故障及诊断
计算机常见的故障分类和诊断的原则
![计算机常见的故障分类和诊断的原则](https://img.taocdn.com/s3/m/a451600a3868011ca300a6c30c2259010202f3c9.png)
计算机常见的故障分类和诊断的原则
计算机常见的故障分类包括硬件故障和软件故障。
1. 硬件故障:
- 电源问题:如电源故障或电源线接触不良。
- 内存问题:如内存损坏或插槽接触不良。
- 硬盘问题:如硬盘故障或接口问题。
- 显卡问题:如显卡故障或驱动问题。
- 主板问题:如主板故障或元件损坏。
- 外设问题:如打印机故障或鼠标键盘问题。
2. 软件故障:
- 操作系统问题:如系统死机或蓝屏。
- 病毒或恶意软件:如电脑感染病毒或恶意软件。
- 驱动程序问题:如驱动程序不兼容或过时。
- 应用程序问题:如应用程序崩溃或无响应。
诊断计算机故障的原则包括:
1. 备份重要数据:在进行故障诊断之前,首先要备份重要数据以免丢失。
2. 观察现象:仔细观察计算机出现的故障现象,包括具体的错误信息、崩溃时间点、频率等。
3. 排除问题范围:根据故障现象,确定是否是硬件故障还是软件故障,进一步确定是哪个硬件组件或软件程序引起的问题。
4. 测试排除法:对可能造成故障的硬件组件或软件程序进行测试排除,以逐步确定问题所在。
5. 使用诊断工具:利用专业的诊断工具对硬件或软件进行测试,以进一步确定故障原因。
6. 寻求专业帮助:如果无法解决故障,可以寻求专业的技术支持或咨询,以获得更准确的故障诊断和解决方案。
plc故障类型和诊断方法
![plc故障类型和诊断方法](https://img.taocdn.com/s3/m/56140f3826284b73f242336c1eb91a37f11132d3.png)
plc故障类型和诊断方法
PLC(可编程逻辑控制器)故障类型和诊断方法:
1. 电源故障:可能是电源线路故障、电源模块故障或电源供应不稳定。
诊断方法包括检查电源线路连接是否良好、使用电压表检测电源输出电压是否正常,以及检查电源模块是否损坏。
2. 输入/输出(I/O)故障:可能是输入/输出模块故障、输入/输出信号线路故障或传感器/执行器故障。
诊断方法包括检查输入/输出模块是否正确连接、使用示波器或多用途表检测信号线路是否正常,以及检查传感器/执行器是否损坏。
3. 程序错误:可能是程序逻辑错误、程序存储器故障或通信故障。
诊断方法包括检查程序逻辑是否正确、使用PLC 编程软件检查程序存储器是否正常,以及检查通信模块是否正常工作。
4. 通信故障:可能是通信模块故障、通信线路故障或网络故障。
诊断方法包括检查通信模块是否正确连接、使用示波器或多用途表检测通信线路是否正常,以及检查网络设置是否正确。
5. 输出执行故障:可能是输出模块故障、输出信号线路故障或执行器故障。
诊断方法包括检查输出模块是否正确连接、使用示波器或多用途表检测信号线路是否正常,以及检查执行器是否损坏。
6. 内部故障:可能是PLC主板故障、CPU故障或存储器故障。
诊断方法包括检查PLC主板是否有明显损坏迹象、使用示波器或多用途表检测CPU工作状态,以及使用PLC编程软件检查存储器是否正常。
以上仅是一些常见的PLC故障类型和诊断方法,具体的故障和诊断方法可能因PLC型号和配置而有所不同。
在进行PLC故障诊断时,建议参考PLC的用户手册和技术规格书,以获取更详细的故障排除指南。
电路板故障诊断与检修方法(电路板七大故障表现及诊断处理方法)
![电路板故障诊断与检修方法(电路板七大故障表现及诊断处理方法)](https://img.taocdn.com/s3/m/5817293291c69ec3d5bbfd0a79563c1ec5dad7b3.png)
电路板故障诊断与检修方法(电路板七大故障表现及诊断处理方法)一、电容故障电容损坏引发的故障在电子设备中是最高的,其中尤其以电解电容的损坏最为常见。
电容损坏表现为:容量变小、完全失去容量、漏电、短路。
电容在电路中所起的作用不同,引起的故障也各有特点:在工控电路板中,数字电路占绝大多数,电容多用做电源滤波,用做信号耦合和振荡电路的电容较少。
用在开关电源中的电解电容如果损坏,则开关电源可能不起振,没有电压输出;或者输出电压滤波不好,电路因电压不稳而发生逻辑混乱,表现为机器工作时好时坏或开不了机,如果电容并在数字电路的电源正负极之间,故障表现同上。
这在电脑主板上表现尤其明显,很多电脑用了几年就出现有时开不了机,有时又可以开机的现象,打开机箱,往往可以看见有电解电容鼓包的现象,如果将电容拆下来量一下容量,发现比实际值要低很多。
电容的寿命与环境温度直接有关,环境温度越高,电容寿命越短。
这个规律不但适用电解电容,也适用其它电容。
所以在寻找故障电容时应重点检查和热源靠得比较近的电容,如散热片旁及大功率元器件旁的电容,离其越近,损坏的可能性就越大。
所以在检修查找时应有所侧重。
有些电容漏电比较严重,用手指触摸时甚至会烫手,这种电容必须更换。
在检修时好时坏的故障时,排除了接触不良的可能性以外,一般大部分就是电容损坏引起的故障了。
所以在碰到此类故障时,可以将电容重点检查一下,换掉电容后往往令人惊喜。
二、电阻故障常看见许多初学者在检修电路时在电阻上折腾,又是拆又是焊的,其实修得多了,你只要了解了电阻的损坏特点,就不必大费周章。
电阻是电器设备中数量最多的元件,但不是损坏率最高的元件。
电阻损坏以开路最常见,阻值变大较少见,阻值变小十分少见。
常见的有碳膜电阻、金属膜电阻、线绕电阻和保险电阻几种。
前两种电阻应用最广,其损坏的特点:一是、低阻值(100。
以下)和高阻值(100k。
以上)的损坏率较高,中间阻值(如几百欧到几十千欧)的极少损坏;二是、低阻值电阻损坏时往往是烧焦发黑,很容易发现,而高阻值电阻损坏时很少有痕迹。
模拟电路常见故障的诊断及处理分析
![模拟电路常见故障的诊断及处理分析](https://img.taocdn.com/s3/m/770afc7e86c24028915f804d2b160b4e767f8182.png)
模拟电路常见故障的诊断及处理分析一、引言模拟电路是电子技术中的一个重要领域,其应用范围广泛,包括通信系统、传感器、放大器、滤波器等多种电子设备和系统。
在模拟电路中,由于电子元件的特性、外部环境因素以及制程工艺等多种因素的影响,常常会出现各种故障现象。
