第二章反应动力学基础解析

合集下载

化学反应工程-第2章

化学反应工程-第2章
rA
移项并积分得:
dCA kCA a CB b dt
CA 0
kt

dCA CA mCBn
CA
这时假设a,b分别为m, n ,则以时间t为横 坐标,以积分项 C

A0
CA
dC A m n C A CB
为纵坐标,当以具体数据代入时,作图就可 以得到斜率为k的直线。如果得到直线,则表明此 动力学方程是适合于所研究的反应的。若得到曲 线,则表明此动力学应被排除,应该重新假设a, b的值而加以检验。
即:
ln
C Ae
C A0 C Ae C A C Ae
1 k1 1 t K
代入2-20式得:
将实验测得的CA-t数据,按照上式 C
ln
C A0
A
C Ae C Ae
与t作图可以得一条直线,斜率为k1+k2, 又因为k1/k2可知,因此可以求出 k1,k2 值。
2.2 等温恒容过程 ⑵ 反应转化率
第二章 均相反应动力学基础
反应物A的转化率可以用下式定义
反应物A的转化量 n A 0 n A xA = A的起始量 n A0
注意: ① 转化率恒为正。 ② 反应物一般指关键反应物(限制反应物、着眼反应物), 其是以最小化学计量量存在的反应物。 ③ 根据nA0的选择不同,有单程转化率(以反应器进口物料 为基准,如氨合成过程的合成塔进口循环气。)和总转化率 (以过程进口物料为基准,如氨合成过程的新鲜气。)。
如果cA0远远小于cB0,cB在全部反应时间里近似 于不变,则二级反应可以作为拟一级反应处理。
适用范围:
利用积分法求取动力学方程式的过程, 实际上是个试差的过程,它一般在反应级 数是简单整数时使用。当级数为分数时, 试差就比较困难,这时应该用微分法。 其他不可逆反应动力学方程式的 积分式见书上表2-4.

化学反应工程1_7章部分答案

化学反应工程1_7章部分答案

第一章绪论习题1.1 解题思路:(1)可直接由式(1.7)求得其反应的选择性(2)设进入反应器的原料量为100 ,并利用进入原料气比例,求出反应器的进料组成(甲醇、空气、水),如下表:组分摩尔分率摩尔数根据式(1.3)和式(1.5)可得反应器出口甲醇、甲醛和二氧化碳的摩尔数、和。

并根据反应的化学计量式求出水、氧及氮的摩尔数,即可计算出反应器出口气体的组成。

习题答案:(1) 反应选择性(2) 反应器出口气体组成:第二章反应动力学基础习题2.1 解题思路:利用反应时间与组分的浓度变化数据,先作出的关系曲线,用镜面法求得反应时间下的切线,即为水解速率,切线的斜率α。

再由求得水解速率。

习题答案:水解速率习题2.3 解题思路利用式(2.10)及式(2.27)可求得问题的解。

注意题中所给比表面的单位应换算成。

利用下列各式即可求得反应速率常数值。

习题答案:(1)反应体积为基准(2)反应相界面积为基准(3)分压表示物系组成(4)摩尔浓度表示物系组成习题2.9 解题思路:是个平行反应,反应物A的消耗速率为两反应速率之和,即利用式(2.6)积分就可求出反应时间。

习题答案:反应时间习题2.11 解题思路:(1)恒容过程,将反应式简化为:用下式描述其反应速率方程:设为理想气体,首先求出反应物A的初始浓度,然后再计算反应物A的消耗速率亚硝酸乙酯的分解速率即是反应物A的消耗速率,利用化学计量式即可求得乙醇的生成速率。

(2)恒压过程,由于反应前后摩尔数有变化,是个变容过程,由式(2.49)可求得总摩尔数的变化。

这里反应物是纯A,故有:由式(2.52)可求得反应物A的瞬时浓度,进一步可求得反应物的消耗速率由化学计量关系求出乙醇的生成速率。

习题答案:(1)亚硝酸乙酯的分解速率乙醇的生成速率(2)乙醇的生成速率第三章釜式反应器习题3.1 解题思路:(1)首先要确定1级反应的速率方程式,然后利用式(3.8)即可求得反应时间。

(2)理解间歇反应器的反应时间取决于反应状态,即反应物初始浓度、反应温度和转化率,与反应器的体积大小无关习题答案:(1)反应时间t=169.6min.(2)因间歇反应器的反应时间与反应器的体积无关,故反应时间仍为169.6min.习题3.5 解题思路:(1)因为B过量,与速率常数k 合并成,故速率式变为对于恒容过程,反应物A和产物C的速率式可用式(2.6)的形式表示。

生化工程,第二章酶促反应动力学

生化工程,第二章酶促反应动力学

v
dP dt
t
v
dP dt
t5
反应分子数
• 反应分子数:是在反应中真正相互作用的分子的数目。
• 如:A → P
属于单分子反应
• 根据质量作用定律,单分子反应的速率方程式是:
v k[A] • 双如:A+B → C+D
属于双分子反应
• 其反应速率方程可表示为:
vk[A]B []
• 判断一个反应是单分子反应还是双分子反应,必须先了解反应机制, 即了解反应过程中各个单元反应是如何进行的。
V k E Pma x 2[0]
代入式(5)得:
vPd d [P t]kK 2 S [E 0 [ ]S S ] []V K PS m [ [ a S S x ] ]
(6)
式中:
Vp,max: 最大反应速率
如果酶的量发生改变,最大反应速率相应改变。
KS: 解离常数,饱和常数
低KS值意味着酶与底物结合力很强,
• 反应机制往往很复杂,不易弄清楚,但是反应速率与浓度的关系可用 实验方法来确定,从而帮助推论反应机制。
6
反应级数
根据实验结果,整个化学反应的速率服从哪种分子反 应速率方程式,则这个反应即为几级反应。 例:对于某一反应其总反应速率能以单分子反应的速 率方程式表示,那么这个反应为一级反应。 又如某一反应: A + B → C + D
2. 底物浓度[S]远大于酶的浓度[E],因此[ES]的形成不会降低 底物浓度[S],底物浓度以初始浓度计算。
3. 不考虑P+E→ES这个可逆反应的存在。
4. [ES]在反应开始后与E及S迅速达到动态平衡。
17
E +S
k+1
k-1

