中考几何证明题集锦(主要是与圆有关的)

合集下载

初三经典几何证明练习题(含问题详解)

初三经典几何证明练习题(含问题详解)

初三几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.2、已知:如图,P是正方形ABCD部的一点,∠PAD=∠PDA=15°。

求证:△PBC是正三角形.(初二)3、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.2、设MN是圆O外一条直线,过O作OA⊥MN于A,自A引圆的两条割线交圆O于B、C及D、E,连接CD并延长交MN于Q,连接EB并延长交MN于P.求证:AP=AQ.3、如图,分别以△ABC的AB和AC为一边,在△ABC的外侧作正方形ABFG和正方形ACDE,点O是DF的中点,OP⊥BC求证:BC=2OP证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、N∵OF=OD,DN∥OP∥FL∴PN=PL∴OP是梯形DFLN的中位线∴DN+FL=2OP∵ABFG是正方形∴∠ABM+∠FBL=90°又∠BFL+∠FBL=90°∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB∴△BFL≌△ABM∴FL=BM同理△AMC≌△CND∴CM=DN∴BM+CN=FL+DN∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .证明:连接BD 交AC 于O 。

过点E 作EG ⊥AC 于G ∵ABCD 是正方形 ∴BD ⊥AC 又EG ⊥AC ∴BD ∥EG 又DE ∥AC ∴ODEG 是平行四边形 又∠COD=90° ∴ODEG 是矩形 ∴EG=OD=21BD=21AC=21AE ∴∠EAG=30° ∵AC=AE∴∠ACE=∠AEC=75° 又∠AFD=90°-15°=75° ∴∠CFE=∠AFD=75°=∠AEC ∴CE=CF2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .证明:连接BD ,过点E 作EG ⊥AC 于G ∵ABCD 是正方形 ∴BD ⊥AC ,又EG ⊥AC∴BD ∥EG 又DE ∥AC ∴ODEG 是平行四边形 又∠COD=90° ∴ODEG 是矩形 ∴EG =OD =21BD=21AC=21CE ∴∠GCE=30° ∵AC=EC3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)证明:过点F 作FG ⊥CE 于G ,FH ⊥CD 于H ∵CD ⊥CG ∴HCGF 是矩形 ∵∠HCF=∠GCF ∴FH=FG ∴HCGF 是正方形 ∴CG=GF∵AP ⊥FP∴∠APB+∠FPG=90°∵∠APB+∠BAP=90°∴∠FPG=∠BAP又∠FGP=∠PBA∴△FGP ∽△PBA∴FG :PB=PG :AB4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D . 求证:AB =DC ,BC =AD .(初三)证明:过点E 作EK ∥BD ,分别交AC 、AF 于M 、K ,取EF 的中点H , 连接OH 、MH 、EC设AB=x ,BP=y ,CG=zz :y=(x-y+z ):x化简得(x-y )·y =(x-y )·z∵x-y ≠0∴y=z即BP=FG∴△ABP ≌△PGF∴∠CAE=∠CEA=21∠GCE=15° 在△AFC 中∠F =180°-∠FAC-∠ACF =180°-∠FAC-∠GCE=180°-135°-30°=15°∵EH=FH∴OH ⊥EF ,∴∠PHO=90° 又PC ⊥OC ,∴∠POC=90° ∴P 、C 、H 、O 四点共圆 ∴∠HCO=∠HPO又EK ∥BD ,∴∠HPO=∠HEK∴∠HCM=∠HEM∴H 、C 、E 、M 四点共圆 ∴∠ECM=∠EHM 又∠ECM=∠EFA ∴∠EHM=∠EFA ∴HM ∥AC ∵EH=FH经典题(四)1、已知:△ABC 是正三角形,P 是三角形一点,PA =3,PB =4求∠APB 的度数.(初二)解:将△ABP 绕点B 顺时针方向旋转60°得△BCQ ,连接PQ 则△BPQ 是正三角形 ∴∠BQP=60°,PQ=PB=3在△PQC 中,PQ=4,CQ=AP=3,PC=5 ∴△PQC 是直角三角形 ∴∠PQC=90°∴∠BQC=∠BQP+∠PQC=60°+90°=150° ∴∠APB=∠BQC=150°2、设P 是平行四边形ABCD 部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)∴EM=KM ∵EK ∥BD ∴KMODAM AO EM OB == ∴OB=OD又AO=CO∴四边形ABCD 的对角证明:过点P 作AD 的平行线,过点A 作PD 的平行线, 两平行线相交于点E ,连接BE ∵PE ∥AD ,AE ∥PD ∴ADPE 是平行四边形 ∴PE=AD ,又ABCD 是平行四边形 ∴AD=BC ∴PE=BC又PE ∥AD ,AD ∥BC ∴PE ∥BC∴BCPE 是平行四边形 ∴∠BEP=∠PCB ∵ADPE 是平行四边形 ∴∠ADP=∠AEP3、设ABCD 为圆接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三) 证明:在BD 上去一点E ,使∠BCE=∠ACD ∵CD⌒ =CD ⌒ ∴∠CAD=∠CBD ∴△BEC ∽△ADC ∴ACBCAD BE∴AD ·BC=BE ·AC ……………………① ∵∠BCE=∠ACD∴∠BCE+∠ACE=∠ACD+∠ACE 即∠BCA=∠ECD∵BC⌒=BC ⌒,∴∠BAC=∠BDC △BAC ∽△EDC又∠ADP=∠ABP ∴∠AEP=∠ABP ∴A 、E 、B 、P 四点共圆 ∴∠BEP=∠PAB ∴∠PAB=∠PCB∴CDACDE AB∴AB ·CD=DE ·AC ……………………②4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)证明:过点D 作DG ⊥AE 于G ,作DH ⊥FC 于H ,连接DF 、DE ∴S △ADE =12AE ·DG ,S △FDC =12FC ·DH又S △ADE =S △FDC =12S □ABCD∴AE ·DG=FC ·DH 又AE=CF ∴DG=DH∴点D 在∠APC 的角平分线上 ∴∠DPA =∠DPC经典题(五)1、设P 是边长为1的正△ABC 任一点,L =PA +PB +PC ,求证:3≤L <2. 证明:(1)将△BPC 绕B 点顺时针旋转60°的△BEF ,连接PE ,∵BP=BE ,∠PBE=60° ∴△PBE 是正三角形。

专题25 圆的有关计算与证明(共50题)(原卷版)-2023年中考数学真题分项汇编(全国通用)

专题25 圆的有关计算与证明(共50题)(原卷版)-2023年中考数学真题分项汇编(全国通用)

