七年级数学:同底数幂的除法

合集下载

七年级数学下册-同底数幂的除法(6类热点题型讲练)(解析版)

七年级数学下册-同底数幂的除法(6类热点题型讲练)(解析版)

第03讲同底数幂的除法(6类热点题型讲练)1.经历同底数幂的除法法则的探索过程,理解同底数幂的除法法则;2.理解零次幂和负整数指数幂的意义,并能进行负整数指数幂的运算;3.会用同底数幂的除法法则进行计算.知识点01同底数幂的除法m n m n a a a -÷=(其中,m n 都是正整数).即同底数幂相除,底数不变,指数相减.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)逆用公式:即=m n m n aa a -÷(,m n 都是正整数).知识点02零指数幂:01a =(a ≠0)知识点03负指数幂:1p p a a-=(a ≠0,p 是正整数)题型01同底数幂的除法【例题】(2023上·八年级课时练习)计算:(1)()()()722ab ab ab -÷-÷-;(2)()243m m ÷;(3)()()426x x x -⋅÷-.【答案】(1)33a b -(2)5m (3)4x -【分析】(1)把()ab -当作一个整体,根据同底数幂的除法法则计算,再利用积的乘方法则计算即可;(2)先根据幂的乘方法则计算,再根据同底数幂的除法法则计算;(3)先根据同底数幂的乘法法则计算同时根据有理数乘方进行运算,再根据同底数幂的除法法则计算即可.【详解】(1)解:()()()722ab ab ab -÷-÷-()722ab --=-()3ab =-33a b =-;(2)()243m m ÷83m m =÷5m =;(3)()()426x x x -⋅÷-84x x =-÷4x =-.【点睛】本题考查整式的乘除混合运算,掌握相应的运算法则、掌握运算顺序是解题的关键.【变式训练】1.(2023上·全国·八年级课堂例题)计算:(1)93m m -÷;(2)63()()a a -÷-;(3)2366m m +÷.【答案】(1)6m -(2)3a -(3)36m +【分析】(1)根据同底数幂的除法运算即可求解;(2)根据同底数幂的除法运算即可求解;(3)根据同底数幂的除法运算即可求解.【详解】(1)解:93m m -÷93m -=-6m =-.(2)解:63()()a a -÷-63()a -=-3()a =-3a =-.(3)解:2366m m +÷236m m +-=36m +=.【点睛】本题主要考查整式的乘除法的运算,掌握其运算法则是解题的关键.2.(2023上·全国·八年级课堂例题)计算:(1)1023a a a ÷÷;(2)255a a a ⋅÷;(3)()()5222x y x y ÷;(4)432()()()p q q p p q -÷-⋅-.【答案】(1)5a (2)2a (3)63x y (4)3()p q --【分析】(1)利用同底数幂的除法法则计算即可;(2)利用同底数幂的乘法和除法法则计算即可;(3)利用积的乘方和同底数幂的除法法则计算即可;(4)先把()q p p q -=--,底数p q -作为一个整体,利用同底数幂的乘法和除法计算即可;【详解】(1)解:310231025a a a a a --÷=÷=.(2)解:225755a a a a a a ⋅÷÷==.(3)解:()()10542635222x x y x y y x y y x =÷÷=.(4)解:3432432()()()()())(()p q q p p q p q p q p p q q -÷-⋅--÷-⋅-=-=--.【点睛】本题考查了同底数幂的乘法,同底数幂的除法,积的乘方,熟练运用这些运算法则是解题的关键.题型02同底数幂除法的逆用1.(2023下·安徽安庆·七年级校考期中)已知3x a =,5y a =,求:(1)x y a -的值;∴1n =.【点睛】本题主要考查了同底数幂乘除法的逆运算,幂的乘方和幂的乘方的逆运算,熟知相关计算法则是解题的关键.题型03幂的混合运算【例题】(2023·上海·七年级假期作业)计算:(1)()()4334a a -÷-;(2)()()22237a a a a ⋅÷⨯-.【答案】(1)1-(2)5a 【分析】(1)先计算幂的乘方,再计算同底数幂的除法;(2)先计算同底数幂的乘法、乘方,再计算同底数幂的乘法与除法.【详解】(1)解:()()()433412121a a a a -÷-=÷-=-;(2)解:()()()22223757210725a a a a a a a a a -+⋅÷⨯-=÷⋅==.【点睛】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,()nm mn a a =,m n m na a a -÷=(0a ≠,m ,n 都是正整数),注意负数的奇次幂还是负数.【变式训练】(1)2642135(2)5x x x x x ⋅--+÷(2)253()()[()]a b b a a b -⋅-÷--;(3)先化简,再求值:426223225(3)()(2)a a a a a ⎡⎤⋅-÷÷-⎣⎦,其中5a =-.【答案】(1)82x (2)4()a b -(3)2a -,-25.【分析】(1)先算幂的乘方,再算乘除,最后计算加减即可求解;(2)把()a b -作为一个整体,从左往右计算,即可求解;(3)先算括号内的,再计算除法,最后再代入求值,即可求解.【详解】(1)原式88845x x x =-+8(145)x =-+82x =;(2)原式253()()[()]a b a b a b =---÷--4()a b =-.(3)原式=()61264594a a a a -÷÷=6444a a -÷=2a -,当a =-5时,原式=-25.【点睛】本题主要考查了幂的混合运算,零指数幂,负整数指数幂,熟练掌握幂的运算法则,零指数幂,负整数指数幂法则是解题的关键.题型04零指数幂题型05负整数指数幂题型06用科学计数法表示绝对值小于1的数1.(2023上·黑龙江佳木斯·八年级统考期末)纳米是一种长度单位,1纳米910-=米,冠状病毒的直径约为一、单选题1.(2023上·河南濮阳·八年级校联考期中)下列各式运算结果为6x 的是()A .24x x ⋅B .()42x C .122x x ÷D .33x x +【答案】A 【分析】直接根据同底数幂的乘除法,幂的乘方,合并同类项的运算法则计算各项,即可得到答案.【详解】解:A .24246x x x x +⋅==,故选项符合题意;B .()428x x =,故选项不符合题意;C .12210122x x x x -÷==,故选项不符合题意;D .3332x x x +=,故选项不符合题意.故选:A .2.(2023上·四川宜宾·八年级统考期中)下列计算正确的是()A .426235a a a +=B .824a a a ÷=C .53822a a a ⋅=D .()236ab a b=【答案】C 【分析】本题考查的是合并同类项,同底数幂的除法,乘法运算,积的乘方运算,根据各自的运算法则逐一分析即可,熟记运算法则是解本题的关键.【详解】解:A 、42a 与23a 不是同类项,不能合并,不符合题意;B 、826a a a ÷=,故本选项计算错误,不符合题意;C 、53822a a a ⋅=,计算正确,符合题意;D 、()2362a b a b =,故本选项计算错误,不符合题意;故选:C .3.(2023上·吉林松原·八年级校联考期末)经测算,一粒芝麻的质量约为0.00000201kg ,数据0.00000201用科学记数法表示为()A .320.110-⨯B .42.0110-⨯C .50.20110-⨯D .62.0110-⨯【答案】D【分析】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:60.00000201 2.0110-=⨯.故选:D .4.(2023上·河南濮阳·八年级校联考期中)若()021x +=,则x 的取值范围是()A .2x ≥-B .2x ≤-C .2x ≠-D .2x =-【答案】C 【分析】本题考查零指数幂的意义,根据零指数幂的定义即可判断.【详解】解:根据零指数幂的意义,20x +≠,∴2x ≠-.故选:C .5.(2023上·河南新乡·八年级校考阶段练习)下列四个算式:①()()4322x x x -÷-=-;②()()2122242n n x x x +--÷-=-;③()2522a b a b a ÷=;④()2642221832a b a b a b ÷-=.其中计算不正确的是()A .①②B .①③C .②④D .②③【答案】B【分析】本题考查幂的运算,涉及同底数幂的除法、积的乘方、幂的乘方等知识,是基础考点,掌握相关知识是解题关键.根据同底数幂的除法、积的乘方、幂的乘方法则逐个解题【详解】解:①()()43222x x x -÷-=-,错误,②()()2122242n n x x x +--÷-=-,正确,③()2522a b a b a ÷=,错误,④()2642221832a b a b a b ÷-=,正确故①③错误,故选:B .【答案】2【分析】本题主要考查了整式的加减计算,同底数幂除法的逆运算,先分别表示出经过取走和取出后,甲、乙、丙三个袋子中的球数分别为个,由此得到292y -【详解】解:经过取走和取出后,()22525x y y +-+=+∵一共有29295++=∴最后三个袋子中的球都是∴2125922x y =+-,∴82126y x ==,,∴22216x y x y -=÷=故答案为:2.(1)根据幂的运算逆向思维方法求解即可;。

