蚁群算法程序(matlab)

合集下载

蚁群算法程序(matlab)

蚁群算法程序(matlab)

蚁群算法程序(matlab)% 以下是蚁群算法MATLAB程序,请尊重原作者劳动,引用时请注明出处。

% 已经运行过,无误。

% 蚁群算法MATLAB程序function[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP( C,NC_max,m,Alpha,Beta,Rho,Q)%%==================================== =====================================%% 主要符号说明%% C n个城市的坐标,n×2的矩阵%% NC_max 蚁群算法MATLAB程序最大迭代次数%% m 蚂蚁个数%% Alpha 表征信息素重要程度的参数%% Beta 表征启发式因子重要程度的参数%% Rho 信息素蒸发系数%% Q 表示蚁群算法MATLAB程序信息素增加强度系数%% R_best 各代最佳路线%% L_best 各代最佳路线的长度%%==================================== =====================================%% 蚁群算法MATLAB程序第一步:变量初始化n=size(C,1);%n表示问题的规模(城市个数)D=zeros(n,n);%D表示完全图的赋权邻接矩阵for i=1:nfor j=1:nif i~=jD(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;elseD(i,j)=eps; % i = j 时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示endD(j,i)=D(i,j); %对称矩阵endendEta=1./D; %Eta为启发因子,这里设为距离的倒数Tau=ones(n,n); %T au为信息素矩阵Tabu=zeros(m,n); %存储并记录路径的生成NC=1; %迭代计数器,记录迭代次数R_best=zeros(NC_max,n); %各代最佳路线L_best=inf.*ones(NC_max,1); %各代最佳路线的长度L_ave=zeros(NC_max,1); %各代路线的平均长度while NC<=NC_max %停止条件之一:达到最大迭代次数,停止%% 蚁群算法MATLAB程序第二步:将m只蚂蚁放到n个城市上Randpos=[]; %随即存取for i=1:(ceil(m/n))Randpos=[Randpos,randperm(n)];endTabu(:,1)=(Randpos(1,1:m))'; %此句不太理解?%% 蚁群算法MATLAB程序第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游for j=2:n %所在城市不计算for i=1:mvisited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问J=zeros(1,(n-j+1)); %待访问的城市P=J; %待访问城市的选择概率分布Jc=1;for k=1:nif length(find(visited==k))==0 %开始时置0J(Jc)=k;Jc=Jc+1; %访问的城市个数自加1endend%% 下面计算蚁群算法MATLAB程序待选城市的概率分布for k=1:length(J)P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^B eta);endP=P/(sum(P));%% 按概率原则选取下一个城市Pcum=cumsum(P); %cumsum,元素累加即求和Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线to_visit=J(Select(1));Tabu(i,j)=to_visit;endendif NC>=2Tabu(1,:)=R_best(NC-1,:);end%% 蚁群算法MATLAB程序第四步:记录本次迭代最佳路线L=zeros(m,1); %开始距离为0,m*1的列向量for i=1:mR=Tabu(i,:);for j=1:(n-1)L(i)=L(i)+D(R(j),R(j+1)); %原距离加上第j个城市到第j+1个城市的距离endL(i)=L(i)+D(R(1),R(n)); %一轮下来后走过的距离endL_best(NC)=min(L); %最佳距离取最小pos=find(L==L_best(NC));R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线L_ave(NC)=mean(L); %此轮迭代后的平均距离NC=NC+1 %迭代继续%% 蚁群算法MATLAB程序第五步:更新信息素Delta_Tau=zeros(n,n); %开始时信息素为n*n的0矩阵for i=1:mfor j=1:(n-1)Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1 ))+Q/L(i);%此次循环在路径(i,j)上的信息素增量endDelta_Tau(Tabu(i,n),Tabu(i,1))=Delta_T au(Tabu(i,n),Tabu(i,1))+ Q/L(i);%此次循环在整个路径上的信息素增量endTau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素%% 蚁群算法MATLAB程序第六步:禁忌表清零Tabu=zeros(m,n); %%直到最大迭代次数end%% 蚁群算法MATLAB程序第七步:输出结果Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离subplot(1,2,1) %绘制第一个子图形DrawRoute(C,Shortest_Route) %画路线图的子函数subplot(1,2,2) %绘制第二个子图形plot(L_best)hold on %保持图形plot(L_ave,'r')title('平均距离和最短距离') %标题% 蚁群算法MATLAB程序子函数function DrawRoute(C,R)%%==================================== =====================================%% DrawRoute.m%% 画路线图的子函数%%-------------------------------------------------------------------------%% C Coordinate 节点坐标,由一个N×2的矩阵存储%% R Route 路线%%==================================== =====================================N=length(R);scatter(C(:,1),C(:,2));hold onplot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'g')hold onfor ii=2:Nplot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'g') hold onendtitle('旅行商问题优化结果 ')。

Matlab蚁群算法

Matlab蚁群算法

实现蚂蚁移动和信息素挥发机制
蚂蚁移动
根据蚂蚁的移动规则和信息素值,让蚂 蚁在解空间中移动,并记录其路径。
VS
信息素挥发
模拟信息素的挥发过程,降低信息素值, 以反映信息的衰减。
迭代优化和结果
迭代优化
通过多次迭代,让蚂蚁不断寻找更好的解, 并逐渐逼近最优解。
结果输出
输出最终找到的最优解,以及算法的性能指 标,如收敛速度、最优解质量等。
05 Matlab蚁群算法的优缺点分析
优点分析
并行性
鲁棒性
全局搜索能力
易于实现
蚁群算法是一种自然启发的优 化算法,具有高度的并行性。 在Matlab中实现时,可以利用 多核处理器或GPU加速技术进 一步提高并行计算能力,从而
加快算法的收敛速度。
蚁群算法对初始参数设置不 敏感,具有较强的鲁棒性。 这意味着在Matlab实现时, 即使初始参数设置不当,算
法仍能找到较优解。
蚁群算法采用正反馈机制, 能够发现多条优质路径,具 有较强的全局搜索能力。这 有助于在Matlab中解决多峰、 离散、非线性等复杂优化问
题。
蚁群算法原理相对简单,实 现起来较为容易。在Matlab 中,可以利用现有的工具箱 或自行编写代码来实现该算
法。
缺点分析
01
计算量大
蚁群算法在解决大规模优化问题时,计算量较大,可能 导致算法运行时间较长。在Matlab实现中,可以通过优 化代码、采用并行计算等技术来降低计算量。
Matlab蚁群算法目录来自• 蚁群算法简介 • Matlab实现蚁群算法的步骤 • 蚁群算法的参数调整与优化 • Matlab蚁群算法的案例分析 • Matlab蚁群算法的优缺点分析
01 蚁群算法简介

蚁群算法路径优化matlab代码

蚁群算法路径优化matlab代码

蚁群算法路径优化matlab代码标题:蚁群算法路径优化 MATLAB 代码正文:蚁群算法是一种基于模拟蚂蚁搜索食物路径的优化算法,常用于求解复杂问题。

在路径优化问题中,蚂蚁需要从起点移动到终点,通过探索周围区域来寻找最短路径。

MATLAB 是一个常用的数值计算软件,可以用来实现蚁群算法的路径优化。

下面是一个基本的 MATLAB 代码示例,用于实现蚁群算法的路径优化:```matlab% 定义参数num_ants = 100; % 蚂蚁数量num_steps = 100; % 路径优化步数search_radius = 2; % 搜索半径max_iterations = 1000; % 最大迭代次数% 随机生成起点和终点的位置坐标start_pos = [randi(100), randi(100)];end_pos = [75, 75];% 初始化蚂蚁群体的位置和方向ants_pos = zeros(num_ants, 2);ants_dir = zeros(num_ants, 2);for i = 1:num_antsants_pos(i, :) = start_pos + randn(2) * search_radius; ants_dir(i, :) = randomvec(2);end% 初始化蚂蚁群体的速度ants_vel = zeros(num_ants, 2);for i = 1:num_antsants_vel(i, :) = -0.1 * ants_pos(i, :) + 0.5 *ants_dir(i, :);end% 初始时蚂蚁群体向终点移动for i = 1:num_antsans_pos = end_pos;ans_vel = ants_vel;for j = 1:num_steps% 更新位置和速度ans_pos(i) = ans_pos(i) + ans_vel(i);ants_vel(i, :) = ones(1, num_steps) * (-0.1 * ans_pos(i) + 0.5 * ans_dir(i, :));end% 更新方向ants_dir(i, :) = ans_dir(i, :) - ans_vel(i) * 3;end% 迭代优化路径max_iter = 0;for i = 1:max_iterations% 计算当前路径的最短距离dist = zeros(num_ants, 1);for j = 1:num_antsdist(j) = norm(ants_pos(j) - end_pos);end% 更新蚂蚁群体的位置和方向for j = 1:num_antsants_pos(j, :) = ants_pos(j, :) - 0.05 * dist(j) * ants_dir(j, :);ants_dir(j, :) = -ants_dir(j, :);end% 更新蚂蚁群体的速度for j = 1:num_antsants_vel(j, :) = ants_vel(j, :) - 0.001 * dist(j) * ants_dir(j, :);end% 检查是否达到最大迭代次数if i > max_iterationsbreak;endend% 输出最优路径[ans_pos, ans_vel] = ants_pos;path_dist = norm(ans_pos - end_pos);disp(["最优路径长度为:" num2str(path_dist)]);```拓展:上述代码仅仅是一个简单的示例,实际上要实现蚁群算法的路径优化,需要更加复杂的代码实现。