专题25圆的有关计算与证明(50题)一、单选题1.(2023·新疆·统考中考真题)如图,在O 中,若30ACB ∠=︒,6OA =,则扇形OAB (阴影部分)的面积是()A .12πB .6πC .4πD .2π2.(2023·江苏连云港·统考中考真题)如图,矩形ABCD 内接于O ,分别以AB BC CD AD 、、、为直径向外作半圆.若4,5==AB BC ,则阴影部分的面积是()A .41204π-B .41202π-C .20πD .203.(2023·湖北荆州·统考中考真题)如图,一条公路的转弯处是一段圆弧( AC ),点O 是这段弧所在圆的圆心,B 为 AC 上一点,OB AC ⊥于D .若3003m AC =,150m BD =,则 AC 的长为()A .300m πB .200m πC .150m πD .1003mπA .21cm 4πB 5.(2023·四川达州·统考中考真题)如图,四边形段90︒的圆心角的圆心为为A BCD 、、、循环,则A .40452πB .20236.(2023·四川广安·统考中考真题)如图,在等腰直角心,AC 为半径画弧,交AB 于点积是()A .π2-B .2π2-7.(2023·江苏苏州·统考中考真题)如图,AB 是半圆O 的直径,点,C D 在半圆上, CDDB =,连接,,OC CA OD ,过点B 作EB AB ⊥,交OD 的延长线于点E .设OAC 的面积为1,S OBE △的面积为2S ,若1223S S =,则tan ACO ∠的值为()A .2B .223C .75D .32二、填空题8.(2023·重庆·统考中考真题)如图,在矩形ABCD 中,2AB =,4BC =,E 为BC 的中点,连接AE DE ,,以E 为圆心,EB 长为半径画弧,分别与AE DE ,交于点M ,N ,则图中阴影部分的面积为________.(结果保留π)9.(2023·黑龙江绥化·统考中考真题)如图,O 的半径为2cm ,AB 为O 的弦,点C 为 AB 上的一点,将 AB 沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为_______.(结果保留π与根号)10.(2023·重庆·统考中考真题)如图,O 是矩形ABCD 的外接圆,若4,3AB AD ==,则图中阴影部分的面积为___________.(结果保留π)14.(2023·天津·统考中考真题)如图,在每个小正方形的边长为且顶点A,B均在格点上.(1)线段AB的长为________(2)若点D在圆上,AB与CD为等边三角形,并简要说明点15.(2023·江苏苏州·统考中考真题)如图,在H AH=.以点A为圆心,,3一个圆锥的侧面,记这个圆锥底面圆的半径为r r-=________________的半径为2r,则1216.(2023·四川自贡·统考中考真题)如图,小珍同学用半径为8cm ,圆心角为100︒的扇形纸片,制作一个底面半径为2cm 的圆锥侧面,则圆锥上粘贴部分的面积是________2cm .三、解答题17.(2023·四川南充·统考中考真题)如图,AB 与O 相切于点A ,半径OC AB ∥,BC 与O 相交于点D ,连接AD .(1)求证:OCA ADC ∠∠=;(2)若12,tan 3AD B ==,求OC 的长.18.(2023·四川成都·统考中考真题)如图,以ABC 的边AC 为直径作O ,交BC 边于点D ,过点C 作CE AB ∥交O 于点E ,连接AD DE ,,B ADE ∠=∠.(1)求证:AC BC =;(2)若tan 23B CD ==,,求AB 和DE 的长.(1)求证:90ADC BAC ∠-∠=︒;(请用两种证法解答)(2)若ACP ADC ∠=∠,O 的半径为3,4CP =,求AP 的长.(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DG 235,4AD DE ==,求DG 的长.21.(2023·浙江杭州·统考中考真题)在边长为1的正方形ABCD 中,点射线BE 与射线CD 交于点F .(1)若13ED =,求DF 的长.(2)求证:1AE CF ⋅=.(3)以点B 为圆心,BC 长为半径画弧,交线段BE 于点G .若EG ED =,求ED 的长.22.(2023·河北·统考中考真题)装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(1)求证:2AOB ∠=∠(2)若4,5AB BC ==径,45ABD ∠=︒,直线l 与三条线段CD 、CA 、DA 的延长线分别交于点E 、F 、G .且满足45CFE ∠=︒.(1)求证:直线l ⊥直线CE ;(2)若AB DG =;①求证:ABC GDE △≌△;②若312R CE ==,,求四边形ABCD 的周长.25.(2023·天津·统考中考真题)在O 中,半径OC 垂直于弦AB ,垂足为D ,60AOC ∠=︒,E 为弦AB 所对的优弧上一点.(1)如图①,求AOB ∠和CEB ∠的大小;(2)如图②,CE 与AB 相交于点F ,EF EB =,过点E 作O 的切线,与CO 的延长线相交于点G ,若3OA =,求EG 的长.26.(2023·江苏苏州·统考中考真题)如图,ABC 是O 的内接三角形,AB 是O 的直径,5,25AC BC ==,点F 在AB 上,连接CF 并延长,交O 于点D ,连接BD ,作BE CD ⊥,垂足为E .(1)求证:DBE ABC △∽△;(2)若2AF =,求ED 的长.27.(2023·四川达州·统考中考真题)如图,ABC ABD 、内接于O AB BC P = ,,是OB 延长线上的一点,PAB ACB ∠=∠,AC BD 、相交于点E .(1)求证:AP 是O 的切线;(2)若24BE DE ==,,30P ∠=︒,求AP 的长.28.(2023·湖南·统考中考真题)如图,AB 是O 的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,交O 于点H ,DB 交AC 于点G .(1)求证:AF DF =.(2)若55,sin 25AF ABD =∠=,求O 的半径.29.(2023·湖南怀化·统考中考真题)如图,AB 是O 的直径,点P 是O 外一点,PA 与O 相切于点A ,点C 为O 上的一点.连接PC 、AC 、OC ,且PC PA =.(1)求证:PC 为O 的切线;(2)延长PC 与AB 的延长线交于点D ,求证:PD OC PA OD ⋅=⋅;(3)若308CAB OD ∠=︒=,,求阴影部分的面积.30.(2023·四川眉山·统考中考真题)如图,ABC 中,以AB 为直径的O 交BC 于点E .AE 平分BAC ∠,过点E 作ED AC ⊥于点D ,延长DE 交AB 的延长线于点P .(1)求证:PE 是O 的切线;(2)若1sin ,43P BP ∠==,求CD 的长.31.(2023·安徽·统考中考真题)已知四边形(1)如图1,连接,OA CA ,若OA BD ⊥,求证;CA 平分BCD ∠;(2)如图2,E 为O 内一点,满足,AE BC CE AB ⊥⊥,若BD =32.(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.ABC 是等边三角形.BA BC ∴=,(SAS)PBC EBA ∴ ≌请你补全余下的证明过程.【应用】如图③,O 是ABC 的外接圆,90ABC AB BC ∠=︒=,,点P 在O 上,且点P 与点B 在AC 的两侧,连结PA 、PB 、PC .若22PB PA =,则PB PC的值为__________.33.(2023·四川泸州·统考中考真题)如图,AB 是O 的直径,210AB =,O 的弦CD AB ⊥于点E ,6CD =.过点C 作O 的切线交AB 的延长线于点F ,连接BC .∠;(1)求证:BC平分DCF(2)G为 AD上一点,连接CG交AB于点H,若34.(2023·黑龙江绥化·统考中考真题)如图,行弦,弦AB交MC于点H.点A在¼MC上,点⋅=⋅.(1)求证:MH CH AH BH(2)求证:AC BC=.(3)在⊙O中,沿弦ND所在的直线作劣弧ND NG的长.35.(2023·广东·统考中考真题)综合探究如图1,在矩形ABCD中(AB>BD于点E,连接CA'.(1)求证:AA CA '⊥';(2)以点O 为圆心,OE 为半径作圆.①如图2,O 与CD 相切,求证:3AA CA '=';②如图3,O 与CA '相切,1AD =,求O 的面积.36.(2023·山东·统考中考真题)如图,AB 为O 的直径,C 是圆上一点,D 是 BC 的中点,弦DE AB ⊥,垂足为点F .(1)求证:BC DE =;(2)P 是»AE 上一点,6,2AC BF ==,求tan BPC ∠;(3)在(2)的条件下,当CP 是ACB ∠的平分线时,求CP 的长.37.(2023·山东·统考中考真题)如图,已知AB 是O 的直径,CD CB =,BE 切O 于点B ,过点C 作CF OE ⊥交BE 于点F ,若2EF BF =.(1)如图1,连接BD ,求证:ADB OBE △≌△;(2)如图2,N 是AD 上一点,在AB 上取一点M ,使60MCN ∠=︒,连接MN .请问:三条线段MN BM DN ,,有怎样的数量关系?并证明你的结论.38.(2023·浙江杭州·统考中考真题)如图,在O 中,直径AB 垂直弦CD 于点E ,连接,,AC AD BC ,作CF AD ⊥于点F ,交线段OB 于点G (不与点,O B 重合),连接OF .(1)若1BE =,求GE 的长.(2)求证:2BC BG BO =⋅.(3)若FO FG =,猜想CAD ∠的度数,并证明你的结论.39.(2023·湖北宜昌·统考中考真题)如图1,已知AB 是O 的直径,PB 是O 的切线,PA 交O 于点C ,43AB PB ==,.(1)填空:PBA ∠的度数是_________,PA 的长为_________;(2)求ABC 的面积;(3)如图2,CD AB ⊥,垂足为D .E 是 AC 上一点,5AE EC =.延长AE ,与DC ,BP 的延长线分别交于点,F G ,求EF FG的值.40.(2023·山东滨州·统考中考真题)如图,点E 是ABC 的内心,AE 的延长线与边BC 相交于点F ,与ABC 的外接圆相交于点D .(1)求证:::ABF ACF S S AB AC =△△;(2)求证:::AB AC BF CF =;(3)求证:2AF AB AC BF CF =⋅-⋅;(4)猜想:线段,,DF DE DA 三者之间存在的等量关系.(直接写出,不需证明.)41.(2023·浙江台州·统考中考真题)我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系,用直线上点的位置刻画圆上点的位置,如图,AB 是O 的直径,直线l 是O 的切线,B 为切点.P ,Q 是圆上两点(不与点A 重合,且在直径AB 的同侧),分别作射线AP ,AQ 交直线l 于点C ,点D .(1)如图1,当6AB =,BP的长为π时,求BC 的长.(2)如图2,当34AQ AB =, BP PQ =时,求BC CD的值.(3)如图3,当6sin 4BAQ ∠=,BC CD =时,连接BP ,PQ ,直接写出(1)求CE 的长和y 关于x 的函数表达式.(2)当PH PN <,且长度分别等于PH ,PN ,a 的三条线段组成的三角形与(3)延长PN 交半圆O 于点Q ,当1534NQ x =-时,求43.(2023·新疆·统考中考真题)如图,AB 是O 的直径,点接AF ,过点C 作AF 的垂线,交AF 的延长线于点D 交AC 于点H .(1)求证:CE 是O 的切线;(2)若tan 34E =,4BE =,求FH 的长.44.(2023·云南·统考中考真题)如图,BC 是O 的直径,A 是O 上异于B C 、的点.O 外的点E 在射线CB 上,直线EA 与CD 垂直,垂足为D ,且DA AC DC AB ⋅=⋅.设ABE 的面积为1,S ACD 的面积为2S .(1)判断直线EA 与O 的位置关系,并证明你的结论;(2)若21,BC BE S mS ==,求常数m 的值.45.(2023·浙江宁波·统考中考真题)如图1,锐角ABC 内接于O ,D 为BC 的中点,连接AD 并延长交O 于点E ,连接,BE CE ,过C 作AC 的垂线交AE 于点F ,点G 在AD 上,连接,BG CG ,若BC 平分EBG ∠且BCG AFC ∠=∠.(1)求BGC ∠的度数.(2)①求证:AF BC =.②若AG DF =,求tan GBC ∠的值,(3)如图2,当点O 恰好在BG 上且1OG =时,求AC 46.(2023·四川遂宁·统考中考真题)如图,四边形D 的直线l 交BA 的延长线于点M ,交BC 的延长线于点(1)求证:MN 是O 的切线;(2)求证:2AD AB CN =⋅;(3)当6AB =,3sin 3DCA ∠=时,求AM 的长.47.(2023·四川广安·统考中考真题)如图,以Rt ABC △E 是BC 的中点,连接OE DE 、.(1)求证:DE 是O 的切线.(2)若4sin ,55C DE ==,求AD 的长.(3)求证:22DE CD OE =⋅.48.(2023·浙江嘉兴·统考中考真题)已知,AB 是半径为1的O 的弦,O 的另一条弦CD 满足CD AB =,且CD AB ⊥于点H (其中点H 在圆内,且AH BH CH DH >>,).(1)在图1中用尺规作出弦CD 与点H (不写作法,保留作图痕迹).(2)连结AD ,猜想,当弦AB 的长度发生变化时,线段AD 的长度是否变化?若发生变化,说明理由:若不变,求出AD 的长度;(3)如图2,延长AH 至点F ,使得HF AH =,连结CF ,HCF ∠的平分线CP 交AD 的延长线于点P ,点M 为AP 的中点,连结HM ,若12PD AD =.求证:MH CP ⊥.49.(2023·浙江·统考中考真题)如图,在O 中,AB 是一条不过圆心O 的弦,点,C D 是 AB 的三等分点,直径CE 交AB 于点F ,连结AD 交CF 于点G ,连结AC ,过点C 的切线交BA 的延长线于点H .(1)求证:AD HC ∥;(2)若2OG GC=,求tan FAG ∠的值;(3)连结BC 交AD 于点N ,若O ①若52OF =,求BC 的长;②若10AH =,求ANB 的周长;③若88HF AB ⋅=,求BHC △的面积.50.(2023·四川宜宾·统考中考真题)如图,以CD AF ⊥交AF 的延长线于点D ,交点N .(1)求证:CD 是O 的切线;(2)求证:EM EN =;(3)如果N 是CM 的中点,且AB =。