对模拟电路的常见故障进行准确的诊断和处理分析,是保障电子设备和系统正常运行的关键。
本文将针对模拟电路中常见的故障进行分析,并介绍其诊断和处理方法,以期帮助电子工程师和技术人员更好地解决实际应用中的故障问题。
二、常见故障及诊断方法1. 漏电流故障漏电流故障是模拟电路中常见的故障之一,其主要表现为电路中出现未预期的电流流动。
漏电流故障的诊断方法包括使用万用表或示波器对电路中的电流进行测量,通过测量结果判断漏电流的大小和方向,并进一步查找故障元件或连接部件。
处理方法:首先应检查电路中各个元件和连接部件的接触情况,确保连接紧固可靠;其次可以通过逐步断开电路中的元件或连接部件,逐一检查每个部件的工作状态,从而定位并解决漏电流故障。
2. 干扰故障干扰故障是指由于外部电磁场、电压突变或其他原因导致电路中的异常信号波形。
诊断方法主要是通过示波器对电路中的信号进行观测,分析波形变化情况,从而确定干扰源和干扰传播路径。
处理方法:可以通过在电路中增加滤波器、隔离器等器件,对外部干扰进行屏蔽和抑制;合理的布局和设计电路板也可以减少外部干扰对电路的影响。
3. 温度故障温度故障一般是由于电路元件在工作过程中产生过热现象而引起的。
诊断方法主要是通过红外热像仪等设备对电路元件进行实时监测,发现过热元件并及时采取措施进行降温。
处理方法:对于常见的过热元件,可以考虑适当增加散热器或风扇进行散热;也可以通过合理地设计电路布局和安装位置,减少元件间的热量传导。
4. 噪声故障噪声故障是指电路中出现不期望的高频干扰信号。
诊断方法主要是通过示波器或频谱分析仪对电路中的信号进行频谱分析,确定噪声信号的频率和幅度,并进一步查找噪声源和传播路径。
计算机硬件故障诊断和处理的常用方法
![计算机硬件故障诊断和处理的常用方法](https://img.taocdn.com/s3/m/cd8d3870effdc8d376eeaeaad1f34693daef10bc.png)
计算机硬件故障诊断和处理的常用方法
计算机硬件故障诊断和处理的常用方法包括以下几种:
1. 观察法:通过观察计算机的外观、部件和连接线,检查是否有明显的损坏或异常情况,例如烧焦、断裂、松动等。
2. 听诊法:通过听取计算机运行时的声音,判断是否有异常响动或杂音,例如风扇噪音、硬盘读写声音等。
3. 触摸法:通过触摸关键部件的表面,检查是否有过热、震动、松动等现象,例如CPU散热器、显卡芯片、硬盘等。
4. 替换法:通过替换可能存在故障的部件,判断是否存在硬件故障。
可以逐一替换可能的故障部件,直到找到问题所在。
5. 最小系统法:将计算机硬件配置最小化,只保留最基本的部件,例如CPU、主板、内存和电源,然后逐步添加其他部件,以确定是否存在硬件故障。
6. 诊断程序法:使用专业的硬件诊断软件,对计算机硬件进行全面检测,以确定是否存在故障。
7. 综合分析法:结合以上方法,综合考虑各种因素,包括硬件配置、使用环境、使用情况等,进行全面分析和判断,以确定是否存在硬件故障。
以上方法可以帮助您诊断和解决计算机硬件故障,但请注意,处理硬件故障需要一定的技术和经验,如果您不确定自己的能力,请寻求专业人士的帮助。
汽车故障诊断与排除
![汽车故障诊断与排除](https://img.taocdn.com/s3/m/cd9f076343323968011c92b9.png)
诊断与排除发动机怠速不稳的故障1.【故障现象】汽车启动之后在怠速情况下运转,发动机转速不稳,忽高忽低、发抖。
2.【故障原因】(1)节气门位置传感器怠速开关不闭合。
(2)怠速控制阀(ISC)故障。
(3)进气管路漏气。
(4)喷油器滴漏或堵塞。
(5)排气系统堵塞。
3.【故障诊断与排除】(1)怠速开关不闭合诊断方法:怠速时打开空调或打方向盘.发动机转速不升高,可证明是此故障。
故障排除:对节气门位置传感器进行调整、修复或更换。
(2)怠速控制阀(ISC)故障诊断方法:检查怠速控制阀的作动声音,若无作动声即怠速控制阀出现故障。
故障排除:清洗或业换怠速控制阀,并用专用解码器对怠速转速进行基本设定。
(3)进气管路漏气诊断方法:若听见进气管有泄漏声,则证明进气系统漏气。
故障排除:查找泄漏处,重新进行密封或更换相部件。
(4)喷油器滴漏或堵塞诊断方法:外接电源检查喷油器是否有喷油测量喷油器的喷油量,若喷油器无喷油或喷油量超出标准,喷油器即有故障。
故障排除:清洗喷油器,检查每个喷油器的喷油量并确认无堵塞、滴漏现象。
(5)排气系统堵塞诊断方法:加速时伴有发闷的现象,可确定为此故障。
故障排除:更换三元催化器。
诊断与排除发动机缺火的故障1.【故障现象】发动机怠速抖动、汽车行驶无力、油耗增加、尾气排放超标。
2.【故障原因】(1)发动机的缸压不足。
(2)燃油供给不足。
(3)点火火花弱。
3.【故障诊断与排除】(1)首先排除外部线路接触不良故障。
(2)检查点火系:检查电火花的强弱,将高压导线对缸体试火,良好的电火花呈蓝色、声音响、火花线粗。
若正常,进行下一步。
拆检火花塞,良好的火花塞电极间隙约1mm,电极绝缘群部颜色呈棕色。
若正常,进行下一步。
(3)检测燃油压力:正常的燃油压力怠速约0.25MPa,高速时0.30MPa,若正常,进行下一步。
(4)检测汽缸压缩压力:正常的压缩压力应不少于原标准的80%。
验证排除效果:修理后,起动发动机,怠速运转平稳,加速正常,说明故障排除。
故障诊断常用方法
![故障诊断常用方法](https://img.taocdn.com/s3/m/5906e7732a160b4e767f5acfa1c7aa00b52a9dc9.png)
故障诊断常用方法
故障诊断常用方法有以下几种:
1. 故障代码分析:根据设备或系统产生的错误代码,通过查询相应的故障代码库,找出导致故障的原因。
2. 现场观察:对设备或系统进行仔细观察,检查是否有明显的故障表现,如烟雾、异味、机械运转异常等。
3. 数据记录和分析:通过记录设备或系统的运行参数、传感器数据等,进行数据分析,找出故障发生的规律和原因。
4. 测量和检查:使用适当的工具和仪器,对设备或系统进行测量和检查,如使用多米特测量电路的电压、阻抗等。
5. 故障模拟:通过模拟设备或系统的运行情况,人工产生故障,观察故障表现,以便找出故障原因。
6. 系统分析:综合考虑各个组成部分之间的关系,通过系统分析,找出可能导致故障的原因。