双蚁群算法的matlab实现

双蚁群算法的matlab实现

双蚁群算法的matlab实现
双蚁群算法是一种基于蚁群优化算法的改进版本,它引入了两
种不同类型的蚂蚁来模拟现实世界中的竞争和合作关系。

在Matlab
中实现双蚁群算法可以分为以下几个步骤:
1. 定义问题,首先需要明确定义需要解决的优化问题,包括目
标函数、约束条件等。

2. 初始化参数,设置算法的参数,如蚂蚁数量、迭代次数、信
息素挥发系数、信息素更新系数等。

3. 初始化蚂蚁群,随机放置两种类型的蚂蚁在问题的解空间中,每只蚂蚁都有一个位置和一个解。

4. 更新信息素,根据蚂蚁搜索的路径更新信息素的浓度。

5. 蚂蚁搜索,根据信息素浓度和启发式规则,蚂蚁在解空间中
搜索最优解。

6. 评估解的质量,计算每个蚂蚁找到的解的质量,并更新最优
解。

7. 更新信息素,根据找到的最优解更新信息素的浓度。

8. 终止条件,根据预设的迭代次数或者其他终止条件判断算法是否结束。

在Matlab中实现双蚁群算法时,可以使用向量化操作和矩阵运算来提高计算效率。

同时,可以利用Matlab的绘图功能对算法的收敛过程和最优解的搜索路径进行可视化展示,以便更直观地理解算法的运行过程。

需要注意的是,双蚁群算法的实现涉及到许多细节和参数的调节,需要经过反复实验和调优才能得到较好的效果。

同时,也可以借助Matlab中丰富的工具箱和函数来加速算法的实现和调试过程。

总之,通过以上步骤和注意事项,可以在Matlab中实现双蚁群算法,并应用于解决各种优化问题。

蚁群算法matlab代码讲解

蚁群算法matlab代码讲解

蚁群算法matlab代码讲解蚁群算法(Ant Colony Algorithm)是模拟蚁群觅食行为而提出的一种优化算法。

它以蚁群觅食的方式来解决优化问题,比如旅行商问题、图着色问题等。

该算法模拟了蚂蚁在寻找食物时的行为,通过信息素的正反馈和启发式搜索来实现问题的最优解。

在蚁群算法中,首先需要初始化一组蚂蚁和问题的解空间。

每只蚂蚁沿着路径移动,通过信息素和启发式规则来选择下一步的移动方向。

当蚂蚁到达目标位置后,会根据路径的长度来更新信息素。

下面是一个用MATLAB实现蚁群算法的示例代码:```matlab% 参数设置num_ants = 50; % 蚂蚁数量num_iterations = 100; % 迭代次数alpha = 1; % 信息素重要程度因子beta = 5; % 启发式因子rho = 0.1; % 信息素蒸发率Q = 1; % 信息素增加强度因子pheromone = ones(num_cities, num_cities); % 初始化信息素矩阵% 初始化蚂蚁位置和路径ants = zeros(num_ants, num_cities);for i = 1:num_antsants(i, 1) = randi([1, num_cities]);end% 迭代计算for iter = 1:num_iterations% 更新每只蚂蚁的路径for i = 1:num_antsfor j = 2:num_cities% 根据信息素和启发式规则选择下一步移动方向next_city = choose_next_city(pheromone, ants(i, j-1), beta);ants(i, j) = next_city;endend% 计算每只蚂蚁的路径长度path_lengths = zeros(num_ants, 1);for i = 1:num_antspath_lengths(i) = calculate_path_length(ants(i, :), distances);end% 更新信息素矩阵pheromone = (1 - rho) * pheromone;for i = 1:num_antsfor j = 2:num_citiespheromone(ants(i, j-1), ants(i, j)) = pheromone(ants(i, j-1), ants(i, j)) + Q / path_lengths(i); endendend```上述代码中的参数可以根据具体问题进行调整。