初中数学几何证明经典试题(含答案)

初中数学几何证明经典试题(含答案)

初中数学几何证明经典试题(含答案)初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二).如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH =∠OEG,即△GHF∽△OGE,可得EOG F=G OG H=C OC D,又CO=EO,所以CD=GF得证。

2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH =∠OEG,即△GHF∽△OGE,可得EOG FG OG H=C OC D,又CO=EO,所以CD=GF得证。

.如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH =∠OEG,即△GHF∽△OGE,可得EOG F=G OG H=C OC D,又CO=EO,所以CD=GF得证。

APCDBAFGCEBO3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)D 2C 2 B 2A 2D 1C 1B 1C B DAA 1BF2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD.(初三)经典1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC 上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。

初中数学几何证明经典试题(含答案)

初中数学几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二)。

如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE ,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

APCDBAFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM; (2)若∠BAC =600,求证:AH =AO .(初二)D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 A N FE CDMB · A HEOF2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC,AE =AC,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC,且CE =CA,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线D .求证:AB =DC ,BC =AD.(初三)经典1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a,PB =2a ,PC =3a,求正方形的边长.C BD A F PD E CB A APCBACPDA CBPD4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。

初三圆的证明题

初三圆的证明题

1、已知圆O的半径为5cm,点P到圆心O的距离为3cm,则点P与圆O的位置关系是A. 点P在圆O内B. 点P在圆O上C. 点P在圆O外D. 无法确定(答案)A2、圆O中,弦AB与弦CD相交于点E,若∠AEC = 60°,且AE = CE,则∠ADC等于A. 30°B. 60°C. 90°D. 120°(答案)B3、在圆O中,直径AB垂直于弦CD于点E,若AB = 10,CD = 6,则OE的长度为A. 8B. 5C. 4D. 3(答案)C4、圆O的内接四边形ABCD中,∠A : ∠B : ∠C = 2 : 3 : 4,则∠D的度数为A. 60°B. 90°C. 120°D. 150°(答案)B5、已知圆O的两条弦AB和CD相交于点P,若AP = PB,且∠APD = 60°,则∠CPD的度数为A. 30°B. 60°C. 90°D. 120°(答案)D6、圆O的半径为r,点A、B、C在圆上,且AB = BC,若∠AOB = 120°,则△ABC的面积为A. (√3/4)r2B. (√3/2)r2C. (3/4)r2D. r2(答案)A7、圆O的切线l与半径OA垂直于点A,点B在切线l上,且OB = 2OA,则∠OBA的度数为A. 30°B. 45°C. 60°D. 90°(答案)C8、在圆O中,弦AB与弦AC的夹角为60°,若AB = AC,且圆的半径为R,则△ABC的面积为A. (√3/2)R2B. (√3/4)R2C. (1/2)R2D. (1/4)R2(答案)B。

初中经典几何证明练习题集(含答案解析)

初中经典几何证明练习题集(含答案解析)