7. 专家咨询:向相关领域的专家咨询,寻求专业的建议和意见,协助进行故障
分析和诊断。
以上方法可以单独或结合使用,根据故障的具体情况选择合适的方法进行故障诊断。
汽车常见故障及诊断教学总结
![汽车常见故障及诊断教学总结](https://img.taocdn.com/s3/m/06cf5c6d551810a6f424864d.png)
汽车常见故障分析及诊断1、排气管冒黑烟:故障判定:真故障。
原因分析:表明混合气过浓,燃烧不完全。
主要原因是汽车发动机超负荷,气缸压力不足,发动机温度过低,化油器调整不当,空气滤芯堵塞,个别气缸不工作及点火过迟等。
排除时,应及时检查阻风门是否完全打开,必要时进行检修;熄火后从化油器口看主喷管,若有油注出或滴油,则浮子室油面过高,应调整到规定范围,拧紧或更换主量孔;空气滤清器堵塞,应清洗、疏通或更换。
2、车辆的排气管排出蓝色的烟雾:故障判定:真故障。
原因分析:是由于大量机油进入气缸,而又不能完全燃烧所致。
拆下火花塞,即可发现严重的积炭现象。
需检查机油尺油面是否过高;气缸与活塞间隙是否过大;活塞环是否装反;进气门导管是否磨损或密封圈是否损坏;气缸垫是否烧蚀等,必要时应予以修复。
3、车辆排气管冒白烟,冷车时严重,热车后就不冒白烟了:故障判定:假故障。
原因分析:这是因为汽油中含有水分,而发动机过冷,此时进入气缸的燃油未完全燃烧导致雾点或水蒸气产生形成白烟。
冬季或雨季当汽车初次发动时,常常可以看到排白烟。
这不要紧,一旦发动机温度升高,白烟就会消失。
此状况不必检修。
4、发动机噪声大,车辆原地踩加速踏板时,有“隆、隆”异响,发动机舱内有振动感。
故障判定:使用类故障。
原因分析:举升车辆,可看到发动机的底护板有磕碰痕迹。
如果路面有障碍物而强行通过,发动机底护板就要被磕碰。
底护板变形后与发动机油底壳距离变近,如果距离太近,当加速时油底壳与底护板相撞就会发出异响并使车身振动。
所以,行车中一定要仔细观察路面,不要造成拖底现象发生。
处理方法:拆下底护板,压平校正即可。
5、车辆的转向盘总是不正,一会向左,一会向右,飘忽不定:故障判定:真故障。
原因分析:这是由于固定在转向机凹槽中的橡胶限位块已完全损坏导致。
将新限位块装复后,故障完全消失。
6、每次开启空调时,其出风口有非常难闻的气味,天气潮湿时更加严重:故障判定:维护类故障。
原因分析:空调的制冷原理是通过制冷剂迅速蒸发吸热,使流经的空气温度迅速下降。
故障的定义和诊断原理
![故障的定义和诊断原理](https://img.taocdn.com/s3/m/792b7b2ccd7931b765ce0508763231126edb77de.png)
故障的定义和诊断原理
故障的定义:
故障是指在设备、系统、机器等正常运行期间出现的异常状况,导致其无法正常工作或无法达到预期的功能和性能。
故障的诊断原理:
故障的诊断是通过分析故障的原因和特征,以确定故障发生的具体原因和位置,并给出相应的解决方案。
故障的诊断原理主要包括以下几个步骤:
1. 收集故障信息:通过观察和记录故障发生时的现象、报错信息、设备状态等,收集故障相关的信息。
2. 分析故障特征:根据收集到的故障信息,分析故障的特征,例如故障发生的频率、发生的时间、影响的范围等,以确定故障的共性和规律。
3. 确定故障原因:基于故障特征的分析,结合对设备、系统、机器等工作原理和工作流程的理解,通过推理、假设和实验等方法,确定故障的原因。
4. 确定故障位置:根据故障的特征和原因,通过排除法或逐级测试等方法,确定故障出现的具体位置,并进一步确定是否存在外部因素或其他隐含的故障。
5. 给出解决方案:根据确定的故障原因和位置,提出相应的解决方案,包括修复故障、更换设备或部件、调整参数等,以恢复设备、系统、机器等的正常工作。
6. 测试和验证:在进行故障解决方案之后,对设备、系统、机器等进行测试和验证,以确保故障得到有效处理,并确认问题是否完全解决。
通过以上诊断原理,可以对故障进行有效的诊断和解决,以确保设备、系统、机器等的正常运行。
滚动轴承常见故障及故障程度诊断方法
![滚动轴承常见故障及故障程度诊断方法](https://img.taocdn.com/s3/m/b119c480d4bbfd0a79563c1ec5da50e2534dd173.png)
滚动轴承常见故障及故障程度诊断方法滚动轴承是一种常见的机械传动部件,广泛应用于各种设备和机器中。
然而,由于长期的运转和使用,滚动轴承可能会出现各种故障。
及早诊断并解决这些故障,可以提高设备的工作效率和寿命。
下面将介绍一些常见的滚动轴承故障以及相应的故障程度诊断方法。
1.磨损故障:磨损是滚动轴承最常见的故障之一、它可能是由于振动、超负荷、不当润滑或外部杂质等因素引起的。
磨损故障的特点是滚道、轴承座和滚珠表面的磨损或变形。
在诊断方面,可以使用肉眼观察滚道和滚珠表面的磨损情况,并通过手感判断是否存在磨损故障。
2.疲劳故障:疲劳是滚动轴承的另一种常见故障。
它通常是由高载荷、频繁起停、轴向冲击或轴承内部结构缺陷等因素引起的。
疲劳故障的特点是滚珠或滚道出现裂纹或剥落。
在诊断方面,可以使用显微镜观察滚珠和滚道表面的裂纹或剥落情况,或者进行动态振动分析以检测是否存在疲劳故障。
3.温升故障:温升是滚动轴承的常见故障之一,通常是由于不当润滑、过高的润滑脂粘度、轴承过紧或过松、内部结构问题等因素引起的。
温升故障的特点是轴承运行时温度升高。
在诊断方面,可以使用红外热像仪测量轴承温度,或使用测温仪对轴承不同部位进行温度测量,以判断是否存在温升故障。
4.噪声故障:噪声是滚动轴承常见的故障之一,通常是由于轴承松动、滚珠损坏、滚子不对中、不正确的润滑或外部冲击等因素引起的。
噪声故障的特点是轴承运行时产生噪声。
在诊断方面,可以使用听诊器或声音分析仪对轴承的运行声音进行监测和分析,以判断是否存在噪声故障。
5.润滑故障:滚动轴承的润滑是保证轴承正常运行的重要因素,不当的润滑可能会导致轴承故障。
润滑故障的特点是润滑油脂污染、量不足或过多、润滑脂分解或硬化等。
在诊断方面,可以通过观察润滑油脂的颜色、质地和气味来判断是否存在润滑故障。
除了上述常见的滚动轴承故障,还有一些其他故障,如过载、轴向偏移、振动等。
对于这些故障,可以使用适当的仪器和设备,如振动测量仪、位移传感器等进行诊断和监测。
故障诊断基本原则、故障排查方法.