化学反应工程第二章

化学反应工程第二章
V
1 1 - xA kt
=
nA0
CA nA
CA C A0
=1 - x A
ln
ln
1 1 - xA
斜率﹦k 或
ln
C A0 CA
t
二级不可逆反应 A﹢B→产物
若 CA0﹦CB0
CA
( rA ) kC A
2
dC A dt
kC A C B

dC A dt


1 CA

dC A CA
2.13 93 k 5.02 86.8 k 0.0181 0.0309 1 2.13 K 1 5.02 K B B
2
2
2
9.58 89.3 k 6.46 86.3 k 0.0408 0.0338 1 9.58 K 1 6.46 K B B 3.3 92.2 k 0.0263 1 3.3 K B
第2章 均相反应动力学基础
2.1 概述
均相反应 均相反应是指参予反应的各物质均 处同一个相内进行的化学反应。
烃类的高温裂解为气相均相反应,酸碱中 和、酯化反应为典型的液相均相反应。
2.1.1化学反应速率及其表示
化学反应速率 :单位时间、单位反应体积、组分A 的摩尔数变化量称为A组分的反应速率。 例 反应物
1 xA C A0 1 xA
斜率﹦k 或
1 CA

1 C A0
t
若 CA0≠CB0 ,设β﹦ CB0 /CA0

dC A dt
kC A C B

CA

均相反应动力学基础

均相反应动力学基础

齐齐哈尔大学化学反应工程教案第二章均相反应的动力学基础2.1 基本概念与术语均相反应:是指在均一的液相或气相中进行的反应。

均相反应动力学是研究各种因素如温度、催化剂、反应物组成和压力等对反应速率反应产物分布的影响,并确定表达这些因素与反应速率间定量关系的速率方程。

2.1- 1化学计量方程它是表示各反应物、生成物在反应过程的变化关系的方程。

如N2+3H2===2NH3一般形式为:2NH3- N2-3H2== 0有S个组分参与反应,计量方程::人g2A2亠亠:s A s =0SZ ctjAi =0或i生式中:A i表示i组分a i为i组分的计量系数反应物a i为负数,产物为正值。

注意:1.化学计量方程仅是表示由于反应而引起的各个参与反应的物质之间量的变化关系,计量方程本身与反应的实际历程无关。

2. 乘以一非零的系数入i后,可得一个计量系数不同的新的计量方程S ■- .p r- i A i =0i 13. 只用一个计量方程即可唯一的给出各反应组分之间的变化关系的反应体系——单一反应;必须用两个(或多个)计量方程方能确定各反应组分在反应时量的变化关系的反应,成为复合反应。

CO+2H2=CH3OH CO+ 3H2=CH4+ H2O2.1- 2化学反应速率的定义化学反应速率是以单位时间,单位反应容积内着眼(或称关键)组分K的物质量摩尔数变化来定义K组分的反应速率。

:A A :B B=、s S :R R_ dnA (由于反应而消耗的A的摩尔数)Vdt (单位体积)(单位时间)1 dn A 1 dn B 1 dn s 1 dn Rr B r s r R二V dt V dt V dt V dt齐齐哈尔大学化学反应工程教案4.n 0 yK 0KnK0 - n KnK0 K当V 恒定时,组分K 反应掉的摩尔数 n K0 - n K反应程度是用个组分在反应前后的摩尔数变化与计量系数的比值来定义的,用Z 表示。

n i - ng n K 卞。

[整理]2反应动力学基础

[整理]2反应动力学基础

2 反应动力学基础2.1在一体积为4L 的恒容反应器中进行A 的水解反应,反应前 A 的含量为12.23%(重量),混合物的密度为1g/mL ,反应物A 的分子量为88。

在等温常压下不断取样分析,测的组分A 的浓度随时间变化的数据如下: 反应时间(h )1.02.03.04.05.06.07.08.09.0C A (mol/L) 0.9 0.61 0.42 0.28 0.17 0.12 0.08 0.045 0.03 试求反应时间为3.5h 的A 的水解速率。

解:利用反应时间与组分A 的浓度变化数据,作出C A ~t 的关系曲线,用镜面法求得t=3.5h 时该点的切线,即为水解速率。

切线的斜率为0.760.125/.6.1α-==-mol l h由(2.6)式可知反应物的水解速率为0.125/.-==dCA r mol l h A dt2.2在一管式反应器中常压300℃等温下进行甲烷化反应:2423+→+CO H CH H O催化剂体积为10ml ,原料气中CO 的含量为3%,其余为N 2,H 2气体,改变进口原料气流量Q 0进行实验,测得出口CO 的转化率为:Q 0(ml/min) 83.3 67.6 50.0 38.5 29.4 22.2 X(%)203040506070试求当进口原料气体流量为50ml/min 时CO 的转化速率。

解:是一个流动反应器,其反应速率式可用(2.7)式来表示00000(1)(1)-==-=-=-AA RA A A A A A A AdF r dV F F X Q C X dF Q C dX故反应速率可表示为:000(/)==A AA A A R R dX dX r Q C C dV d V Q用X A ~V R /Q 0作图,过V R /Q 0=0.20min 的点作切线,即得该条件下的dX A /d(V R /Q 0)值α。

