a +=+--, 221111x a x a ∴-+=-+--, 11x a ∴-=-或211x a -=- 1x a ∴=,211a x a +=-; (3)2131462a a x x a +++=-, 2131223a a x x a ++∴+=-, 112323x a x a∴+=++-,112323x a x a∴-+=+-, 23x a ∴-=或123x a-=, 132a x +∴=,2312a x a +=.3.【解答】(1)解:方程107x x+=-是十字分式方程,可化为: (2)(5)(2)(5)x x-⨯-+=-+-, 12x ∴=-,25x =-,故答案为:2-,5-. (2)解:十字分式方程45x x-=-的两个解分别为:1x a =,2x b =, 4ab ∴=-,5a b +=-,∴1b a a b++ 221b a ab+=+,2()21a b ab ab +-=+, 2()21a b ab +=-+, 2(5)14-=--, 294=-. (3)解:方程232321k k x k x --=--是十字分式方程,可化为: (23)1(23)1k k x k k x --+=+--, 当3k >时,2330k k k --=->, 关于x 的十字分式方程232321k k x k x --=--的两个解分别为:1x ,212(3,)x k x x >>,1123x k ∴-=-,21x k -=, 122x k ∴=-,21x k =+ ,∴124224222(1)2111x k k k x k k k +-+++====+++. 4. 【解答】解:①由题意可得:3n <>=; 故答案为:3, ②13x <->=, 2.51 3.5x ∴-<, 3.5 4.5x ∴<; 故答案为:3.5 4.5x <; ③解不等式组得:1x a -<<>, 由不等式组整数解恰有4个得,23a <<>, 故2.5 3.5a <; ④解方程得22x m =-<>, 2m -<>是整数,x 是正整数,21m ∴-<>=或2, 21m -<>=时,2x =是增根,舍去. 22m ∴-<>=, 0m ∴<>=, 00.5m ∴<. ⑤0x ,65x 为整数,设65x k =,k 为整数, 则56x k =, 56k k ∴<>=, 151262k k k ∴-+,0k , 03k ∴, 0k ∴=,1,2,3 则0x =,56,53,52. 5. 【解答】解:(1)+ = = = =, ∴分式是分式的“关联分式”;故答案为:是;(2)设分式的“关联分式”为N,则有,∴,∴,∵ab≠0,∴,∴分式的“关联分式”为;(3)∵分式是分式的“关联分式”,∴∵ab≠0,∴b2=8a2∴,∴.6.【解答】解:(1)abx a bx+=+的解为1x a=,2x b=,∴222233xxx x+=+=+的解为3x=或23x=,故答案为:3,23;(2)35xx+=,5a b∴+=,3ab=,222()225619a b a b ab∴+=+-=-=;(3)41k xx=--可化为2(1)40x k x k-+++=,121x x=,41k∴+=,3k∴=-.7. 【解答】解:(1)4222121()x x x x x -+-=, 2212x x ∴+, 故答案为:42221x x x -+,; (2)(1%)(1%)1%%%%m n m n m n ++=+++⋅, 2(1%)(1%)12%(%)2222m n m n m n m n ++++++=+⋅+,2222()()24242m n m mn n m n mn mn +--=++-=, 又m n ≠, (1%)(1%)(1%)(1%)22m n m n m n ++∴++<++; (3)当0x =时,242024x x x =-+, 当0x ≠时,242222211442422x x x x x x x ==-+-++-,()22242242,x x x x x +==当时等号成立, ∴2421124422x x x =-+-, ∴224212,242x x x x =-+当时的最大值为. 8. 【解答】解:(1)72x A x -=-,22696x x B x x ++=+-, ∴2227697(3)732(2)2262(3)(2)222x x x x x x x x A B x x x x x x x x x -++-+-+-+=+=+=+==-+--+----.A ∴与B 是互为“和整分式”,“和整值” 2k =; (2)①342xC x -=-,24GD x =-, ∴2(34)(2)328(2)(2)(2)(2)(2)(2)x x G x x G C D x x x x x x -++-++=+=-+-+-+, C 与D 互为“和整分式”,且“和整值” 3k =, 223283(2)(2)312x x G x x x ∴+-+=-+=-, 2231232824G x x x x ∴=---+=--;②22(2)24(2)(2)2G x D x x x x -+===--+--,且分式D 的值为正整数t .x 为正整数, 21x ∴-=-或22x -=-, 1(0x x ∴==舍去); (3)由题意可得:2212t D ==-=-, ∴353233x mx P Q x x --+=+=--, ∴35323x mx x --+=-, (3)226m x x ∴--=-, 整理得:(1)4m x -=-, 方程无解, 10m ∴-=或方程有增根3x =, 解得:1m =, 当10m -≠,方程有增根3x =, ∴431m -=-, 解得:73m =, 综上:m 的值为:1或73. 9. 【解答】解:(1)由题意可得:①是“真分式”;②③都是“假分式”. 故答案为:①; (2)2244(2)(2)4422222x x x x x x x x x -++-+===-+++++; (3)212(1)332111x x x x x -+-==-+++, 211x x -+的值为整数, ∴31x +的值为整数, 3∴是(1)x +的倍数, x ∴的整数值为4-、2-、0、2. 10.【解答】解:(1)56x x +=-是“易解方程”,理由: 56x x +=-可化为(5)(1)51x x --+=--, 51-<-, ∴56x x +=-是“易解方程”. ∴方程的解为15x =-,21x =-; (2)1x m =,2x n =是“易解方程” 34x x -=的两个解,3mn ∴-=,4m n =+, 则114433n m m n mn ++===--; (3)设2y x =-,方程可化为(23)23n n y n n y ++=++,2232332n n x n x +-+=+-是“易解方程”, n ∴和23n +是这个方程的解, n 为自然数, 23n n ∴<+, ∴必有12x n -=,2223x n -=+, 12x n ∴=+,225x n =+, ∴21125122x n x n -+-==+.。

中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。

2013年秋八年级上数学分式复习题及答案解析(2013年中考题)

2013年秋八年级上数学分式复习题及答案解析(2013年中考题)

八年级数学《分式》练习题一.选择题(共10小题).2.(2013•重庆)分式方程﹣=0的根是()3.(2013•漳州)若分式有意义,则x的取值范围是()4.(2013•湛江)计算的结果是()=±3 6.(2013•岳阳)关于x的分式方程+3=有增根,则增根为()7.(2013•厦门)方程的解是()= 9.(2013•温州)若分式的值为0,则x的值是().B C.D二.填空题(共10小题)11.(2013•遵义)计算:20130﹣2﹣1=_________.12.(2013•株洲)计算:=_________.13.(2013•宜宾)分式方程的解为_________.14.(2013•盐城)使分式的值为零的条件是x=_________.15.(2013•新疆)化简=_________.16.(2013•潍坊)方程的根是_________.17.(2013•天水)已知分式的值为零,那么x的值是_________.18.(2013•常州)函数y=中自变量x的取值范围是_________;若分式的值为0,则x=_________.19.(2012•黔南州)若分式的值为零,则x的值为_________.20.(2013•南京)使式子1+有意义的x的取值范围是_________.三.解答题(共8小题)21.(2013•自贡)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.22.(2013•重庆)先化简,再求值:,其中x是不等式3x+7>1的负整数解.23.(2013•张家界)先简化,再求值:,其中x=.24.(2013•烟台)先化简,再求值:,其中x满足x2+x﹣2=0.25.(2013•威海)先化简,再求值:,其中x=﹣1.26.(2013•汕头)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.27.(2013•宁德)(1)计算:•﹣b(2)解不等式组,并把它的解集表示在数轴上;.28.(2013•鄂尔多斯)(1)计算:﹣22++(3﹣π)0﹣|﹣3|(2)先化简()÷(1﹣),然后从﹣<x<范围内选取一个合适的整数作为x的值代入求值.八年级数学《分式》练习题参考答案与试题解析一.选择题(共10小题).====,故本选项正确;=,故本选项错误;2.(2013•重庆)分式方程﹣=0的根是()3.(2013•漳州)若分式有意义,则x的取值范围是()时,分式4.(2013•湛江)计算的结果是()﹣=±3==36.(2013•岳阳)关于x的分式方程+3=有增根,则增根为()7.(2013•厦门)方程的解是()=故本选项正确;9.(2013•温州)若分式的值为0,则x的值是()10.(2013•威海)下列各式化简结果为无理数的是().B C.D﹣=2,是无理数,故本选项正确;=2二.填空题(共10小题)11.(2013•遵义)计算:20130﹣2﹣1=.,故答案为:12.(2013•株洲)计算:=2.13.(2013•宜宾)分式方程的解为x=1.14.(2013•盐城)使分式的值为零的条件是x=﹣1.时,15.(2013•新疆)化简=.•.故答案为:16.(2013•潍坊)方程的根是x=0.17.(2013•天水)已知分式的值为零,那么x的值是1.18.(2013•常州)函数y=中自变量x的取值范围是x≥3;若分式的值为0,则x=.且x=;19.(2012•黔南州)若分式的值为零,则x的值为1.,故若分式20.(2013•南京)使式子1+有意义的x的取值范围是x≠1.有意义.三.解答题(共8小题)21.(2013•自贡)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.×﹣=22.(2013•重庆)先化简,再求值:,其中x是不等式3x+7>1的负整数解.﹣]×××代入中得:23.(2013•张家界)先简化,再求值:,其中x=.+1.24.(2013•烟台)先化简,再求值:,其中x满足x2+x﹣2=0.•=25.(2013•威海)先化简,再求值:,其中x=﹣1.﹣÷•﹣=26.(2013•汕头)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.=,=27.(2013•宁德)(1)计算:•﹣b(2)解不等式组,并把它的解集表示在数轴上;.••28.(2013•鄂尔多斯)(1)计算:﹣22++(3﹣π)0﹣|﹣3|(2)先化简()÷(1﹣),然后从﹣<x<范围内选取一个合适的整数作为x的值代入求值.÷<,。

2023年中考数学一轮复习 第8讲 分式方程 专题训练(浙江专用)(含解析)

2023年中考数学一轮复习 第8讲 分式方程 专题训练(浙江专用)(含解析)