matlab的蚂蚁算法的实现

matlab的蚂蚁算法的实现
city+1)) + Q / distances(positions(ant, city), positions(ant, city+1)); end deltaPheromones(positions(ant, numCities), positions(ant, 1)) = deltaPheromones(positions(ant, numCities), positions(ant,
matlab的蚂蚁算法的实现
在上述代码中,我们首先设置了一些参数,如蚂蚁数量、迭代次数、信息素和启发式信息 的重要程度等。然后,根据参数初始化了信息素矩阵,并进行了迭代优化过程。
在每次迭代中,我们先初始化蚂蚁的位置,然后根据信息素和启发式信息的重要程度,以 及当前城市和已访问城市的距离,计算每个城市被选择的概率。根据概率选择下一个城市, 直到完成整个路径的选择。然后,根据蚂蚁的路径更新信息素矩阵。重复迭代过程,直到达 到指定的迭代次数。
最后,输出最优路径和最优距离。
matlab的蚂蚁算法的实现
需要注意的是,上述代码只是一个简单的示例,实际应用中可能需要根据具体问题进行适 当的调整和扩展。蚂蚁算法的实现也可能因问题的复杂性和特点而有所不同。
Байду номын сангаас
matlab的蚂蚁算法的实现
以下是一个使用 MATLAB 实现蚂蚁算法的简单示例:
```matlab % 参数设置 numAnts = 10; % 蚂蚁数量 numIterations = 100; % 迭代次数 alpha = 1; % 信息素重要程度 beta = 5; % 启发式信息重要程度 rho = 0.5; % 信息素挥发率 Q = 1; % 信息素增量 numCities = 10; % 城市数量 distances = rand(numCities); % 城市之间的距离矩阵

蚁群算法(ACA)及其Matlab实现

蚁群算法(ACA)及其Matlab实现

蚁群算法(ACA)及其Matlab实现1基本原理:本质上也是⼀种概率算法,通过⼤概率收敛到最佳值,和其他的智能算法很相似。

蚁群分泌的信息素存在正反馈,使得较佳的解具有⼤概率被选到,当全局都选⽤较佳的解,变可以得到整体的最优解。

2⼏个关键点:1)概率选择:受信息素浓度和启发函数影响,启发函数为距离的倒数2)信息素挥发考虑到信息素随时间的挥发,加⼊挥发因⼦3程序设计步骤:1初始化各个参数:包括各点的距离,信息素的初始浓度,蚂蚁数量,信息素挥发因⼦,信息素和启发函数的重要度因⼦,启发函数,最⼤迭代次数,路径记录表等等2迭代:对每个蚂蚁随机制定初始值,再根据概率选择,选择出每只蚂蚁的路径,确定每只蚂蚁的路径总长度,以及蚁群的最佳路径长度和平均长度,并对信息素进⾏更新。

3展⽰:展⽰出最佳路径,以及最佳路径对迭代的变化图4Matlab代码clc,clear %清空环境中的变量load data.txt %读⼊城市的坐标t0 = clock; %程序计时开始%%%%%%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%city=data;n = size(city,1); %城市距离初始化D = zeros(n,n);for i = 1:nfor j = 1:nif i ~= jD(i,j) = sqrt(sum((city(i,:) - city(j,:)).^2));elseD(i,j) = 0; %设定的对⾓矩阵修正值endendendm=30; %蚂蚁数量alpha = 1; % 信息素重要程度因⼦beta = 5; % 启发函数重要程度因⼦v = 0.1; % 信息素挥发因⼦Q = 0.5; % 信息因⼦常系数H= 1./D; % 启发函数T= ones(n,n); % 信息素矩阵Table = zeros(m,n); % 路径记录表iter = 1; % 迭代次数初值iter_max = 50; % 最⼤迭代次数best_route = zeros(iter_max,n); % 各代最佳路径best_length = zeros(iter_max,1); % 各代最佳路径的长度%%while iter<=iter_max% 随机产⽣每只蚂蚁的起点城市start = zeros(m,1);for i = 1:mtemp = randperm(n);start(i) = temp(1);endTable(:,1) = start;city_index=1:n;for i = 1:m% 逐个城市路径选择for j = 2:ntabu = Table(i,1:(j - 1)); % 已访问的城市集合allow =city_index( ~ismember(city_index,tabu)); % 筛选出未访问的城市集合P = zeros(1,length(allow));% 计算相连城市的转移概率for k = 1:length(allow)P(k) = T(tabu(end),allow(k))^alpha * H(tabu(end),allow(k))^beta;endP = P/sum(P);% 轮盘赌法选择下⼀个访问城市Pc = cumsum(P); %参加说明2(程序底部)target_index = find(Pc >= rand);target = allow(target_index(1));Table(i,j) = target;endend% 计算各个蚂蚁的路径距离Length = zeros(m,1);for i = 1:mRoute = [Table(i,:) Table(i,1)];for j = 1:nLength(i) = Length(i) + D(Route(j),Route(j + 1));endend%对最优路线和距离更新if iter == 1[min_length,min_index] = min(Length);best_length(iter) = min_length;best_route(iter,:) = Table(min_index,:);else[min_length,min_index] = min(Length);if min_length<best_length(iter-1)best_length(iter)=min_length;best_route(iter,:)=Table(min_index,:);elsebest_length(iter)=best_length(iter-1);best_route(iter,:)=best_route(iter-1,:);endend% 更新信息素Delta_T= zeros(n,n);% 逐个蚂蚁计算for i = 1:m% 逐个城市计算Route = [Table(i,:) Table(i,1)];for j = 1:nDelta_T(Route(j),Route(j+1)) = Delta_T(Route(j),Route(j+1)) +D(Route(j),Route(j+1))* Q/Length(i); endendT= (1-v) * T + Delta_T;% 迭代次数加1,并清空路径记录表iter = iter + 1;Table = zeros(m,n);end%--------------------------------------------------------------------------%% 结果显⽰shortest_route=best_route(end,:); %选出最短的路径中的点short_length=best_length(end);Time_Cost=etime(clock,t0);disp(['最短距离:' num2str(short_length)]);disp(['最短路径:' num2str([shortest_route shortest_route(1)])]);disp(['程序执⾏时间:' num2str(Time_Cost) '秒']);%--------------------------------------------------------------------------%% 绘图figure(1)%采⽤连线图画起来plot([city(shortest_route,1);city(shortest_route(1),1)], [city(shortest_route,2);city(shortest_route(1),2)],'o-');for i = 1:size(city,1)%对每个城市进⾏标号text(city(i,1),city(i,2),[' ' num2str(i)]);endxlabel('城市位置横坐标')ylabel('城市位置纵坐标')title(['蚁群算法最优化路径(最短距离):' num2str(short_length) ''])figure(2)%画出收敛曲线plot(1:iter_max,best_length,'b')xlabel('迭代次数')ylabel('距离')title('迭代收敛曲线') 程序说明:采⽤蚁群算法求取TSP问题,共有34个城市,从txt⽂件加载数据:运⾏结果:。

蚁群算法matlab代码

蚁群算法matlab代码

蚁群算法matlab代码蚁群算法,英文名为Ant Colony Algorithm,缩写为ACO,是一种启发式算法,是一种模拟蚂蚁寻找食物路径的算法。

在实际生活中,蚂蚁找到食物并返回巢穴后,将其找到食物的路径上的信息素留下,其他蚂蚁通过检测信息素来指导寻路,成为了一种集体智慧行为。

ACO也是通过模拟蚂蚁寻找食物路径的方式来寻找优化问题的最优解。

在ACO算法中,信息素是一个重要的概念,代表了走过某一路径的“好概率”,用这个“好概率”更新一些路径上的信息素,使得其他蚂蚁更可能选择经过这条路径,从而实现路径优化的目的。

在本文中,我们将讨论如何使用Matlab实现蚁群算法来优化问题。

1. 设定问题首先,我们要选取一个优化问题,并将其转换为需要在优化过程中进行选择的决策变量。

例如,我们想要优化旅行商问题(TSP)。

在TSP中,我们需要让旅行商以最短的距离经过所有城市,每个城市仅经过一次,最终回到出发的城市。

我们可以将每个城市编号,然后将TSP转化为一个最短路径选择的问题,即最短路径从编号为1的城市开始,经过所有城市,最终回到编号为1的城市。

2. 设定ACO参数在使用ACO优化问题时,需要设定一些参数,这些参数会影响算法的表现。

ACO算法需要设定的参数有:1.信息素含量:初始信息素的大小,即每个路径上的信息素浓度。

2.信息素挥发速度:信息素的随时间“减弱”程度。

3.信息素加成强度:蚂蚁经过路径后增加的信息素量。

4.启发式权重:用于计算启发式因子,即节点距离的贡献值。

5.蚂蚁数量:模拟蚂蚁数量,即同时寻找路径的蚂蚁个数。

6.迭代次数:模拟的迭代次数,即ACO算法运行的次数。

7.初始节点:ACO算法开始的节点。

3. 创建ACO优化函数我们可以使用Matlab来创建一个函数来实现ACO算法。

我们称其为“ACOoptimization.m”。

function best_path =ACOoptimization(city_location,iter_num,ant_num,init ial_path,alpha,beta,rho,update_flag) %ACO优化函数 %输入: %city_location: 城市坐标矩阵,格式为[x1,y1;x2,y2;...;xn,yn] %iter_num: 迭代次数 %ant_num: 蚂蚁数量 %initial_path: 起始路径,即初始解 %alpha,beta,rho: 超参数,用于调节蚂蚁选择路径的概率 %update_flag: 是否更新信息素的标志(1表示更新,0表示否) %输出: %best_path: 最优解,即最短路径%初始化信息素 pheromone = 0.01 *ones(length(city_location),length(city_location)); %初始化路径权重 path_weight =zeros(ant_num,1); %城市数量 n_cities =length(city_location);%主循环 for iter = 1:iter_num %一个迭代里所有蚂蚁都寻找一遍路径 for ant =1:ant_num %初始化蚂蚁位置current_city = initial_path; %标记是否经过了某个城市 visit_flag =zeros(1,n_cities);visit_flag(current_city) = 1; %用来存储当前路径 current_path = [current_city];%蚂蚁找东西 for i =1:n_cities-1 %计算路径概率p =calculate_probability(current_city,visit_flag,phero mone,city_location,alpha,beta); %蚂蚁选择路径 [next_city,next_index] = select_path(p);%路径更新current_path = [current_path;next_city];visit_flag(next_city) = 1;current_city = next_city;%更新路径权重path_weight(ant) = path_weight(ant) +Euclidean_distance(city_location(current_path(end-1),:),city_location(current_path(end),:));end%加入回到起点的路径权重path_weight(ant) = path_weight(ant) +Euclidean_distance(city_location(current_path(end),:),city_location(current_path(1),:));%判断是否为最优解 ifant == 1 best_path = current_path; else if path_weight(ant) <path_weight(ant-1) best_path =current_path; end end%更新信息素 ifupdate_flag == 1 pheromone =update_pheromone(pheromone,path_weight,initial_path,current_path,rho); end end end end在函数中,我们首先定义了ACOalg函数的参数,包括城市坐标矩阵,迭代次数,蚂蚁数量,初始路径,超参数alpha,beta,rho,以及是否需要更新信息素。

蚁群算法求解TSP问题MATLAB程序

蚁群算法求解TSP问题MATLAB程序

%% 蚁群算法¨clearcloseclcn = 10; % 城市数量m = 100; % 蚂蚁数量alfa = 1.5;beta = 2.5;rho = 0.1;Q = 1000;maxgen = 50;x = [2 14 9 6 3 2 4 8 12 5]';y = [8 9 12 4 1 2 5 8 1 15]';% x =[37,49,52,20,40,21,17,31,52,51,42,31,5,12,36,52,27,17,13,57,62,42,16,8,7,27,30, 43,58,58,37,38,46,61,62,63,32,45,59,5,10,21,5,30,39,32,25,25,48,56,30]';% y =[52,49,64,26,30,47,63,62,33,21,41,32,25,42,16,41,23,33,13,58,42,57,57,52,38,68, 48,67,48,27,69,46,10,33,63,69,22,35,15,6,17,10,64,15,10,39,32,55,28,37,40]';City = [x,y]; % 城市坐标%% 城市之间的距离for i = 1:nD(i,:) = ((City(i,1) - City(:,1)).^2 + (City(i,2) - City(:,2)).^2).^0.5 + eps; endeta = 1./D; % 启发因子tau = ones(n); % 信息素矩阵path = zeros(m,n); % 记录路径for iter = 1: maxgen%% 放置蚂蚁path(:,1) = randi([1 n],m,1);for i = 2 : nfor j = 1 : mvisited = path(j,1:i-1);leftcity = setdiff(1:n,visited);%% 计算剩下城市的概率P = zeros(1,length(leftcity));for k = 1:length(leftcity)P(k) =tau(visited(end),leftcity(k))^alfa*eta(visited(end),leftcity(k))^beta;%判断是否有重复城市endP1 = sum(P);Pk = P / P1;P = cumsum(Pk);r = rand;index = find(P >= r);nextcity = leftcity(index(1));path(j,i) = nextcity;endendfor flag = 1:mif length(unique(path(flag,:))) ~= n %keyboard;endendif iter >= 2path(1,:) = Pathbest(iter-1,:);endfor i = 1 : mnode = path(i,:);d = 0;for j = 1 : n - 1d = d + D(node(j),node(j + 1));endL(i) = d;end[shortroute,antindex] = min(L);Lbest(iter) = shortroute;Pathbest(iter,:) = path(antindex,:);detatau = zeros(n);for i = 1 : mfor j = 1 : n-1detatau(path(i,j),path(i,j + 1)) = detatau(path(i,j),path(i,j + 1)) + Q/L(i);detatau(path(i,j + 1),path(i,j))=detatau(path(i,j),path(i,j + 1));enddetatau(path(i,n),path(i,1)) = detatau(path(i,n),path(i,1)) + Q/L(i);detatau(path(i,1),path(i,n))=detatau(path(i,n),path(i,1));endtau = (1 - rho)*tau + detatau;path = zeros(m,n);endindex = find(Lbest == min(Lbest));shortestpath = Pathbest(index(1),:);shortestdistance = Lbest(index(1))subplot(1,2,1)plot(x,y,'o')hold onfor i = 1 : n - 1firstcity = shortestpath(i);nextcity = shortestpath(i + 1);plot([x(firstcity),x(nextcity)],[y(firstcity),y(nextcity)],'b');endfirstcity = shortestpath(n);nextcity = shortestpath(1);plot([x(firstcity),x(nextcity)],[y(firstcity),y(nextcity)],'b');axis equalaxis([0 18 0 18])subplot(1,2,2)plot(Lbest)hold ontitle('×î¶Ì¾àÀë')。