V R /Q 0min 0.12 0.148 0.20 0.26 0.34 0.45 X A %20.0 30.0 40.0 50.0 60.0 70.00.650.04 1.790.34α-==故CO 的转化速率为40030.10130.03 6.3810/8.31410573--⨯===⨯⨯⨯A A P C mol l RT4300 6.3810 1.79 1.1410/.min(/)--==⨯⨯=⨯AA A R dX r C mol l d V Q2.3已知在Fe-Mg 催化剂上水煤气变换反应的正反应动力学方程为:20.850.4/-=⋅w CO CO r k y y kmol kg h式中y CO 和y CO2为一氧化碳及二氧化碳的瞬间摩尔分率,0.1MPa 压力及700K 时反应速率常数k W 等于0.0535kmol/kg.h 。

化学反应工程第二章解析

化学反应工程第二章解析

第二章 均相反应动力学基础均相反应 均相反应是指参予反应的各物质均处同一个相内进行化学反应。

在一个相中的反应物料是以分子尺度混合的,要求:①必须是均相体系 (微观条件) ②强烈的混合手段 (宏观条件) ③反应速率远小于分子扩散速度一、计量方程反应物计量系数为负,生成物计量系数为正。

计量方程表示物质量之间关系,与实际反应历程无关; 计量系数只有一个公因子;用一个计量方程表示物质量之间关系的体系称为单一反应,反之称为复合反应。

二、化学反应速率单位时间、单位反应容积内组分的物质的量(摩尔数)的变化称之为该组分的反应速率。

反应物:生成物:对于反应三、化学反应速率方程r 是反应物系的组成、温度和压力的函数。

32223NH H N =+032223=--N H NH A A Adn r Vd d t C dt=-=-R R Rdn r Vdt dC dt==A B S R A B S Rαααα+=+SABRABSRr r r r αααα===AA AB r [k (T)][f(C ,C ,)]=有两类;双曲函数型和幂函数型。

k -化学反应速率常数; a(b)-反应级数。

(1)反应级数(i) 反应级数与反应机理无直接的关系,也不等于各组份的计量系数; (ii) 反应级数表明反应速率对各组分浓度的敏感程度;(iii) 反应级数是由实验获得的经验值,只能在获得其值的实验条件范围内加以应用。

(2)反应速率常数k[k]: s -1·(mol/m 3)1-nE :是活化能,把反应分子“激发”到可进行反应的“活化状态”时所需的能量。

E 愈大,通常所需的反应温度亦愈高,反应速率对温度就愈敏感。

k 0 —指前因子,其单位与 反应速率常数相同;E— 化学反应的活化能,J/mol ; R — 气体常数,8.314J/(mol .K)。

a b A A B r kC C=2220.512H Br HBrHBrBr k c c r c k c =+0exp[]E k k RT=-01ln ln E k k R T=-⨯ln klnk 0 slop=-E/R1/T⏹ 反应速率的温度函数关系● 活化能越高,斜率越大,该反应对温度越敏感; ● 对于一定反应,低温时反应速率对温度变化更敏感。

第二章 生化反应动力学

第二章 生化反应动力学

一、单底物酶反应动力学
1、米氏方程 2、米氏方程讨论 3、动力学常数Km和Vm的求取 4、复杂形式的酶反应动力学
返回
1、米氏方程
⑴ Henri中间复合物学说 ⑵ 米氏方程 ⑶ 米氏方程的三假设 ⑷ Briggs-Haladane修正式 ⑸ 米氏方程推导
返回
Henri中间复合物学说
1903年,Henri在研究蔗糖水解时,提出了中 间复合物学说。 他认为,酶与底物的作用是通过酶跟底物生 成复合物而进行的。底物浓度较低即酶的 活性中心未被饱和时,反应速度随浓底物 浓度上升呈正相关。当底物浓度较高时, 即酶的活性中心被饱合或趋于饱和时,反 应速度增加率变小或不再增加。此时,酶底物复合物的生成速度相应较快,而分解 速度相对较慢成为整个反应的限速步骤。
返回
双倒数作图
返回
⑴下图是根据[S]在0.33~2.0Km范围时的实验结果而 作的双倒数图,从此图可准确地测量出-1/Km和1/Vmax 等。
[S]在0.33~ 2.0 Km的范 围的实验结 果而作出的 双倒数图。
返回
⑵ 如果所选底物浓度比Km大得多,则所得双倒数图 的直线基本上是水平的。这种情况虽可测得1/Vmax , 但由于直线斜率近乎零, -1/Km则难以测得。
返回
4.Woolf-Augustinsson-Hofstee作图法
将米氏方程重排为线性方程:
返回
几种方法的比较
以上三种作图法也应注意选择底物浓度,不要使[S]比 Km高得多或低得多。 上述几种线性作图法各有其优 缺点。双倒数作图法应用最广泛。但此法有两个缺点: 第一,在v~ [S]图上,由相等增值而给出的等距离各 点,在双倒数图上变成非等距离的点,且多数点集中 在1/v轴附近,而远离1/v轴的地方只有少数几个点, 恰好这些点又正是主观目测以确定直线最权重的那些 点。第二,在测定v时产生的小误差,当取倒数时会放 大。在低底物浓度下更为敏感,因在高1/[S]值所得的 一两个不准确的点,会给图的斜率带来显著误差。第 一个缺点可通过选择适当的[S],使1/[S]为等距离增值 而得到克服。对第二个缺点关键要注意在低底物浓度 下使所测初速度误差尽可能减小。

化学反应工程课件-PPT

化学反应工程课件-PPT

k/
k
K
1/ p
E
E
1
H
r
ln
k
ln
k
1
ln
K
p
d ln k dT
d ln k dT
1
d ln K p dT
1
H r 1R4T 2
E
E
1
H r
对于吸热反应,ΔHr>0 对于放热反应,ΔHr<0
EE
EE
●反应 速率与 温度的 关系
r k f (X A) k g(X A)
r
dk
dk
( T ) xA f ( X A ) dT g( X A ) dT
kcA0 (1 X A ) (cB0
B A
cA0 X A )
(2.48)
XA——t
● 变
AA BB PP
ci
ni V
XA

过 程
* rA kcAcB
1 V
dnA dt
kcA cB
30
AA BB PP
组分
A B
反应前(XA=0)
nA0
1 j A1 2 j A2 ij Ai 0 rj
1M A1 2M A2 iM Ai 0 rM
M
i ij r j (*) j 1
rj

i
●忽略次要反应,确定独立反应数M;
●测M个组分的 i
●对每个组分按(*)式,建立M个线 性方程;
●求解代数方程组,得 rj.
22
例:乙苯催化脱氢反应可以用下列方程式表示
不受其他反应的反应组分浓度的影响。
特殊 情况
●多相催化反应; ●变容气相反应.