北师大版数学七年级下册《同底数幂的除法》教案

北师大版数学七年级下册《同底数幂的除法》教案

北师大版数学七年级下册《同底数幂的除法》教案一. 教材分析《同底数幂的除法》是北师大版数学七年级下册第9章幂的运算中的一节内容。

本节课主要让学生掌握同底数幂的除法法则,并能灵活运用该法则进行计算。

教材通过引入实际问题,引导学生探讨同底数幂的除法运算,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在七年级上册已经学习了幂的定义、幂的运算性质等基础知识,对幂的概念有一定的了解。

但是,对于同底数幂的除法运算,学生可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行讲解,帮助学生理解和掌握同底数幂的除法运算。

三. 教学目标1.知识与技能目标:让学生掌握同底数幂的除法法则,能够正确进行同底数幂的除法运算。

2.过程与方法目标:通过探讨同底数幂的除法运算,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的学习兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:同底数幂的除法法则。

2.难点:同底数幂的除法运算的灵活运用。

五. 教学方法采用问题驱动法、案例教学法、分组讨论法等多种教学方法,引导学生主动探究、合作交流,培养学生的数学素养。

六. 教学准备1.教师准备:熟练掌握同底数幂的除法运算,了解学生的学习情况,准备相关案例和问题。

2.学生准备:回顾幂的定义和运算性质,准备好笔记本和笔。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾幂的定义和运算性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示同底数幂的除法运算的案例,引导学生观察和分析,提出问题:“如何进行同底数幂的除法运算?”3.操练(10分钟)教师引导学生分组讨论,共同探讨同底数幂的除法法则。

学生在小组内进行练习,教师巡回指导。

4.巩固(10分钟)教师挑选几组学生代表的答案,进行讲解和分析,巩固学生对同底数幂的除法法则的理解。

5.拓展(10分钟)教师提出一些有关同底数幂的除法运算的实际问题,引导学生运用所学知识进行解决,提高学生的解决问题的能力。

苏科版七年级下册数学第8章 同底数幂的除法

苏科版七年级下册数学第8章 同底数幂的除法
第8章幂的运算
8.3同底数幂的除法
1 课时讲解
同底数幂的除法 零指数幂 负整数指数幂 科学记数法
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知识点 1 同底数幂的除法
1. 同底数幂的除法的运算性质 同底数幂相除,底数不变,指数相减. 当a≠0,m、n都是正●整●●●数,且m●>●n●●时,
知2-讲
2. 零指数幂的规定 任何不等于0的数的0次幂等于1. 即:a0=●1●(●a●≠0). 3. 拓展零指数幂中的底数可以是一个不为0的单项式,也
可以是一个不为0的多项式.
知2-讲
特别解读: 1. 零指数幂在同底数幂的除法中,是除式与被除式
的指数相同时的特殊情况. 2. 指数为0,但底数不能为0,因为底数为0时,除法
1.2×101﹣: 用科学记数法表示绝对值小于1的数的思路: 用科学记数法表示绝对值小于1的数时,一般形式为
a×10-n,其中1≤|a|<10,n由原数左起第一个不为0的 数字前面0的个数所决定(包括小数点前的那个0).
同底数幂的除法
同底 数幂 的除

运算 am÷an=am-n(a≠0,m、n是正整数,
平原南部预选着陆区,中国首次火星探测任务着陆火星取得 圆满成功.在天问一号火星探测器中,火星车使用的热控材 料是新型隔热保温材料——纳米气凝胶,仅仅12mm的材料就 能够在整个着陆过程中让它身后的温度低于110℃.1m= 103mm,12mm用科学记数法表示为()m. A.1.2×10-1B.1.2×10-2C.1.2×10-3D.1.2×10-4
算加减. (3)最后结果要化成正整数指数幂的形式.
知3-讲
例3
解:原式=(-1)3×23÷4+22-2+1 =-8÷4+4-2+1 =-2+4-2+1=1.

七下数学同底数幂的除法

七下数学同底数幂的除法

七下数学同底数幂的除法
同底数幂的除法是指当两个数的底数相同,求幂的指数不同时,如何进行除法运算。

例如,计算 3^5 除以 3^2。

首先,根据同底数幂的除法规则,我们知道当底数相同时,两
个幂相除,等于底数不变,指数相减。

所以,3^5 除以 3^2 可以简
化为 3^(5-2) = 3^3。

换句话说,我们可以将除法问题转化为指数相减的问题,这样
就能够更容易地解决。

另外,我们也可以通过具体的数值来理解同底数幂的除法。

比如,3^5 表示 3 乘以自身 5 次,而 3^2 则表示 3 乘以自身 2 次。

所以,3^5 除以 3^2 就相当于将 3 乘以自身 5 次的结果除以 3
乘以自身 2 次的结果,最终得到 3 乘以自身 3 次的结果。

从数学角度来看,同底数幂的除法实质上是利用指数运算的性质,将除法转化为减法,从而简化计算过程。

在实际问题中,同底数幂的除法也有着广泛的应用。

比如在科
学和工程领域,我们经常需要计算各种物理量的比值,而这些物理量往往可以表示为同底数幂的形式,因此掌握同底数幂的除法规则可以帮助我们更好地理解和解决实际问题。

总之,同底数幂的除法是数学中的基本运算之一,通过合理运用指数运算的性质,我们可以简化计算过程,更好地理解和应用这一概念。

1.3同底数幂的除法-(教案)

1.3同底数幂的除法-(教案)
-将同底数幂的除法应用于解决实际问题时,如何正确建立数学模型。
举例:针对指数相减的难点,可以通过图形化表示(如面积模型)来帮助学生形象理解指数的减少意味着幂的“缩小”。在混合运算中,通过对比不同例题(如2^5 ÷ 2^2 × 2^3与2^5 × 2^3 ÷ 2^2),强调先乘除后加减的运算顺序,以及同底数幂运算中指数的加减法则。在解决实际问题时,如计算一个正方形的面积变化,当边长扩大或缩小时,如何用同底数幂的除法表达面积比,指导学生建立正确的数学模型,突破难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“1.3同底数幂的除法”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将一个较大的数分成几个相等的部分这样的情况?”(如分蛋糕等)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索同底数幂除法的奥秘。
在学生小组讨论后,我让每个小组分享他们的成果,这不仅能增强学生的表达能力和自信心,也让我有机会了解学生对知识点的掌握情况。然而,我也发现了一些共性问题,比如在同底数幂除法在生活中的应用方面,同学们的思路还不够开阔。这提示我在未来的教学中,需要更多地引导学生思考数学知识如何与实际生活相结合。
最后,我意识到在总结回顾环节,我需要更加精炼地提炼出本节课的核心知识点,并且用更加简洁明了的语言进行阐述,以便学生能够清晰地记忆和掌握。
在讲授过程中,我尝试通过生动的例子和生活情境来引入同底数幂除法的概念,这样做的效果是显而易见的,同学们的兴趣被激发,课堂氛围也更加活跃。但我注意到,在从理论到实践的过渡中,部分同学还是显得有些吃力。这可能是因为我未能足够细致地解释每个步骤,或者是因为学生还没有完全适应从理论到实际操作的转变。

同底数幂除法(解析版)

同底数幂除法(解析版)