第8讲分式方程 2023年中考数学一轮复习专题训练(浙江专用)一、单选题1.(2022·杭州)照相机成像应用了一个重要原理,用公式1f=1μ+1ν(v≠f)表示,其中f表示照相机镜头的焦距,μ表示物体到镜头的距离,v表示胶片(像)到镜头的距离.已知f,v,则μ=()A.fvf−v B.f−vfv C.fvv−f D.v−ffv2.(2022·金东模拟)众志成城,抗击疫情,某医护用品集团计划生产口罩1500万只,实际每天比原计划多生产2000只,结果提前5天完成任务,则原计划每天生产多少万只口罩?设原计划每天生产x万只口罩,根据题意可列方程为()A.1500x+0.2−1500x=5B.1500x=1500x+2000+5C.1500x+2000=1500x+5D.1500x−1500x+0.2=53.(2022·丽水)某校购买了一批篮球和足球,已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50002x=4000x﹣30,则方程中x表示()A.足球的单价B.篮球的单价C.足球的数量D.篮球的数量4.(2022·萧山模拟)师徒两人每小时共加工35个电器零件,徒弟做了120个时,师傅恰好做了160个.设徒弟每小时做x个电器零件,则根据题意可列方程为()A.120x=16035−x B.12035−x=160xC.120x=16035+x D.12035+x=160x5.(2022·椒江模拟)北京冬奥会吉祥物“冰墩墩”引爆购买潮,导致“一墩难求”,某工厂承接了60万只冰墩墩的生产任务,实际每天的生产效率比原计划提高了25%,提前10天完成任务.设原计划每天生产x万只冰墩墩,则下面所列方程正确的是()A.60x−60×(1+25%)x=10B.60(1+25%)x−60x=10C.60×(1+25%)x−60x=10D.60x−60(1+25%)x=106.(2022·舟山模拟)“五•一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x 人,则所列方程为( ) A .180x−2 ﹣ 180x =3B .180x+2 ﹣ 180x =3C .180x ﹣ 180x−2=3 D .180x −180x+2=3 7.(2022·吴兴模拟)某书店分别用500元和700元两次购进一本小说,第二次数量比第一次多4套,且两次进价相同.若设该书店第一次购进x 套,根据题意,列方程正确的是( ) A .500x =700x−4B .500x−4=700xC .500x =700x+4D .500x+4=700x8.(2022·衢州模拟)若关于x 的一元一次不等式组{3x −2≥2(x +2)a −2x <−5的解集为x ≥6,且关于y 的分式方程y+2a y−1+3y−81−y =2的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5B .8C .12D .159.(2022·宁海模拟)分式方程1x−1=x 1−x +2的解为( ) A .x =−1 B .x =1 C .x =3D .x 1=1,x 2=310.(2022·温州模拟)同学聚餐预定的酒席价格为2400元,但有两位同学因时间冲突缺席,若总费用由实际参加的人平均分摊,则每人比原来多支付40元,设原来有x 人参加聚餐,由题意可列方程( )A .2400x+2=2400x +40B .2400x+40+40=2400xC .2400x =2400x−2+40 D .2400x +40=2400x−2二、填空题11.(2022·台州)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是 .先化简,再求值: 3−x x−4+1 ,其中 x =解:原式 =3−xx−4⋅(x −4)+(x −4)…①12.(2022·宁波)定义一种新运算:对于任意的非零实数a,b,a ⊗b= 1a+1b.若(x+1) ⊗x= 2x+1x,则x的值为13.(2022·秀洲模拟)某班同学到距学校12千米的森林公园植树,一部分同学骑自行车先行,半小时后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是自行车速度的3倍,求自行车和汽车的速度。

中考数学专题复习题:分式的基本性质

中考数学专题复习题:分式的基本性质

中考数学专题复习题:分式的基本性质一、单项选择题(共7小题)1.下列各式是最简分式的是()A.13B.1x−2C.x2y2xD.2a82.下列各分式的化简正确的是()A.x6x3=x3B.a+xb+x=abC.x2x2=0D.a2−1a−1=a−13.若分式2aba+b 中a,b都扩大到原来的3倍,则分式2aba+b的值是()A.扩大3倍B.缩小3倍C.不变D.扩大6倍4.下列各式中,正确的是()A.a+12a+3=25B.ab=a2abC.−a+1a=−a+1aD.a2−4(a−2)2=a+2a−25.下列等式成立的是()A.1a +2b=3a+bB.abab−b2=aa−bC.22a+b=1a+bD.a−a+b=−aa+b6.若代数式a+1a−1在实数范围内有意义,则实数a的取值范围是()A.a≥1B.a≠1C.a<1D.a=−17.如果把分式x−2y+zxyz中的正数x,y,z都扩大2倍,则分式的值()A.不变B.扩大为原来的两倍C.缩小为原来的14D.缩小为原来的18二、填空题(共4小题)8.分式14x2yz 和16xy2的最简公分母是________.9.不改变分式的值,化简:−0.03x+0.1−0.04x−0.03=________.10.已知y>3,则y2−6y+93−y=________.11.把分式2xx+y中的x、y都扩大两倍,则分式的值________.三、解答题(共4小题)12.不改变分式的值,将下列各分式的分子与分母中各项系数都化为整数:(1)x−0.2y0.8x−5y;(2)m2+n32m 5−2n3.13.根据分式的基本性质填空:(1)x+32x =( )2x2;(2)−am−n=a( ).14.已知a,b实数满足ab=1,若M=11+a +11+b,N=a1+a+b1+b,请你猜想M与N的数量关系,并证明.15.写出下列等式中所缺的分子或分母:(1)1ab =( )ab2c(c≠0)括号内应填入__________;(2)ma−b =( )a2−b2(a≠−b)括号内应填入__________;(3)xx(x−y)=1( )括号内应填入__________.。