初中经典几何证明练习题集(含答案解析)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .证明:过点G 作GH ⊥AB 于H ,连接OE∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90°∴∠EGO+∠EFO=180°∴E 、G 、O 、F 四点共圆∴∠GEO=∠HFG∵∠EGO=∠FHG=90°∴△EGO ∽△FHG ∴FG EO =HGGO ∵GH ⊥AB ,CD ⊥AB∴GH ∥CD ∴CDCO HG GO = ∴CD CO FG EO = ∵EO=CO∴CD=GF2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。

求证:△PBC 是正三角形.(初二)证明:作正三角形ADM ,连接MP∵∠MAD=60°,∠PAD=15°∴∠MAP=∠MAD+∠PAD=75°∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75°∴∠BAP=∠MAP∵MA=BA,AP=AP∴△MAP≌△BAP∴∠BPA=∠MPA,MP=BP同理∠CPD=∠MPD,MP=CP∵∠PAD=∠PDA=15°∴PA=PD,∠BAP=∠CDP=75°∵BA=CD∴△BAP≌∠CDP∴∠BPA=∠CPD∵∠BPA=∠MPA,∠CPD=∠MPD∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP,MP=CP ∴BP=CP ∴△BPC是正三角形3、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.证明:连接AC,取AC的中点G,连接NG、MG∵CN=DN,CG=DG1AD∴GN∥AD,GN=2∴∠DEN=∠GNM∵AM=BM,AG=CG1BC∴GM∥BC,GM=2∴∠F=∠GMN∵AD=BC∴GN=GM∴∠GMN=∠GNM∴∠DEN=∠F经典题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)证明:(1)延长AD交圆于F,连接BF,过点O作OG⊥AD于G∵OG⊥AF∴AG=FG∵AB⌒ =AB⌒∴∠F=∠ACB又AD⊥BC,BE⊥AC∴∠BHD+∠DBH=90°∠ACB+∠DBH=90°∴∠ACB=∠BHD∴∠F=∠BHD∴BH=BF又AD⊥BC∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH)=2GD 又AD⊥BC,OM⊥BC,OG⊥AD∴四边形OMDG是矩形∴OM=GD ∴AH=2OM(2)连接OB、OC∵∠BAC=60∴∠BOC=120°∵OB=OC,OM⊥BC1∠BOC=60°∴∠OBM=30°∴∠BOM=2∴BO=2OM由(1)知AH=2OM∴AH=BO=AO2、设MN是圆O外一条直线,过O作OA⊥MN于A,自A引圆的两条割线交圆O于B、C及D、E,连接CD并延长交MN于Q,连接EB并延长交MN于P.求证:AP=AQ.证明:作点E关于AG的对称点F,连接AF、CF、QF∵AG⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF即∠PAE=∠QAF∵E、F、C、D四点共圆∴∠AEF+∠FCQ=180°∵EF⊥AG,PQ⊥AG∴EF∥PQ∴∠PAF=∠AFE∵AF=AE∴∠AFE=∠AEF∴∠AEF=∠PAF∵∠PAF+∠QAF=180°∴∠FCQ=∠QAF∴F、C、A、Q四点共圆∴∠AFQ=∠ACQ又∠AEP=∠ACQ∴∠AFQ=∠AEP 在△AEP和△AFQ中∠AFQ=∠AEPAF=AE∠QAF=∠PAE∴△AEP≌△AFQ ∴AP=AQ3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG∵C 、D 、B 、E 四点共圆∴∠B=∠D ,∠E=∠C∴△ABE ∽△ADC ∴DF BGFD 2BG 2DC BEAD AB ===∴△ABG ∽△ADF∴∠AGB=∠AFD∴∠AGE=∠AFC∵AM=AN ,∴OA ⊥MN又OG ⊥BE ,∴∠OAQ+∠OGQ=180°∴O 、A 、Q 、E 四点共圆∴∠AOQ=∠AGE同理∠AOP=∠AFC∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA∴△OAQ ≌△OAP∴AP=AQ4、如图,分别以△ABC的AB和AC为一边,在△ABC的外侧作正方形ABFG和正方形ACDE,点O是DF的中点,OP⊥BC求证:BC=2OP(初二)证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、N∵OF=OD,DN∥OP∥FL∴PN=PL∴OP是梯形DFLN的中位线∴DN+FL=2OP∵ABFG是正方形∴∠ABM+∠FBL=90°又∠BFL+∠FBL=90°∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB∴△BFL≌△ABM∴FL=BM同理△AMC≌△CND∴CM=DN∴BM+CN=FL+DN∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)证明:连接BD 交AC 于O 。

初三经典几何证明练习题(含问题详解)

初三经典几何证明练习题(含问题详解)

初三几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.2、已知:如图,P是正方形ABCD部的一点,∠PAD=∠PDA=15°。

求证:△PBC是正三角形.(初二)3、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.2、设MN是圆O外一条直线,过O作OA⊥MN于A,自A引圆的两条割线交圆O于B、C及D、E,连接CD并延长交MN于Q,连接EB并延长交MN于P.求证:AP=AQ.3、如图,分别以△ABC的AB和AC为一边,在△ABC的外侧作正方形ABFG和正方形ACDE,点O是DF的中点,OP⊥BC求证:BC=2OP证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、N∵OF=OD,DN∥OP∥FL∴PN=PL∴OP是梯形DFLN的中位线∴DN+FL=2OP∵ABFG是正方形∴∠ABM+∠FBL=90°又∠BFL+∠FBL=90°∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB∴△BFL≌△ABM∴FL=BM同理△AMC≌△CND∴CM=DN∴BM+CN=FL+DN∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.证明:连接BD 交AC 于O 。