![故障诊断基本原则、故障排查方法.](https://img.taocdn.com/s3/m/7ba63f3ba58da0116d17496f.png)
故障诊断基本原则、故障排查方法、电路排查的方法及数据流读取分析2015-02-01刘金深圳三羚汽车电脑诊断仪目录导读:一、故障诊断基本原则二、故障排查方法三、电路排查的方法四、数据流读取分析一、故障诊断基本原则造成电喷发动机故障的原因可能是电子控制系统故障,可能是低压油路、进排气气路故障,也可能是燃喷高压零部件或者发动机各机械部件故障。
为准确而迅速地找出故障所在,在故障诊断过程中我们应该遵循一定的原则,基本原则可概括为以下几点:1、先读代码电喷发动机都有故障自诊断功能,当系统出现某种故障时,电控单元就会即刻监测到故障并通过故障灯向驾驶员报警,与此同时以代码的方式储存该故障的信息。
通常我们有两种方式获取故障码:1)按下检查开关,发动机故障指示灯会按顺序闪出闪码;2)使用诊断仪读取故障码。
从而我们可根据读得的故障码排查故障。
2、由外而内在发动机出现故障时,先对电子控制系统以外的可能故障部位予以检查。
这样可避免本来是一个与电子控制系统无关的故障,却对系统的传感器、电脑、执行器及线路等进行复杂且又费时费力的检查。
当发动机发生故障时,首先观察系统的故障指示灯,如果指示灯没亮,则基本可以作为机械故障来进行处理。
如果指示灯亮,必须先读取故障码,进而进行相应处理。
3、先简后繁很多情况下,发动机的故障都是比较简单的故障,电气系统的故障也是如此。
我们可以首先对电气系统进行初步的检查,比如检查电控系统线束的连接状况:1)传感器或执行器的电连接器是否良好?2)线束间的连接器是否松动或断开?3)电线是否有磨破或线间短路现象?4)电连接器的插头和插座有无腐蚀现象?5)各传感器和执行器有无明显损伤?如果以上简单检查找不出故障,则需要借助于仪器仪表或其他专用工具来进行检查时,也应对较容易检查的先予以检查。
能检查的项目先进行检查。
4、全面检测如果没有故障码,以上检测也找不出问题所在,则需要利用诊断仪等专业工具对发动机系统做一个全面的检测,共轨柴油机常见检测类别有:1)低压系统检测;2)压缩测试;3)怠速比较;4)进排气系统检测;5)冷却系统检测;6)加速测试;7)高压测试;8)断缸测试;9)部件测试等。
电流互感器的故障原因分析及诊断方法
![电流互感器的故障原因分析及诊断方法](https://img.taocdn.com/s3/m/27846a01e55c3b3567ec102de2bd960591c6d966.png)
电流互感器的故障原因分析及诊断方法一、电流互感器故障原因分析:1.短路故障:当电流互感器的一次绕组发生短路时,会导致电流过大,造成互感器输出信号异常或无输出。
2.开路故障:当电流互感器的一次绕组发生开路时,会导致互感器无法感应电流,造成互感器输出信号为零。
3.绝缘损坏:电流互感器的一次绕组与二次绕组之间若有绝缘损坏,可能会导致绕组短路或绕组之间发生相对位移,影响测量准确性。
4.温度影响:电流互感器在高温环境下工作时,可能出现温度过高导致绕组断开或短路的情况,进而影响互感器的工作。
5.老化故障:电流互感器长时间使用后,绝缘材料可能会老化,导致性能下降或失效。
6.外部电磁干扰:电流互感器可能受到外部电磁场的干扰,导致互感器输出信号异常。
二、电流互感器故障诊断方法:1.视觉检查:定期对电流互感器进行外观检查,观察是否有损坏或异常情况。
如发现螺钉松动、绝缘材料老化等问题,及时进行修复或更换。
2.测量测试:使用专业的电流互感器测试仪进行测量测试,检查互感器的输出信号是否在规定范围内。
如发现异常情况,进一步分析故障原因。
3.绝缘电阻测试:使用绝缘电阻测试仪对电流互感器的绝缘电阻进行测试,确保绝缘性能良好。
如发现绝缘电阻过低,可能是绝缘损坏的信号,需要修复或更换绝缘材料。
4.电流互感器比值测试:使用专业的电流互感器测试仪对电流互感器的变比进行测试,检查变比是否正确。
如发现变比不准确,可能是一次绕组与二次绕组之间存在短路或开路故障,需要进一步检查和修复。
5.温升测试:在电流互感器正常工作负荷下,使用温升测试仪对互感器的温升进行测试,以判断是否存在过温故障。
如发现温升过高,需要进一步分析原因,可能是绕组短路、局部过载等问题造成的。
6.故障定位测试:如发现电流互感器工作异常,可以使用在线局部放电测试仪对互感器进行故障定位测试,以确定故障发生位置,从而有针对性地修复故障。
总结:电流互感器的故障原因多种多样,包括短路、开路、绝缘损坏、温度影响、老化故障和外部电磁干扰等。
计算机常见的故障分类和诊断的原则
![计算机常见的故障分类和诊断的原则](https://img.taocdn.com/s3/m/4145eb7366ec102de2bd960590c69ec3d5bbdb31.png)
计算机常见的故障分类和诊断的原则一、硬件故障分类和诊断1. 电源故障:计算机无法启动、电脑死机、重启等问题可能是电源故障导致的,可以通过更换电源或检查电源线路来解决。
2. 显卡故障:屏幕出现花屏、闪烁、无法显示等问题可能是显卡故障导致的,可以通过更换显卡或检查显卡驱动程序来解决。
3. 内存故障:计算机频繁蓝屏、程序卡顿、无法正常运行等问题可能是内存故障导致的,可以通过更换内存或进行内存测试来解决。
4. 硬盘故障:计算机启动缓慢、文件丢失、无法读取硬盘等问题可能是硬盘故障导致的,可以通过更换硬盘或进行硬盘修复来解决。
5. CPU故障:计算机运行速度慢、发热过高、死机等问题可能是CPU故障导致的,可以通过更换CPU或检查散热系统来解决。