同底数幂除法【知识梳理】一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a −÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.【考点剖析】 题型一、同底数幂的除法例1、计算:(1)83x x ÷;(2)3()a a −÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫−÷− ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号. 【答案与解析】解:(1)83835x x x x −÷==.(2)3312()a a a a −−÷=−=−.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y −÷===. (4)535321111133339−⎛⎫⎛⎫⎛⎫⎛⎫−÷−=−=−=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号. 【变式1】(2021•上海)计算:x 7÷x 2= .【分析】根据同底数幂的除法法则进行解答即可. 【解答】解:x7÷x2=x7﹣2=x5, 故答案为:x5.【点评】此题考查了同底数幂的除法,熟练掌握同底数幂相除,底数不变指数相减是解题的关键. 【变式2】(2022•浦东新区二模)计算:(﹣a 6)÷(﹣a )2= . 【分析】根据同底数幂相除的法则:底数不变,指数相减即可得出答案. 【解答】解:(﹣a6)÷(﹣a )2=﹣(a6÷a2)=﹣a4. 故答案为:﹣a4.【点评】本题考查了同底数幂的除法,同底数幂相除的法则:底数不变,指数相减. 【变式3】计算:(1)()()151233−÷−;(2)853377⎛⎫⎛⎫÷− ⎪ ⎪⎝⎭⎝⎭;(3)10010099÷.【答案】(1)27−;(2)27343−;(3)1.【解析】(1)()()()()151215123333327−−÷−=−=−=−;(2)858533333277777343−⎛⎫⎛⎫⎛⎫⎛⎫÷−===⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3)100100100100099991−÷===.【总结】本题考查了同底数幂的除法,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠.【变式4】计算: (1)107a a ÷;(2)102102x x −÷;(3)()()75a a −÷−.【答案】(1)3a ;(2)1−;(3)2a .【解析】(1)1071073a a aa −÷==; (2)10210210210201x x x x −−÷=−=−=−;(3)()()()()757522a a a a a −−÷−=−=−=.【总结】本题考查了同底数幂的除法,同底数幂相除,底数不变,指数相减. 【变式5】计算:(1)()()105x y x y +÷+;(2)()()97a b b a −÷−.【答案】(1)()5x y +;(2)222a ab b −+−.【解析】(1)()()()()1051055x y x y x y x y −+÷+=+=+;(2)()()()()()()9797972222a b b a b a b a b a b a a ab b −−÷−=−−÷−=−−=−−−+−.【总结】本题主要考查了同底数幂的除法. 题型二、科学记数法有关的同底数幂的除法例2.下雨时,常常是“先见闪电、后闻雷鸣”,这是因为光速比声速快的缘故.已知光在空气中的传播速度为8310⨯米每秒,而声音在空气中的传播速度约为300米每秒,你知道光速是声速的多少倍吗? 【答案】610.【解析】8631030010⨯÷=.【总结】本题考查了整式的除法,解题的关键是根据题意列出代数式,再根据除法运算法则求出答案. 【变式】月球距离地球大约53.8410⨯千米,一架飞机的速度约为2810⨯千米/时.如果乘坐此飞机飞行这么远的距离,大约需要多少时间? 【答案】480小时.【解析】()()()()52523.8410810 3.8481010480⨯÷⨯=÷⨯÷=(小时)【总结】本题考查了单项式除以单项式,用整式乘除法解决实际问题时要注意分清量与量之间存在的数量关系.题型三、同底数幂的除法的逆用例3、已知32m =,34n=,求129m n +−的值.【答案与解析】解:121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++−======.当32m =,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 【变式1】(2020秋•宝山区期末)如果2021a =7,2021b =2.那么20212a﹣3b= .【分析】根据幂的乘方以及同底数幂的除法法则计算即可,幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减. 【解答】解:∵2021a =7,2021b =2.∴20212a ﹣3b =20212a ÷20213b =(2021a )2÷(2021b )3=72÷23=.故答案为:.【点评】本题主要考查了同底数幂的除法以及幂的乘方,熟记相关运算法则是解答本题的关键.【变式2】已知2552m m⨯=⨯,求m 的值.【答案】解:由2552m m ⨯=⨯得1152m m −−=,即11521m m −−÷=,1512m −⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1,∴ 15522m −⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,即10m −=,1m =.题型四、同底数幂的除法有关的混合运算例4.(2020秋•浦东新区期末)计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.【分析】分别根据同底数幂的乘除法法则以及积的乘方运算法则化简后,再合并同类项即可. 【解答】解:a •a7﹣(﹣3a4)2+a10÷a2=a8﹣9a8+a8=﹣7a8.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【变式1】(2022y 3•y 5÷(﹣y )4= . 【分析】利用同底数幂的乘除法运算法则进行计算. 【解答】解:原式=﹣y3•y5÷y4=﹣y3+5﹣4=﹣y4, 故答案为:﹣y4.【点评】本题考查同底数幂的乘除法,掌握同底数幂的乘法(底数不变,指数相加),同底数幂的除法(底数不变,指数相减)的运算法则是解题关键. 【变式2】计算: (1)()623x x x ÷⋅;(2)()1243x x x ⋅÷.【答案】(1)x ;(2)13x . 【解析】(1)()6236236565x x x x x x x x x+−÷⋅=÷=÷==;(2)()124312*********x x x x x x x x x −+⋅÷=⋅=⋅==.【总结】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠.【变式3】.计算: (1)()()4334a a −÷−;(2)()()22237a a a a ⋅÷⨯−.【答案】(1)1−;(2)5a .【解析】(1)()()()433412121a a a a −÷−=÷−=−;(2)()()()22223757210725a a a a a a a a a −+⋅÷⨯−=÷⋅==.【总结】本题考查了同底数幂的乘法与除法,m nm na a a +⋅=,()nm mna a =,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠,注意负数的奇次幂还是负数.【变式4】计算:(1)()3232942x x x x x ⋅−+÷;(2)54189t t t t ⋅−÷.【答案】(1)5628x x −;(2)0.【解析】(1)()3232942323945655628828x x x x x x x x x x x x x +⨯−⋅−+÷=−+=−+=−;(2)5418954189990t t t t t tt t +−⋅−÷=−=−=. 【总结】本题考查了同底数幂的乘法与除法以及幂的乘方,注意法则的准确运用.【过关检测】一、单选题1.(2022秋·上海·七年级专题练习)下列计算正确的是( )A .235a a ()=B .3232a b a b −−()= C .448a a a += D .532a a a ÷=【答案】D【分析】利用合并同类项的法则,同底数幂的除法的法则,幂的乘方的法则,单项式乘多项式的法则对各项进行运算即可.【详解】解:A 、623a a ()=,故A 不符合题意;B 、3(a ﹣2b )=3a ﹣6b ,故B 不符合题意;C 、4442a a a +=,故C 不符合题意;D 、532a a a ÷=,故D 符合题意;故选:D .【点睛】本题主要考查幂的乘方,同底数幂的除法,单项式乘多项式,合并同类项,解答的关键是对相应的运算法则的掌握.2.(2023·上海·七年级假期作业)在下列运算中,计算正确的是( ) A .3262()x y x y −= B .339x x x ⋅= C .224x x x += D .62322x x x ÷=【答案】A【分析】按照幂的乘方、积的乘方、合并同类项、同底数幂相乘、同底数幂相除的运算法则.【详解】解:3262x y x y =(-),故A 正确,符合题意; 336x x x ⋅=,故B 错误,不符合题意; 2222x x x +=,故C 错误,不符合题意; 62422x x x ÷=,故D 错误,不符合题意;故选:A .【点睛】本题考查了幂的乘方、积的乘方、合并同类项、同底数幂相乘、同底数幂相除等运算,熟练掌握相关运算法则是解题关键.【答案】B【分析】根据幂的公式逆运算即可求解.【详解】∵3,2m nx x ==,∴23m nx−=(mx )2÷(nx )3=32÷23=98故选B【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.4.(2021秋·上海浦东新·七年级期末)下列运算中,正确的是( ) A .(﹣m )6÷(﹣m )3=﹣m 3 B .(﹣a 3)2=﹣a 6 C .(xy 2)2=xy 4 D .a 2•a 3=a 6【答案】A【分析】根据同底数幂的除法,幂的乘方,积的乘方,同底数幂的乘法逐项分析判断即可. 【详解】解:A 、(﹣m )6÷(﹣m )3=﹣m3,故本选项符合题意; B 、(﹣a3)2=a6,故本选项不符合题意; C 、(xy2)2=x2y4,故本选项不符合题意; D 、a2•a3=a5,故本选项不符合题意; 故选:A .【点睛】本题考查了幂的运算,掌握幂的运算是解题的关键. 5.(2023·上海·七年级假期作业)下列计算结果中,正确的是( ) A .a 3+a 3=a 6 B .(2a )3=6a 3 C .(a ﹣7)2=a 2﹣49 D .a 7÷a 6=a .【答案】D【分析】根据合并同类项法则、积的乘方的运算法则、完全平方公式、同底数幂的除法的运算法则逐项计算得出结果即可得出答案.【详解】解:A 、3332a a a +=,原计算错误,故此选项不符合题意;B 、33(2)8a a =,原计算错误,故此选项不符合题意;C 、22(7)1449a a a =−−+,原计算错误,故此选项不符合题意;D 、76a a a ÷=,原计算正确,故此选项符合题意.故选:D .【点睛】本题考查合并同类项、积的乘方、完全平方公式和同底数幂的除法.