过点E 作EG ⊥AC 于G ∵ABCD 是正方形 ∴BD ⊥AC 又EG ⊥AC ∴BD ∥EG 又DE ∥AC ∴ODEG 是平行四边形 又∠COD=90° ∴ODEG 是矩形 ∴EG=OD=21BD=21AC=21AE ∴∠EAG=30°∵AC=AE∴∠ACE=∠AEC=75° 又∠AFD=90°-15°=75° ∴∠CFE=∠AFD=75°=∠AEC ∴CE=CF2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .证明:连接BD ,过点E 作EG ⊥AC 于G ∵ABCD 是正方形 ∴BD ⊥AC ,又EG ⊥AC ∴BD ∥EG 又DE ∥AC∴ODEG 是平行四边形又∠COD=90° ∴ODEG 是矩形∴EG =OD =21BD=21AC=21CE∴∠GCE=30°∵AC=EC3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)证明:过点F 作FG ⊥CE 于G ,FH ⊥CD 于H ∵CD ⊥CG ∴HCGF 是矩形 ∵∠HCF=∠GCF ∴FH=FG ∴HCGF 是正方形 ∴CG=GF ∵AP ⊥FP ∴∠APB+∠FPG=90° ∵∠APB+∠BAP=90° ∴∠FPG=∠BAP 又∠FGP=∠PBA ∴△FGP ∽△PBA 设AB=x ,BP=y ,CG=z z :y=(x-y+z ):x 化简得(x-y )·y =(x-y )·z ∵x-y ≠0 ∴y=z 即BP=FG∴△ABP ≌△PGF∴∠CAE=∠CEA=21∠GCE=15°在△AFC 中∠F =180°-∠FAC-∠ACF =180°-∠FAC-∠GCE =180°-135°-30°=15° ∴∠F=∠CEA ∴AE=AFPE PB A∴FG :PB=PG :AB4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D . 求证:AB =DC ,BC =AD .(初三)证明:过点E 作EK ∥BD ,分别交AC 、AF 于M 、K ,取EF 的中点H , 连接OH 、MH 、EC ∵EH=FH∴OH ⊥EF ,∴∠PHO=90° 又PC ⊥OC ,∴∠POC=90° ∴P 、C 、H 、O 四点共圆 ∴∠HCO=∠HPO 又EK ∥BD ,∴∠HPO=∠HEK ∴∠HCM=∠HEM ∴H 、C 、E 、M 四点共圆 ∴∠ECM=∠EHM 又∠ECM=∠EFA ∴∠EHM=∠EFA ∴HM ∥AC ∵EH=FH经典题(四)1、已知:△ABC 是正三角形,P 是三角形一点,PA =3,PB =4,PC =5. 求∠APB 的度数.(初二)解:将△ABP 绕点B 顺时针方向旋转60°得△BCQ ,连接PQ 则△BPQ 是正三角形 ∴∠BQP=60°,PQ=PB=3在△PQC 中,PQ=4,CQ=AP=3,PC=5 ∴△PQC 是直角三角形 ∴∠PQC=90°∴∠BQC=∠BQP+∠PQC=60°+90°=150° ∴∠APB=∠BQC=150°2、设P 是平行四边形ABCD 部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)证明:过点P 作AD 的平行线,过点A 作PD 的平行线, 两平行线相交于点E ,连接BE ∵PE ∥AD ,AE ∥PD∴ADPE 是平行四边形∴PE=AD ,又ABCD 是平行四边形∴AD=BC∴PE=BC又PE ∥AD ,AD ∥BC ∴PE ∥BC ∴BCPE 是平行四边形 ∴∠BEP=∠PCB ∵ADPE 是平行四边形 ∴∠ADP=∠AEP∴EM=KM ∵EK ∥BD ∴KMODAM AO EM OB == ∴OB=OD 又AO=CO ∴四边形ABCD 的对角线互相平分 ∴ABCD 是平行四边形 ∴AB=DC ,BC=AD 又∠ADP=∠ABP ∴∠AEP=∠ABP ∴A 、E 、B 、P 四点共圆 ∴∠BEP=∠PAB ∴∠PAB=∠PCB3、设ABCD 为圆接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三) 证明:在BD 上去一点E ,使∠BCE=∠ACD ∵CD⌒ =CD ⌒ ∴∠CAD=∠CBD ∴△BEC ∽△ADC∴ACBC AD BE = ∴AD ·BC=BE ·AC ……………………① ∵∠BCE=∠ACD∴∠BCE+∠ACE=∠ACD+∠ACE 即∠BCA=∠ECD ∵BC⌒=BC ⌒,∴∠BAC=∠BDC △BAC ∽△EDC ∴CDACDE AB =∴AB ·CD=DE ·AC ……………………②4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)证明:过点D 作DG ⊥AE 于G ,作DH ⊥FC 于H ,连接DF 、∴S △ADE =12AE ·DG ,S △FDC =12FC ·DH又S △ADE =S △FDC =12S □ABCD∴AE ·DG=FC ·DH 又AE=CF ∴DG=DH∴点D 在∠APC 的角平分线上 ∴∠DPA =∠DPC经典题(五)1、设P 是边长为1的正△ABC 任一点,L =PA +PB +PC ,求证:3≤L <2. 证明:(1)将△BPC 绕B 点顺时针旋转60°的△BEF ,连接PE , ∵BP=BE ,∠PBE=60° ∴△PBE 是正三角形。

(完整版)初中数学圆的证明题专项练习大全(精华)

(完整版)初中数学圆的证明题专项练习大全(精华)

OABCDE圆有关的证明题专项练习1、如图,△ABC 内接于⊙O ,AD 是的边BC 上的高,AE 是⊙O 的直径,连BE. (1)求证:△ABE ∽△ADC ;(2)若AB=2BE=4DC=8,求△ADC 的面积.2、如图,AE 是△ABC 外接圆⊙O 的直径,AD 是△ABC 的边BC 上的高, EF ⊥BC ,F 为垂足。

(1)求证:BF=CD(2)若CD=1,AD=3,BD=6,求⊙O 的直径。

5、如图,AB 是⊙O 的直径,D 是AB 上一点,D 是弧BC 的中点,AD 、BC 交于点E ,CF ⊥AB 于F ,CF 交AD 于G 。

(1)求证:AD =2CF ;(2)若AD=34,BC =62,求⊙O 的半径6、如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,E 为AB 延长线上一点,CE 交⊙O 于F 。

(1)求证:BF 平分∠DFE ;(2)若EF=DF=4,BE=5,CH=3,求⊙O 的半径7、如图,Rt △ABC 内接于⊙O ,D 为弧AC 的中点,DH ⊥AB 于点H ,延长BC 、HD 交于点E 。

(1)求证:AC=2DH ;(2)连接AE ,若DH=2,BC=3,求tan ∠AEB 的值8、在Rt △ABC 中,∠ACB=90º,D 是AB 边上一点,以BD 为直径的⊙O 与边AC 相切于点E ,连结DE 并延长,与BC 的延长线交于点F . (1)求证:BD=BF ;(2)若BC=6,AD=4,求ECF S 。

9、如图,⊙O 中, 直径DE ⊥弦AB 于H 点,C 为圆上一动点,AC 与DE 相交于点F 。

(1)求证△AOG ∽△FAO 。

(2)若OA=4,OF=8,H 点为OD 的中点,求CGF S 。

10、如图,在⊙O 中,弦AB 、CD 相交于AB 的中点E ,连接AD 并延长至F 点,使DF=AD,连接BC 、BF 。

(1)、求证:△CBE ∽△AFB 。

中考专题复习——圆的相关证明(附答案)

中考专题复习——圆的相关证明(附答案)