二、软件故障分类和诊断1. 病毒感染:计算机出现异常弹窗、文件丢失、网页重定向等问题可能是病毒感染导致的,可以通过安装杀毒软件、进行病毒扫描和清除来解决。
2. 操作系统故障:计算机频繁蓝屏、无法启动、程序无响应等问题可能是操作系统故障导致的,可以通过重新安装操作系统或进行系统修复来解决。
3. 软件冲突:计算机出现程序崩溃、无法打开文件、功能异常等问题可能是软件冲突导致的,可以通过卸载冲突软件或更新软件版本来解决。
4. 驱动程序问题:计算机无法识别外部设备、硬件功能异常等问题可能是驱动程序问题导致的,可以通过更新驱动程序或重新安装驱动程序来解决。
5. 网络问题:计算机无法连接网络、网络速度慢、无法访问特定网站等问题可能是网络设置问题导致的,可以通过重新配置网络设置或重启路由器来解决。
三、故障诊断的原则1. 观察和记录:仔细观察计算机出现的故障现象,并记录下来,包括故障的具体表现、出现的时间和频率等信息,便于后续的诊断和解决。
2. 排除法:根据故障现象和可能的原因,逐一排除可能的故障点,从而确定具体的故障来源。
3. 实验和测试:对疑似故障点进行实验和测试,例如更换硬件、安装驱动程序、进行系统修复等,以验证故障点和解决方案的有效性。
电气设备的故障排除解决设备故障和故障诊断的方法
![电气设备的故障排除解决设备故障和故障诊断的方法](https://img.taocdn.com/s3/m/2c75daac80c758f5f61fb7360b4c2e3f572725b6.png)
电气设备的故障排除解决设备故障和故障诊断的方法电气设备的故障排除与设备故障诊断在现代社会中,电气设备的故障排除和故障诊断是非常重要的。
无论是在家庭中使用的电器还是工业中的大型设备,故障的发生都可能给我们的生活和工作带来诸多不便和困扰。
因此,掌握一些基本的故障排除和诊断方法是至关重要的。
一、故障排除的基本步骤1. 确认故障现象:在进行故障排除之前,首先需要准确地了解和确认故障现象。
例如,电气设备是否无法启动、是否有异常噪音、是否有烧焦味道等等。
2. 检查电源供应:电气设备的故障往往与电源供应有关。
因此,在进行具体排查之前,应该先检查设备的电源供应是否正常。
可以通过检查电源开关、电源插座以及电源线路来确认。
3. 检查电路连接:故障的另一个常见原因是电路连接不良。
在排查故障时,应该检查电路中的连接线路是否紧固,以及接插件是否正常。
4. 检查设备元件:设备元件的故障也是导致设备故障的常见原因之一。
在故障排除过程中,应该仔细检查设备的电阻器、电容器、继电器等元件是否损坏或老化。
5. 测试设备功能:在确认其他可能的故障原因后,可以通过测试设备的功能来判断设备是否正常。
例如,使用万用表测试电路是否通畅,使用示波器测试电压和电流波形等等。
6. 修复故障并测试:一旦确定了设备的故障原因,就可以采取相应的措施进行修复。
修复后,应该再次测试设备,确保设备恢复正常功能。
二、故障诊断的常用方法1. 故障模式分析:故障模式分析是一种常用的故障诊断方法。
通过分析故障时设备的反应和表现,可以确定故障所属的模式。
例如,设备无法启动、设备运行不稳定等等。
2. 状态监测和记录:可以通过状态监测和记录来帮助故障诊断。
例如,使用数据记录仪记录设备的运行状态、温度等参数,以寻找与故障相关的数据指标。
3. 使用故障诊断设备:在一些复杂的故障诊断中,可以使用专门的故障诊断设备。
例如,红外热像仪可以用于检测设备的热量分布情况,超声波检测设备可以检测设备内部的声音和振动。
常见的网络故障类型及诊断分析
![常见的网络故障类型及诊断分析](https://img.taocdn.com/s3/m/524839395022aaea988f0fd8.png)
常见的网络故障类型及诊断分析随着计算机的日益普及,人们之间的距离也随着网络的迅速发展而近了许多,在世界的各个角落都可以迅速进行沟通、交流,但是网络在给我们带来诸多便利条件的同时,也产生了许多附加的问题。
因此,笔者结合多年的工作经验对常见网络故障的分类以及诊断方法进行详细的论述,希望可以对大家日后的工作有所帮助。
通常我们按照网络故障的特性将其分为两类,分别是物理类以及逻辑类故障两种,下面我们分别对其进行详细的分析:一、物理类网络故障及诊断方法物理类的网络故障就是由于设备或者线路出现问题而导致网络出现的故障的统称,其主要由线路故障、端口故障、集线器或路由器故障以及网卡故障等四种。
下面我们分别对其进行描述:1、线路故障及诊断方法根据相关部门统计,网络故障中由于线路受到严重电磁干扰以及线路损坏而导致的线路故障所占的网络故障的3/4,这是发生频率最高的一种网络故障。
该故障的诊断方法:如果线路非常长,不便于我们自行检查,我们就可以通过通知线路供应商来提供检查线路的服务;如果线路长度适中或者是网线不方便使用,我们就可以通过使用网线测试器来对线路进行检测;如果线路比较短,我们就可以将网线的一段插入正常的HUB断口,而另一端插入到一台确定可以正常联网的主机的RJ45插座内,通过主机的Ping线路连接到另一端的路由器或者主机,通过检查来判定网线是否正常。
如果怀疑线路受到强电磁干扰,我们可以通过使用带有较强屏蔽性的屏蔽线来进行测试,如果可以正常通信,则表明线路的确受到强电磁的干扰,我们就需要将线路远离线路周边具有较强电磁场的设备,如果屏蔽线不能正常通信,则表明该线路的问题不是由于强电磁场引起的'。
2、端口故障及诊断方法通常由端口本身或者插头松动而导致的物理故障,我们将其称为端口类故障。
该类故障的诊断方法:由于信号灯是设备是否有信号的直接体现,所以,我们可以通过观察信号灯来对故障的发生地点以及发生原因进行大致判断,必要时也可使用其他端口来判断是否正常。