掌握各运算法则是解题关键. 6.(2023·上海·七年级假期作业)下列运算正确的是( ) A .()323a a = B .623a a a ÷= C .235a a a += D .235a a a ⋅=【答案】D【分析】根据幂的乘方,同底数幂的乘法和除法,以及合并同类项法则,逐一进行计算即可.【详解】解:A 、()326a a =,选项错误,不符合题意;B 、624a a a ÷=,选项错误,不符合题意;C 、235a a a +≠,选项错误,不符合题意;D 、235a a a ⋅=,选项正确,符合题意;故选D .【点睛】本题考查幂的乘方,同底数幂的乘法和除法,以及合并同类项法.熟练掌握相关法则,是解题的关键.二、填空题7.(2023·上海·七年级假期作业)42()()n n y y −÷−=________;4232()()()a b a b a b ⎡⎤⎡⎤−⨯−÷−=⎣⎦⎣⎦___________.【答案】 2n y 9()a b −【分析】利用同底数幂的乘法、除法、幂的乘方化简,先算乘方,再算乘除.【详解】解:42()()n n y y −÷−=42()n n y −−=2()ny −=2n y ,4232()()()a b a b a b ⎡⎤⎡⎤−⨯−÷−⎣⎦⎣⎦=124()()()a a b a b −⨯−÷−=124()()()a b a b a b −⨯−÷−=1214()a b +−−=9()a b −.故答案为:2n y ,9()a b −.【点睛】此题考查了同底数幂的乘法、除法、幂的乘方运算,解题的关键是掌握同底数幂的乘法、除法、幂的乘方的运算法则.8.(2023·上海·七年级假期作业)计算:结果用幂的形式表示94()()a b b a −÷−=_____. 【答案】5()a b −【分析】利用同底数幂的除法的法则进行运算即可.【详解】解:94()()a b b a −÷−94()()a b a b =−÷−5()a b =−.故答案为:5()a b −.【点睛】本题主要考查同底数幂的除法,解答的关键是对同底数幂除法法则的掌握.9.(2023秋·上海青浦·七年级校考期末)计算:()()2333142a b a b b −−−⋅÷=____________.(结果只含有正整数指数幂) 【答案】934b a【分析】根据幂的运算法则和整式的混合运算法则计算可得.【详解】解:()()2333142a b a b b −−−⋅÷293464a b a b b −−=⋅÷()492634a b +−−−=934a b −=394b a =.【点睛】本题主要考查整式的混合运算,解题的关键是熟练掌握幂的运算法则和整式的混合运算法则.10.(2022秋·上海·七年级专题练习)计算:62a a ÷(-)(-)=______. 【答案】4a −【分析】先依据公式得出正确的符号,再利用幂的除法公式计算.【详解】62624a a a a a −÷−−÷−()()=()=.故答案为:4a −.【点睛】本题考查幂的运算,正确运用公式是解题的关键.11.(2019秋·上海·七年级上海市张江集团中学校考期中)已知3m a =,5n a =,则32m n a +=_______________ 【答案】675【分析】根据幂的乘方以及同底数幂的乘法法则解答即可. 【详解】∵am=3,an=5,∴a3m+2n=(am)3•(an)2=33×52=27×25=675. 故答案为:675.【点睛】本题考查了幂的乘方与积的乘方以及同底数幂的乘法,熟记幂的运算法则是解答本题的关键.【答案】9【分析】根据同底数幂除法的逆用、幂的乘方的逆用进行计算即可得.【详解】解:因为102a =,109b=,所以112210100100b aa b −=÷1222(10)(10)b a=÷1222(10)10b a ⨯=÷2210b=÷49=÷49=,故答案为:49.【点睛】本题考查了同底数幂除法的逆用、幂的乘方的逆用,熟练掌握各运算法则是解题关键.13.(2023秋·上海静安·七年级新中初级中学校考期末)若15m x =,5n x =,则m n x −等于_____. 【答案】3【分析】逆向运算同底数幂的除法法则计算即可.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.【详解】解:∵xm=15,xn=5, ∴xm-n=xm÷xn=15÷5=3. 故答案为:3.【点睛】本题考查了同底数幂的除法,掌握幂的运算法则是解答本题的关键.14.(2023·上海·七年级假期作业)已知5m a =,5n b =,则25m n +=______,235m n −=______.(请用含有a ,b 的代数式表示)【答案】 2a b /2ba 23a b【分析】逆用同底数幂的乘法,幂的乘方,同底数幂的除法运算法则,进行计算即可.【详解】解:∵5m a =,5nb =,∴()222255555m n m n m n a b+=⋅=⋅=;()()223232323355555m nmnm n a a b b −=÷=÷=÷=.故答案为:2a b ;23a b .【点睛】本题主要考查了同底数幂的乘法,同底数幂的除法,幂的乘方,解题的关键是熟练掌握同底数幂的乘法,幂的乘方,同底数幂的除法运算法则.15.(2023·上海·七年级假期作业)已知2m a =,3n a =,那么3m n a −=___________. 【答案】83【分析】根据同底数幂的除法底数不变指数相减,可得答案. 【详解】解:2m a =,3n a =,∴3m na−3mnaa =÷3()m na a =÷323=÷83=.故答案为:83.【点睛】本题考查了同底数幂的除法,逆用同底数幂除法的计算法则是解题关键.16.(2022秋·上海·七年级阶段练习)﹣y 3•y 5÷(﹣y )4=_____.【答案】﹣y4【分析】先计算幂的乘方,再计算同底数幂的乘、除法,注意负号的作用.【详解】解:﹣y3•y5÷(﹣y )4=﹣y8÷y4=﹣y4故答案为:﹣y4【点睛】本题考查幂的乘方、同底数幂的乘除法等知识,是基础考点,掌握相关知识是解题关键.17.(2022秋·七年级单元测试)已知5230x y −−=,则324x y ÷=________.【答案】8【分析】先求出523x y −=,然后逆用幂的乘方法则对所求式子变形,再根据同底数幂的除法法则计算.【详解】解:∵5230x y −−=,∴523x y −=,∴5253228324222x y x y x y −===÷=÷, 故答案为:8.【点睛】本题考查了代数式求值,涉及幂的乘方的逆用,同底数幂的除法,有理数的乘方运算,熟练掌握运算法则是解题的关键.18.(2023·上海·七年级假期作业)已知2320x y −−=,则927x y ÷的值为________.【答案】9【分析】先变形,再根据同底数幂的除法进行计算,最后整体代入求出即可.【详解】解:∵2320x y −−=,∴232x y −=,∴927x y ÷2333x y =÷233x y −=23=9= 故答案为9.【点睛】本题考查了同底数幂的除法、幂的乘方等知识点,能正确根据法则进行变形是解此题的关键.三、解答题19.(2023·上海·七年级假期作业)计算:(1)()()105x y x y +÷+;(2)()()97a b b a −÷−. 【答案】(1)()5x y +(2)222a ab b −+− 【分析】(1)利用同底数幂的除法进行运算;(2)先将底数均化为a b −,再利用同底数幂的除法运算.【详解】(1)解:1055()()()x y x y x y +÷+=+;(2)解:97()()a b b a −÷−97()()a b a b ⎡⎤=−÷−−⎣⎦2()a b =−−222a ab b =−+−. 【点睛】本题考查了同底数幂的除法,熟练掌握相关运算规则是解题的关键.20.(2022秋·上海·七年级校考期中)计算:()()222334222a a a a a a +−−÷ 【答案】6a【分析】根据同底数幂乘法的法则,积的乘方的运算法则,同底数幂除法的运算法则先化简计算,然后合并同类项即可.【详解】解:()()222334222a a a a a a +−−÷668244a a a a =+−÷66644a a a =+−6a = 【点睛】本题考查了整式的混合运算,解题的关键是掌握相关公式并灵活运用.幂的乘方法则:底数不变,指数相乘.积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘. 21.(2023·上海·七年级假期作业)计算:(1)()()4334a a −÷−; (2)()()22237a a a a ⋅÷⨯−. 【答案】(1)1−(2)5a【分析】(1)先计算幂的乘方,再计算同底数幂的除法;(2)先计算同底数幂的乘法、乘方,再计算同底数幂的乘法与除法.【详解】(1)解:()()()433412121a a a a −÷−=÷−=−;(2)解:()()()22223757210725a a a a a a a a a −+⋅÷⨯−=÷⋅==.【点睛】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,()n m mn a a =,m n m n a a a −÷=(0a ≠,m ,n 都是正整数),注意负数的奇次幂还是负数.22.(2022秋·上海·七年级专题练习)已知3m =4,3n =5,分别求3m +n 与32m ﹣n 的值.【答案】20,165【分析】利用同底数幂的乘法的逆用法则,同底数幂的除法的逆用法则,幂的乘方的逆用法则对所求的式子进行整理,再代入运算即可.【详解】解:3334520m m n n +=⋅=⨯=;222233316(53)534m n m n m n −=÷=÷=÷=.【点睛】本题考查同底数幂的乘法的逆用,同底数幂的除法的逆用,幂的乘方的逆用.掌握各运算法则是解题关键.23.(2022秋·上海·七年级专题练习)已知34m =,35n =,分别求3m n +与23m n −的值.【答案】20,165【分析】同底数幂的除法的逆用法则,幂的乘方的逆用法则对所求的式子进行整理,再代入运算即可.【详解】解:3m n +33m n =⋅45=⨯20=;23m n −233m n =÷()233m n =÷245=÷165=.【点睛】本题考查同底数幂的乘法的逆用,同底数幂的除法的逆用,幂的乘方的逆用.掌握各运算法则是解题关键.24.(2022秋·上海·七年级校考期中)已知96,32b a ==,求323a b −的值. 【答案】43【分析】先根据幂的乘方求出3336,38b a ==,再逆用同底数幂的除法计算即可. 【详解】∵96,32b a ==, ∴233396,328b b a ====,∴3243863a b −=÷=.【点睛】本题考查了幂的乘方,同底数幂的除法,熟练掌握运算法则是解题的关键.25.(2021秋·上海浦东新·七年级期末)计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.【答案】﹣7a8【分析】根据同底数幂的乘除法,积的乘方运算法则,幂的乘方运算,最后合并同类项即可【详解】解:a•a7﹣(﹣3a4)2+a10÷a2=a8﹣9a8+a8=﹣7a8.【点睛】本题考查了同底数幂的乘除法,积的乘方运算法则,幂的乘方运算,掌握幂的运算是解题的关键.26.(2023·上海·七年级假期作业)若32x =,35y =,求23x y −的值. 【答案】45【分析】逆用幂的乘方,除法法则计算即可.【详解】()22233333x y x y x y −=÷=÷,把32x =,35y =代入得()224333455x y x y −=÷=÷=.【点睛】本题考查了同底数幂的乘方与除法,熟练掌握运算法则是解题的关键.。