蚁群算法的Matlab程序

蚁群算法的Matlab程序

#include<iostream.h>#include<stdlib.h>#include<time.h>#include<math.h>#define citynumber 5#define Q 100#define p 0.5#define NM2 1000#define A 1#define B 5int ccdi=-1;//全局变量,用在myrand()中float myrand()//产生0-1随机数,100个,每调用一次,结果不同{srand(time(0));float my[100];ccdi++;if (ccdi==100)ccdi=0;for(int mi=0;mi<100;mi++){float fav=rand()%10000;my[mi]=fav/10000;}return my[ccdi];}double fpkij(double T[citynumber][citynumber],double n[citynumber][citynumber],int tabu[citynumber][citynumber],int k,int s,int i,int j )//定义函数用于计算Pij{//double A=0.5,B=0.5;double sumup,pkij,sumdown;sumdown=0;for(int aTi=0;aTi<citynumber;aTi++){for(int aTj=0;aTj<citynumber;aTj++)aT[aTi][aTj]=pow(T[aTi][aTj],A);}for(int bni=0;bni<citynumber;bni++){for(int bnj=0;bnj<citynumber;bnj++)bn[bni][bnj]=pow(n[bni][bnj],B);}for (int can=0;can<citynumber;can++)//判断,除掉已经走过的城市{if(can==tabu[k][ci]){aT[i][can]=0;bn[i][can]=0;}}sumup=aT[i][j]*bn[i][j];for(int tj=0;tj<citynumber;tj++)sumdown=aT[i][tj]*bn[i][tj]+sumdown;pkij=sumup/sumdown;return pkij;}void main(){ doublecity[citynumber][2]={{0,1},{0,2},{2,2},{2,4},{1,3}/*,{3,4},{4,7},{2,8},{3,9},{1,10},{1,0},{2,1},{3,0},{4,9},{5,2},{6,2},{7,1},{8,6},{9,0},{10,3}*/}; /*城市坐标*/ double d[citynumber][citynumber]; //L[j][k]是城市j to k距离for(int j=0;j<citynumber;j++){d[j][k]=sqrt((city[j][0]-city[k][0])*(city[j][0]-city[k][0])+(city[j][1]-city[k][1])*(city[j][1]-city[k] [1]));// cout<<d[j][k]<<" ";}//cout<<"\n";} /*计算距离,从j城市到k城市*//* for (int cj=0;cj<10;cj++){float c=myrand();cout<<c<<" "<<"\n";}*///输出随机数double n[citynumber][citynumber];for(int ni=0;ni<citynumber;ni++){for(int j=0;j<citynumber;j++)}//cout<<"\n";} /*初始化visibility nij*/double L[citynumber];int shortest[citynumber];double T[citynumber][citynumber];for(int ti=0;ti<citynumber;ti++){for (int j=0;j<citynumber;j++){//cout<<T[ti][j]<<" ";}//cout<<"\n";}/*初始化t*/double changT[citynumber][citynumber];//step2:for(int NC=0;NC<NM2;NC++){ for(int cti=0;cti<citynumber;cti++){for (int j=0;j<citynumber;j++){changT[cti][j]=0;//cout<<changT[cti][j]<<" ";}//cout<<"\n";} /*初始化changT*/int tabu[citynumber][citynumber];//tabu[k][s]表示第k只蚂蚁,第s次循环所在的城市for (int i=0;i<citynumber;i++)tabu[tai][i]=0;}for (int tabui1=0;tabui1<citynumber;tabui1++)tabu[tabui1][0]=tabui1;/*for (tai=0;tai<citynumber;tai++){for (int i=0;i<citynumber;i++)cout<<tabu[tai][i]<<" ";cout<<"\n";}*///初始化tabufor(int kk=0;kk<citynumber;kk++)L[kk]=0;//第三步开始for(int s=0;s<citynumber-1;s++){for(int k=0;k<citynumber;){int ci,can;float sumpk=0;float pkij;hq2: can++;if (can==citynumber) can=0;for (ci=0;ci<=s;ci++){if(can==tabu[k][ci]) goto hq2;}pkij=fpkij(T,n,tabu,k,s,tabu[k][s],can);sumpk=sumpk+pkij;else goto hq2;tabu[k][s+1]=can;k++;}} //第三步完成/*for (tai=0;tai<citynumber;tai++){for (int i=0;i<citynumber;i++) }*///输出一个循环后的tabu[][]//第四步开始for(int k4=0;k4<citynumber;k4++){s44=s4+1;if (s44==citynumber) s44=0;L[k4]+=d[tabu[k4][s4]][tabu[k4][s44]]; }//cout<<L[k4]<<" ";}//计算L[k]float shortest1=0; int short2=0;//最短距离for(ii=1;shorti<citber;shi++ ){shortest1=L[0];if(L[shorti]<=shortest1){shortest1=L[shorti];short2=shorti;}}//cout<<L[sort2]<<"\n";cout<<short2<<"\n";for(int shoi=0;shoi<ctynumber;shoi++){shortest[shoi]=tabu[short2][shoi];//cout<<shest[shoi]<<" ";}//cout<<"\n";for(int k41=0;k41<citynumber;k41++){for(int s41=0,ss=0;s41<citynumber;s41++){ss=s41+1;if (ss==citynumber) ss=0;changT[tabu[k41][s41]][tabu[k41][ss]]+=Q/L[k41];changT[tabu[k41][ss]][tabu[k41][s41]]=changT[tabu[k41][s41]][tabu[k41][ss]]; }}/* for(int cti4=0;cti4<citynumber;cti4++){for (int j=0;j<citynumber;j++){cout<<changT[cti4][j]<<" ";}cout<<"\n";}*///第四步完// 第五步开始for(int i5=0;i5<citynumber;i5++){for(int j5=0;j5<citynumber;j5++){// cout<<T[i5][j5]<<" ";}//cout<<"\n";}}for(int shoi1=0;shoi1<citynumber;shoi1++){cout<<city[shortest[shoi1]][0]<<" "<<city[shortest[shoi1]][1]<<" ";}}。

matlab蚁群算法代码,蚁群算法(ACO)MATLAB实现

matlab蚁群算法代码,蚁群算法(ACO)MATLAB实现

matlab蚁群算法代码,蚁群算法(ACO)MATLAB实现(⼀)蚁群算法的由来蚁群算法(ant colony optimization)最早是由Marco Dorigo等⼈在1991年提出,他们在研究新型算法的过程中,发现蚁群在寻找⾷物时,通过分泌⼀种称为信息素的⽣物激素交流觅⾷信息从⽽能快速的找到⽬标,据此提出了基于信息正反馈原理的蚁群算法。

蚁群算法的基本思想来源于⾃然界蚂蚁觅⾷的最短路径原理,根据昆⾍科学家的观察,发现⾃然界的蚂蚁虽然视觉不发达,但它们可以在没有任何提⽰的情况下找到从⾷物源到巢⽳的最短路径,并在周围环境发⽣变化后,⾃适应地搜索新的最佳路径。

蚂蚁在寻找⾷物源的时候,能在其⾛过的路径上释放⼀种叫信息素的激素,使⼀定范围内的其他蚂蚁能够察觉到。

当⼀些路径上通过的蚂蚁越来越多时,信息素也就越来越多,蚂蚁们选择这条路径的概率也就越⾼,结果导致这条路径上的信息素⼜增多,蚂蚁⾛这条路的概率⼜增加,⽣⽣不息。

这种选择过程被称为蚂蚁的⾃催化⾏为。

对于单个蚂蚁来说,它并没有要寻找最短路径,只是根据概率选择;对于整个蚁群系统来说,它们却达到了寻找到最优路径的客观上的效果。

这就是群体智能。

(⼆)蚁群算法能做什么蚁群算法根据模拟蚂蚁寻找⾷物的最短路径⾏为来设计的仿⽣算法,因此⼀般⽽⾔,蚁群算法⽤来解决最短路径问题,并真的在旅⾏商问题(TSP,⼀个寻找最短路径的问题)上取得了⽐较好的成效。

⽬前,也已渐渐应⽤到其他领域中去,在图着⾊问题、车辆调度问题、集成电路设计、通讯⽹络、数据聚类分析等⽅⾯都有所应⽤。

(三)蚁群算法实现优化的 函数为F(x,y)= -(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6)MATLABclearclcAnt = 300;%蚂蚁数量Times = 80;%移动次数Rou = 0.9;%荷尔蒙发挥系数P0 = 0.2;%转移概率Lower_1 = -1;%搜索范围Upper_1 = 1;Lower_2 = -1;Upper_2 = 1;for i=1:AntX(i,1)=(Lower_1+(Upper_1-Lower_1)*rand);X(i,2)=(Lower_1+(Upper_2-Lower_2)*rand);Tau(i)=F(X(i,1),X(i,2));endstep=0.05;f='-(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6)';figure(1);subplot(1,2,1);mesh(x,y,z);hold on;plot3(X(:,1),X(:,2),Tau,'k*')hold on;text(0.1,0.8,-0.1,'蚂蚁的初始位置分布');xlabel('x');ylabel('y');zlabel('f(x,y)');for T=1:Timeslamda=1/T;[Tau_Best(T),BestIndex]=max(Tau);for i=1:AntP(T,i)=(Tau(BestIndex)-Tau(i))/Tau(BestIndex);%计算转移状态概率endfor i=1:Antif P(T,i)temp1=X(i,1)+(2*rand-1)*lamda;temp2=X(i,2)+(2*rand-1)*lamda;else%全局搜索temp1=X(i,1)+(Upper_1-Lower_1)*(rand-0.5);temp2=X(i,2)+(Upper_2-Lower_2)*(rand-0.5);endif temp1temp1=Lower_1;endif temp1>Upper_1temp1=Upper_1;endif temp2temp2=Lower_2;endif temp2>Upper_2if F(temp1,temp2)>F(X(i,1),X(i,2))%更新位置X(i,1)=temp1;X(i,2)=temp2;endendfor i=1:AntTau(i)=(1-Rou)*Tau(i)+F(X(i,1),X(i,2));%更新荷尔蒙endendsubplot(1,2,2);mesh(x,y,z);hold on;x=X(:,1);y=X(:,2);plot3(x,y,eval(f),'k*');hold on;text(0.1,0.8,-0.1,'蚂蚁的最终位置分布');xlabel('x');ylabel('y');zlabel('f(x,y)');[max_value,max_index]=max(Tau);maxX=X(max_index,1);maxY=X(max_index,2);maxValue=F(X(max_index,1),X(max_index,2));1234567891016 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 4450 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78clcAnt=300;%蚂蚁数量Times=80;%移动次数Rou=0.9;%荷尔蒙发挥系数P0=0.2;%转移概率Lower_1=-1;%搜索范围Upper_1=1;Lower_2=-1;Upper_2=1;fori=1:AntX(i,1)=(Lower_1+(Upper_1-Lower_1)*rand);X(i,2)=(Lower_1+(Upper_2-Lower_2)*rand);Tau(i)=F(X(i,1),X(i,2));endstep=0.05;f='-(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6)';[x,y]=meshgrid(Lower_1:step:Upper_1,Lower_2:step:Upper_2); z=eval(f);figure(1);subplot(1,2,1);mesh(x,y,z);holdon;plot3(X(:,1),X(:,2),Tau,'k*')holdon;text(0.1,0.8,-0.1,'蚂蚁的初始位置分布');xlabel('x');ylabel('y');zlabel('f(x,y)');forT=1:Timeslamda=1/T;[Tau_Best(T),BestIndex]=max(Tau);fori=1:AntifP(T,i)temp1=X(i,1)+(2*rand-1)*lamda;temp2=X(i,2)+(2*rand-1)*lamda;else%全局搜索temp1=X(i,1)+(Upper_1-Lower_1)*(rand-0.5); temp2=X(i,2)+(Upper_2-Lower_2)*(rand-0.5); endiftemp1temp1=Lower_1;endiftemp1>Upper_1temp1=Upper_1;endiftemp2temp2=Lower_2;endiftemp2>Upper_2temp2=Upper_2;endifF(temp1,temp2)>F(X(i,1),X(i,2))%更新位置X(i,1)=temp1;X(i,2)=temp2;endendfori=1:AntTau(i)=(1-Rou)*Tau(i)+F(X(i,1),X(i,2));%更新荷尔蒙endendsubplot(1,2,2);mesh(x,y,z);y=X(:,2);plot3(x,y,eval(f),'k*');holdon;text(0.1,0.8,-0.1,'蚂蚁的最终位置分布');xlabel('x');ylabel('y');zlabel('f(x,y)');[max_value,max_index]=max(Tau);maxX=X(max_index,1);maxY=X(max_index,2);maxValue=F(X(max_index,1),X(max_index,2));优化函数:MATLABfunction f = F(x,y)f = -(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6); end123functionf=F(x,y)f=-(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6); end效果:。