均相反应的动力学基础

均相反应的动力学基础

均相反应的动力学基础化学反应工程第二章均相反应动力学基础1§2.1基本概念和术语若参于反应的各物质均处同一个相内进行化学反应则称为均相反应。

均相反应动力学:研究各种因素如温度、催化剂、反应物组成和压力等对反应速率、反应产物分布的影响,并确定表达这些影响因素与反应速率之间定量关系的速率方程。

§2.1.1化学计量方程化学计量方程:表示各反应物、生成物在反应过程中量的变化关系的方程。

一个由S个组分参予的反应体系,其计量方程可写成:Si1iAi0式中:Ai表示i组分,i为i组分的计量系数。

通常反应物的计量系数为负数,反应产物的计量系数为正值。

注意:1.计量方程本身与反应的实际历程无关,仅表示由于反应引起的各个参予反应的物质之间量的变化关系。

2.规定在计量方程的计量系数之间不应含有除1以外的任何公因子。

这是为了消除计量系数在数值上的不确定性。

单一反应:只用一个计量方程即可唯一给出各反应组分之间量的变化关系的反应体系。

复杂反应:必须用两个或多个计量方程方能确定各反应组分之间量的变化关系的反应体系例如,合成氨反应的计量方程通常写成:N23H写成一般化的形式为:N23H而错误的形式有:2N26H2222NH32NH304NH30§2.1.2反应程度和转化率反应程度是各组分在反应前后的摩尔数变化与其计量系数的比值,用符化学反应工程第二章均相反应动力学基础2号ξ来表示,即:n1n10nini0nknk01ik或写成:nini0ii1.不论哪一个组分,其反应程度均是一致的,且恒为正值。

2.如果在一个反应体系中同时进行数个反应,各个反应各自有自己的反应程度,则任一反应组分i的反应量应等于各个反应所作贡献的代数和,即:Mnini0j1ijj其中:M为化学反应数,ij为第j个反应中组分I的化学计量系数。

转化率是指某一反应物转化的百分率或分率,其定义为:某某一反应物的转化量该反应物的起始量nk0nknk01.如果反应物不只一种,根据不同反应物计算所得的转化率数值可能是不一样的,但它们反映的都是同一个客观事实。

《反应工程》第二章课后答案

《反应工程》第二章课后答案

2 反应动力学基础2.1在一体积为4L 的恒容反应器中进行A 的水解反应,反应前 A 的含量为12.23%(重量),混合物的密度为1g/mL ,反应物A 的分子量为88。

在等温常压解:利用反应时间与组分A 的浓度变化数据,作出C A ~t 的关系曲线,用镜面法求得t=3.5h 时该点的切线,即为水解速率。

切线的斜率为0.760.125/.6.1α-==-mol l h由(2.6)式可知反应物的水解速率为 0.125/.-==dC A r mol l h A dt2.2在一管式反应器中常压300℃等温下进行甲烷化反应:2423+→+CO H CH H O催化剂体积为10ml ,原料气中CO 的含量为3%,其余为N 2,H 2气体,改变进口原料气流量Q 0解:是一个流动反应器,其反应速率式可用(2.7)式来表示00000(1)(1)-==-=-=-A A RA A A A A A A AdF r dV F F X Q C X dF Q C dX 故反应速率可表示为:0000(/)==A A A A A R R dX dX rQ C C dV d V Q用X A ~V R /Q 0作图,过V R /Q 0=0.20min 的点作切线,即得该条件下的dX A /d(V R /Q 0)值α。

0.650.04 1.790.34α-==故CO 的转化速率为 40030.10130.03 6.3810/8.31410573--⨯===⨯⨯⨯A A P C mol l RT4300 6.3810 1.79 1.1410/.min (/)--==⨯⨯=⨯A A A R dX r C mol l d V Q2.3已知在Fe-Mg 催化剂上水煤气变换反应的正反应动力学方程为:20.850.4/-=⋅w CO CO r k y y kmol kg h式中y CO 和y C O2为一氧化碳及二氧化碳的瞬间摩尔分率,0.1MPa 压力及700K 时反应速率常数k W 等于0.0535kmol/kg.h 。