《同底数幂的除法》教案

《同底数幂的除法》教案

《同底数幂的除法》教案第一章:同底数幂的除法概念引入教学目标:1. 让学生理解同底数幂的除法概念。

2. 让学生掌握同底数幂的除法法则。

教学内容:1. 引入同底数幂的除法概念。

2. 讲解同底数幂的除法法则。

教学步骤:1. 通过具体例子引入同底数幂的除法概念,例如:\( 3^4 ÷3^2 = ? \)。

2. 引导学生观察例子,发现同底数幂的除法法则:\( a^m ÷a^n = a^{m-n} \)。

3. 让学生通过小组讨论,总结同底数幂的除法法则。

教学评价:1. 检查学生对同底数幂的除法概念的理解。

2. 检查学生对同底数幂的除法法则的掌握。

第二章:同底数幂的除法运算教学目标:1. 让学生掌握同底数幂的除法运算。

2. 让学生能够正确进行同底数幂的除法运算。

教学内容:1. 讲解同底数幂的除法运算规则。

2. 进行同底数幂的除法运算练习。

教学步骤:1. 讲解同底数幂的除法运算规则,例如:\( a^m ÷a^n = a^{m-n} \)。

2. 让学生进行同底数幂的除法运算练习,提供一些具体的例子,例如:\( 2^3 ÷2^2 = ? \),\( 5^4 ÷5^2 = ? \)。

3. 引导学生总结同底数幂的除法运算规则,并能够正确进行运算。

教学评价:1. 检查学生对同底数幂的除法运算规则的掌握。

2. 检查学生能够正确进行同底数幂的除法运算。

第三章:同底数幂的除法应用教学目标:1. 让学生能够将同底数幂的除法应用到实际问题中。

2. 让学生能够解决实际问题,提高解决问题的能力。

教学内容:1. 讲解同底数幂的除法在实际问题中的应用。

2. 进行同底数幂的除法应用练习。

教学步骤:1. 通过具体例子讲解同底数幂的除法在实际问题中的应用,例如:计算化学反应中物质的浓度。

2. 让学生进行同底数幂的除法应用练习,提供一些实际问题,例如:计算光强的减弱程度,计算放射性物质的衰变等。

七年级数学下册《同底数幂的除法》教学反思

七年级数学下册《同底数幂的除法》教学反思

七年级数学下册《同底数幂的除法》教学反思七年级数学下册《同底数幂的除法》教学反思七年级数学下册《同底数幂的除法》教学反思今天上了一节同底数幂的除法,主要内容是根据除法是乘法的逆运算,从计算具体的同底数的幂的除法,到计算底数具有一般性的字母,逐步归纳出同底数幂除法的法则,并运用法则熟练、准确地进行计算。

本节课是在学习了同乘方、积的乘方的基础上进行的,它们构成一个有机整体,为后续的整式除法的学习打下基础,并且同底数幂的除法在今后的物理、化学、生物学课中常得以应用。

本节课的学习对于学生来说,无论在知识上,还是类比学习能力和抽象思维能力的培养上,都起着不容忽视的作用。

在学了同底数幂的乘法的基础上,我在上同底数幂的除法时,首先复习了整式乘法的几个运算法则,使学生能顺利迁移到同底数幂的除法,再让通过学案中的引入题目,让学生用8分钟时间自学同底数幂的除法,然后思考后分组讨论同底数幂的除法怎么计算?为什么要这样计算,你是怎么想的?最后通过老师的引导和点拨,让学生归纳从三个方面的思考。

一是根据乘法的逆运算得出,如a2m+2=a2m a2, a2m-2=a2m a2。

二是根据除法的意义,a6 a3 = a a a a a a/a a a约分之后就是a3,三是根据指数降一级运算,可以推出除法运算中指数降一级运算指数相减。

经过这样的探究总结后我马上给学生完成课堂练习,通过检查,这次连基础较差的学生都能又快又好的完成了课堂练习。

接着,在学生还情绪高昂的情况下,要求学生在规定的时间内完成我指定的部分练习,进行比赛。

大部分的学生都能又快又好的完成了。

反思本节课的教学,使我进一步明确了数学学习不能单纯依赖模仿与记忆,应该从学生的生活经验和已有知识的背景出发,提供给学生充分进行数学活动和探索的机会,使他们在自主探索的过程中真正理解和掌握数学知识。