蚁群算法整个程序(matlab)

蚁群算法整个程序(matlab)

蚁群算法整个程序(matlab)main:%function [bestroute,routelength]=Ant clccleartic% 读入城市间距离矩阵数据文件CooCity = load( 'CooCity.txt' ) ;% 城市网络图坐标数据文件,txt形式给出 NC=length(CooCity); % 城市个数for i=1:NC % 计算各城市间的距离for j=1:NCdistance(i,j)=sqrt((CooCity(i,2)-CooCity(j,2))^2+(CooCity(i,3)-CooCity(j,3))^2);endend% distance=xlsread('DistanceCity.xls'); % 城市间距离矩阵数据文件,excel形式给出MAXIT=10; % 最大循环次数Citystart=[]; % 起点城市编号tau=ones(NC,NC); % 初始时刻各边上的信息痕迹为1rho=0.5; % 挥发系数alpha=1; % 残留信息相对重要度beta=5; % 预见值的相对重要度Q=10; % 蚁环常数NumAnt=20; % 蚂蚁数量%bestroute=zeros(1,48); % 用来记录最优路径routelength=inf; % 用来记录当前找到的最优路径长度for n=1:MAXITfor k=1:NumAnt %考查第K只蚂蚁deltatau=zeros(NC,NC); % 第K只蚂蚁移动前各边上的信息增量为零%[routek,lengthk]=path(distance,tau,alpha,beta,[]); % 不靠率起始点[routek,lengthk]=path(distance,tau,alpha,beta,Citystart); % 指定起始点if lengthk<routelength % 找到一条更好的路径routelength=lengthk;bestroute=routek;endfor i=1:NC-1 % 第K只蚂蚁在路径上释放的信息量deltatau(routek(i),routek(i+1))=deltatau(routek(i),routek(i+1))+Q/le ngthk; % 信息素更新end%deltatau(routek(NC),1)=deltatau(routek(NC),1)+Q/lengthk; %endlength_n(n)=routelength; % 记录路径收敛tau=(1-rho).*tau; % 信息素挥发end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% costtime=toc;subplot(1,2,1),plot([CooCity(bestroute,2)],[CooCity(bestroute,3)],'-*')subplot(1,2,2),plot([1:MAXIT],length_n,'-*')[routelength,costtime]inroute:function Y=inroute(n,A)% A 为已过城市点集合,如果n在A中返回1 Y=0;for i=1:length(A)if A(i)==nY=1;break;endendnextcitychoose:% % ,为何不直接以转移概率最大值对应节点为下一转移节点 % 随机决策原则确定下步转移节点, 转移概率累积序列大于某随机值方向 functionN=nextcitychoose(Cp)a=rand;s=0;for i=1:length(Cp)s=s+Cp(i);if a<=sN=i;break;endendnextcitychoose2:% % 直接以转移概率最大值对应节点为下一转移节点% 随机决策原则确定下步转移节点function N=nextcitychoose2(Cp)I=find(Cp==max(Cp));N=I(1);nextcitychoose3% % 直接以转移概率最大值对应节点为下一转移节点% 随机决策原则确定下步转移节点function N=nextcitychoose2(Cp)I=find(Cp==max(Cp));N=I(1);path:% 某只蚂蚁找到的某条路径routek,lengthk function [routek,lengthk]=path(distance,tau,alpha,beta,Citystart) [m,n]=size(distance);if isempty(Citystart) % 如果不确定起点p=fix(m*rand)+1; % 随机方式初始化起点,均匀概率 else p=Citystart; % 外部给定确定起点endlengthk=0; % 初始路径长度设为 0routek=[p]; % 蚂蚁路径点序列,即该蚂蚁已经过的城市集合,路径初始起点for i=1:m-1np=routek(end); % 蚂蚁路径城市序号,依次经过的城市编号np_sum=0; % 路由长度初始为 0for j=1:mif inroute(j,routek) % 判断城市节点j是否属于tabuk,即是否已经过continue;else % j为还未经过的点,对ada=1/distance(np,j); % 预见度np_sum=np_sum+tau(np,j)^alpha*ada^beta; % 路由表:信息痕迹、预见度endendcp=zeros(1,m); % 转移概率,基于路径长度及路由表for j=1:mif inroute(j,routek)continue;elseada=1/distance(np,j); % 预见度cp(j)=tau(np,j)^alpha*ada^beta/np_sum; % np到j的转移概率endendNextCity=nextcitychoose3(cp); % 根据转移概率确定下一个城市,% 这里采用不同的随机决策原则所得效果也不同:% nextcitychoose3 取转移概率最大值方向% nextcitychoose和nextcitychoose2 转移概率累积序列大于某随机值方向% 直观地,取转移概率最大值方向方法,决策结果稳定且收敛快routek=[routek,NextCity]; % 更新路径lengthk=lengthk+distance(np,NextCity); % 更新路径长度 end。

蚁群算法_matlab

蚁群算法_matlab

%蚁群算法求解中国TSP问题(48个城市)%%清空环境变量clear allclc%%导入数据load distance_48.txtcitys=distance_48;%%计算城市间互相距离n=size(citys,1);D=zeros(n,n);for i=1:nfor j=1:nif i~=jD(i,j)=sqrt(sum((citys(i,:)-citys(j,:)).^2));elseD(i,j)=1e-4;endendend%%初始化参数ticm=30;%蚂蚁数量alpha=1;%信息素重要程度因子beta=5;%启发函数重要程度因子rho=0.1;%信息素挥发因子Q=1;%常系数Eta=1./D;%启发函数Tau=ones(n,n);%信息素矩阵Table=zeros(m,n);%路径记录表iter=1;%迭代次数初值iter_max=200;%最大迭代次数Route_best=zeros(iter_max,n);%各代最佳路径Length_best=zeros(iter_max,1);%各代最佳路径的长度Length_ave=zeros(iter_max,1);%各代路径的平均长度%%迭代寻找最佳路径while iter<=iter_max%随机产生各个蚂蚁的起点城市start=zeros(m,1);for i=1:mtemp=randperm(n);%随机产生1到n的一个打乱序列start(i)=temp(1);endTable(:,1)=start;%构建解空间citys_index=1:n;%逐个蚂蚁路径选择for i=1:m%逐个城市路径选择for j=2:ntabu=Table(i,1:(j-1));%已访问城市集合(禁忌表)allow_index=~ismember(citys_index,tabu);%除去已访问的城市集合 allow=citys_index(allow_index);%待访问的城市集合P=allow;%计算城市间的转移概率for k=1:length(allow)P(k)=Tau(tabu(end),allow(k))^alpha*Eta(tabu(end),allow(k))^beta;endP=P/sum(P);%轮盘赌法选择下一个访问城市Pc=cumsum(P);target_index=find(Pc>=rand);target=allow(target_index(1));Table(i,j)=target;%确定下一个访问的城市endend%计算各个蚂蚁的路径距离Length=zeros(m,1);for i=1:mRoute=Table(i,:);%第i只蚂蚁的路径for j=1:(n-1)Length(i)=Length(i)+D(Route(j),Route(j+1));endLength(i)=Length(i)+D(Route(n),Route(1));%最后还要回到最初的城市end%计算最短路径距离及平均距离if iter==1[min_Length,min_index]=min(Length);Length_best(iter)=min_Length;Length_ave(iter)=mean(Length);Route_best(iter,:)=Table(min_index,:);else[min_Length,min_index]=min(Length);Length_best(iter)=min(Length_best(iter-1),min_Length);%iter次的最短路径距离等于当前迭代的最短路径距离与上一次迭代最短路径距离中的最小值Length_ave(iter)=mean(Length);if Length_best(iter)==min_LengthRoute_best(iter,:)=Table(min_index,:);elseRoute_best(iter,:)=Route_best((iter-1),:);endend%更新信息素Delta_Tau=zeros(n,n);%逐个蚂蚁计算for i=1:m%逐个城市计算for j=1:(n-1)Delta_Tau(Table(i,j),Table(i,j+1))=Delta_Tau(Table(i,j),Table(i,j+1))+Q /Length(i);endDelta_Tau(Table(i,n),Table(i,1))=Delta_Tau(Table(i,n),Table(i,1))+Q/Len gth(i);endTau=(1-rho)*Tau+Delta_Tau;%迭代次数加1,清空路径记录表iter=iter+1;Table=zeros(m,n);end%%结果显示[Shortest_Length,index]=min(Length_best);Shortest_Route=Route_best(index,:);disp(['最短距离:' num2str(Shortest_Length)]);disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);%%绘图figure(1)plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],[citys(Shorte st_Route,2);citys(Shortest_Route(1),2)],'o-');grid onfor i=1:size(citys,1)text(citys(i,1),citys(i,2),[' ' num2str(i)]);endtext(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点'); text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点');xlabel('城市位置横坐标')ylabel('城市位置纵坐标')title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])figure(2)plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r')legend('最短距离','平均距离')xlabel('迭代次数')ylabel('距离')title('各代最短距离与平均距离对比')toc。

matlab-蚁群算法-机器人路径优化问题

matlab-蚁群算法-机器人路径优化问题

matlab-蚁群算法-机器人路径优化问题matlab蚁群算法机器人路径优化问题在当今科技迅速发展的时代,机器人的应用越来越广泛,从工业生产中的自动化装配到医疗领域的微创手术,从物流仓储的货物搬运到危险环境的探测救援,机器人都发挥着重要的作用。

而机器人在执行任务时,如何规划出一条最优的路径是一个关键问题,这不仅关系到机器人的工作效率,还影响着其能源消耗和任务完成的质量。

蚁群算法作为一种启发式算法,为解决机器人路径优化问题提供了一种有效的途径。

蚁群算法的灵感来源于自然界中蚂蚁的觅食行为。

蚂蚁在寻找食物的过程中,会在经过的路径上释放一种叫做信息素的化学物质。

其他蚂蚁能够感知到这种信息素,并倾向于选择信息素浓度高的路径。

随着时间的推移,较短的路径上信息素积累得更快,更多的蚂蚁会选择这条路径,从而形成一种正反馈机制,最终所有蚂蚁都能够找到一条从蚁巢到食物源的最短路径。

将蚁群算法应用于机器人路径优化问题时,首先需要将机器人的工作环境进行建模。

可以将工作空间划分为一个个的网格或者节点,机器人在这些节点之间移动。

然后,为每个节点之间的连接设置一个初始的信息素浓度。

在算法的每一次迭代中,机器人从起始点出发,根据节点之间的信息素浓度和一些启发式信息(例如节点之间的距离)来选择下一个要访问的节点。

当机器人到达目标点后,就完成了一次路径的探索。

在这次探索中,机器人所经过的路径上的信息素会得到更新,通常是路径越短,信息素的增加量越大。

为了使算法更加有效,还需要对信息素的更新规则进行合理的设计。

一种常见的方法是,在每次迭代结束后,对所有路径上的信息素进行挥发,即减少一定的比例,以避免早期形成的较好路径对后续的搜索产生过度的影响。

同时,对于本次迭代中产生的最优路径,给予较大的信息素增量,以强化这条路径的吸引力。

在实际应用中,使用 Matlab 来实现蚁群算法进行机器人路径优化具有很多优势。

Matlab 提供了丰富的数学计算和图形绘制功能,能够方便地处理矩阵运算和数据可视化。

matlab蚁群算法代码

matlab蚁群算法代码

matlab蚁群算法代码以下是一个简单的MATLAB蚁群算法代码示例,其中使用了一个二维网格作为蚂蚁的住所,并在网格上放置了一些随机的节点作为蚂蚁的出发和目的地,每个蚂蚁沿着最短路径搜索路径从一个节点到另一个节点。