第2章 化学反应动力学基础

第2章 化学反应动力学基础

1.3.2 活化能因素: 对于基元反应来说,如果体系中一个组分有两 个以上的基元反应发生,则以活化能最低的发生反 应几率最大,这也是探索历程的一个重要线索依 据,由此因素,我们可以确定基元反应那些反应可 以发生,那些反应的发生可能性最小。
1.3.3 中间物和分子结构因素: 如果能从反应中检验某种中间物,则对反应历 程的确定将起重要作用,某些物质容易捕捉自由 基,反应体系加入这些物质,观察反应速率是否 下降,以判断体系中是否有自由基存在,而自由 基的存在常能导致链反应,此外,所设想的中间 物应与结构化学规律相符合,这就是需要考虑的 结构因素。
cCH3CHO(0)为乙醛的初始浓度。 式中,
上一内容 下一内容 返回
反应级数 当固定乙醛的初始浓度,可见在不同反应时间 测量反应速率时,r与
cCH3CHO 的平方成正比,
即称其时间级数为二级。如果以不同的初始浓
度进行试验,测定反应的初始反应速率,则与 乙醛的初始浓度的一次方成正比,即称为反应 级数为一级。许多反应的时间级数与浓度级数 是相同的,但也有一些不同。
在我们通过考虑三因素后,则基本上对反应的历 程有了某些线索和启发,然后可以进行初步探索 拟定历程,当初步拟定历程后,如何检验所草拟 的历程有一定的正确性和认为可以接受呢? 这就要求我们必须记住服从下面两个一致性:由 拟定的反应历程所得到的反应动力学方程应该和 由实验得到的动力学方程相一致。由拟定的反应 历程所得到的表观活化能应该和由实验测得的活 化能相一致。
t1/2 =
1 n-1-1 ] [ (2) (n-1)αkcA(0)n-1
上一内容 下一内容
[n(≠1)级反应]
返回
八、收率、转化率和选择收率 收率是指一个反应过程的产物量占反应物量的 百分数

第2章 均相反应动力学基础

第2章 均相反应动力学基础

13:34:32
反 对于基元反应:aA+bB=rR+sS 应 工 A A A B 程
( r ) k c c
第 二 章 均 相 反 应 动 力 学 基 础
• 分子数:基元反应中反应物分子或离子的个数。 对于基元反应来讲α,β必须是正整数,α+β是基 元反应的分子数,不能大于3(根据碰撞理论, α+β的取值不能大于3,必须是一个小于等于3的 正整数)。 • 反应级数――基元反应级数等于反应式计量系数 值,即α=a和β=b,α和β分别称作组分A和组分B
k k0 e
E / RT
(2-7)
式中 k0――频率因子或指前因子 E――活化能,J或J/mol R――通用气体常数,(国际单位)8.314J/mol· K T――绝对温度K,呈指数变化
指前因子K0视作与温度无关的常数
13:34:34
反 应 工 程
第 二 章 均 相 反 应 动 力 学 基 础
13:34:32
反 应 工 程
第 二 章 均 相 反 应 动 力 学 基 础
dc A mol (rA ) ,( 3 ) dt m s
前提是恒容反应
对于反应:aA+bB=rR+sS,若无副反应,则反应物与
产物的浓度变化应符合化学计量式的计量系数关系,可 写成:
a a a (rA ) (rB ) (rr ) (rS ) b r s

,
mol ( 3 ) m s
式中kA称作反应速率常数;α 、β 是反应级数。
13:34:32
反 应 工 程
第 二 章 均 相 反 应 动 力 学 基 础
对于(恒容)气相反应,由于分压与浓度成正比,也可 用分压来表示。

化学反应工程课件—第二章(反应速率)(PDF)

化学反应工程课件—第二章(反应速率)(PDF)
2009-5-3
1
第二章 反应动力学基础
讲授内容
1 基本概念 2 单一反应速率式 3 复合反应 4 链锁反应
2009-5-3
2
2.1 基本概念
1 化学计量方程
本节 讲授 内容
2 化学反应速率的定义 3 转化率等重要概念
4 化学反应速率方程
4 反应机理与速率方程
2009-5-3
3
一、化学计量方程
100 − x / 2
100 − x / 2
解得: x = 1.504mol
y = 0.989mol
乙烯的转化量为 :1.504 + 0.989 / 2 = 1.999mol
2009-5-3
23
所以,乙烯的转化率为: 1.999 /15 = 13.33%
环氧乙烷的收率为: 1.504 /15 = 10.03%
和反应后的摩尔数 yk0、yk为着眼组分K的 起始摩尔分率和反应后
yK
= yK 0 (1− xK )
1+ δK yK0xK
对于任何反应组分i有
2009-5-3
的总摩尔数
yi
= yi0(1− xi )
1+δK yK0xK
=
yi0
(1−
αi αK
yK0 yi0
xK )
1+δK yK0xK 27
δK
= n − n0 nK 0 − nK

算结果均是如此),对于复杂反应Φ ≠ x
¾ 收率也有单程和全程之分(循环物料系统)
¾ 无论是收率还是选择性,还有其它的定义(结果不
一样,但说明同样的问题)
¾ 转化率x只能说明总的结果, Φ 说明在转化的反

《化学反应工程》第三版(陈甘堂著)课后习题答案

《化学反应工程》第三版(陈甘堂著)课后习题答案

《化学反应工程》第三版(陈甘堂著)课后习题答案第二章均相反应动力学基础2-4三级气相反应2NO+O22NO2,在30℃及1kgf/cm2下反应,已知反应速率常数2kC=2.65×104L2/(mol2 s),若以rA=kppApB表示,反应速率常数kp应为何值?解:原速率方程rA=dcA2cB=2.65×104cAdt由气体状态方程有cA=代入式(1)2-5考虑反应A课所以kp=2.65×104×(0.08477×303) 3=1.564后当压力单位为kgf/cm2时,R=0.08477,T=303K。

答p p 2rA=2.65×10 A B =2.65×104(RT) 3pApBRT RTp表示的动力学方程。

解:.因,wwnAp=A,微分得RTVdaw案24网pAp,cB=BRTRT3P,其动力学方程为( rA)=dnAn=kA。

试推导:在恒容下以总压VdtVδA=3 1=21dnA1dpA=VdtRTdt代入原动力学方程整理得wdpA=kpAdt设初始原料为纯A,yA0=1,总量为n0=nA0。

反应过程中总摩尔数根据膨胀因子定义δA=n n0nA0 nA若侵犯了您的版权利益,敬请来信通知我们!Y http://.cn.co(1)mol/[L s (kgf/cm2) 3]m(1)则nA=nA01(n n0)δA1(P P0)δA(2)恒容下上式可转换为pA=P0所以将式(2)和式(3)代入式(1)整理得2-6在700℃及3kgf/cm2恒压下发生下列反应:C4H10发生变化,试求下列各项的变化速率。