故障诊断及排除实训报告
![故障诊断及排除实训报告](https://img.taocdn.com/s3/m/0b08dd66590216fc700abb68a98271fe910eafb7.png)
一、实训背景随着汽车工业的快速发展,汽车故障诊断与排除技术已成为汽车维修领域的重要技能。
为了提高我国汽车维修人员的专业素质,我们开展了故障诊断及排除实训课程。
本次实训旨在使学生掌握汽车故障诊断的基本方法、常用工具的使用以及故障排除的技巧。
二、实训内容1. 故障诊断基本方法(1)观察法:通过对汽车外观、仪表盘、发动机舱等进行观察,初步判断故障原因。
(2)询问法:询问车主故障现象、发生时间、行驶里程等,以便缩小故障范围。
(3)检查法:利用万用表、示波器等工具对电路进行检测,找出故障点。
(4)排除法:根据故障现象,逐一排除可能的原因,直至找到故障点。
2. 常用工具的使用(1)万用表:用于测量电压、电流、电阻等参数。
(2)示波器:用于观察电路波形,判断电路是否存在问题。
(3)诊断仪:用于读取汽车电控系统故障码,分析故障原因。
(4)解码器:用于读取汽车电控系统参数,分析故障原因。
3. 故障排除技巧(1)先易后难:在排除故障时,先从简单故障入手,逐步深入。
(2)逐个排查:针对复杂故障,逐一排查,避免遗漏。
(3)理论与实践相结合:在排除故障过程中,结合理论知识,提高解决实际问题的能力。
三、实训过程1. 观察法实训在实训过程中,我们首先对汽车外观、仪表盘、发动机舱等进行观察,初步判断故障原因。
例如,若发现汽车发动机舱内有异响,可初步判断为发动机部件松动或磨损。
2. 询问法实训在询问车主时,我们详细了解了故障现象、发生时间、行驶里程等信息,以便缩小故障范围。
例如,若车主反映汽车在行驶过程中出现动力不足,询问后得知故障发生在最近一次长途行驶后。
3. 检查法实训利用万用表、示波器等工具对电路进行检测,找出故障点。
例如,若怀疑汽车点火线圈故障,可使用万用表测量点火线圈两端电压,判断是否存在故障。
4. 排除法实训根据故障现象,逐一排除可能的原因,直至找到故障点。
例如,若汽车发动机无法启动,可依次检查蓄电池、点火线圈、点火模块等部件,找出故障原因。
机械设备故障诊断与监测的常用方法6篇
![机械设备故障诊断与监测的常用方法6篇](https://img.taocdn.com/s3/m/e23e5b63cec789eb172ded630b1c59eef8c79ad9.png)
机械设备故障诊断与监测的常用方法6篇第1篇示例:机械设备在使用过程中经常会出现各种故障,及时准确地进行故障诊断和监测对于设备的正常运行和维护是至关重要的。
下面将介绍一些机械设备故障诊断与监测的常用方法。
一、视觉检查法视觉检查法是最简单、最直观的故障诊断方法之一。
通过观察设备的外观、运转状况、连接部位是否松动、是否有明显的磨损痕迹等,初步判断设备是否存在问题。
这种方法适用于一些外在明显的故障,比如松动的螺丝、漏油现象等。
二、听觉检查法听觉检查法是通过听设备运行时的声音来判断设备是否存在故障。
比如机械设备在运行时出现异常的响声,可能是由于轴承损坏、齿轮啮合不良等原因引起的。
通过仔细倾听设备运行时的声音,可以初步判断设备存在的故障类型。
三、振动检测法振动检测法是一种通过监测设备在运行时的振动状况来判断设备是否存在故障的方法。
通常情况下,机械设备在正常运行时会有一定的振动,但如果振动异常明显,可能是设备出现了问题。
通过振动检测仪器对设备进行监测和分析,可以准确判断设备的故障类型和严重程度。
四、温度检测法温度检测法是通过监测设备运行时的温度变化来判断设备是否存在故障的方法。
比如设备某个部位温度异常升高,可能是由于摩擦引起的,也可能是由于电气元件故障引起的。
通过红外测温仪等工具对设备表面温度进行监测和分析,可以帮助工程师快速定位故障部位。
五、性能测试法性能测试法是一种通过对设备的各项性能指标进行测试和比较,来判断设备是否存在故障的方法。
比如通过功率测试仪器对设备的电流、电压等参数进行监测,比较实测数值与标准数值是否一致,可以准确判断设备是否存在故障。
六、故障诊断仪器法现代科技的发展,各种先进的故障诊断仪器也被广泛应用于机械设备的故障诊断和监测中。
比如红外热像仪可以通过红外辐射检测设备的热量分布,帮助工程师找出设备故障的根源;声发射仪器可以对设备在运行时的声音进行捕捉和分析;电动机绝缘测试仪器可以对设备的绝缘状态进行监测等。
机电设备故障诊断及排除的常用方法
![机电设备故障诊断及排除的常用方法](https://img.taocdn.com/s3/m/b8dbdd9c48649b6648d7c1c708a1284ac85005fb.png)
机电设备故障诊断及排除的常用方法
一、故障排除的常用方法:
1、定位方法:
(1)现场观察法:它是检修者到现场观察、分析及判断的技术,是
以观察、查阅现场环境、了解机械的工作原理、全面检查配件的形态,乂
以分析、比较、推理的方法确定出故障的原因和排除故障的做法。
(2)判断方法:它是通过专家的头脑,以积累的经验和联想来确定
范围,以及判断是否把握故障特征,正确认识故障的方法。
(3)电气排除法:它是根据故障电路的原理,联络电路节点以及检
查及测量电压数值、排除故障的方法,是故障的快速查找和有效地排除故
障的方法。
(4)极限状态比较法:它是根据正常机电系统的极限状态,与故障
机电系统的极限状态进行比较,从而确定和排除故障的方法。
2、故障诊断的常用方法:
(1)比较诊断:它是取一件正常机器的样机和一件故障机器的样机,对它们进行极限状态比较,以诊断故障的方法,是较快确定排除故障的方法。
(2)定性诊断:它是根据机器的情况及发生的现象,不采用任何仪器,而通过经验和观察把故障分析出来的诊断方法。
它是基于经验和观察,并有着较快的诊断、定性、排除故障的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械设备故障1.故障的定义:设备(系统)或零部件丧失了规定功能的状态。
故障的含义:一是机械系统偏离正常功能;二是功能失效。
2. 故障率:指在每一个时间增量里产生故障的次数,或在时间t 之前尚未发生故障,而在随后的dt时间内可能发生的故障的条件概率。
3. 故障率基本类型浴盆曲线型1)早期故障期:故障率高,但故障随设备工作时间的增加而迅速下降它相当于机电设备安装试车后,经过磨合、调整将进入正常工作阶段。
若进行大修或技术改造后,早期故障期将再次出现。
2)随机故障期:故障率低而稳定,近似为常数。
此时期是机电设备的最佳工作期。
3)耗损故障期:故障率随设备运转时间增加而迅速增高。
机械设备或零部件经长期运转,磨损严重,产生故障的机会增大。
在这一时期出现前进行预防维修,或在这一时期刚出现时就进行小修,防止故障大量出现,降低故障率和减少维修工作量。
机械零件的主要失效形式一、磨损失效1.磨损:运动副之间的摩擦将导致零件表面材料的逐渐损失,这种现象称为磨损。
单位时间内材料的磨损量称为磨损率。
磨损的后果:①毁坏工作表面;②消耗材料;③影响机械设备的功能;④降低寿命工程上常利用磨损的原理来减小零件表面的粗糙度,如磨削、研磨、抛光、跑合等。
2. 磨损的规律磨损过程大致可分为以下三个阶段:(1)跑合(磨合)磨损阶段将金属突出部分磨平,凹处补齐,接触面积加大,光洁度提高影响因素:载荷、相对速度、润滑条件(选择合理的载荷、相对运动速度和润滑条件等参数是缩短磨合期的关键因素)(2)稳定磨损阶段:磨损速率小且稳定,持续时间长影响因素:合理使用、维护与保养是延长该阶段的关键(3)剧烈磨损阶段:此阶段的特征是磨损速度及磨损率都急剧增大,机械效率明显下降,精度降低。
可能伴有振动和温度升高,直至零件失效。
及时发现和修理即将进入该阶段工作的零部件。
3. 磨损的类型和机理按照磨损的机理以及零件表面磨损状态的不同把磨损分为:(1)磨粒磨损由于摩擦表面上的硬质突出物或从外部进入摩擦表面的硬质颗粒,对摩擦表面起到切削或刮擦作用,从而引起表层材料脱落的现象,称为磨粒磨损。
减轻磨粒磨损:满足润滑条件,合理地选择摩擦副的材料、降低表面粗糙度值以及加装防护密封装置等。
(2)粘着磨损粘着作用引起的磨损,称为粘着磨损。
粘着磨损按程度不同可分为五级:轻微磨损、涂抹、擦伤、撕脱、咬死。
涂抹、擦伤、撕脱又称为胶合,往往发生于高速、重载的场合。
减轻粘着磨损:合理地选择配对材料,采用表面处理,限制摩擦表面的温度,控制压强及采用含有油性极压添加剂的润滑剂等,都可减轻粘着磨损。
(3)疲劳磨损(点蚀)两摩擦表面为点或线接触时,由于局部的弹性变形形成了小的接触区。
这些小的接触区形成的摩擦副如果受变化接触应力的作用,则在其反复作用下,表层将产生裂纹。
减轻疲劳磨损:合理地选择材料及材料的硬度,选择粘度高的润滑油,加入极压添加剂或及减小摩擦面的粗糙度值等,可以提抗疲劳磨损的能力。
(4)腐蚀磨损在摩擦过程中,摩擦面与周围介质发生化学或电化学反应而产生物质损失的现象,称为腐蚀磨损。
实际上大多数磨损是以上述四种磨损形式的复合形式出现的二、腐蚀失效腐蚀:金属受周围介质的作用,而引起损伤的现象。
特征:从金属表面开始,然后或快或慢地往里深入,造成表面材料损耗,表面质量破坏,内部晶体结构损伤,使零件出现不规则形状的凹洞、斑点等破坏区域,最终导致零件的实效。
金属腐蚀按其作用和机理分为化学腐蚀和电化学腐蚀。
1、金属零件的化学腐蚀由单纯化学作用引起的腐蚀。
腐蚀机理:金属表面材料与周围的气体或非电解质溶液中的有害成分发生化学反应是,金属表面形成腐蚀层,在腐蚀层不断脱落又不断生成的过程中,零件便被腐蚀了。
与机械零件发生化学反应的有害物质主要是气体中的O2、H2S 、SO2金属钝化的条件:膜的强度与塑性好,与基体结合好;膜的致密性好;膜与基体的热膨胀系数相当;膜在介质中稳定(铬、铝、锌)2、金属零件的电化学腐蚀金属与电解质物质接触时产生的腐蚀,是复杂的物理与化学过程,伴有电流产生。
腐蚀产生的条件:(1)正、负极;(2)电极之间有导体连接或电极直接接触;(3)有电解质溶液。
实质:具有电位差的两个金属极在电解质溶液中发生的具有电荷流动特点的连续不断的化学腐蚀。
3、改善金属材料抗蚀能力的防护措施(1)合理选择耐腐蚀材料①钛合金>不锈钢>低合金钢>铸铁≥碳钢。
②铝合金在大气和水中耐蚀。
③青铜>黄铜>铜(大气和海水中);青铜尚耐有机酸稀溶液腐蚀。
(2)改善介质腐蚀条件①去除介质中有害成分(O2、Cl等),如锅炉用水除氧(加热或亚硫酸钠化学除氧)。
②添加缓蚀剂,使电化学反应缓慢,如切削液中加亚硝酸盐、汽车水箱中加重铬酸钾等。
(3)电化学保护将被保护的金属作为腐蚀电池或电解池的阴极我们提供的铝阳极能够防止海水中钢质结构的腐蚀,广泛应用于船体、压水舱、海水管道、港口码头设施、海洋工程、钻井平台、冷凝器以及土壤介质的管道等的防腐之用。
(4)表面防护涂层①金属覆盖层•在基体金属表面覆盖一层电位更正的惰性金属层(Au、Ag、Cu、Ni、Sn等),起隔离保护作用(阴极覆盖层)。
•在基体金属表面覆盖一层电位更负的金属(为阳极,基体为阴极),通过牺牲阳极覆盖层而保护基体金属。
•钝性氧化膜覆盖层(Cr、Al、Ti等)。