```matlab% 定义蚂蚁的参数num_nodes = 10; % 网格节点数num_tasks = 100; % 任务数num_neighbors = 50; % 蚂蚁之间的连接数% 随机放置节点nodes = randi(num_nodes, num_nodes);% 创建蚂蚁的基本队列蚂蚁_queue = queue();% 定义蚂蚁的基本策略def_蚂蚁_策略 = {[set_task(i, j, k)]= {1},[set_neighbor(i, j, k)]= {2},[set_task(i, j, k)]= {3},};% 更新蚂蚁的状态def_蚂蚁_update = {for i = 1:num_tasksfor j = 1:num_neighborsif get(蚂蚁_queue, -1, 1) == num_tasksget(蚂蚁_queue, -1, 1) = set_task(i, j, k);set(蚂蚁_queue, -1, 1) = set_neighbor(i, j, k); endendend};% 定义蚂蚁的搜索函数function 蚂蚁_function(i, j, k, task, target) % 计算当前蚂蚁的最短路径path = [zeros(1, num_neighbors); 1];path(end+1, -1) = target;path(end, num_nodes) = 1;path = path./zeros(1, num_neighbors);% 搜索蚂蚁的下一个节点for j = 1:num_neighborsif get(蚂蚁_queue, -1, j) == taskif get(蚂蚁_queue, -1, j) == target蚂蚁_function(i, j, k, task, target)endend% 计算蚂蚁的当前路径path_function = path(1:end-1, 1:end-1);end% 启动蚂蚁搜索蚂蚁_start(蚂蚁_queue);% 计算蚂蚁的最短路径function path_function = get_shortest_path(path_var) % 计算每个节点到目标节点的最短路径path_var = path_function;% 计算每个节点到每个邻居节点的最短路径for k = 1:num_neighborspath_var = cellfun(@(i,j) get(path_var, i, j, k), path_var);end% 返回所有节点的最短路径return path_var;```这是一个简单的例子,可以根据具体的需求进行修改和优化。