(1)乙烯分压;(2)H2的物质的量,mol;(3)丁烷的摩尔分数。

解:P=3kgf/cm2,(1)课MC4H10=58,(2)w.krC2H4=2( rC4H10)=2×2.4=4.8kgf/(cm2 s)PC4H10=PyC4H101 dpC4H10= P dt2.4-1==0.8 s 3w(3)nC4H10=nyC4H10=n0(1+δC4H10yC4H10,0xC4H10)yC4H10dnH2dtdnH2dt=hdaw后n0=nC4H10,0=δC4H10rC4H10=反应开始时,系统中含C4H*****kg,当反应完成50%时,丁烷分压以2.4kgf/(cm2 s)的速率dyC4H10dt答1rCH=2.4224wdnC4H10dt案116×1000=2000mol582+1 1==21网dyC4H10=n0(1+δC4H10yC4H10,0xC4H10) dt=2000×(1+2×1×0.5)×0.8=3200 mol/s若侵犯了您的版权利益,敬请来信通知我们!Y http://.cno2C2H4+H2,dP=k[(δA+1)P0 P]=k(3P0 P)dtm(3)dpA1dP= dtδAdt2-9反应APS,( r1)=k1cA , ( r2)=k2cp,已知t=0时,cA=cA0 ,cp0=cS0=0, k1/k2=0.2。

化学反应工程2(第二章-均相反应动力学基础)

化学反应工程2(第二章-均相反应动力学基础)

◆自催化反应:
特点:反应产物中某一产物对反应有催化作用,同时,为了使反应进
行 , 常 事 先 加 入 一 定 浓 度 的 催 化 剂 C , 设 浓 度 为 CC0 。
A+C2C+R……
设对各组分均为一级,则: rA
dCA dt
kCCCA
t=0, CA=CA0 CC=CC0 CR=CR0=0
continue
非等分子反应的膨胀因子及相关计算
膨胀因子:
K

1 K
s i1
i

n n0 n0yK0xK
K 的定义:
s
i Ai 0
i 1
的情况
每反应1mol的组分K所引起反应物系总摩尔数的变化量。
(举例:如合成氨的反应,求膨胀因子)
设关键组分K的转化率为xK,则:
yK
反应开始时总mol数(单位体积):CM0= CA0+ CC0
两参数是无法积 分的,设法变为 单参数微分形式
任何时刻:CC=CC0+(CA0-CA)=CM0- CA
rA
dCA dt
kCA CM 0
CA
积分得C
MO
k
t

ln

C C
A CM 0 A0 CM
C A0 0 CA
●幂函数型
对反应:AA+BB
kC

LL+MM
l CMm

kC'
Ca' A
Cb' B
Cl' L
C m' M
若为不可逆反应,则:
rA

k
c

第二章 均相反应动力学基础

第二章 均相反应动力学基础

对于气相反应,常用分压PA、浓度Ci和摩尔分数yi来表示反应 物系的组成,若相应的反应速率常数分别为kP、 kc和ky,他们 a a 之间存在下列关系
k c RT k p RT / p k y
式中P为总压,α为总的反应级数,上述关系只适用于理想气体。 对于非理想气体混合物,还需加上压缩因子。式(2.26)两边取对数, 则有 : lnk=lnk0-E/RT (2.26a) lnk对 1/T作图,可得-直线,直线的斜率=-E/RT
对T求导:
则:
因为r 0,所以

E E r k f X A kgX A 2 2 RT T X A RT
k f(X A ) k g(X A )
E E r 对于可逆吸热反应, E E 2 k f(X A ) 2 g(X A ) 0 RT RT T X A
v A A vB B vR R
(2.1)
的反应速率,根据上述定义可分别以反应组分A、B 及R的反应量表示如下:
1 dn A 1 dnB 1 dnR rA , rB , rR V dt V dt V dt
(2.2)
由化学计量学知,反应物转化量与反应产物生成量之间的 比例关系应符合化学计量关系,即
当催化剂和使用的溶剂确定时,有 r=f(T, C)-动力学方程或速率方程 (2-11) 对于基元反应,根据质量作用定律,式(2-11)可表示为
k-反应速率常数是反应温度的函数,即:k=f(T)反应温度
对化学反应速率的影响程度; α、β-反应速率常数,反应物浓度对化学反应速率的影响 程度。
rA kC C
式(2.4)或式(2.4a)是反应速率的普遍定义式,不受选取 反应组分的限制。知道后乘以化学计量系数即得按相应组分计 算的反应速率。在复杂反应系统的动力学计算中,应用 r 的概 念最为方便。

第二章 均相反应动力学

第二章 均相反应动力学

k2
c
[1-e
A0
(
k1

k2
)
t
]
由此图得:若各处的cP/cS=k1/k2,说明所考察的反应为平行反应。
2.2 等温恒容过程
2.2-2 复合反应
(1)平行反应
k1 P A k2 S
平行反应的产物分布
由 rP

dcP dt
k1cAa1 ,
rS

dcS dt
k2cAa2
得:rP rS
dcP dcS

dcP dcS
/ /
dt dt

k1cA k2cA
总选择性S0

生成的P的总物质的量 生成的S的总物质的量

cP cS

xP xS
2.2 等温恒容过程
2.2-2 复合反应
(2)串联反应
A k1 P k2 S
(等温、恒容均相一级反应)
(rA)

dcA dt
k1cA积分得:cA
ln
cA cA0


1 cA

1 cA0

0
233.2
0
0
0
1
216.8
16.4
0.07298
0.3244x10-3
2
205.9
27.3
0.1245
0.5686 x10-3
3
196.6
36.6
0.1707
0.7983 x10-3
4
187.9
45.3
0.2160
1.03375 x10-3
5
179.2
54.0
0.2630