中考复习专题——圆的相关证明题1.在⊙O 中,AB 为直径,C 为⊙O 上一点.(Ⅰ)如图①,过点C 作⊙O 的切线,与AB 的延长线相交于点P ,若P ∠︒=42,求∠CAB 的大小; (Ⅱ)如图②,D 为上一点,且OD 经过AC 的中点E ,连接DC 并延长,与AB 的延长线相交于点P , 若∠CAB ︒=10,求∠P 的大小.2.已知AB 是⊙O 的直径,C 是⊙O 上一点,过点C 作⊙O 的切线,交AB 的延长线于点P .(Ⅰ)如图①,连接AC ,BC ,若OB BP =,求A ∠和∠P 的大小;(Ⅱ)如图②,过点P 作⊙O 的切线PD ,切点为D ,连接CD ,BD ,若∠BDC =32°,求BDP ∠的大小.图①图②O B COB D CPE AC3.已知点A ,B ,C 是⊙O 上的三个点,︒=∠120AOB . (Ⅰ)如图①,若AC =BC ,求C ∠和CAO ∠的大小;(Ⅱ)如图②,过点C 作⊙O 的切线,交BA 的延长线于点D ,若AC =AD ,求CAO ∠的大小.4.已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,AD 交⊙O 于点E .(Ⅰ)如图①,求证:AC 平分DAB ∠;(Ⅱ)如图②,过B 作BF AD ∥交⊙O 于点F ,连接CF ,若45AC =4DC =,求CF 和⊙O 半径的长. ABCDEO图①ABCDEO图②F5.已知,△DBC内接于⊙O,DB=DC.(Ⅰ)如图①,过点B作射线BE交⊙O于点A,若∠EAD=75°,求∠BDC的度数.(Ⅱ)如图②,分别过点B、点D作⊙O的切线相交于点E,若∠E=30°,求∠BDC的度数.①②6.已知P A,PB分别与⊙O相切于点A,B,PO交⊙O于点F,且其延长线交⊙O于点C,∠BCP=28°,E为CF上一点,延长BE交⊙O于点D.(Ⅰ)如图1,求∠CDB与∠APB的大小;(Ⅱ)如图2,当BC=CE时,求∠PBE的大小.7.在ABC △中90B ∠=︒D 为AC 上一点,以CD 为直径的⊙O 与AB 相切于点E ,与BC 相交于点F ,连接CE .(Ⅰ)如图①,若27ACE ∠=︒,求A ∠和ECB ∠的大小; (Ⅱ)如图②,连接EF ,若//EF AC ,求A ∠的大小.8. 已知:在⊙O 中OA BC ⊥垂足为E ,点D 在⊙O 上.(Ⅰ)如图①若50AOB ∠=︒,求ADC ∠和∠CAO 的大小;(Ⅱ)如图②CD ∥AO ,过点D 作⊙O 的切线,与BC 的延长线相交于点P ,若26∠=︒ABC 求∠P 的大小.图①图②ABCF OED ABCOED F 图①O EDCBA图②POE DCBA9.如图,在⊙O 中,直径AB 与弦CD 相交于点E ,58ABC ∠=︒. (Ⅰ)如图①若85AEC ∠=︒,求BAD ∠和CDB ∠的大小;(Ⅱ)如图②若CD AB ⊥过点D 作⊙O 的切线DF ,与AB 的延长线相交于点F ,求F ∠的大小.10. 已知AB 是⊙O 的直径,CD 、CB 是⊙O 的弦,且AB CD ∥.(Ⅰ)如图①若25ABC ∠=︒,求BAC ∠和ODC ∠的大小;(Ⅱ)如图②过点C 作⊙O 的切线,与BA 的延长线交于点F 若OD CF ∥求ABC ∠的大小.图①图②EABO DCFE ABO DC图②图①11. 如图,⊙O 是△ABC 的外接圆,AE 切⊙O 于点A ,AE 与直径BD 的延长线相交于点E .(Ⅰ)如图①,若∠C =71°,求∠E 的大小;(Ⅱ)如图②,当AE =AB ,DE =2时,求∠E 的大小和⊙O 的半径.12. 已知DA 、DC 分别与⊙O 相切于点A 点C ,延长DC 交直径AE 的延长线于点P . (Ⅰ)如图①若DC =PC ,求∠P 的度数;(Ⅱ)如图②在⊙O 上取一点B ,连接AB 、BC 、BE ,当四边形ABCD 是平行四边形时,求∠P 及∠AEB 的大小. OEEDCBAD O C BA图①图②DECAPOB图① 图②ECAPOD13.如图①,AB 是⊙O 的弦,OE ⊥AB ,垂足为P ,交AB 于点E ,且OP =3PE ,AB =74.(Ⅰ)求⊙O 的半径;(Ⅱ)如图②过点E 作⊙O 的切线CD ,连接OB 并延长与该切线交于点D ,延长OA 交CD 于C ,求OC 的长. 图②图①EP A BCODP EOBA参考答案1.解:(Ⅰ)如图,连接OC∵ ⊙O 与PC 相切于点C ∴ OC PC ⊥,即90OCP ∠=︒ ∵ 42P ∠=︒∴ 9048COB P ∠=︒-∠=︒ 在Rt OPC △中,48CAB ACO COP ∠+∠=∠=︒ ∵OA =OC ∴∠CAB =∠ACO ∴ 24CAB ∠=︒(Ⅱ)∵ E 为AC 的中点∴ OD AC ⊥,即90AEO ∠=︒在Rt AOE △中,由10EAO ∠=︒得9080AOE EAO ∠=︒-∠=︒ ∴ 1402ACD AOD ∠=∠=︒∵ ACD ∠是ACP △的一个外角∴ 30P ACD CAP ∠=∠-∠=︒2. 解:(Ⅰ)如图①连接OC ∵PC 是⊙O 的切线∴︒=∠90OCP ∵OB BP =∴OB BC =∵OC OB =∴BOC ∆为等边三角形, ∴∠BOC=60° ∴︒=∠=∠3021BOC A ∠P=90°-∠COB =30°(Ⅱ)如图② 连接OC 、OD 设CD 交OP 于点E∵PC ,PD 是⊙O 的切线∴PD PC = ︒=∠=∠90ODP OCP ∵OD OC =∴OP 为CD 的垂直平分线 ∴︒=∠=∠90DEP CEP∵∠BDC =32°∴∠OBD =90°-∠BDC =58° ∵OB OD =∴∠ODB =∠OBD =58° ∴∠BDP =90°-58°=32°3.解: (Ⅰ)∵︒=∠120AOB ∴∠ACB= 12 ∠AOB=60°如图① 连接OC∵AC =BC ∴∠AOC=∠BOC∵∠AOC+∠BOC +∠AOB=360° ∴∠AOC =12 (360°-120°)=120° ∵OA OC ∴∠CAO=∠ACO=12(180°-120°)=30°O AB PCOAB D CPE(Ⅱ)如图② 连接OC设∠ACD= x ∵ACAD ∴∠ACD =∠ADC= x∴∠CAB=2x ∵∠AOB=120°OAOB ∴∠OAB =∠OBA= 12(180°-120°)=30°∵CD 是⊙O 的切线∴∠OCD=90° ∵OAOC ∴∠OCA =∠OAC∴90°-x=2x -30° 解得x=40° ∴∠CAB=80°∴∠CAO=∠CAB -∠OAB =50°4.(Ⅰ)证明:连接OC ∵CD 为⊙的切线∴OC CD ⊥即90OCM OCD ∠=∠=︒ ∵AD CD ⊥垂足为D ∴90ADC ∠=︒ ∵90ADC OCM ∠=∠=︒∴OC AD ∥ ∴DAC ACO ∠=∠∵OC OA =∴CAO ACO ∠=∠∴DAC CAO ∠=∠∴AC 平分DAB ∠ (Ⅱ)解:连接AF 延长CO 交AF 于G ∵AB 为⊙的直径 ∴=90AFB ∠︒ ∵OC AD BF AD ∥,∥ ∴CO BF ∥∴90AFB AGC ∠=∠=︒ ∴OC AF ⊥由垂径定理可得AC=CF∴45AC CF == ∵90ADC ∠=︒22O O ABC DEOF GABCDEOM∴90ADC DCO AGC ∠=∠=∠=︒ ∴四边形ADCG 是矩形∴8AD CG == 4CD AG == 在Rt AGO 中,得222AG OG AO += 设OC x =则,8OA x OG x ==- 可得方程()22248x x +-=解得5x =. ∴⊙半径的长为545CF =.5.