中考数学复习 分式-教师版

中考数学复习 分式-教师版

§1.3分式考点1分式的概念与基本性质1.(2021宁波,6,4分)要使分式1x+2有意义,x的取值应满足( B ) A.x≠0 B.x≠-2 C.x≥-2 D.x>-2解析∵分式1x+2有意义,∴x+2≠0,解得x≠-2.故选B.2.(2020金华,2,3分)分式x+5x−2的值是零,则x的值为( D ) A.2 B.5C.-2D.-5解析依题意,得x+5=0且x-2≠0,解得x=-5.故选D.方法总结对于分式AB,当B≠0时,分式有意义;当B=0时,分式无意义;当A=0且B≠0时,分式的值为0.3.(2022湖州,11,4分)当a=1时,分式a+1a的值是2.解析当a=1时,a+1a =1+11=2.考点2分式的运算1.(2022杭州,6,3分)照相机成像应用了一个重要原理,用公式1f =1u+1v(v≠f)表示,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.已知f,v,则u= ( C )A.fvf−v B.f−vfvC.fvv−fD.v−ffv解析∵1f =1u+1v(v≠f),∴1u =1f−1v,∴1u=v−ffv,∴u=fvv−f.故选C.2.(2020台州,12,5分)计算1x −13x的结果是23x.解析1x −13x=33x−13x=23x.3.(2022温州,13,5分)计算:x 2+xyxy+xy−x2xy=2.解析x 2+xyxy+xy−x2xy=x2+xy+xy−x2xy=2xyxy=2.故答案为2.4.(2022台州,15,5分)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x的值是5.解析正确的化简过程为3−xx−4+1=3−xx−4+x−4x−4=3−x+x−4x−4=−1x−4.因为最后所求的值是正确的,所以-1x−4=-1,解得x=5.5.(2021丽水,16,4分)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:已知实数a,b同时满足a2+2a=b+2,b2+2b=a+2,求代数式ba +ab的值.结合他们的对话,请解答下列问题: (1)当a=b时,a的值是-2或1;(2)当a≠b时,代数式ba +ab的值是7.解析(1)当a=b时,由a2+2a=b+2得a2+2a=a+2,即a2+a-2=0,解得a1=-2,a2=1.(2)a2+2a=b+2①,b2+2b=a+2②,由①-②得a2-b2+2(a-b)=b-a,即a2-b2+3(a-b)=0,∴(a-b)(a+b+3)=0.∵a≠b,∴a+b+3=0,即a+b=-3.由①+②得a2+b2+2(a+b)=(b+a)+4,把a+b=-3代入,得a2+b2-6=-3+4,∴a2+b2=7,∴(a+b)2-2ab=7,∴9-2ab=7,∴ab=1,∴ba +ab=b2+a2ab=71=7.6.(2021衢州,18,6分)先化简,再求值:x 2x−3+93−x,其中x=1.解析原式=x 2x−3−9x−3=(x+3)(x−3)x−3=x+3.当x=1时,原式=4.7.(2022舟山,19,6分)观察下面的等式:12=13+16,13=14+112,14=15+120,…….(1)按上面的规律归纳出一个一般的结论(用含n的等式表示,n为正整数);(2)请运用分式的有关知识,推理说明这个结论是正确的.解析(1)1n =1n+1+1n(n+1).(2)∵1n+1+1n(n+1)=nn(n+1)+1n(n+1)=n+1n(n+1)=1n,∴结论正确.方法总结异分母的分式相加减:先通分,变为同分母的分式,然后相加减,即ab±c d =ad±cbbd.基础练一、选择题(每小题3分,共12分)1.(2019湖州,)计算a−1a +1a,正确的结果是( A )A.1B.12C.a D.1a解析a−1a +1a=a−1+1a=aa=1.2.(2021贵州贵阳,)计算xx+1+1x+1的结果是( C )A.xx+1B.1x+1C.1D.-1解析xx+1+1x+1=x+1x+1=1.故选C.3.(2022温州洞头二模,)计算2aa+2−a−22+a的结果为( C )A.a+2B.a-2C.1D.a−2a+2解析2aa+2−a−22+a=2a−(a−2)a+2=a+2a+2=1,故选C.4.(2020温州瑞安模拟,)若分式x+1x−2的值为0,则x的值是( B )A.1B.-1C.2D.-1或2解析由x+1x−2=0,可得x+1=0且x-2≠0,故x=-1.故选B.二、填空题(每小题4分,共8分)5.(2022金华永康一模,)若分式1x−3有意义,则x的取值范围为x≠3. 解析分式有意义,要求分母不等于0,故x-3≠0,即x≠3.6.(2021吉林,)计算:2xx−1−xx−1=xx−1.解析2xx−1−xx−1=2x−xx−1=xx−1.三、解答题(共50分)7.(2022湖州吴兴一模,)化简:2a−ba+b +a+4ba+b.解析原式=2a−b+a+4ba+b =3a+3ba+b=3(a+b)a+b=3.8.(2022重庆A卷,)计算:(ab −1)÷a2−b22b.解析原式=a−bb ·2b(a+b)(a−b)=2a+b.9.(2022嘉兴嘉善一模,)化简并求值:1+9+3aa2−9,其中a=2.解析 原式=1+3(3+a)(a+3)(a−3)=1+3a−3=a−3+3a−3=aa−3.当a =2时,原式=22−3=-2. 10.(2022舟山普陀一模,)先化简,再求值:y 2y−2+42−y,其中y =-2.解析 原式=y 2−4y−2=y +2. 当y =-2时,原式=-2+2=0. 11.(2022福建,)先化简,再求值:(1+1a )÷a 2−1a,其中a =√2+1.解析 原式=a+1a ÷(a+1)(a−1)a=a+1a·a (a+1)(a−1)=1a−1.当a =√2+1时, 原式=√2+1−1=√22. 12.(2022杭州临安一模,)以下是方方化简(a −1+1a+1)÷a 2+2a a+1的解答过程.解:原式=(a 2-1+1)·a+1a 2+2a=a 2·a+1a(a+2)=a 2+aa+2.方方的解答过程是否有错误?如果有,请写出正确的解答过程. 解析 方方的解答过程有错误.正确的解答过程如下: 原式=(a 2−1a+1+1a+1)·a+1a(a+2) =a 2a+1·a+1a(a+2)=aa+2.提分练一、选择题(每小题3分,共6分) 1.(2020宁波余姚模拟,)在函数y =x √x+3中,自变量x 的取值范围是 ( D )A.x ≥-3B.x ≥-3且x ≠0C.x ≠0D.x >-3解析 由题意得x +3>0,则x >-3.故选D .2.(2021山东济宁,)计算a 2−4a÷a +1−5a−4a的结果是 ( A )A.a+2a−2 B.a−2a+2 C.(a−2)2(a+2)a D.a+2a解析 a 2−4a÷(a +1−5a−4a)=(a+2)(a−2)a ÷a(a+1)−5a+4a=(a+2)(a−2)a·a(a−2)2=a+2a−2.二、填空题(每小题4分,共20分) 3.(2022四川成都,)已知2a 2-7=2a ,则代数式(a −2a−1a)÷a−1a 2的值为 72 .解析 原式=a 2−2a+1a·a 2a−1=(a−1)2a·a 2a−1=a (a -1).由2a 2-7=2a 得2a 2-2a =7, ∴a 2-a =72,∴a (a -1)=72, 当a (a -1)=72时,原式=72.解题关键 先将2a 2-7=2a 化简,再将化简结果整体代入所求的代数式中即可. 4.(2021内蒙古包头,)化简:(2m m 2−4+12−m )÷1m+2= 1 .解析 原式=2m(m+2)(m−2)−1m−2·(m +2)=2m m−2−m+2m−2=2m−(m+2)m−2=2m−m−2m−2=m−2m−2=1.5.(2020台州仙居模拟,)小明化简代数式如下:x+1x−xx−1=(x +1)(x -1)-x 2=x 2-1-x 2=-1.他的化简对还是错? 错 (填“对”或“错”),正确的化简结果是 -1x 2−x . 解析x+1x−xx−1=(x+1)(x−1)−x 2x(x−1)=x 2−1−x 2x(x−1)=−1x 2−x =−1x 2−x .故小明的化简错误,正确的化简结果是-1x 2−x . 6.(2021金华义乌模拟,)化简:2a 2−8a+2-a = a -4 . 解析 原式=2(a 2−4)a+2−a =2(a+2)(a−2)a+2-a =2a -4-a =a -4.7.新设问(2021湖北黄冈,)人们把√5−12这个数叫做黄金分割数,著名数学家华罗庚的优选法中的0.618法就应用了黄金分割数.设a =√5−12,b =√5+12,得ab =1,记S 1=11+a+11+b,S 2=11+a 2+11+b 2,……,S 10=11+a 10+11+b 10,则S 1+S 2+…+S 10= 10 .解析 S 1=11+a +11+b =1+b+1+a(1+a)(1+b)=2+a+b1+a+b+ab =2+a+b2+a+b =1, S 2=11+a 2+11+b 2=1+b 2+1+a 2(1+a 2)(1+b 2)=2+a 2+b 21+a 2+b 2+a 2b 2=2+a 2+b 22+a 2+b 2=1, S 3=11+a 3+11+b 3=1+b 3+1+a 3(1+a 3)(1+b 3)=2+a 3+b 31+a 3+b 3+a 3b 3=2+a 3+b 32+a 3+b 3=1, ……,以此类推,S 10=11+a 10+11+b 10=1. 所以S 1+S 2+…+S 10=1+1+⋯+1⏟ 10个=10.三、解答题(共74分) 8.(2022嘉兴平湖一模,) 化简:(1−1x )÷x 2−1x.解析 原式=x−1x÷x 2−1x=x−1x·x(x+1)(x−1)=1x+1.9.(2022宁波镇海一模,)先化简,再求值:a 3−4ab 2a 3−4a 2b+4ab 2,其中a=-2,b=12.解析 原式=a(a 2−4b 2)a(a 2−4ab+4b 2)=a(a+2b)(a−2b)a(a−2b)2=a+2b a−2b .当a=-2,b=12时,原式=−2+2×12−2−2×12=−2+1−2−1=13.10.(2022江西,)以下是某同学化简x+1x 2−4-1x+2÷3x−2的部分运算过程:解:原式=[x+1(x+2)(x−2)−1x+2]×x−23①=[x+1(x+2)(x−2)−x−2(x+2)(x−2)]×x−23②=x+1−x−2(x+2)(x−2)×x−23③……(1)上面的运算过程中第 ③ 步出现了错误; (2)请你写出完整的解答过程. 解析 (1)③. (2)原式=x+1(x+2)(x−2)−1x+2×x−23=x+1(x+2)(x−2)−x−2(x+2)(x−2)×x−23=x+1−x+2(x+2)(x−2)×x−23=3(x+2)(x−2)×x−23=1x+2.11.(2022新疆,)先化简,再求值:(a 2−9a 2−2a+1÷a−3a−1−1a−1)·1a+2,其中a =2.解析 (a 2−9a 2−2a+1÷a−3a−1−1a−1)·1a+2 =[(a+3)(a−3)(a−1)2·a−1a−3−1a−1]·1a+2=(a+3a−1−1a−1)·1a+2 =a+2a−1·1a+2 =1a−1.当a =2时,原式=12−1=1.12.(2022衢州衢江一模,)先化简,再求值:2x 2−1÷1x+1−1x−1,从1,2,3这三个数中选择一个你认为适合的数作为x 的值代入求值. 解析 原式=2(x+1)(x−1)·(x +1)-1x−1=2x−1−1x−1=1x−1. 要使原式有意义,x 只能取2,3.当x =2时,原式=1;当x =3时,原式=12.(写出一种情况即可) 13.(2022湖州南浔一模,)先化简:a−1a 2−1÷2aa+1,再选择一个适当的数代入求值.解析 原式=a−1(a+1)(a−1)·a+12a =12a .当a =2时,原式=14.(答案不唯一,a 取不为0、±1的任何实数均可) 14.(2021嘉兴模拟,)贝贝家的浴缸上有两个水龙头,一个放热水,一个放冷水,放热水的水龙头的放水速度是a L/min ,放冷水的水龙头的放水速度是b L/min ,现要将浴缸注满水,有两种放水方式:方式一:先开热水龙头,使热水注满浴缸的一半,后一半容积的水开冷水龙头注放; 方式二:前一半时间开热水龙头注放,后一半时间开冷水龙头注放. 你认为以上两种方式中,哪种方式更节省时间?谈谈你的看法和理由. 解析 方式一:设浴缸容积为V L ,注满总时间为t min , 根据题意,得t =V2a +V2b .方式二:设浴缸容积为V L ,注满总时间为t' min , 根据题意,得12t′a +12t'b =V. 所以t'=2Va+b .故t -t'=V2a +V2b −2Va+b =V[(a+b)2−4ab]2ab(a+b)=V(a−b)22ab(a+b).①当a =b 时,t -t'=0,即t =t'; ②当a ≠b 时,V(a−b)22ab(a+b)>0,即t >t'.综上,当放热水速度与放冷水速度不相等时,方式二节省时间;当两水龙头放水速度相等时,两种方式注满水的时间相等.。

中考数学复习专题8分式、分式方程及其应用试题(B卷,含解析)

中考数学复习专题8分式、分式方程及其应用试题(B卷,含解析)