化工反应工程答案 第二章

化工反应工程答案 第二章

2 反应动力学基础2.1在一体积为4L的恒容反应器中进行A的水解反应,反应前 A的含量为12.23%(重量),混合物的密度为1g/mL,反应物A的分子量为88。

在等温常压下不断解:利用反应时间与组分A的浓度变化数据,作出C~t的关系曲线,用镜A面法求得t=3.5h时该点的切线,即为水解速率。

切线的斜率为?0.76???0.125mol/l.?h 6.1)式可知反应物的水解速率为由(2.6?dCA?0.125mol/lr?.h Adt2.2在一管式反应器中常压300℃等温下进行甲烷化反应:CO?3H?CH?HO242气体,改变进口原10ml催化剂体积为,原料气中CO的含量为3%,其余为N,H22料气流量Q进行实验,测得出口CO的转化率为:022.2 38.5 29.4 83.3 67.6 50.0 Q(ml/min) 07060 40 20 30 50 X(%)的转化速率。

50ml/min时CO试求当进口原料气体流量为解:是一个流动反应器,其反应速率式可用(2.7)式来表示?dF A?rA dV R F?F(1?X)?QC(1?X)AAAA000A dF??QCdX AA00A故反应速率可表示为:dXdX AA r?QC?C A00AA0dVd(V/Q)0RR)作图,过V用X~/QV/Q的点作切线,即得该条件下的=0.20mindX/d(V/Q0RA0RA0Rα。

值0.45 0.20 0.26 0.34 0.148 min V/Q0.12 0R70.020.0 % X30.0 60.0 40.0 50.0 A0.65?0.04??1.79?0.34 CO故的转化速率为P0.030.1013?4?0A??10lmol/C??6.380A RT?3??8.31410573dX?4?3A mol/l?1.14?10?6.38r?C?10.min1.79?0AA d(V/Q)0R催化剂上水煤气变换反应的正反应动力学方程为:Fe-Mg2.3已知在0.40.85?h?kmolr?kyy/kg COwCO2时反700Ky式中y和为一氧化碳及二氧化碳的瞬间摩尔分率,0.1MPa压力及CO2CO2堆密度为/g,0.0535kmol/kg.h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 反应动力学基础2.1在一体积为4L 的恒容反应器中进行A 的水解反应,反应前 A 的含量为12.23%(重量),混合物的密度为1g/mL ,反应物A 的分子量为88。

在等温常压解:利用反应时间与组分A 的浓度变化数据,作出C A ~t 的关系曲线,用镜面法求得t=3.5h 时该点的切线,即为水解速率。

切线的斜率为0.760.125/.6.1α-==-mol l h由(2.6)式可知反应物的水解速率为0.125/.-==dC A r mol l hAdt2.2在一管式反应器中常压300℃等温下进行甲烷化反应:2423+→+CO H CH H O催化剂体积为10ml ,原料气中CO 的含量为3%,其余为N 2,H 2气体,改变进口原料气流量Q 0解:是一个流动反应器,其反应速率式可用(2.7)式来表示00000(1)(1)-==-=-=-A A RA A A A A A A AdF r dV F F X Q C X dF Q C dX故反应速率可表示为:0000(/)==A AA A A R R dX dX r QC C dV d V Q用X A ~V R /Q 0作图,过V R /Q 0=0.20min 的点作切线,即得该条件下的dX A /d(V R /Q 0)值α。

0.650.04 1.790.34α-==故CO 的转化速率为40030.10130.03 6.3810/8.31410573--⨯===⨯⨯⨯A A P C mol l RT4300 6.3810 1.79 1.1410/.min(/)--==⨯⨯=⨯AA A R dX r C mol l d V Q2.3已知在Fe-Mg 催化剂上水煤气变换反应的正反应动力学方程为: 20.850.4/-=⋅w CO CO r k y y kmol kg h式中y CO 和y CO2为一氧化碳及二氧化碳的瞬间摩尔分率,0.1MPa 压力及700K 时反应速率常数k W 等于0.0535kmol/kg.h 。

如催化剂的比表面积为30m 2/g ,堆密度为1.13g/cm 3,试计算:(1) 以反应体积为基准的速率常数k V 。

(2) 以反应相界面积为基准的速率常数k g 。

(3) 以分压表示反应物系组成时的速率常数k g 。

(4) 以摩尔浓度表示反应物系组成时的速率常数k C 。

解:利用(2.10)式及(2.28)式可求得问题的解。

注意题中所给比表面的单位换算成m 2/m 3。

33230.450.45330.45(1) 1.13100.053560.46/.6(2) 1.7810/.301011(3)()()0.05350.15080.1013..()8.3110700(4)()(0.05350.333(0.1)ρρρρ-==⨯⨯=-===⨯⨯⨯==⨯=⨯⨯==⨯=v b w bbg w wvb n p w nc w k k kmol m h k k k kmol m h a kmol k k P kg h MPa m RT k k P km 0.45)().kmol ol kg h2.4在等温下进行液相反应A+B →C+D ,在该条件下的反应速率方程为: 1.50.50.8/min =⋅A A B r C C mol l若将A 和B 的初始浓度均为3mol/l 的原料混合进行反应,求反应4min 时A 的转化率。

解:由题中条件知是个等容反应过程,且A 和B 的初始浓度均相等,即为1.5mol/l ,故可把反应速率式简化,得 1.50.522200.80.80.8(1)===-A A B A A A r C C C C X由(2.6)式可知00(1)⎡⎤⎢⎥⎣⎦--==-=A A A A A A d C X dC dX r C dt dt dt代入速率方程式2200.8(1)=-A A A A dX C C X dt化简整理得00.8(1)=-AA A dX C dtX积分得00.81=-AA A X C t X解得X A =82.76%。