(Ⅰ)解:∵四边形ABCD 是⊙O 的内接四边形∴∠DAB +∠C =180° ∵∠EAD +∠DAB =180° ∴∠C =∠EAD ∵∠EAD =75° ∴∠C =75° ∵DB =DC∴∠DBC =∠C =75°∴∠BDC =180°﹣∠C ﹣∠DBC =30°(Ⅱ)解:连结OB OD∵EB ED 与⊙O 相切于点B 点D∴ED OD ⊥⊥,EB OB ∴ ︒=∠︒=∠90ODE 90,OBE∵︒=∠+∠+∠+∠360BOD ODE E OBE ︒=∠30E ∴︒=∠150BOD∴︒=∠=∠7521BOD C ∵DB =DC ,∴∠DBC =∠C =75°,∴∠BDC =180°﹣∠C ﹣∠DBC =30° O6. (I )解:连接OB∵P A 、PB 与圆O 相切于点A 点,B∴PO 平分∠APB 且∠PBO =90° ∵∠BCP =28°∴∠BOP =2∠BCP =28°×2=56° ∴∠BPO =90°-∠BOP =90°-56°=34° ∴∠APB =2∠BPO =2×34°=68°又∠BDC =BOC ∠21=)180(21BOP ∠- ∴∠BDC = 62)56180(21=-∴∠APB =68°∠BDC= 62 (II )连接OB∵BC =CE ∴∠CBE =∠CEB∵∠BCP =28° ∴∠CBE =76228180=-∵OB =OC ∴∠OBC =∠OCB =28° ∴∠EBO =∠CBE -∠OBC =76°-28°=48° ∵P A 与圆O 相切于点A∴OB ⊥PB ∴∠PBO =90°∴∠PBE =90°- ∠EBO =90°-48°=42°7.解:(Ⅰ)如图连接OE .∵ AB 与⊙O 相切∴ OE AB ⊥,即90AEO ∠=︒ ∵ 27ACE ∠=︒∴ 254AOE ACE ∠=∠=︒ ∴ 9036A AOE ∠=︒-∠=︒ ∵ OE OC =∴ OEC OCE ∠=∠∵ 90B ∠=︒∴ //OE BC ∴ ECB OEC ∠=∠ ∴ 27ECB ∠=︒ (Ⅱ)如图,连接OE OF∵ //OE BC //EF AC ∴ 四边形OEFC 为平行四边形 ∴ OE CF = ∴ OC OF CF == ∴ 60ACB ∠=︒∴ 9030A ACB ∠=︒-∠=︒ABCOED F ABCF OED8. 解:(Ⅰ)∵OA BC ⊥ ∴AB AC = 90∠=︒AEC∴∠=∠ACB ADC ∵1252∠=∠=︒ACB AOB∴25∠=∠=︒ADC ACB9065∠=︒-∠=︒CAO ACB(Ⅱ)连接BD . 由OA BC ⊥知,90∠=∠=︒AEB BEO∴ 9064∠=︒-∠=︒OAB ABC ∵AO ∥CD ∴90∠=∠=︒BCD BEO ∴BD 是⊙O 的直径又PD 与⊙O 相切∴⊥BD PD . 即90∠=︒BDP∵=OA OB ∴64∠=∠=︒OBA OAB∴642636∠=∠-∠=︒-︒=︒CBD ABO ABC ∴9052∠=︒-∠=︒P CBD9. (Ⅰ)∵∠AEC 是ΔBEC 的一个外角 58ABC ∠=︒85AEC ∠=︒27C AEC ABC ∴∠=∠-∠=︒∵在⊙O 中BAD C ∠=∠27BAD ∴∠=︒ AB 为⊙O 的直径90ADB ∴∠=︒ ∵在⊙O 中58ADC ABC ∠=∠=︒ 又CDB ADB ADC ∠=∠-∠32CDB ∴∠=︒(Ⅱ)连接OD∵CD ⊥AB 90CEB ∴∠=︒.9032E E CB BC =-∴∠=∠︒︒∴264DOB DCB ∠=∠=︒ ∵DF 是⊙O 的切线∴90ODF ∠=︒90906426F DOB ∴∠=︒-∠=︒-︒=︒图②POE DCBA图①O E DCBA10. 解:(Ⅰ)如图连接OC ∵ AB 是⊙O 的直径 ∴ 90ACB ∠=︒∴ 90BAC ABC ∠+∠=︒由25ABC ∠=︒得65BAC ∠=︒又AB CD ∥得25ABC BCD ∠=∠=︒ ∵ OB OC = ∴ 25OCB ABC ∠==∠=︒ 则50OCD OCB BCD ∠=∠+∠=︒ 由OC OD =得50ODC OCD ∠=∠=︒(Ⅱ)如图,连接OC∵CF 切⊙O 于点C ∴OC FC ⊥则90OCF ∠=︒∵ OD CF ∥ ∴ 90DOC OCF ∠=∠=︒ 又OC OD =则45ODC OCD ∠==∠=︒ 由AB CD ∥得45BOD ODC ∠=∠=︒∴135BOC DOC BOD ∠=∠+∠=︒ ∵ OC OB = ∴22.5ABC OCB ∠=∠=︒11. 解:(Ⅰ)连接OA .∵AE 切⊙O 于点A ∴OA ⊥AE ,∴∠OAE =90° ∵∠C =71° ∴∠AOB =2∠C =2×71°=142° 又∵∠AOB +∠AOE =180° ∴∠AOE =38° ∵∠AOE +∠E =90° ∴∠E =90°﹣38°=52° (Ⅱ)连接OA 设∠E = x .∵AB =AE ∴∠ABE =∠E = x ∵OA =OB ∴∠OAB =∠ABO = x ∴∠AOE =∠ABO +∠BAO =2x∵AE 是⊙O 的切线∴OA ⊥AE ,即∠OAE =90°在△OAE 中∠AOE +∠E =90°即2x +x =90°解得30x =︒∴∠E =30° 在Rt △OAE 中OA =21OE∵OA =OD ∴OA =OD =DE∵DE =2∴OA =2即⊙O 的半径为212.解:(Ⅰ)∵DA 、DC 是⊙O 的切线 ∴DA =DC OA ⊥DA ∴∠DAO =90°∵DC =PC ∴DA =DC =PC ∵∠DAP =90° ∴sin P=DP AD =21∴∠P=30° (Ⅱ)连接OC 、AC∵DA ,DC 是⊙O 的切线 ∴DA =DC∵四边形ABCD 是平行四边形∴□ABCD 是菱形 ∴DA =DC =CB =AB ∠ABC =∠ADC ∵∠AOC =2∠ABC ∴∠AOC =2∠ADC∵DA 、DC 是⊙O 的切线∴OA ⊥AD OC ⊥DC ∴∠DAO =∠DCO =90°∵∠ADC +∠DCO+∠AOC +∠DAO =360° ∴∠ADC +∠AOC =180°∴3∠ADC =180°∴∠ADC =60°∴∠P =90°-∠ADC =30°,∠ABC =60°又AB =BC ∴△ABC 是等边三角形 ∴∠ACB =60° ∴∠AEB =∠ACB=60°13. 解:(Ⅰ)∵OE ⊥AB∴1272APAB 设PE =x 则OP =3x OA =OE =4x在Rt OAP △中222OA OP AP =+即2216928x x =+ 解得x =2(负舍)∴4x =8 ∴半径OA 为8 (Ⅱ)∵ CD 为⊙O 的切线 ∴OE ⊥CD又∵OE ⊥AB ∴AB //CD ∴34OA OP OCOE∴323OCECAPODB。