分式、分式方程及其应用一、选择题1. ( 安徽,5,4分)方程3112=-+x x 的解是( ) A.-54 B.54C.-4D.4 【答案】D.【逐步提示】先把方程两边同乘以x-1,化分式方程为整式方程,然后解这个整式,检验整式方程的解后直接选择.【详细解答】解:方程两边同乘以x-1,得2x+1=3(x-1),解得x=4,经检验m=4是原方程的解,故选择D.【解后反思】解分式方程的一般方法是把分式方程化成整式方程来解,并且一定要检验方程的根,把增根舍去.本题也可以把各选项的值代入方程找出正确的选项. 【关键词】 分式方程、分式方程的解法2. ( 甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,8,3分)某工厂现在平均每天比原计划每天多生产50台机 器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同,设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A .90060050x x =+ B .90060050x x =- C .90060050x x =+ D .90060050x x =-【答案】A【逐步提示】本题考查了分式方程的应用,解题的关键是将题中的相等关系用含有未知数的 代数式表示,用含有x 的代数式表示现在平均每天生产的机器数量,再根据题中关于时间 的相等关系列方程即可.【详细解答】解:设原计划平均每天生产x 台机器,则现在平均每天生产(x +50)台机器, 现在生产800台机器所需时间可表示为90050x +,原计划生产600台机器所需时间可表示为 600x ,根据这两者时间相等,得方程90060050x x=+,故选择A . 【解后反思】列分式方程与列整式方程一样,先分析题意,准确找出应用题中包含的等量关 系,恰当地设出未知数,列出方程. 【关键词】分式方程的应用;3. ( 甘肃省天水市,7,4分)已知分式2(1)(2)1x x x -+-的值为0.那么x 的值是( )A .-1B .-2C .1D .1或-2【答案】B 【逐步提示】本题考查了分式的值为0的条件,求解关键是根据这个条件列出方程和不等式.本题涉及到的知识:分式有意义的条件是分母不为0;分式的值为0的条件是分子为0,且分母不为0.【详细解答】解:根据题意,得()()212010x x x ⎧-+=⎪⎨-≠⎪⎩,解之得x =-2,故选择B .【解后反思】实际求解中,学生易忽视分母不等于0的条件而错误地选择D .【关键词】分式;一元二次方程的解法——因式分解法;一元二次方程的解法——直接开平方法. 4. (广东省广州市,14,3分)方程x 21=32-x 的解是 . 【答案】x =-1【逐步提示】利用解分式方程的一般步骤直接解分式方程即得其解.【详细解答】解:去分母,得x -3=4x .移项合并同类项,得-3x =3.∴x =-1.检验:当x =-1时,2x (x -3)=8≠0.∴x =-1是原分式方程的解.故答案为x =-1. 【解后反思】(1)解分式方程的基本思想是转化思想,即通过去分母把分式方程转化成整式方程来解.(2)解分式方程去分母时,首先要找准最简公分母,注意最简公分母要包含各分式所有分母的因式,分母是多项式的,应先分解因式,再从系数、相同字母、不同字母三个方面考虑,其中系数取最小公倍数,相同字母或因式取最高次幂,互为相反数的因式,注意通过符号变化取其中一个作为最简公分母的因式即可;其次,依据等式的基本性质,分式方程的每一项都要乘以最简公分母,特别不要漏乘没有分母的项,还要注意不要去掉括号以及避免符号变形错误.(3)解分式方程必须验根,一般方法为把所解得的未知数的值代入最简公分母,若为零则为増根,不为零则为原分式方程的解. 【关键词】解分式方程5. (贵州省毕节市,13,3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x 棵,则列出的方程为( )A.30300400-=x x B.x x 30030400=- C.x x 30030400=+ D.30300400+=x x 【答案】A【逐步提示】本题考查分式方程的应用,解题的关键是找出题中的等量关系.①题中的等量关系是:现在植树400棵所需时间与原计划植树300棵所需时间相同;②现在植树400棵所需时间为:400现在每天植树棵数;原计划植树300棵所需时间为:300原计划每天植树棵数;③现在平均每天植树x 棵,原计划每天植树(x -30)棵.【详细解答】解:由题意,得方程组30300400-=x x ,故选择A. 【解后反思】本题的易错点是容易误认为x 是原计划每天植树棵数,从而误选C .通常我们假设未知数时,一般设较小的一个量为x ,用和或倍数表示另一个量,但这并非原则和规定,设较大的量为x 也可以. 【关键词】 分式方程的应用;6.( 河北省,4,3分)下列运算结果为x -1的是( )A .11x -B .211x x x x -⋅+C .111x x x +÷- D .2211x x x +++ 【答案】B【逐步提示】分别计算(或化简)每个式子,看其结果是否为x-1.【详细解答】解:1111x x x x x x--=-=,()()2111111x x x xx x x x x x +--⋅=⋅=-++,2+11+11111x x x x x x x x --÷=⋅=-,()22+1+2+11+1+1x x x x x x ==+,故运算结果为x -1的是选项B .【解后反思】分式的运算法则如下:运算法则数学表达式加减法同分母相加减:分母不变,分子相加减. a c ±b c =a b c±. 异分母相加减:先通分,同乘以各分母的最小公倍数,再按同分母相加减法则运算.a cb d ±=ad bcbd+. 乘法 两分式相乘:分子与分子相乘,分母与分母相乘.a c acb d bd⨯=. 除法分式A÷B 则A·1B,然后用分式乘法进行运算.a c a d adb d bc bc÷=⋅=.【关键词】 分式的乘除;分式的加减;分式的约分7. ( 河北省,12,2分)在求3x 的倒数的值时,嘉淇同学将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( ) A .11538x x =- B .11538x x =+ C .1853x x =- D .1853x x =+【答案】C【逐步提示】本题考查了倒数的表示及列分式方程,找到题目中的等量关系是解题的关键. 【详细解答】解:3x 、8x 的倒数分别为13x ,18x ,根据“她求得的值比正确答案小5” 可知“18x 比13x小5”,故可列方程为18x =13x-5,答案为选项C. 【解后反思】1.a (a ≠0)的倒数的1a,注意不要将其与相反数,绝对值等相混淆;2.列方程的关键是找对等量关系,如本题要弄清两个倒数的大小关系. 【关键词】 倒数;列分式方程8. ( 湖北省十堰市,7,3分)用换元法解方程31241222=---x x x x 时,设y xx =-122,则原方程可化为( ) A. 031=--y y B.y-y 4-3=0 C.y-031=+y D.y-y4+3=0. 【答案】B【逐步提示】本题主要考查分式方程的换元方法,解题的关键是理解x x 122-和122-x x是一对互为倒数的关系;解题的思路:设y x x =-122,那么yx x 141242⨯=-. 【详细解答】解:因为y x x =-122 ,所以y x x 141242⨯=-,原方程可以变形为y-y4-3=0故选择B .【解后反思】分式方程求解的方法主要有两个,一是直接在方程的两边同乘以最简公分母,把分式方程转化为整式方程来解;另一个是换元后,再转化为整式方程求解.思维拓展:换元法不仅可以解部分分式方程,也可以解部分一元高次方程或无理方程,有时因式分解也需要用到换元法. 【关键词】分式方程和无理方程; 分式方程的解法9.(湖南省衡阳市,2,3分)如果分式13-x 有意义,则x 的取值范围是( ) A. 全体实数 B. 1≠x C. 1=x D. 1>x【答案】B【逐步提示】本题考查了分式有意义的条件,解题的关键是理解分式有意义的条件.第一步:根据分式有意义的条件是分母的值不等于0,列出不等式;第二步:解不等式,即可求得答案。