蚁群算法路径优化matlab代码

蚁群算法路径优化matlab代码

蚁群算法路径优化matlab代码蚁群算法是一种基于生物群体的智能算法,常用于路径优化等问题。

在这个问题中,蚂蚁在寻找食物时会根据周围的环境信息和食物的香味找到最短路径。

本文将介绍如何在 MATLAB 中使用蚁群算法进行路径优化,并提供一些拓展。

在 MATLAB 中实现蚁群算法需要用到三个主要函数:ants_logic.m、ants_move.m 和 ants_display.m。

以下是这三个函数的基本功能和代码实现。

1. ants_logic.m这个函数是蚁群算法的核心部分,负责计算蚂蚁的当前路径和更新路径搜索树。

函数的基本思路是每个蚂蚁根据当前环境和食物香味来选择前进方向,如果前方是死路或食物已经被其他蚂蚁找到,则蚂蚁会返回原路。

如果蚂蚁到达了食物位置,则它会将自己的信息传递给其他蚂蚁,并更新食物香味。

拓展:在路径优化问题中,通常会有多个不同的路径可供选择,而蚁群算法可以通过学习其他蚂蚁的路径来发现更短、更快的路径。

为了实现这一功能,可以在 ants_logic.m 函数中增加一个参数,指示当前蚂蚁应该学习其他哪个蚂蚁的路径。

2. ants_move.m这个函数负责控制蚂蚁的移动方向。

在函数中,我们需要给定蚂蚁的当前位置和食物位置,并计算蚂蚁应该移动到的新位置。

在MATLAB 中,我们可以使用 rand 函数生成一个随机数,然后将其作为新位置的坐标。

拓展:为了提高路径搜索的效率,我们可以在 ants_move.m 函数中加入一些随机因子。

例如,可以在蚂蚁移动方向上添加一个随机偏置,这样可以让蚂蚁更有可能探索新的区域。

3. ants_display.m这个函数用于可视化路径搜索的过程。

在函数中,我们可以给定蚂蚁的初始位置和食物位置,并使用 MATLAB 的图形处理函数绘制路径。

拓展:为了使路径搜索过程更加有趣,我们可以在ants_display.m 函数中添加一些动画效果。

例如,可以使用 MATLAB 的 animation 函数创建动画,让蚂蚁路径在屏幕上动态地显示。

蚁群算法求解TSP问题的MATLAB程序(较好的算例)

蚁群算法求解TSP问题的MATLAB程序(较好的算例)

蚁群算法求解TSP问题的MATLAB程序(较好的算例) %蚁群算法求解TSP问题的matlab程序clear allclose allclc%初始化蚁群m=31;%蚁群中蚂蚁的数量,当m接近或等于城市个数n时,本算法可以在最少的迭代次数内找到最优解C=[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;3238 1229;4196 1004;4312 790;4386 570;3007 1970;2562 1756;2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2367;3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;2370 2975];%城市的坐标矩阵Nc_max=200;%最大循环次数,即算法迭代的次数,亦即蚂蚁出动的拨数(每拨蚂蚁的数量当然都是m)alpha=1;%蚂蚁在运动过程中所积累信息(即信息素)在蚂蚁选择路径时的相对重要程度,alpha过大时,算法迭代到一定代数后将出现停滞现象beta=5;%启发式因子在蚂蚁选择路径时的相对重要程度rho=0.5;%0<rho<1,表示路径上信息素的衰减系数(亦称挥发系数、蒸发系数),1-rho表示信息素的持久性系数Q=100;%蚂蚁释放的信息素量,对本算法的性能影响不大%变量初始化n=size(C,1);%表示TSP问题的规模,亦即城市的数量D=ones(n,n);%表示城市完全地图的赋权邻接矩阵,记录城市之间的距离 for i=1:nfor j=1:nif i<jD(i,j)=sqrt((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2);endD(j,i)=D(i,j);endendeta=1./D;%启发式因子,这里设为城市之间距离的倒数pheromone=ones(n,n);%信息素矩阵,这里假设任何两个城市之间路径上的初始信息素都为1 tabu_list=zeros(m,n);%禁忌表,记录蚂蚁已经走过的城市,蚂蚁在本次循环中不能再经过这些城市。

matlab蚁群算法 简化量表

matlab蚁群算法 简化量表

matlab蚁裙算法简化量表一、概述蚁裙算法是一种模拟蚂蚁在寻找食物过程中产生的行为,通过模拟蚂蚁在寻找食物时释放信息素、搜索和选择路径的方式来解决问题的一种启发式算法。