这节课我让学生用了类比迁移的方法来学习新课,这样既复习了旧知,又能完成新知的学习,并且能把有关联的知识紧密联系起来,让学生既掌握学习的方法、数学的类比思想,又能掌握了新知,且学生的学习效果很好,我觉得这是一节较成功的课。

《同底数幂的除法》数学教案

《同底数幂的除法》数学教案

《同底数幂的除法》数学教案
一、教学目标:
1. 理解并掌握同底数幂的除法法则。

2. 能够运用同底数幂的除法法则解决实际问题。

3. 培养学生的逻辑思维能力和计算能力。

二、教学重点与难点:
1. 重点:理解和掌握同底数幂的除法法则。

2. 难点:运用同底数幂的除法法则解决实际问题。

三、教学过程:
(一)导入新课
通过回顾旧知识,引入新课题。

例如,复习幂的概念和性质,引导学生思考“如果两个幂的底数相同,指数不同,那么这两个幂之间有什么关系呢?”
(二)新课讲解
1. 引导学生观察、分析、归纳,得出同底数幂的除法法则:a^m / a^n =
a^(m-n) (a≠0,m,n都是正整数,m>n)。

2. 解释法则的意义,并举例说明。

(三)课堂练习
设计一些基础题和提高题,让学生独立完成,然后集体讨论答案,教师进行点评。

(四)拓展应用
设计一些实际问题,让学生运用所学的知识去解决,以培养他们的实际应用能力。

(五)小结与作业
总结本节课的主要内容,布置适当的课后作业。

四、教学策略:
1. 创设情境,激发学生的学习兴趣。

2. 注重学生的主体地位,引导他们自主学习和探究。

3. 运用多媒体教学手段,增强教学效果。

七年级下册数学同底数幂的除法

七年级下册数学同底数幂的除法

七年级下册数学同底数幂的除法全文共四篇示例,供读者参考第一篇示例:同底数幂的除法是数学中一个基础而重要的概念,也是七年级下册数学课程中的一个重点内容。

同底数幂的除法需要我们掌握一定的方法和技巧,才能正确地解答问题。

在本文中,我们将通过详细的解析和例题,帮助同学们更好地理解和掌握同底数幂的除法。

我们来看一下什么是同底数幂。

同底数幂是指底数相同,指数不同的幂。

2的3次方和2的4次方就是同底数幂。

同底数幂的除法就是计算两个同底数幂之间的商。

在进行同底数幂的除法时,我们需要注意以下几点:1. 若两个同底数幂相除,底数相同,则指数相减,即a的m次方除以a的n次方等于a的(m-n)次方。

2的5次方除以2的3次方等于2的(5-3)次方,即2的2次方。

2. 如果被除数的指数小于除数的指数,那么商的指数为负数。

3的2次方除以3的4次方等于3的(2-4)次方,即3的-2次方,这时需要将结果化简为倒数形式,即1/3的2次方。

3. 如果两个同底数幂的底数不相同,那么它们无法进行除法运算。

在这种情况下,我们需要先将它们化为同底数幂,再进行运算。

下面我们通过几个例题来演示同底数幂的除法:例题1:计算2的6次方除以2的3次方。

通过以上例题的演示,相信同学们已经初步掌握了同底数幂的除法的方法和技巧。

在实际的解题过程中,同学们可以根据题目的要求,灵活运用同底数幂的除法规则,正确地解答问题。

同底数幂的除法在数学运算中有着广泛的应用,特别是在代数方程组的求解、求幂函数的导数等问题中经常会涉及到。

掌握同底数幂的除法不仅有助于同学们在数学课堂上取得优异的成绩,更能提高他们的数学思维能力和解决问题的能力。

希望通过本文的讲解,同学们能够更好地理解和掌握同底数幂的除法,为今后的学习打下坚实的基础。

也希望同学们在学习数学的过程中能够保持耐心和勤奋,不断提升自己的数学水平,取得更好的成绩。

祝愿同学们在学习数学的道路上越走越顺利,越来越优秀!共同进步,共同努力!第二篇示例:七年级下册数学同底数幂的除法在七年级数学课程中,我们学习了关于指数的知识,其中包括同底数幂的加法、减法、乘法等运算。

七年级数学下册《同底数幂的除法》教案、教学设计

七年级数学下册《同底数幂的除法》教案、教学设计
2.学生在运算过程中可能出现的错误,如符号错误、计算顺序错误等,教师需关注并及时纠正。
3.学生的学习兴趣和积极性,对于数学基础薄弱的学生,教师应关注其心理需求,激发学习兴趣,提高学习积极性。
4.学生的合作交流能力,在教学过程中,教师应鼓励学生积极参与讨论,培养学生的团队协作能力。
三、教学重难点和教学设想
2.通过实际例题和练习,培养学生运用同底数幂的除法解决实际问题的能力。
3.引导学生运用逆向思维,将同底数幂的除法与乘法进行对比,提高学生的思灵活性。
4.利用数形结合的方法,帮助学生直观地理解同底数幂的除法法则。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发学生的学习积极性。
2.培养学生勇于探索、善于合作的精神,增强学生的团队意识。
4.注重分层教学,针对不同学生的学习需要,提供个性化的指导和支持。
-设想实施:对基础薄弱的学生提供额外的辅导,对学有余力的学生提供拓展练习,以满足不同学生的学习需求。
5.强化课堂小结和课后反思,帮助学生巩固知识,形成知识网络。
-设想实施:每节课结束时,引导学生进行自我小结,回顾学习内容和收获,教师及时给予评价和鼓励。
3.培养学生严谨、认真的学习态度,养成独立思考和解决问题的习惯。
4.通过数学知识的学习,使学生认识到数学在现实生活中的应用价值,增强学生的学以致用意识。
教学设计:
1.导入:通过复习同底数幂的乘法,引导学生发现同底数幂的除法规律。
2.新课:讲解同底数幂的除法法则,通过例题和练习,让学生掌握该法则。
3.课堂练习:设计不同难度的练习题,让学生独立完成,巩固所学知识。
2.利用信息技术辅助教学,如多媒体演示、网络资源等,增强学生对知识点的直观感受。

浙教版数学七年级下册3.6《同底数幂的除法》教学设计

浙教版数学七年级下册3.6《同底数幂的除法》教学设计

浙教版数学七年级下册3.6《同底数幂的除法》教学设计一. 教材分析同底数幂的除法是初中数学中的一个重要概念,也是幂的运算法则之一。

浙教版数学七年级下册3.6节主要介绍同底数幂的除法法则,内容包括同底数幂的除法运算、指数的变化规律以及应用。

通过本节课的学习,学生能够掌握同底数幂的除法运算规则,并能够运用这些规则解决实际问题。

二. 学情分析学生在学习同底数幂的除法之前,已经学习了同底数幂的乘法、幂的乘方等知识。

因此,学生对于幂的概念和幂的运算规则已经有一定的了解。

但学生在运用同底数幂的除法规则解决实际问题时,可能会遇到一些困难。

因此,在教学过程中,教师需要引导学生通过实际例子来理解同底数幂的除法规则,并能够灵活运用。

三. 教学目标1.理解同底数幂的除法规则,掌握同底数幂的除法运算方法。

2.能够运用同底数幂的除法规则解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.同底数幂的除法规则的理解和运用。