初中数学中考专题复习《分式(方程)》典型习题分析

初中数学中考专题复习《分式(方程)》典型习题分析

初中数学中考专题复习《分式(方程)》典型习题分析一、选择题1.(2008年四川省宜宾市)若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.22. (08浙江温州)若分式12x x -+的值为零,则x 的值是( ) A .0B .1C .1-D .2-3.(2008年山东省临沂市)化简121112+-÷⎪⎭⎫ ⎝⎛-+a a a a 的结果是( ) A . 1+a B . 11-a C .aa 1- D . 1-a 4、(2008浙江杭州)化简22x y y x y x---的结果是( ) A .x y -- B .y x -C .x y -D .x y +5.(2008年大庆市)使分式21xx -有意义...的x 的取值范围是( ) A .12x ≥ B .12x ≤C .12x >D .12x ≠6.(08乌兰察布市)若2x <,则2|2|x x --的值是( )A .1-B .0C .1D .27.(2008年江苏省无锡市)计算22()ab ab的结果为( ) A.bB .aC.1D.1b8.(2008安徽)分式方程112x x =+的解是( ) A .1x = B .1x =- C .2x = D .2x =-9.(2008 湖南 怀化)方程04142=----xxx 的解是 ( ) (A )3-=x (B )3=x (C )4=x (D )3=x 或4=x10.(2008 湖北 荆门)计算ab ba b a b a b a b a 22222-⨯⎪⎪⎭⎫ ⎝⎛+---+的结果是( )(A)b a -1. (B) ba +1. (C) a -b . (D) a+b . 11.(2008年杭州市)化简22x y y x y x---的结果是( ) A .x y -- B .y x - C .x y - D .x y +12. (2008泰安)分式方程21124x x x -=--的解是( A ) A .32- B .2- C .52- D .3213.(2008佳木斯市)关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数 C .5m <-时,方程的解为负数 D .无法确定14.(2008湖北黄冈)计算a b a bb a a +⎛⎫-÷⎪⎝⎭的结果为( ) A .a bb- B .a bb +C .a ba- D .a ba+15.(2008江苏淮安)若分式23x -有意义.则x 应满足的条件是( ) A .x≠O B .x≥3 C .x ≠3 D .x≤316.(2008浙江温州)若分式12x x -+的值为零,则x 的值是( ) A .0 B .1 C .1- D .2-17.(2008黑龙江黑河)关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数 C .5m <-时,方程的解为负数 D .无法确定18.(2008湖南株洲)若使分式2xx -有意义,则x 的取值范围是A .2x ≠B .2x ≠-C .2x >-D .2x <19.(2008山西太原)化简222m n m mn-+的结果是( )A.2m n m - B. m n m - C. m n m + D. m nm n-+ 20.(2008年四川省宜宾市)若分式122--x x 的值为0,则x 的值为( )A. 1B. -1C. ±1D.2二、填空题1、(2008山东烟台)请选择一组,a b 的值,写出一个关于x 的形如2ab x =-的分式方程,使它的解是0x =,这样的分式方程可以是______________. 2、(2008淅江金华)已知分式11-+x x 的值为0,那么X 的值为 . 3、(2008山东威海)方程423532=-+-xx x 的解是 ; 4.(2008湖南益阳).在下列三个不为零的式子 44,2,4222+---x x x x x 中,任选两个你喜欢的式子组成一个分式是 ,把这个分式化简所得的结果是 .5.(2008年天津市)若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为 .6.(2008年四川巴中市)若0234x y z ==≠,则23x yz+= . 7.(2008年四川巴中市)当x = 时,分式33x x --无意义. 8.(2008年山东省青岛市)化简:293x x -=- . 9.(2008年山东省青岛市)为了帮助四川地震灾区重建家园,某学校号召师生自愿捐款.第一次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数是多少?若设第一次捐款的人数为x ,则根据题意可列方程为 .10.(2008年江苏省连云港市)若一个分式含有字母m ,且当5m =时,它的值为12,则这个分式可以是 .11.(2008年浙江嘉兴市省)已知23a b =,则ab= . 12.(2008湖南郴州)函数11y x =-的自变量的取值范围是_________. 13.(2008江苏南京)函数y=x x-1中,自变量x 的取值范围是 ▲ .14.(2008 四川 泸州)方程12211x x x +=-+的解 x = 15.(2008 湖北 十堰)计算:=---31922a a a . 16.(2008 重庆)分式方程121+=x x 的解为 .17.(2008 河北)当x = 时,分式31x -无意义.18.(2008 湖南 长沙)方程112=-x 的解为x = .19.(2008 四川 广安)若分式351x x +-无意义,当510322m x m x -=--时,则m = .20.(2008浙江金华)已知分式11-+x x 的值为0,那么X 的值为21.(2008佳木斯市)函数y =中,自变量x 的取值范围是 . 22.(2008湖北襄樊)当m=_________时,关于x 的分式方程132-=-+x mx 无解. 23.(2008江苏盐城)方程213x =-的根为 .24.(2008宁夏)某市对一段全长1500米的道路进行改造.原计划每天修x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了 天.25.(2008年上海市)用换元法解分式方程21221x x x x --=-时,如果设21x y x-=,并将原方程化为关于y 的整式方程,那么这个整式方程是 .26.(20082=的根是 .27. (2008黑龙江哈尔滨)函数1x xy -=的自变量x 的取值范围是 .三、解答题1.(2008年浙江省衢州市)解方程:1x121x x 3=--- 2.(08山东省日照市)化简,再求值:11a b a b ⎛⎫- ⎪-+⎝⎭÷222b a ab b -+,其中21+=a ,21-=b .3.(2008年四川省宜宾市)请先将下式化简,再选择一个你喜欢又使原式有意义的数代入求值..121)11(2+-÷--a a a a 4.(2008浙江义乌) 解方程:1321x x =+5.(2008浙江宁波)化简22111a a aa a ++---. 6、(2008山东威海)先化简,再求值:⎪⎭⎫⎝⎛--÷-+x x x x x 1211,其中2=x .7.(2008年山东省临沂市)在某道路拓宽改造工程中,一工程队承担了24千米的任务.为了减少施工带来的影响,在确保工程质量的前提下,实际施工速度是原计划的1.2倍,结果提前20天完成了任务,求原计划平均改造道路多少千米?8.(2008年辽宁省十二市)在“汶川地震”捐款活动中,某同学对甲、乙两班捐款情况进行了统计:甲班捐款人数比乙班捐款人数多3人,甲班共捐款2400元,乙班共捐款1800元,乙班平均每人捐款的钱数是甲班平均每人捐款钱数的45倍.求甲、乙两班各有多少人捐款? 9.(2008年辽宁省十二市)先化简,再求值:23111aa a a a a-⎛⎫- ⎪-+⎝⎭,其中2a =.10.(2008年天津市)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.天津市奥林匹克中心体育场——“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.(Ⅰ)设骑车同学的速度为x 千米/时,利用速度、时间、路程之间的关系填写下表.(Ⅱ)列出方程(组),并求出问题的解.11.(2008年沈阳市)解分式方程:1233xx x=+--. 12.(2008年四川巴中市)在解题目:“当1949x =时,求代数式2224421142x x x x x x x-+-÷-+-+的值”时,聪聪认为x 只要任取一个使原式有意义的值代入都有相同结果.你认为他说的有理吗?请说明理由.13 .(2008年成都市)化简:).4(2)12(22-⋅-+-x xx xx x14.(2008年成都市)金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的32;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成. (1)求甲、乙两队单独完成这项工程各需多少天? (2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元.工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.15.(2008年乐山市)已知1x =,求代数式4(2)22x x x x÷+---的值 16.(2008年乐山市)解方程:2212212x x x x-=--17.(2008年大庆市)某文具厂加工一种文具2 500套,加工完1 000套后,由于采用了新设备,每天的工作效率变为原来的1.5倍,结果提前5天完成了加工任务.求该文具厂原来每天加工多少套这种文具.18.(2008(2008新疆乌鲁木齐市)2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天加工多少顶帐篷? 19. (2008山东德州)先化简,再求值:11a b a b ⎛⎫- ⎪-+⎝⎭÷222b a ab b -+,其中21+=a ,21-=b .20. (2008黑龙江黑河)先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值.21.(08湖南常德市)化简:211112xx x x -÷⎪⎭⎫⎝⎛--+ 22.(2008湖南常德市)在社会主义新农村建设中,县交通局决定对某乡的村级公路进行改造,由甲工程队单独施工,预计180天能完成.为了提前完成任务,改由甲、乙两个工程队同时施工,100天就能完成.试问:若由乙工程队单独施工,需要多少天才能完成任务?23.(2008桂林市)有一道题:“先化简再求值:22x 12X 1)x 1x 1x 1-+÷+--(,其中x=把“x=释这是怎么回事? 24.(2008桂林市)某校在教学楼前铺设小广场地面,其图案设计如图.所示,矩形地面的长50米,宽32米,中心建一直径为10米的圆形喷泉,四周各角留一个长20米,宽5米的小矩形花坛,图中阴影处铺设广场地砖.(1)求阴影部分的面积S(π取3)(2)某人承包铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划1.5倍,结果提前4天完成了任务,问原计划每天铺多少平方米?25.(2008广州市)2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修.维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度. 26.(2008广东肇庆市)在四川省发生地震后,成都运往汶川灾区的物资须从西线或南线运输,西线的路程约800千米,南线的路程约80千米,走南线的车队在西线车队出发18小时后立刻启程,结果两车队同时到达.已知两车队的行驶速度相同,求车队走西线所用的时间.27.(2008年陕西省)先化简,再求值:22222a b b a b a b+++-,其中2a =-,13b =. 28.(2008 河南)先化简,再求值:11-+a a -122+-a a a ÷a1,其中a =1-2 29.(2008 四川 泸州)化简21211x x x ++- 30.(2008年浙江省嘉兴市)先化简,再求值:22111a a a a -⎛⎫⨯+ ⎪+⎝⎭,其中2a =-.31.(2008年江苏省南通市)解分式方程225103x x x x-=+- 32.(2008年江苏省无锡市)在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m 和乙种板材120002m 的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m 或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材及能安置的人数如下表所示:板房型号 甲种板材 乙种板材 安置人数A 型板房 54 2m 26 2m 5 B 型板房78 2m41 2m8问:这400间板房最多能安置多少灾民?33.(2008年江苏省无锡市)(2)先化简,再求值:244(2)24x x x x -++-,其中x =34.(2008年江苏省苏州市)先化简,再求值:2224111442a a a a ⎛⎫+⎛⎫-÷- ⎪ ⎪-⎝⎭⎝⎭,其中12a =.35.2008年江苏省苏州市)解方程:222(1)160x x x x+++-=.36.(2008北京)已知30x y -=,求222()2x yx y x xy y+--+的值.37.(2008湖北咸宁)先化简,再求值:22321113x x x x x x x +++---+ ,其中1x =. 38.(2008湖北咸宁)(本题满分8分)A、B两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?39.(2008北京)列方程或方程组解应用题:京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米? 40.(2008年云南省双柏县)解分式方程:233x x=-. 41.(2008年山东省枣庄市)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.42.(2008年山东省枣庄市)先化简,再求值:22212221x x xx x x --+--+÷x ,其中x=23. 43.(2008江苏南京)解方程12+x -122+x =0.44.(2008湖北黄石)先化简后求值.222212ab a b ab b a ab ab ⎛⎫+⎛⎫-÷+ ⎪ ⎪--⎝⎭⎝⎭,其中1a =-1b =-.45.(2008湖北黄石)某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品?46.(2008江苏宿迁)先化简,再求值:222344322+-++÷+++a a a a a a a ,其中22-=a .47.(2008 湖南 长沙)先化简,再求值:a a a -+-21422,其中21=a .48.(2008 重庆)先化简,再求值:32444)1225(222+=++-÷+++-a a a a a a a ,其中 49.(2008 四川 广安)先化简再求值:244()33x x x x x ---÷--,其中5x =. 50..(2008 湖南 怀化)先化简,再求值:()()3211123x x x x x --=---+,其中.51.(2008 河北)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.52.(2008 湖北 荆门)今年5月12日,四川省汶川发生8.0级大地震,某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?53.(2008 湖北 恩施)请从下列三个代数式中任选两个构成一个分式,并化简该分式x2-4xy+4y2x2-4y2x-2y54.(2008 江西)甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,乙同学说:“我俩所用的全部时间的和为50秒,捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜? 55.(08绵阳市)(2)计算:)1111()12(22122+---+⋅-+m m m m m m m ..56.(08乌兰察布市)先化简,再求值3241(1)3111x x x x x x ++-÷-+-+,其中1x =.57.(08厦门市)先化简,再求值2221x x xx x +-,其中2x =.58.(2008山东东营)先化简,再求值:11a b a b ⎛⎫- ⎪-+⎝⎭÷222b a ab b -+,其中21+=a ,21-=b .59.(2008泰安)先化简,再求值:232224xx x x x x ⎛⎫-+⎪+--⎝⎭,其中4x = 60.(2008佛山).先化简)221(-+p ÷422--p pp ,再求值(其中P 是满足-3 <P < 3的整数). 61. (2008黑龙江哈尔滨)先化简,再求代数式2x 1-x 2x 3-12+÷+)(的值,其中x =4sin45°-2cos60°62.(2008广东)在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.63.(2008广东深圳)先化简代数式⎪⎭⎫⎝⎛-++222a a a÷412-a ,然后选取一个合适..的a 值,代入求值.64.(2008山西太原)为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元.两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.65.(2008湖北武汉)先化简,再求值:2239(1)x x x x---÷,其中2x =.66.(2008湖北襄樊)化简求值: 12,161)416816(222+=-÷-+++-x x x x x x x 其中67.(2008湖北孝感)请你先将式子2200811211a a a a ⎛⎫÷+ ⎪-+-⎝⎭化简,然后从1,2,3中选择一个数作为a 的值代入其中求值. 68.(2008江苏盐城)先化简,再求值:35222x x x x -⎛⎫÷+- ⎪--⎝⎭,其中4x =-. 69.(2008浙江湖州)为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.(1)按此计划,该公司平均每天就生产帐篷 顶.(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务,求该公司原计划安排多少名工人生产帐篷?70.(2008年湖南省邵阳市)在四川汶川地震灾后重建中,某公司拟为灾区援建一所希望学校.公司经过调查了解:甲、乙两个工程队有能力承包建校工程,甲工程队单独完成建校工程的时间是乙工程队的1.5倍,甲、乙两队合作完成建校工程需要72天. (1)甲、乙两队单独完成建校工程各需多少天?(2)在施工过程中,该公司派一名技术人员在现场对施工质量进行全程监督,每天需要补助100元.若由甲工程队单独施工时平均每天的费用为0.8万元.现公司选择了乙工程队,要求其施工总费用不能超过甲工程队,则乙工程队单独施工时平均每天的费用最多为多少?71.(2008年江苏南充市)化简2111x x x x⎛⎫-÷ ⎪--⎝⎭,并选择你最喜欢的数代入求值. 72(2008年江苏南充市)在“5²12”汶川大地震的“抗震救灾”中,某部队接受了抢修映秀到汶川的“213”国道的任务.需要整修的路段长为4800m ,为了加快抢修进度,获得抢救伤员的时间,该部队实际工作效率比原计划提高了20%,结果提前2小时完成任务,求原计划每小时抢修的路线长度.73.(2008年浙江省衢州)解方程:1x121x x 3=--- 74.(08年山东省)先化简,再求值:11a b a b ⎛⎫- ⎪-+⎝⎭÷222b a ab b -+,其中21+=a ,21-=b .温馨提示:总费用=平均每天的费用⨯天数+补助费75.(2008年上海市)解方程:2654111x x x x x ++=--+76.(2008年山东省威海市)先化简,再求值:⎪⎭⎫⎝⎛--÷-+x x x x x 1211,其中2=x .分式(方程)答案一.选择题1.D2.B3.D4.A5.D6.A7.B8.A9.B 10.B 11.A 12.A 13.C 14.A 15.C 16.B 17.C 18.A 19.B 20.D 二.填空题1. 答案不唯一,如212x -=- 2. -1 3. 1=x 4. 答案不惟一如:x x ,x x x 22422+--本题还有如下答案:24222+--x x ,x xx ;2244422-++--x x ,x x x ;2244422+--+-x x ,x x x ;244222-+--x x,x x x x ;x x ,xx x x 224422--+-. 5. 5 6.134 7. 3 8. 3x + 9.5600020000202x x-= 10. (写出一个..即可)60m(答案不唯一) 11. 32 12. 1x ≠ 13. 0x ≠ 14. 3 15. 31+a 16. 1x = 17. 1 18. 3 19.73 20. -1 21. 3x ≤且1x ≠ 22. -6 23. x=5(或5) 24. 3521500+x 25. 2210y y --= 26. 1x =-27. 1x ≠三.解答题 1.解:方程两边都乘以)1(-x ,得:123-=+x x解得:23-=x 经检验:23-=x 是原方程的根;∴原方程的根是23-=x .2. 解:原式=222))(()()(b ab a bb a b a b a b a +-÷+---+ ……………………………2分=b b a b a b a b 2)())((2-⋅+- …………………………………………3分=ba b a +-)(2. …………………………………………………………4分当21+=a ,21-=b 时,原式=222222=⨯. …………………………………………………6分 3. 解:原式=21(1)1a a a a -+⋅--1a =-4.321x x =+ ………………………………………………………………………1分1x = ……………………………………………………………………………2分经检验:1x =是原方程的解 …………………………………………………1分 5. 原式1(1)1(1)(1)a a a a a a ++=--+- ······························································································ 2分 111a aa a +=--- ································································································· 4分 11a =- 6. 解:x xx x x x x x x x x ---÷-+=⎪⎭⎫ ⎝⎛--÷-+121112112 ………………………………………2分 =()x x x x x -+-÷-+1111 …………………………………………………………3分 =)1(111+--⋅-+x x xx x …………………………………………………………4分 =x1-. ……………………………………………………………………5分当2=x 时,原式=22211-=-=-x . ……………………………………7分 7. 设原计划平均每天改造道路x 千米,,根据题意,得…………1分202.12424=-xx ………………………………………………………4分 解这个方程,得x =0.2………………………………………………6分 经检验,x =0.2是原方程的解.答:原计划平均每天改造道路0.2千米.…………………………7分四、认真思考,你一定能成 8. 解法一:设乙班有x 人捐款,则甲班有(3)x +人捐款. ················································ 1分 根据题意得:24004180035x x⨯=+ ··················································································································· 5分 解这个方程得45x =. ·········································································································· 8分 经检验45x =是所列方程的根. ··························································································· 9分 348x ∴+=(人)答:甲班有48人捐款,乙班有45人捐款. ······································································· 10分 解法二:设甲班有x 人捐款,则乙班有(3)x -人捐款. ····················································· 1分 根据题意得:24004180053x x ⨯=- ··················································································································· 5分 解这个方程得48x =. ·········································································································· 8分经检验48x =是所列方程的根. ··························································································· 9分 345x ∴-=(人)答:甲班有48人捐款,乙班有45人捐款. ······································································· 10分9. 解法一:原式223(1)(1)11a a a a a a a +---=⨯- ··································································· 2分 24a =+ ·································································································································· 6分当2a =时,原式2248=⨯+= ··························································································· 8分解法二:原式3(1)(1)(1)(1)11a a a a a a a a a a+-+-=⨯-⨯-+ ··············································· 2分 24a =+ ·································································································································· 6分 当2a =时,原式2248=⨯+= ··························································································· 8分10.································································· 3分 (Ⅱ)根据题意,列方程得3121010+=x x . ······································································· 5分 解这个方程,得15=x . ······························································································ 7分 经检验,15=x 是原方程的根. 所以,15=x .答:骑车同学的速度为每小时15千米. ············································································ 8分 11. 解:12(3)x x =-- ········································································································ 2分126x x =-- 7x = ······································································································································· 5分检验:将7x =代入原方程,左边14==右边 ······································································· 7分所以7x =是原方程的根 ········································································································ 8分 (将7x =代入最简公分母检验同样给分)12. 解:聪聪说的有理. ········································································································ 1分2224421142x x x x x x x-+-÷-+-+2(2)211(2)(2)(2)x x x x x x x-+=⨯-++-- ······················································································· 3分。