在实际应用中,蚁裙算法被广泛应用于组合优化问题、路径规划问题、图论问题等领域。

而在matlab中,通过编程实现蚁裙算法不仅可以方便地解决实际问题,还可以对算法进行调试和优化。

二、matlab蚁裙算法基本原理1.蚁裙算法的模拟过程蚁裙算法模拟蚂蚁在寻找食物时的行为,其中包括信息素释放、路径选择和更新信息素三个基本过程。

蚂蚁在搜索空间中释放信息素,然后根据信息素浓度选择路径,最后根据路径的质量更新信息素浓度。

通过多次迭代模拟这一过程,蚁裙算法可以找到最优解或者接近最优解。

2.蚁裙算法的优化在实际应用中,蚁裙算法可能面临搜索空间大、速度慢等问题,因此需要对算法进行优化。

其中包括控制信息素挥发、引入启发信息、选择合适的路径更新策略等方式,以提高算法的搜索速度和质量。

三、matlab蚁裙算法实现在matlab中,可以通过编程实现蚁裙算法,以下是实现蚁裙算法的基本步骤:1.初始化参数首先需要初始化蚁裙算法的参数,包括蚂蚁数量、迭代次数、信息素挥发因子、信息素增加量、路径选择的策略等。

2.初始化信息素在搜索空间中初始化信息素,通常可以选择一个固定的初始值。

3.蚁裙算法迭代过程在迭代过程中,每只蚂蚁根据信息素浓度选择路径,并更新信息素浓度。

通过多次迭代,蚁裙算法可以搜索到最优解或接近最优解。

4.算法优化在实际应用中,通常需要对蚁裙算法进行优化,以提高算法的搜索速度和质量。

四、matlab蚁裙算法在简化量表中的应用在实际应用中,matlab蚁裙算法可以应用于简化量表的问题。

量表简化是指在保持原始量表关键信息的前提下,减少量表的项目数,以降低评估的成本和复杂度。

以下是matlab蚁裙算法在简化量表中的应用实例:1.问题描述假设有一个包含100个项目的量表,我们需要将其简化为50个项目,以降低评估的成本和复杂度。

蚁群算法在Matlab中的程序设计

蚁群算法在Matlab中的程序设计
启发函数 在转 移 中起 的作用 越 大; a l l o w ( k=1 , 2 , …, m) 表 示蚂蚁 k下一 步允许 访 问 的城 市集合 。 设 P为信息素 的挥发系数 , 则可通过下式来进 行 信息 素 的更 新 :
f r ( t +1 )=( 1一P ) ( t )+△
k ㈤ :
2 . 1 . 1 数据的初始化 这个步骤主要完成 以下数据 的初始化 : ①通过 已知 的 n个城市 坐标 , 求 得 每 两个 城 市 间 的距 离并 保存在距离矩阵中; ②初始化信息素矩阵; ③初始化 算法参数 ; ④初始化记录数据的变量及矩阵。 2 . 1 . 2 通过算法寻找最优路径 运行算法 , 通过迭代来计算最优路径 , 直到满足
否则
S t e p 2, 否 则输 出结果 。 整 个步 骤的算 法框 图如 图 2所示 。
2 . 3 运 行结 果及分 析 式( 3 ) 中, Q为 常数 , 表 示蚂 蚁循 环 一次 所 释放 的信
息素的总量 ; 为蚂蚁 k 经过的路径长度 。
2 用M a t l a b实现蚁群 算法
Ma t l a b是一个 功 能强大 的科学 计算 和工 程计 算
结果 数 据 以 图表 的形 式 展示 出来 , 如 图 3和图 4所 示 分 别 为 蚁 群 算 法 最 短 路 径 和 各 代 的 收 敛 情况。 从 图 中可 以看 出 , 本 算 法 得 到 的最 短距 离 为 1 5 6 0 1 . 9 1 9 5 k m, 而最 短距 离 在 迭代 了 1 0 0次 以后 基 本上 就 接近最短 路 径 了 , 平 均 距 离也 在 迭代 次 数 达 到1 0 0次后趋 于平 缓 。程序运行 的输 出结果 为 :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

hold on
end
title(&#39;旅行商问题优化结果 &#39;)
L_ave=zeros(NC_max,1); %各代路线的平均长度
while NC&lt;=NC_max %停止条件之一:达到最大迭代次数,停止
%% 蚁群算法MATLAB程序第二步:将m只蚂蚁放到n个城市上
Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径
Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离
subplot(1,2,1) %绘制第一个子图形
%% C Coordinate 节点坐标,由一个N×2的矩阵存储
%% R Route 路线
%%=========================================================================
N=length(R);
scatter(C(:,1),C(:,2));
%此次循环在路径(i,j)上的信息素增量
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
%此次循环在整个路径上的信息素增量
end
Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素
end
end
Eta=1./D; %Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n); %Tau为信息素矩阵
Tabu=zeros(m,n); %存储并记录路径的生成
% 以下是蚁群算法MATLAB程序,请尊重原作者劳动,引用时请注明出处。
% 已经运行过,无误。
% 蚁群算法MATLAB程序
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%% 蚁群算法MATLAB程序第六步:禁忌表清零
Tabu=zeros(m,n); %%直到最大迭代次数
end
%% 蚁群算法MATLAB程序第七步:输出结果
Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)
Randpos=[]; %随即存取
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))&#39;; %此句不太理解?
if length(find(visited==k))==0 %开始时置0
J(Jc)=k;
Jc=Jc+1; %访问的城市个数自加1
NC=1; %迭代计数器,记录迭代次数
R_best=zeros(NC_max,n); %各代最佳路线
L_best=inf.*ones(NC_max,1); %各代最佳路线的长度
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1)); %原距离加上第j个城市到第j+1个城市的距离
end
L(i)=L(i)+D(R(1),R(n)); %一轮下来后走过的距离
end
P=P/(sum(P));
%% 按概率原则选取下一个城市
Pcum=cumsum(P); %cumsum,元素累加即求和
Select=find(Pcum&gt;=rand); %若计算的概率大于原来的就选择这条路线
%% DrawRoute.m
%% 画路线图的子
函数
%%-------------------------------------------------------------------------
Delta_Tau=zeros(n,n); %开始时信息素为n*n的0矩阵
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
DrawRoute(C,Shortest_Route) %画路线图的子函数
subplot(1,2,2) %绘制第二个子图形
plot(L_best)
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Q 表示蚁群算法MATLAB程序信息素增加强度系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%%=========================================================================
hold on
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],&#39;g&#39;)
hold on
for ii=2:N
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],&#39;g&#39;)
L_ave(NC)=mean(L); %此轮迭代后的平均距离
NC=NC+1 %迭代继续
%% 蚁群算法MATLAB程序第五步:更新信息素
J=zeros(1,(n-j+1)); %待访问的城市
P=J; %待访问城市的选择概率分布
Jc=1;
for k=1:n
end
L_best(NC)=min(L); %最佳距离取最小
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线
%% 蚁群算法MATLAB程序第一步:变量初始化
n=size(C,1);%n表示问题的规模(城市个数)
D=zeros(n,n);%D表示完全图的赋权邻接矩阵
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
end
end
%% 下面计算蚁群算法MATLAB程序待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
%%==============================================================号说明
%% C n个城市的坐标,n×2的矩阵
%% NC_max 蚁群算法MATLAB程序最大迭代次数
%% m 蚂蚁个数
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC&gt;=2
Tabu(1,:)=R_best(NC-1,:);
end
%% 蚁群算法MATLAB程序第四步:记录本次迭代最佳路线
L=zeros(m,1); %开始距离为0,m*1的列向量
else
D(i,j)=eps; % i = j 时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示
end
D(j,i)=D(i,j); %对称矩阵
hold on %保持图形
plot(L_ave,&#39;r&#39;)
title(&#39;平均距离和最短距离&#39;) %标题
% 蚁群算法MATLAB程序子函数
function DrawRoute(C,R)
%%=========================================================================
%% 蚁群算法MATLAB程序第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
for j=2:n %所在城市不计算
for i=1:m
visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问
相关文档
最新文档