2.指数变化规律的把握。

五. 教学方法1.情境教学法:通过实际例子引导学生理解同底数幂的除法规则。

2.归纳教学法:引导学生通过实际例子总结同底数幂的除法规则。

3.练习法:通过大量的练习题,让学生巩固同底数幂的除法运算。

六. 教学准备1.教学PPT:制作同底数幂的除法相关内容的PPT。

2.练习题:准备一些同底数幂的除法运算题目,用于课堂练习和课后作业。

七. 教学过程1.导入(5分钟)教师通过一个实际例子,如“计算34÷32”,引导学生思考同底数幂的除法规则。

让学生回顾已学的同底数幂的乘法规则,激发学生的学习兴趣。

2.呈现(15分钟)教师通过PPT展示同底数幂的除法规则,并用简洁的语言进行解释。

同时,教师可以通过一些具体的例子来说明同底数幂的除法规则,让学生更好地理解。

3.操练(15分钟)教师让学生进行同底数幂的除法运算练习。

教师可以设置一些不同难度的题目,让学生逐步掌握同底数幂的除法规则。

同底数幂的除法法则及公式

同底数幂的除法法则及公式

同底数幂的除法法则及公式在我们的数学世界里,同底数幂的除法可是一个相当重要的角色呢!就像我们生活中的小帮手,总是能在关键时刻发挥大作用。

先来说说同底数幂的除法法则吧。

简单来讲,就是当两个幂底数相同的时候,除法运算就可以把指数相减。

比如说,a 的 m 次方除以 a的 n 次方,结果就是 a 的(m - n)次方(其中 a 不等于 0,m、n 为正整数,且 m > n)。

这就好比你有一堆苹果,先分成了 m 份,然后又把每份再平均分成 n 小份,那最后得到的就是原来的(m - n)分之一啦。

咱们来举个例子感受感受。

比如说 2 的 5 次方除以 2 的 3 次方,按照法则,底数 2 不变,指数相减,5 - 3 = 2,所以结果就是 2 的 2 次方,也就是 4。

是不是还挺简单的?再深入一点,同底数幂的除法公式还能延伸到一些特殊情况。

当 m = n 时,那结果就是 1,因为相同的数相除当然是 1 啦。

就像你有 5 个苹果,平均分成 5 份,每份当然是 1 个啦。

还记得我上初中的时候,有一次数学考试,就有一道关于同底数幂除法的题目。

我当时没仔细看清楚底数和指数,一通乱算,结果可想而知,丢了不少分。

从那以后,我每次遇到这种题目都会特别小心,先把底数和指数看清楚,再按照法则一步一步来。

这也让我明白了,做数学题可不能马虎,一个小细节没注意到,就可能全盘皆输。

在实际应用中,同底数幂的除法法则和公式也特别有用。

比如说在科学计算里,计算一些微小的数据变化;在工程问题中,计算材料的消耗比例等等。

所以啊,同学们可别小看这同底数幂的除法,虽然它看起来只是一个小小的知识点,但却是我们数学大厦中不可或缺的一块基石。

只要我们认真掌握,多加练习,就能在数学的海洋里畅游无阻啦!希望大家都能把同底数幂的除法法则和公式牢记于心,让它成为我们解决数学问题的得力武器!。

七年级下 同底数幂的除法

七年级下 同底数幂的除法

第四讲 同底数幂的除法一、同底数幂的除法【例1】计算:(1)3223()()()x x x -÷-⋅-; (2)04231112()()()222-----÷-⋅-; (3)30112( 3.14)1()2π--+--÷-.【变式】计算:(1)248242()()a b a b -÷-; (2)112()n n n x x x +-⋅÷; (3)301112( 3.14)|12|()22π--+---⨯-;(4)212(3)[27(3)]()n n n +-⨯⨯-为正整数.【例2】若36,35,m n ==求323;3;m n m n --n m -9的值.【变式】已知235,310m n ==,求(1)9m n -; (2)29m n -的值.【例3】若5122841=÷⋅-m m m ,求m 的值.【变式】已知8,64,n mn a a ==m 求的值.二、“a 0=1(a ≠0)”的应用【例4】1、当1210=⎪⎭⎫ ⎝⎛-a 时,a 的取值范围是_________________. 2、计算()03-π的结果是( ) A .0 B .1 C .3-π D .π-33、若152=+x ,则x =_______.【变式】1、若()02005π-=x ,则x =________.2、已知()11--+x y x 无意义,则x =______,y =_________.【例5】已知2(1)1x x +-=,求x 的值.【变式】解关于x 的方程:||1(1)1x x --=.三、同底数幂除法之提高篇【例6】已知51102010==b a ,,求b a 33÷的值.【变式】已知8143434==-n m m ,,求n 2005的值.【例7】设3m +n 能被10整除,试证明3m +4+n 也能被10整除.【变式】证明:111111+112112十113113能被10整除.【课后练习】1、 (1)若1232x =,则____x =;(2)若34()29x =,则____x =;(3)若0.0000003310x =⨯,则____x =;(4)若()02(2)3x y --+-有意义,则x 、y 的范围是________; (5)若()()()32222,x x=÷---则x =________.2、化简:4322(222)n n n ++-⨯)(. 3、已知3336m n ==,,求323;m n -m n -3的值.4、已知11020,105,a b -==求293a b ÷的值.5、已知细菌繁殖时,一个细菌分裂成两个,一个细菌在分裂n 次后,数量变为2n .有一种分裂速度很快的细菌,它每12分钟就分裂一次.如果现在盘子里有1000个这样的细菌,那么60分钟后,盘子里有多少个这样的细菌?再经过多长时间,盘子里的细菌数达到12.8万个?6、计算:22210231(2)(3.14)322π---⎛⎫⎛⎫⎛⎫÷--÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.7、若2320x y -+=,求2322x y ÷的值.。

同底数幂的运算法则

同底数幂的运算法则

同底数幂的运算法则同底数幂的运算法则是指在进行指数运算时,当底数相同时,可以通过一定的规则来简化运算,从而得到最终结果。

这些规则包括乘法法则、除法法则和幂的乘方法则。

在本文中,我们将详细介绍这些运算法则,并通过示例来加深理解。

一、乘法法则。

当底数相同时,指数相加。

例如,对于同底数幂的乘法法则,我们可以用以下公式来表示: a^m a^n = a^(m+n)。

其中,a为底数,m和n为指数。

这个公式的意思是,当底数相同时,指数相加。

例如,2^3 2^4 = 2^(3+4) = 2^7 = 128。

这个例子说明了乘法法则的应用。

二、除法法则。

当底数相同时,指数相减。

同样地,对于同底数幂的除法法则,我们可以用以下公式来表示:a^m / a^n = a^(m-n)。

这个公式的意思是,当底数相同时,指数相减。

例如,5^6 / 5^3 = 5^(6-3) = 5^3 = 125。

这个例子也说明了除法法则的应用。

三、幂的乘方法则。

当进行幂的乘方运算时,底数不变,指数相乘。

对于同底数幂的幂的乘方法则,我们可以用以下公式来表示:(a^m)^n = a^(mn)。

这个公式的意思是,当进行幂的乘方运算时,底数不变,指数相乘。

例如,(3^2)^3 = 3^(23) = 3^6 = 729。

这个例子展示了幂的乘方法则的应用。

通过以上三个运算法则,我们可以简化同底数幂的运算,使得复杂的指数运算变得更加简单和直观。

这些法则在数学中有着广泛的应用,尤其在代数和数学分析中频繁出现。

除了简化运算外,同底数幂的运算法则还有着一些重要的性质和应用。

首先,这些法则可以帮助我们理解指数的运算规律,从而更好地掌握数学知识。

其次,这些法则也可以应用于解决实际问题,例如在物理学和工程学中,指数运算经常用于描述复杂的物理现象和工程问题。

总之,同底数幂的运算法则是数学中重要的内容之一,通过掌握这些法则,我们可以更好地理解和运用指数运算,从而提高数学能力和解决实际问题的能力。

初中数学_11.5同底数幂的除法教学设计学情分析教材分析课后反思

初中数学_11.5同底数幂的除法教学设计学情分析教材分析课后反思

新授课教学设计年级七学科数学关于学情的分析教学对象是七年级学生,在学习本章前,学生已经掌握了用字母表示数、列简单代数式,会把一些简单的实际问题中的数量关系用代数式表示出来,并会进行整式加减运算和乘法运算,对一次方程(组)有了全面系统地认识;积累了初步的理性思辨及推理论证经验,但思维水平仍以经验型为主,理论型思维尚处于萌芽阶段,因此,在推理论证方面须坚持遵循“特殊——一般——特殊”规律。

个别学生计算能力较差,符号感不强,以至于他们在运用性质计算的时候出现符号上的错误,因此,教学中尽量采用问题诱导和积极鼓励学生大胆尝试的方式帮助学生进一步提高幂的运算能力和符号感。