2.5氨合成塔入口的气体组成为3.5%NH 3,20.8%N 2,62.6%H 2,7.08%Ar 及5.89CH 4。

该塔是在30MPa 压力下操作。

已知催化剂床层中某处的温度为490℃,反应气体中氨含量为10%(mol ),试计算该处的反应速率。

在Fe 催化剂上氨合成反应速率式为:322321.531.512/=-⋅NH H N NH H p p r k p k kmol m h p p 逆反应的活化能417.5810/=⨯E J mol。

450℃时30.5322277()/=⋅k m MPa m h ,且212/=Pk k K ,490℃时,Kp 可按下式计算:472log 2047.8/ 2.4943log 1.25610 1.856410 3.206--=--⨯+⨯+p K T T T T 注:m 3为标准立方米。

解:题中给出450℃时的k 2值,而反应是在490℃下,故首先要求出490℃时的k 2值。

利用(2.27)试,求出频率因子A:44217.5810/8.314723162'1617.5810/8.314723430.532exp()exp()2277/ 1.14510exp() 1.14510 1.05510()/.-⨯⨯-⨯⨯-=-===⨯-==⨯=⨯E k A RTE A k e RTE k A e m MPa m hRT490℃的Kp 值由题给公式计算出4722log 2047.8/763 2.4943log763 1.25610763 1.8564107633.206 1.25245.59210 ---=--⨯⨯+⨯⨯+=-=⨯p p K K 求k 1值:22'112'22243 1.531(5.59210) 1.0551033()/.--===⨯⨯⨯=p p k K k K k k k m MPa m h求各组分的分压值:2233122+↔N H NH5716.0.14160*(-2)*2087.01.14160*2087.0*3-626.0 1y 13y y 1904.0 .14160*(-2)*2087.01)1416.0-(12087.0 1y y y 1416.05.6914.45*(-2)*2087.01*2087.0*211035.010.01y y y 22123211 %87.20Py , 1y y y 1000H H 000A A 00R 0R R 0000000==-)+-(=,+=δ+-==+=δ+-===+--=δ+νν-=δ==δ+νν-=δ+νν-=AA A AA AA A AA A A AA AA A AA AA A i i AA A A A Aii i AA A A A Aii i X y X X y X X X X X X y X y p X y X X y X p p p P y i i p =反应速率为:322321.5 1.541.5121.5333317.15333.0 5.718 1.05510317.154.02310/.(179.6/.)=-=⨯⨯-⨯⨯=⨯NH H N NH H p p r k p k p p m m cat h kmol m cat h2.6下面是两个反应的T-X 图,图中AB 是平衡曲线,NP 是最佳温度曲线,AM 是等温线,HB 是等转化率线。

根据下面两图回答:(1) (1) 是可逆反应还是不可逆反应? (2) (2) 是放热反应还是吸热反应?(3) (3) 在等温线上,A,D,O,E,M 点中哪一点速率最大,哪一点速率最小? (4) (4) 在等转化率线上,H,C,R,O,F 及B 点中,哪一点速率最大,哪一点速率最小?(5) (5) 在C,R 两点中,谁的速率大?(6) (6) 根据图中所给的十点中,判断哪一点速率最大?解: 图2.1 图2.2 (1)可逆反应 可逆反应 (2)放热反应 吸热反应(3)M 点速率最大,A 点速率最小 M 点速率最大,A 点速率最小 (4)O 点速率最大,B 点速率最小 H 点速率最大,B 点速率最小 (5)R 点速率大于C 点速率 C 点速率大于R 点速率(6)M 点速率最大 根据等速线的走向来判断H,M 点的速率大小。

2.7在进行一氧化碳变换反应动力学研究中,采用B106催化剂进行试验,测得正反应活化能为49.62910/⨯J mol ,如果不考虑逆反应,试问反应温度是550℃时的速率比反应温度是400℃时的速率大多少倍?解:从题中可知,反应条件除了温度不同外,其它条件都相同,而温度的影响表现在反应速率常数k 上,故可用反应速率常数之比来描述反应速率之比。

400550119629011()()5505505508.314673823400400400exp()23exp()(倍)---=====-E R T T E A r k RT e e r k E A RT2.8常压下,在钒催化剂上进行SO 2氧化反应,原料气组成为7%O 2及82%N 2。

试计算转化率为80%时的最佳温度。

二氧化硫在钒催化剂上氧化的正反应活化能为49.21110/⨯J mol ,化学计量数等于2,反应式为:22312+↔SO O SO其平衡常数与温度的关系为:log 4905.5/ 4.6455=-p e K T该反应的热效应49.62910/-=⨯r H J mol 。

解:(1)求出转化率为80%时各组分的分压:2222332233320.1013 1.4/97.2 1.4610()0.10138.2/97.28.5510()0.1013 5.6/97.2 5.8410()0.101382/97.28.5510()----==⨯=⨯==⨯=⨯==⨯=⨯==⨯=⨯SO SO O O SO SO N N p Py MPa p Py MPa p Py MPa p Py MPa(2)求与上述组成对应的平衡常数K P 值:32230.50.5335.841043.261.46108.5510---⎛⎫ ⎪⎝⎭⨯===⨯⨯SO P SO op K p p(3)求平衡温度Telog 4905.5/ 4.64554905.5780.96.282=-==p e e K T T K(4)利用(2.31)式求逆反应活化能E 值4459.629109.21110 1.40310/2ν-⨯∆=-=⨯-=⨯rr H E E J mol(5)利用(2.31)式求最佳温度T OP4780.9739.0048.314780.914.031ln 1ln 9.211(14.039.211)10===⨯++-⨯-eOP e T T KRT E E E E2.9在一恒容反应器中进行下列液相反应:+→A B R 31.6/=⋅R Ar C kmol m h 2→A D 238.2/=⋅D Ar C kmol m h 式中r R ,r D 分别表示产物R 及D 的生成速率。

相关文档
最新文档