②非金属覆盖层涂料、塑料;搪瓷、玻璃(耐高温、耐腐蚀,但脆);非金属转化膜(钢铁发兰、磷化,铝的阳极化)等。
三、变形失效1.过量弹性变形失效弹性变形:当外力去除后,能够完全恢复的变形过量弹性变形失效:零件由于产生过大的弹性变形而失效。
一些细长的轴、杆件或薄壁筒零部件,在外力作用下将发生弹性变形,如果弹性变形过量,会使零部件失去有效工作能力。
例如镗床的镗杆,如果工作中产生过量弹性变形,不仅会使镗床产生振动,造成零部件加工精度下降,而且还会使轴与轴承的配合不良,甚至会引起弯曲塑性变形或断裂。
引起弹性变形失效的原因,主要是零部件的刚度不足。
因此,要预防弹性变形失效,应选用弹性摸量大的材料。
2. 过量塑性变形失效塑性变形:当外力去除后不能恢复的变形。
特点:①引起材料的组织结构和性能变化;②有应力产生;③使原子的活动能力提高,造成金属的耐腐蚀能力下降。
过量塑性变形失效:零部件承受的静载荷超过材料的屈服强度(材料开始产生宏观塑性变形时的应力)时,将产生塑性变形。
塑性变形会造成零部件间相对位置变化,致使整个机械运转不良而失效。
例如压力容器上的紧固螺栓,如果拧得过紧,或因过载引起螺栓塑性伸长,便会降低预紧力,致使配合面松动,导致螺栓失效。
四、断裂失效断裂失效:断裂是指金属零件在某些因素的作用下,发生局部开裂或分裂为若干部分的现象。
危害:零部件或系统不仅完全丧失了工作能力,而且还可能造成重大经济损失和伤亡事故。
1.脆性断裂脆性断裂:零件在断裂以前无明显的塑性变形,发展速度极快的一种断裂形式。
原因:材料变脆,制造工艺不合理、使用中遭到有害介质的侵蚀或环境不适都可能使材料变脆。
脆性断裂的特征:①低应力断裂;②断口平整光亮;③无征兆,瞬断。
2. 疲劳断裂疲劳断裂:金属零件在经过一定次数的循环载荷或交变应力作用后引发的断裂现象。
特征:(1)零件是在交变载荷作用下经过较长时间的使用:(2)断裂应力小干材料的抗拉强度,甚至小于屈服强度;(3)断裂是突然的,无任何先兆;(4)断口形貌特殊,断口上有明显不同的区域;(5)零件的几何形状、尺寸、表面质量和表面受力状态等均直接影响零件的疲劳断裂。
疲劳断裂的机理:一般疲劳断裂过程经历3个阶段:(1)疲劳裂纹萌生阶段:零件表层产生微小裂纹;(2)疲劳裂纹扩展阶段:随着循环次数增加,微裂纹逐渐扩展; (3)最终瞬断阶段:当剩余材料不足以承受载荷时,突然脆性断裂。
疲劳断裂的断口分析:(1)疲劳核心区:一般出现在强度最低、应力最高、靠近表面的部位,也有出现在表层以下的(表面经过强化处理)。
零件在加工、贮运、装配过程中留下的伤痕,极有可能成为疲劳核心。
数目随载荷的增大而增多(2)疲劳裂纹扩展区:呈贝纹状或类似于海滩波纹状,每条裂纹代表载荷变化的次数。
(3)瞬时断裂前:是疲劳裂纹扩展到临界尺寸时,发生快速断裂形成的破断区域。
破断区越大,说明承受的载荷越?提高机械零件疲劳强度的措施1. 尽可能降低零件上应力集中的影响—主要措施:(1)增大过渡圆角半径r。
(2)同一零件上相邻截面处的刚性变化尽可能小等。
2.选用疲劳强度高的材料和规定能够提高材料疲劳强度的热处理方法及强化工艺。
3.提高零件的表面质量如处在应力较高区域的零件表面加工得较为光洁,对于工作在腐蚀性介质中的零件规定适当的表面保护等。
4.尽可能减小或消除零件表面可能发生的初始裂纹的尺寸,对于延长零件的疲劳寿命有着比提高材料性能更为显著的作用,因此,对重要的零件应在设计图上规定严格的检验方法及要求。
1.机械零件的失效形式主要有()、()、变形失效和()。
2. 在正常工况下,零件的磨损分为3个阶段()、()、()。
3.机械零件或构件的变形分为()和()。
4. 按断裂的原因可将断裂分为()、()和过载断裂(也称韧性断裂)。
5. 一般疲劳断裂过程经历3个阶段()、()和最终瞬断阶段。
6. 典型的疲劳断口有3个形貌不同的区域:疲劳核心区、()和()。
1.疲劳断裂的断口光亮平整()。
2. 脆性断裂属于低应力断裂,断裂前无明显征兆。
3. 金属的氧化腐蚀程度决定于生成氧化膜的特性()。
4. 疲劳磨损的磨损产物中有螺旋状或环状的细小切屑。
()5. 零件在磨合期时载荷越大越好,可以缩短磨合期。
()故障诊断一、故障诊断及其意义:故障诊断:通过人的感官或测量仪器得到反映机电设备的故障状况及特征的信息,确定故障所在的位置和程度就是故障诊断开展设备故障诊断的重大意义:1.预防事故,保证人身和设备的安全2.推动设备维修制度的改革设备维修制度共有以下三种:(1)事后维修制度;(2)预防维修制度;(3)预测维修制度(状态修)我国目前正处于从预防维修制度向预测维修制度逐步过渡的起步阶段。
其中发展和普及设备诊断技术是中心环节。
3.提高经济效益二、故障诊断的方法机械故障诊断的基本方法可按不同的观点来分类按诊断方法的难易程度可分为:简易诊断法精密诊断法;按诊断的测试手段主要分为:直接观察法振动噪声测试法无损检法磨损物测定法机器性能参数测定法。
故障诊断的分类:(1)功能诊断:新安装或维修后,运行工况和功能是否正常运行诊断:工作中的机器或机组,监视其故障的发生和发展(2)定期诊断:每隔一段时间连续监控:仪器及信息处理系统,监视和控制(3)直接诊断:利用直接来自诊断对象的信息。
轴承间隙(磨损、裂纹)间接诊断:利用机械设备运行中的二次诊断信息(4)在线诊断:自动实时诊断离线诊断:利用磁带记录仪等带回实验室结合历史分析诊断1.简易诊断法故障简易诊断通常是依靠人的感官(视、听、触、嗅)或一些便携式仪器工具(如测振仪、红外点温仪等)对设备进行人工巡回监测,根据设定的标准或人的经验分析,判断设备是否处于正常状态。