中考数学一轮总复习 第8课时 分式方程(无答案) 苏科版

中考数学一轮总复习 第8课时 分式方程(无答案) 苏科版

第8课时:分式方程【课前预习】 一、知识梳理: 1、分式方程的定义。

2、分式方程的解法,基本思想是将分式方程化为整式方程,常用方法是运用等式性质在方程两边同乘以最简公分母。

3、解分式方程必须验根。

理解“增根”的含义,并能用增根的概念解决问题. 二、课前练习: 1、下列方程:(1)21=x ;(2)231x x =-;(3)1=+b x a x (a,b 为已知数);(4)41312=-+-xx .其中是分式方程的有( )A.1个 B.2个 C.3个 D.4个2545x x x x x -≠=--2、已知分式,当时,分式有意义;当时,分式的值为0。

222223321154523105151 22x x xy y x x x A B x A B x x x x m m x x --==---+===-+--++==--3、解方程时,若设,则可把原方程化成关于的整式方程,此方程为。

4、如果恒成立,则,。

、若方程无解,则。

6、解分式方程:(1)43321++=+x x x (2)431222-=-+-x x x【解题指导】例1、解分式方程(组):(1)x x x x )2(322-=+- (2)22114x x x x +--= (3) 215131x y x y⎧-=-⎪⎪⎨⎪+=⎪⎩例2、已知关于x 的方程322=-+x mx 的解是正数,求m 的取值范围?例3、若关于x 的方程0111=--+x ax 有增根,则求a 的值.【练习巩固】1.方程22111111x x x x -+=-++的解是( ). (A )1 (B )-1 (C )±1 (D )无实数解 2.关于x 的方程1112-=-++x x x a x x 有实数解,则a 的取值范围是( ) (A )a ≠2 (B )a >0,且a ≠2 (C )a ≠-2 (D )a ≠±2 3.解下列分式方程:(1)1432=--x x ; (2)x x x x -=+--1121322 (3)()()621x 1x 2x 2-=+-- (4)214x 21x 2x 42x ++=+--4.1mx m x x 1-=-已知于的方程有实数根,求m 的取值范围.【课后作业】 班级 姓名 一、必做题: 1.分式方程113-+=-x x x x 的解为( ) A .1=x B .1-=x C .2-=x D .3-=x 2.分式方程xx x -=+--21221的解为( ) A .2=x B .4=x C .3=x D .无解3.解下列分式方程: (1)1262=++-x x x (2)22112()3()1x x x x +-+= (3)32111x x x-=--(4)2654111x x x x x ++=--+ (5)2213(1)411x x x x +++=++ (6)22324321x x x x --=--4.若关于x 的方程112=-+x ax 的解为正数,求a 的取值范围?二.选做题:1. 对于分式21x ax ++,当x a =-时,下列说法正确的是( ) A. 分式的值为0 ; B.分式无意义; C .当12a ≠ 时,分式的值为0; D.当12a ≠- 时,分式的值为0.2.若分式方程131=---xx a x 无解,则a = . 3.用换元法解方程41122=+++x x xx ,可设x x y 1+=,则原方程可化为关于y 的方程是 .22224.0 322111x xx x x m x m x x x x-=-+++-=--分式方程的增根是。

2020年上海中考数学·一轮复习 第08讲 分式

2020年上海中考数学·一轮复习 第08讲 分式

第08讲 分式[基础篇]一、分式的概念一般地,如果A 、B 表示两个整式,且B 中含有字母,那么式子AB叫做分式。

其中A 叫做分式的分子,B 叫做 分式的分母。

1.1 理解分式的概念需注意以下两点:(1)分母中应含有字母.若分母中不含字母,则为整式.(2)若使分式有意义,则分母不为零,若分式无意义,则分母为零.1.2 只有在分式有意义的前提条件下,才能讨论分式的值问题。