学生当堂学习效果测评结果及分析测评结果情况分析关于教材内容的分析本章内容《整式的乘除与因式分解》是基本而重要的代数初步知识,建立在已经学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。

这些知识是以后学习分式和根式运算、函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。

本节内容是青岛版七年级下册第11章《整式的乘除》第5节。

在此前,学生已经掌握了《同底数幂的乘法》、《幂的乘方与积的乘方》,这为进一步学习《同底数幂的除法》做了很好的铺垫。

《同底数幂的除法》是整式的乘法和幂的意义的综合应用,是整式的四大基本运算之一,这节课以培养学生学习能力为重要内容,对进一步培养学生的逻辑思维能力有着重要意义。

通过本课的学习,使学生在解决问题的过程中了解到数学的价值,发展“用数学”的信心,提高了学生的数学素养。

综上所述,本节课无论是知识的运用上,还是在对学生技能形成、思维训练、能力发展、应用意识培养上,都有着举足轻重的作用。

依据教材的地位及作用,根据《数学课程标准》要求,结合学生的认知特点、心理特征及本节课的知识特点,将学习目标定位为:知识与技能:同底数幂的除法的运算法则及其应用。

过程与方法:1、经历探索同底数幂的除法运算法则的过程,会进行同底数幂的除法运算;2、在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能力,提高学生观察、归纳、类比、概括等能力。

同底数幂的除法

同底数幂的除法
例子
$2^{4} \div 2^{2} = 2^{4 - 2} = 2^{2} = 4$。
02
运算性质
运算性质
公式
$a^m/a^n=a^(m-n)$
解释
同底数幂相除,指数相减,底数不变。
应用
在解决涉及同底数幂除法的问题时,可以直接使 用该公式进行计算。
运算性质的适用范围
01
该公式只适用于底数相同的幂相 除的情况。
$3^{-3} \div 2^{-2} = ?$
根据负整数指数幂的除法运 算法则,$3^{-3} \div 2^{2} = (3^{-1})^(-1) \div (2^{-1})^{-1} = \frac{1}{3} \div \frac{1}{4} = \frac{4}{3}$。
零指数幂的除法练习
零指数幂的除法
总结词
零指数幂的除法是特殊的幂运算,它表示为底数的0次方除以 底数的0次方。
详细描述
根据零指数幂的性质,任何非零数的0次幂都等于1,因此 $a^0 \div a^0 = 1$。无论底数是什么,只要底数不为0, 结果都为1。
实例
总结词
整数指数幂的除法可以表示为底数除以指数,然后将所得的幂相除。
公式
同底数幂的除法公式
$a^{m} \div a^{n} = a^{m - n}$ (其中 a 不为 0,m,n 均为正整数)。
解释
根据指数的性质,$a^{m}$ 表示 a 的 m 次方,同理,$a^{n}$ 表示 a 的 n 次方。当 m>n 时,$a^{m} \div a^{n}$ 就是 a 的 (m-n) 次方。因此,$a^{m} \div a^{n} = a^{m - n}$。
理解并掌握整数指数幂的除 法运算法则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学新课程标准教材
数学教案( 2019 — 2020学年度第二学期 )
学校:
年级:
任课教师:
数学教案 / 初中数学 / 七年级数学教案
编订:XX文讯教育机构
同底数幂的除法
教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中七年级数学科目, 学习后学生能得到全面的发展和提高。

本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。

教学建议
1.知识结构:
2.教材分析
(1)重点和难点
重点:准确、熟练地运用法则进行计算.性质是幂的运算性质之一,是整式除法的基础,一定要打好这个基础.
难点:根据乘、除互逆的运算关系得出法则.教科书中根据除法是乘法的逆运算,从计算和这两个具体的同底数的幂的除法,到计算底数具有一般性的,逐步归纳出同底数幂除法的一般性质.所以乘、除互逆的运算关系得出法则是本节的难点.
(2)教法建议:
1.教科书中根据除法是乘法的逆运算,从计算和这两个具体的同底数的幂的除法,到计算底数具有一般性的,逐步归纳出同底数幂除法的一般性质.教师讲课时要多举几个具体
的例子,让学生运算出结果,接着,让学生自己举几个例子,再计算出结果,最后,让学生自己归纳出同底数的幂的除法法则.
2.性质归纳出后,不要急于讲例题,要对法则做几点说明、强调,以引起学生的注意.(1)要强调底数是不等于零的,这是因为,若为零,则除数为零,除法就没有意义了.(2)本节不讲零指数与负指数的概念,所以性质中必须规定指数都是正整数,并且,要让学生运用时予以注意.
重点、难点分析
1.法则:同底数幂相除,底数不变,指数相减,即(,、都是正整数,且).
2.指数相等的同底数的幂相除,商等于1,即,其中 .
3.同底数幂相除,如果被除式的指数小于除式的指数,则出现负指数幂,规定
(其中,为正整数).
4.底数可表示非零数,或字母或单项式、多项式(均不能为零).
5.科学记数法:任何一个数(其中1 ,为整数).
(第一课时)
一、教学目标
1.掌握运算性质.
2.运用运算法则,熟练、准确地进行计算.
3.通过总结除法的运算法则,培养学生的抽象概括能力.
4.通过例题和习题,训练学生的综合解题能力和计算能力.
5.渗透数学公式的简洁美、和谐美.
二、重点难点
1.重点
准确、熟练地运用法则进行计算.
2.难点
根据乘、除互逆的运算关系得出法则.
三、教学过程
1.创设情境,复习导入
前面我们学习了同底数幂的乘法,请同学们回答如下问题,看哪位同学回答得快而且准确.
(1)叙述同底数幂的乘法性质.
(2)计算:①②③
学生活动:学生回答上述问题.
.(m,n都是正整数)
【教法说明】通过复习引起学生回忆,巩固同底数幂的乘法性质,同时为本节的学习打下基础.
2.提出问题,引出新知
思考问题:().(学生回答结果)
这个问题就是让我们去求一个式子,使它与相乘,积为,这个过程能列出一个算式吗?
由一个学生回答,教师板书.
这就是我们这节课要学习的运算.
3.导向深入,揭示规律
我们通过同底数幂相乘的运算法则可知,
那么,根据除法是乘法的逆运算可得
也就是
同样,

∴ .
那么,当m,n都是正整数时,如何计算呢?
(板书)
学生活动:同桌研究讨论,并试着推导得出结论.
师生共同总结:
教师把结论写在黑板上.
请同学们试着用文字概括这个性质:
【公式分析与说明】提出问题:在运算过程当中,除数能否为0?
学生回答:不能.(并说明理由)
由此得出:同底数幂相除,底数.教师指出在我们所学知识范围内,公式中的m、n为正整数,且m>n,最后综合得出:
一般地,
这就是说,同底数幂相除,底数不变,指数相减.
4.尝试反馈,理解新知
例1 计算:
(1)(2)
例2 计算:
(1)(2)
学生活动:学生在练习本上完成例l、例2,由2个学生板演完成之后,由学生判断板演是否正确.
教师活动:统计做题正确的人数,同时给予肯定或鼓励.
注意问题:例1(2)中底数为(-a),例2(l)中底数为(ab),计算过程中看做整体进行运算,最后进行结果化简.
5.反馈练习,巩固知识
练习一
(1)填空:
①②
③④
(2)计算:
①②
③④
学生活动:第(l)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.
练习二
下面的计算对不对?如果不对,应怎样改正?
(1)(2)
(3)(4)
学生活动:此练习以学生抢答方式完成,注意训练学生的表述能力,以提高兴趣.
四总结、扩展
我们共同总结这节课的学习内容.
学生活动:①同底数幂相除,底数____,指数____。

②由学生谈本书内容体会.
【教法说明】强调“不变”、“相减”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.
五、布置作业
P143 1.(l)(3)(5),2.(l)(3),3.(l)(3).
参考答案
略.
六、板书设计7.8
例1 解(l)(2)
∴例2 解(l)(2)


一般地
同底数幂相除底数不变、指数相减
运算形式运算方法
XX文讯教育机构
WenXun Educational Institution。

相关文档
最新文档