因此分式的值为零,则需要同时满足两个条件: (1)分母不为零; (2)分子为零。

二、分式的基本性质:分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变.用式子表示:C B C A B A ⋅⋅=CB CA B A ÷÷=(0≠C )2.1 约分:把一个分式的分子与分母的公因式约去,叫做约分.约分的依据是分式的基本性质. 2.2 最简因式:如果一个因式的分子与分母没有相同的因式(1除外),那么这个因式叫做最简因式.三、运算法则:分式的乘法法则:a c a cb d b d⋅⋅=⋅ 分式的除法法则:a c a d a db d bc b c⋅÷=⋅=⋅分式的乘方法则:nn n a a b b ⎛⎫= ⎪⎝⎭四、分式的混合运算:1、通分:把几个异分母的分式分别化为与原来分式的值相等的同分母分式的过程叫做通分。

注:(1)通分的过程中分式的值不变; (2)分母必须相同;(3)通分的依据是分式的基本性质; (4)通分的关键在于确定最简公分母。

2、最简公分母的确定方法:(1)最简公分母的系数,取分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母的最高次幂的积。

3、分式加减法的法则:(1)同分母分式相加减,分母不变,分子相加减。

即a b a bc c c±±=。

(2)异分母分式相加减,先通分,变为同分母的分式,再加减。

即a c ad bc ad bcb d bd bd bd±±=±=。

中考数学总复习《分式方程的概念及解法》专项测试卷带答案

中考数学总复习《分式方程的概念及解法》专项测试卷带答案

中考数学总复习《分式方程的概念及解法》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A 层·基础过关1.(2024·济南模拟)解分式方程1-12-x =2xx -2,去分母后得到的方程正确的是( )A .1-(2-x )=-2xB .(2-x )+1=2xC .(x -2)-1=2xD .(x -2)+1=2x 2.(2024·德州德城区模拟)分式方程x x -1=32x -2-2的解是( )A .x =-16B .x =14C .x =76D .x =543.(2024·济宁二模)若关于x 的分式方程2+1-mx -2=x2-x有增根,则m 的值是( )A .1B .2C .3D .44.(2024·宜宾中考)分式方程x+1x -1-3=0的解为 .5.(2024·成都中考)分式方程1x -2=3x的解是 .6.(2024·东营二模)若关于x 的分式方程1-x x -2=m2-x-2无解,则m 的值是 .7.(2024·包头中考)解方程:x -2x -4-2=xx -4.8.(2024·福建中考)解方程:3x+2+1=xx -2.9.(2024·滨州二模)对于非零实数a ,b ,规定a ⊕b =1a -1b.若(2x -1)⊕2=1,试求x 的值.B 层·能力提升10.(2024·遂宁中考)分式方程2x -1=1-mx -1的解为正数,则m 的取值范围( )A .m >-3B .m >-3且m ≠-2C .m <3D .m <3且m ≠-211.(2024·牡丹江中考)若分式方程x x -1=3-mx 1-x的解为正整数,则整数m 的值为 .12.(2024·重庆中考)若关于x 的一元一次不等式组{2x+13≤34x -2<3x +a 的解集为x ≤4,且关于y 的分式方程a -8y+2-yy+2=1的解均为负整数,则所有满足条件的整数a 的值之和是 .13.(2024·青岛三模)解方程:x -2x+2-1=16x 2-4.C 层·素养挑战14.(2024·青岛二模)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为a 1,a 2,a 3,a 4,…以此类推.请回答下列问题:(1)a 3的值为 ,a 10的值为 ;(2)a n 的值为n (n+1)2;(3)若1a 1+1a 2+1a 3+…+1a n =n 2 024(n 为正整数),则n 的值为 .参考答案A 层·基础过关1.(2024·济南模拟)解分式方程1-12-x =2xx -2,去分母后得到的方程正确的是(D)A .1-(2-x )=-2xB .(2-x )+1=2xC .(x -2)-1=2xD .(x -2)+1=2x 2.(2024·德州德城区模拟)分式方程x x -1=32x -2-2的解是(C)A .x =-16B .x =14C .x =76D .x =543.(2024·济宁二模)若关于x 的分式方程2+1-mx -2=x2-x有增根,则m 的值是(C)A .1B .2C .3D .44.(2024·宜宾中考)分式方程x+1x -1-3=0的解为 x =2 .5.(2024·成都中考)分式方程1x -2=3x的解是 x =3 .6.(2024·东营二模)若关于x 的分式方程1-x x -2=m2-x-2无解,则m 的值是 1 .7.(2024·包头中考)解方程:x -2x -4-2=xx -4.【解析】x -2x -4-2=xx -4x -2-2(x -4)=x 解得:x =3检验:当x =3时,x -4≠0 ∴x =3是原方程的根. 8.(2024·福建中考)解方程:3x+2+1=xx -2.【解析】原方程两边都乘(x +2)(x -2),去分母得:3(x -2)+(x +2)(x -2)=x (x +2) 整理得:3x -10=2x解得:x =10检验:当x =10时,(x +2)(x -2)≠0 故原方程的解为x =10.9.(2024·滨州二模)对于非零实数a ,b ,规定a ⊕b =1a -1b .若(2x -1)⊕2=1,试求x 的值.【解析】由题意得:12x -1-12=1去分母得:2-(2x -1)=2(2x -1) 解得:x =56.经检验,x =56是原方程的根∴x =56.B 层·能力提升10.(2024·遂宁中考)分式方程2x -1=1-mx -1的解为正数,则m 的取值范围(B)A .m >-3B .m >-3且m ≠-2C .m <3D .m <3且m ≠-211.(2024·牡丹江中考)若分式方程x x -1=3-mx 1-x的解为正整数,则整数m 的值为 -1 .12.(2024·重庆中考)若关于x 的一元一次不等式组{2x+13≤34x -2<3x +a 的解集为x ≤4,且关于y 的分式方程a -8y+2-yy+2=1的解均为负整数,则所有满足条件的整数a 的值之和是 12 .13.(2024·青岛三模)解方程:x -2x+2-1=16x 2-4.【解析】(x -2)2-(x 2-4)=16 x 2-4x +4-x 2+4=16 -4x +8=16 -4x =8x =-2检验,当x =-2时,x +2=0,故x =-2不是原方程的解 ∴该分式方程无解.C 层·素养挑战14.(2024·青岛二模)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为a 1,a 2,a 3,a 4,…以此类推.请回答下列问题:(1)a 3的值为6,a 10的值为55;【解析】(1)由题意知,a 1=1,a 2=1+2=3,a 3=1+2+3=6 a 4=1+2+3+4=10,…∴a 10=1+2+3+4+5+6+7+8+9+10=55 (2)a n 的值为n (n+1)2;【解析】(2)由题意知,a n =1+2+3+…+n ∵a n =n +(n -1)+(n -2)+…+1 ∴2a n =n (n +1),即a n =n (n+1)2;(3)若1a 1+1a 2+1a 3+…+1a n =n2 024(n 为正整数),则n 的值为4 047.【解析】(3)由题意知,a n =n (n+1)2∴1a n =2n (n+1)=2(1n -1n+1)∴1a 1+1a 2+1a 3+…+1a n=2(1-12)+2(12-13)+…+2(1n -1n+1)=n2 024∴2(1-1n+1)=n2 024解得n=4 047,经检验n=4 047是原分式方程的解,且符合要求.。

中考数学复习《分式方程》测试题(含答案)

中考数学复习《分式方程》测试题(含答案)

中考数学复习《分式方程》测试题(含答案)一、选择题(每题4分,共20分)1.解分式方程2x -1+x +21-x =3时,去分母后变形为(D) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1)C .2-(x +2)=3(1-x )D .2-(x +2)=3(x -1)2.[2015·天津]分式方程2x -3=3x 的解为(D) A .x =0 B .x =5C .x =3D .x =9【解析】 去分母得2x =3x -9,解得x =9,经检验x =9是分式方程的解.3.[2015·常德]分式方程2x -2+3x2-x =1的解为(A)A .x =1B .x =2C .x =13D .x =0【解析】 去分母得2-3x =x -2,解得x =1,经检验x =1是分式方程的解.4.[2015·遵义]若x =3是分式方程a -2x -1x -2=0的根,则a 的值是(A)A .5B .-5C .3D .-3【解析】 ∵x =3是分式方程a -2x -1x -2=0的根,∴a -23-13-2=0,∴a -23=1,∴a -2=3,∴a =5.5.[2014·福州]某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是(A)A.600x +50=450x B.600x -50=450x C.600x =450x +50 D.600x =450x -50 【解析】 根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器所需时间=原计划生产450台所需时间.二、填空题(每题4分,共20分)6.[2015·淮安]方程1x -3=0的解是__x =13__.7.[2015·巴中]分式方程3x +2=2x的解x =__4__. 8.[2015·江西样卷]小明周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x 袋牛奶,则根据题意列得方程为__10x =12x +2+0.5__. 9.[2015·河南模拟]若关于未知数x 的分式方程a x -2+3=x +12-x有增根,则a 的值为__-3__.【解析】 分式方程去分母,得a +3x -6=-x -1,解得x =-a +54,∵分式方程有增根,∴x =2,∴-a +54=2,解得a =-3.10.[2015·黄冈中学自主招生]若关于x 的方程ax +1x -1-1=0的解为正数,则a 的取值范围是__a <1且a ≠-1__.【解析】 解方程得x =21-a ,即21-a>0,解得a <1, 当x -1=0时,x =1,代入得a =-1,此为增根,∴a ≠-1,∴a <1且a ≠-1.三、解答题(共26分)11.(10分)(1)[2014·黔西南]解方程:1x -2=4x 2-4; (2)[2014·滨州]解方程:2-2x +13=1+x 2.解:(1)x +2=4,x =2,把x =2代入x 2-4,x 2-4=0,所以方程无解;(2)去分母,得12-2(2x +1)=3(1+x ),去括号,得12-4x -2=3+3x ,移项、合并同类项,得-7x =-7,系数化为1,得x =1.12.(8分)[2015·济南]济南与北京两地相距480 km ,乘坐高铁列车比乘坐普通快车能提前4 h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.解:设普通快车的速度为x km/h ,由题意得480x -4803x =4,解得x =80,经检验,x =80是原分式方程的解,3x =3×80=240.答:高铁列车的平均行驶速度是240 km/h.13.(8分)[2015·扬州]扬州建城2 500年之际,为了继续美化城市,计划在路旁栽树1 200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?解:设原计划每天种树x 棵,则实际每天栽树的棵数为(1+20%)x ,由题意得1 200x - 1 200(1+20%)x=2, 解得x =100,经检验,x =100是原分式方程的解,且符合题意.答:原计划每天种树100棵.14.(10分)[2015·连云港]在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6 000元购买的门票张数,现在只花费了4 800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.解:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x -80)元,根据题意,得6 000x =4 800x -80,解得x =400.经检验,x =400是原方程的根.答:每张门票的原定票价为400元;(2)设平均每次降价的百分率为y ,根据题意,得400(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%.15.(12分)[2015·泰安]某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7 800元,乙种款型共用了6 400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店按进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?解:(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有7 8001.5x +30=6 400x ,解得x =40,经检验,x =40是原分式方程的解,且符合题意,1.5x =60.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)6 40040=160,160-30=130(元),130×60%×60+160×60%×(40÷2)+160×[(1+60%)×0.5-1]×(40÷2) =4 680+1 920-640=5 960(元).答:售完这批T 恤衫商店共获利5 960元.16.(12分)[2015·宁波]宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共6 600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?【解析】 (1)首先设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得等量关系:种植A ,B 两种花木共6 600棵,根据等量关系列出方程;(2)首先设安排a 人种植A 花木,由题意得等量关系:a 人种植A 花木所用时间=(26-a )人种植B 花木所用时间,根据等量关系列出方程.解:(1)设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得 x +2x -600=6 600,解得x =2 400,2x -600=4 200,答:B 花木数量为2 400棵,则A 花木数量是4 200棵;(2)设安排a 人种植A 花木,由题意得4 20060a = 2 40040(26-a ),解得a =14,经检验,a =14是原分式方程的解,26-a=26-14=12,答:安排14人种植A花木,12人种植B花木.。

2020中考数学大一轮复习训练08:分式方程(含答案)

2020中考数学大一轮复习训练08:分式方程(含答案)

第8课时 分式方程1.(2019·淄博)解分式方程1-x x -2=12-x -2时,去分母变形正确的是( )A .-1+x =-1-2(x -2)B .1-x =1-2(x -2)C .-1+x =1+2(2-x )D .1-x =-1-2(x -2) 2.(2019·百色)方程1x +1=1的解是( ) A .无解 B .x =-1 C .x =0D .x =13.(2018·德州)分式方程x x -1-1=3()x -1()x +2的解为( )A .x =1B .x =2C .x =-1D .无解4.(2019·广州)甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A.120x =150x -8 B.120x +8=150xC.120x -8=150xD 120x =150x +85.(2019·岳阳)分式方程1x =2x +1的解为x =________.6.(2019·滨州)方程x -3x -2+1=32-x的解是________.7.(2017·宿迁)若关于x 的分式方程mx -2=1-x 2-x -3有增根,则实数m 的值是________.8.(2017·泸州)若关于x 的分式方程x +m x -2+2m2-x =3的解为正实数,则实数m 的取值范围是____________.9.小明解方程1x -x -2x =1的过程如下,请指出他解答过程中的错误,并写出正确的解答过程.解:方程两边同乘x ,得1-(x -2)=1,①去括号,得1-x -2=1,② 合并同类项,得-x -1=1,③ 移项,得-x =2,④ 解得x =-2,⑤∴原分式方程的解为x =-2.⑥10.(2019·无锡)解方程:1x -2=4x +1.11..(2017·泰州)解方程:x +1x -1+41-x 2=1.12.(2018·岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33 000 m2的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务.求实际平均每天施工多少平方米.13.(2019·湘西州)列方程解应用题:某列车平均提速80 km/h,用相同的时间,该列车提速前行驶300 km,提速后比提速前多行驶200 km,求该列车提速前的平均速度.14.(2018·广东)某公司购买了一批A,B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3 120元购买A型芯片的条数与用4 200元购买B型芯片的条数相等.(1)求该公司购买的A,B型芯片的单价各是多少元;(2)若两种芯片共购买了200条,且购买的总费用为6 280元,求购买了多少条A型芯片..(2019·巴中)在”扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户,已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.(1)请问甲、乙两种物品的单价各为多少?(2)如果该单位计划购买甲、乙两种物品共55件,总费用不少于5 000元且不超过5 050元,通过计算得出共有几种选购方案?参考答案1.D 2.C 3.D 4.D5.1 6.x=17.18.m<6且m≠29.小明的解法有三处错误:步骤①去分母有误;步骤②去括号有误;步骤⑥少检验.x=32,解答过程略.10.x=311.原分式方程无解.12.600 m213.该列车提速前的平均速度为120 km/h.14.(1)A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)80条15.(1)甲物品的单价为100元,乙物品的单价为90元.(2)共有6种选购方案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年中考数学第8章分式复习题
8.1 分式的基本性质与运算
8.1.1 当x取何值时,分式有意义?
8.1.2 若分式的值为0,则x=_____.
8.1.3 已知分式,当x取何值时,分式值为正?当x取何值时,分式值为负?
8.1.4 化简·的结果为().
A. B. C. D.
8.1.5 化简:=( ).
A.a2+b2
B.a2+b2
C.a2+ab-b2
D. a2-ab+b2
8.1.6 计算:
(1)++--
(2)(a+)2+(b+)2+(ab+)2-(a+)(b+)(ab+)
(3)++
8.1.7 化简:---+
8.1.8 化简:(1)22222222121()()121()()a b a b a b a b a b a b -+--+++--+÷22244222
22244222121()()121()()a b a b a b a b a b a b -+--+++--+
(2)2222333323()b a a b b a b a a b a b +++-- ÷22222b a a b b a a b
++-.
8.1.9 设x,y 只能取自然数1,2,3,…,并且使等式-=成立,那么x 取什么值时,y 达到最大?
8.1.10 已知m=是正整数,那么n可取个不同的正整数值。

8.1.1 在黑板上写下三个正实数1,x与y.允许下列操作:①可以写下一个等于黑板上任意两个数之和或差的数;②可以写下一个黑板上任意一个数的倒数。

请问:能不能进行有限次上述操作后可以写下:(1)x2;(2)xy?
8.2 分式的求值
8.2.1 若==…==,则=().
A. B.0或 C.0 D. 0或1
8.2.2 已知====k,则k的值为()
A.3
B.
C.-1
D.3或-1
8.2.3 已知==,且xyz≠0,求分式的值。

8.2.4 设=1,则的值是()
A.1
B.
C.
D.
8.2.5 如果a是x2-3x+1=0的根,试求下式的值:。

8.2.6 若x,y,z为实数,且(y-z)2+(z-x)2+(x-y)2=(y+z-2x)2+(x+z-2y)2+(x+y-2z)2,求的值。

8.2.7 已知++=1,求()2011+()2011+()2011的值。

8.2.8 化下列分式为部分分式:
(1);(2);(3).
8.2.9 若在关于x的恒等式=-中,为最简分式,且有a>b,a+b=c,则N= .
8.2.10 若在关x的恒等式=+中,和都是最简分式,且a,b,c,m,n都是常数,求a的值。

8.2.11 设m,n,p,q为非负整数,且对一切x>0,-1=恒成立,则(m2+2n+p)2q= .
8.3 分式的恒等变形
8.3.1 当a<b<c时,++为()
A.正数
B.负数
C.0
D.无法确定
8.3.2 三角形三边之长a,b,c满足关系式-+=,则该三角形一定是()
A.等边三角形
B.以a为底边的等腰三角形
C.以c为底边的等腰三角形
D.以上结论都不对
8.3.3 已知非0实数a,b,c,x,y,z满足关系式==,求的值。

8.3.4 已知实数a,b,c满足a+b+c=11,与++=,请问++的值是多少?
8.3.5 已知ax=by=cz=1,求+++++的值是多少?
8.3.6 已知==,求证:px+qy+rz=(x+y+z)(p+q+r)
8.3.7
444444444411111(2)(4)(6)(8)(10)4444411111(1)(3)(5)(7)(9)44444++++++++++算式所表示的是一个正整数,求这个正整数.
8.3.8 证明:对于任意自然然n ,分数皆不可约.
8.3.9 已知++=0,求证++=0.
8.3.10 设a 、b 、c 互不相等,试证:不论x 为何实数, ++=1恒成立.
8.4可化为一元一次方程的分式方程
8.4.1 如果关于x 的方程有增根x=1,那么k 的值等于( )
A. 1
B. 2
C. 3
D. 6
8.4.2 已知x 1,x 2,x 3,…,x xx ,x xx 是xx 个正数,且+++… +=1,则x 1,x 2,x 3,…,x xx ,x xx 这xx 个正数中( )
A. 小于1的数最多只有一个
B. 肯定有比xx 大的数
C. 肯定有比xx 小的数
D. 必有一个为xx
8.4.3 解方程:(1)+=
(2)++…+=1- 8.4.4 解方程:(1)
(2)
(3)
8.4.5 解方程:(1)
(2)1613404332302024 43898745 x x x x
x x x x
----
+=+
----
8.4.6 解方程组:
2
1
2
3
2
(1)(2)
4
3
xy x
x y
xz x
x x
y z
y z
+

=
⎪++

+

=

++

⎪++
=⎪++

8.4.7 在某市举办的自行车越野赛中,甲、乙两车同时从A地出发跑到B地,甲车以速度v1、v2、v3分别跑了的时间;乙车以速度v1、v2、v3分别跑了的路程,试问,甲、乙两车谁先跑到B地?
8.4.8 已知甲、乙、丙三人,甲单独完成一件工作所用的时间是乙、丙两人合作完成这件工作所用时间的a倍,乙单独完成这件工作所用的时间是甲、丙两人合作完成这件工作所用时间的b倍,求丙单独完成这件工作所用的时间是甲、乙两人合作完成这件工作所用时间的几倍?
8.4.9 一名运动员进行爬山训练,从山脚出发,上山路长10km,每小时行3km;爬到山顶后沿原路下山,下山每小时行5km,这名运动员上、下山的平均速度是_____km/h.
8.4.10 已知正整数a、b、c、d满足等式. 证明:a=c,b=d.21717 54D5 哕x-23419 5B7B 孻27075 69C3 槃40386 9DC2 鷂7,a31456 7AE0 章21355 536B 卫20909 51AD 冭B739939 9C03 鰃。

相关文档
最新文档