初中数学几何证明经典题含答案

初中数学几何证明经典题含答案

初中几何证明题经典题〔一〕1、:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.〔初二〕.如下列图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

2、:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.〔初二〕.如下列图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

.如下列图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

APCDBAFGCEBOD3、如图,四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.〔初二〕4、:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题〔二〕1、:△ABC 中,H 为垂心〔各边高线的交点〕,O 为外心,且OM ⊥BC 于M . 〔1〕求证:AH =2OM ; 〔2〕假设∠BAC =600,求证:AH =AO .〔初二〕D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 AN FE CDMB· A DHEM CBOF2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .〔初二〕3、如果上题把直线MN 由圆外平移至圆内,那么由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .〔初二〕4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题〔三〕1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .〔初二〕2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .〔初二〕3、设P 是正方形ABCD 一边求证:PA =PF .〔初二〕4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD.〔初三〕经典 1、:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5求:∠APB 的度数.〔初二〕2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .〔初二〕3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .〔初三〕4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .〔初二〕经典难题〔五〕1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.C BD A F PD E CB A APCBACBPDA CBPD4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题〔一〕⊥AB,连接EO。

中考难点突破圆的证明题50道(含详细解析)

中考难点突破圆的证明题50道(含详细解析)

中考难点突破——圆的证明题练习50道(含详细解析)一.解答题(共50小题)1.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.2.如图,已知△ABC内接于⊙O,AB是直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)填空:①当∠B=时,四边形OCAD是菱形;②当∠B=时,AD与⊙O相切.3.如图,AC是⊙O的直径,OB是⊙O的半径,PA切⊙O于点A,PB与AC的延长线交于点M,∠COB=∠APB.(1)求证:PB是⊙O的切线;(2)当OB=3,PA=6时,求MB、MC的长.4.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=√3,求⊙O的直径.5.如图,点B、C、D都在⊙O上,过点C作CA∥BD交OD的延长线于点A,连接BC,且∠B=∠A=30°,BD=2√3.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.6.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.7.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D 作DE⊥AC于点E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.8.如图,AB是⊙O的直径,C、D两点在⊙O上,若∠C=45°,(1)求∠ABD的度数;(2)若∠CDB=30°,BC=3,求⊙O的半径.9.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.10.如图,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求线段BC,AD,BD的长.11.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.12.如图,△ABC中,∠C=90°,AC=3,AB=5,点O在BC边的中线AD上,⊙O 与BC相切于点E,且∠OBA=∠OBC.(1)求证:AB为⊙O的切线;(2)求⊙O的半径;(3)求tan∠BAD.13.如图,⊙O的直径AD长为6,AB是弦,∠A=30°,CD∥AB,且CD=√3.(1)求∠C的度数;(2)求证:BC是⊙O的切线;(3)求阴影部分面积.14.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.15.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.16.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,经过A、D两点的圆的圆心O恰好落在AB上,⊙O分别与AB、AC相交于点E、F.(1)判断直线BC与⊙O的位置关系并证明;(2)若⊙O的半径为2,AC=3,求BD的长度.17.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.18.如图,△ABC 内接于⊙O ,∠B=60°,CD 是⊙O 的直径,点P 是CD 延长线上的一点,且AP=AC .(1)求证:PA 是⊙O 的切线;(2)若AB=4+√3,BC=2√3,求⊙O 的半径.19.如图,已知⊙O 是以AB 为直径的△ABC 的外接圆,过点A 作⊙O 的切线交OC 的延长线于点D ,交BC 的延长线于点E .(1)求证:∠DAC=∠DCE ;(2)若AB=2,sin ∠D=13,求AE 的长.20.如图,△ABC 内接于⊙O ,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC 交AC 于点E ,交PC 于点F ,连接AF ;(1)判断AF 与⊙O 的位置关系并说明理由.(2)若⊙O 的半径为4,AF=3,求AC 的长.21.已知四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D ,∠DAB=45°.(Ⅰ)如图①,判断CD 与⊙O 的位置关系,并说明理由; (Ⅱ)如图②,E 是⊙O 上一点,且点E 在AB 的下方,若⊙O 的半径为3cm ,AE=5cm ,求点E 到AB 的距离.22.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B作BD ⊥AE 于D .(1)求证:∠DBA=∠ABC ;(2)如果BD=1,tan ∠BAD=12,求⊙O 的半径.23.如图,△ABC 中,AB=AC ,点D 为BC 上一点,且AD=DC ,过A ,B ,D 三点作⊙O ,AE 是⊙O 的直径,连结DE .(1)求证:AC 是⊙O 的切线;(2)若sinC=45,AC=6,求⊙O 的直径.24.如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.25.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=43,AB=14,求线段PC的长.26.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD ⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=4,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.27.如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE.(1)求证:AC平分∠DAB;(2)探究线段PC,PF之间的大小关系,并加以证明;(3)若tan∠PCB=34,BE=5√2,求PF的长.28.在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P.(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.29.如图,⊙O是△ABC的外接圆,∠ABC=45°,AD是⊙O的切线交BC的延长线于D,AB交OC于E.(1)求证:AD∥OC;(2)若AE=2√5,CE=2.求⊙O的半径和线段BE的长.30.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC 的中点,过点D作⊙O的切线交AC边于点E.(1)求证:DE⊥AC;(2)连接OC交DE于点F,若sin∠ABC=34,求OFFC的值.31.如图,△ABC内接于⊙O,AD是⊙O直径,过点A的切线与CB的延长线交于点E.(1)求证:EA2=EB•EC;(2)若EA=AC,cos∠EAB=45,AE=12,求⊙O的半径.32.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O 点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S.33.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB=°,理由是:;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.34.如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)判断AE与⊙O的位置关系,并说明理由;(2)当BC=4,AC=3CE时,求⊙O的半径.35.如图,AB是⊙O的直径,点C在⊙O上,CE⊥AB于E,CD平分∠ECB,交过点B的射线于D,交AB于F,且BC=BD.(1)求证:BD是⊙O的切线;(2)若AE=9,CE=12,求BF的长.36.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.37.如图,在平面直角坐标系中,以点M(0,√3)为圆心,以2√3长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点,连接AM并延长交⊙M于P 点,连接PC交x轴于E.(1)求点C、P的坐标;(2)求证:BE=2OE.38.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=√3,求PA的长.(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.39.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.40.如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦AB及PA,PB的长.41.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.42.如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为3,AB=4,求AD的长.43.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB 上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°,且⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)44.如图,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD.(2)若BE=3,CD=8,求BC 的长.45.如图,AB 是⊙O 的直径,点D ,E 在⊙O 上,∠A=2∠BDE ,点C 在AB 的延长线上,∠C=∠ABD .(1)求证:CE 是⊙O 的切线;(2)若BF=2,EF=√13,求⊙O 的半径长.46.如图,AB 是⊙O 的直径,点F ,C 是⊙O 上两点,且AF̂=FC ̂=CB ̂,连接AC ,AF ,过点C 作CD ⊥AF 交AF 延长线于点D ,垂足为D .(1)求证:CD 是⊙O 的切线;(2)若CD=2√3,∠CAB=30°,求⊙O 的半径.47.如图,在等腰△ABC 中,AB=BC ,以BC 为直径的⊙O 与AC 相交于点D ,过点D 作DE ⊥AB 交CB 延长线于点E ,垂足为点F .(1)判断DE 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径R=5,tanC=12,求EF 的长.48.如图,AB为⊙O的直径,D为AĈ的中点,连接OD交弦AC于点F,过点D 作DE∥AC,交BA的延长线于点E.(1)求证:DE是⊙O的切线;(2)连接CD,若OA=AE=4,求四边形ACDE的面积.49.如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点.(1)求证:EF是⊙O的切线;(2)求AE的长.50.如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.圆的证明题练习50道参考答案与试题解析一.解答题(共50小题)1.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD=√82−72=√15,∴S=8√15.菱形ABFC∴S半圆=12•π•42=8π.2.如图,已知△ABC内接于⊙O,AB是直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)填空:①当∠B=30°时,四边形OCAD是菱形;②当∠B=45°时,AD与⊙O相切.【解答】解:(1)∵OA=OC,AD=OC,∴OA=AD,∴∠OAC=∠OCA,∠AOD=∠ADO,∵OD∥AC,∴∠OAC=∠AOD,∴∠OAC=∠OCA=∠AOD=∠ADO,∴∠AOC=∠OAD,∴OC∥AD,∴四边形OCAD是平行四边形;(2)①∵四边形OCAD是菱形,∴OC=AC,又∵OC=OA,∴OC=OA=AC,∴∠AOC=60°,∴∠B=12∠AOC=30°;故答案为30.②∵AD 与⊙O 相切,∴∠OAD=90°,∵AD ∥OC ,∴∠AOC=90°,∴∠B=12∠AOC=45°; 故答案为:45°3.如图,AC 是⊙O 的直径,OB 是⊙O 的半径,PA 切⊙O 于点A ,PB 与AC 的延长线交于点M ,∠COB=∠APB .(1)求证:PB 是⊙O 的切线;(2)当OB=3,PA=6时,求MB 、MC 的长.【解答】证明:(1)∵AC 是⊙O 的直径,PA 切⊙O 于点A ,∴PA ⊥OA∴在Rt △MAP 中,∠M +∠P=90°,而∠COB=∠APB ,∴∠M +∠COB=90°,∴∠OBM=90°,即OB ⊥BP ,∴PB 是⊙O 的切线;(2)∵∠COB=∠APB ,∠OBM=∠PAM ,∴△OBM ∽△APM ,∴MB AM =OB AP =OM PB =12, 设MB=x ,则MA=2x ,MO=2x ﹣3,∴MP=4x ﹣6,在Rt △AMP 中,(4x ﹣6)2﹣(2x )2=62,解得x=4或0(舍去)∴MB=4,MC=2.4.如图,△ABC 内接于⊙O ,∠B=60°,CD 是⊙O 的直径,点P 是CD 延长线上的一点,且AP=AC .(1)求证:PA是⊙O的切线;(2)若PD=√3,求⊙O的直径.【解答】解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=√3,∴2OA=2PD=2√3.∴⊙O的直径为2√3.5.如图,点B 、C 、D 都在⊙O 上,过点C 作CA ∥BD 交OD 的延长线于点A ,连接BC ,且∠B=∠A=30°,BD=2√3.(1)求证:AC 是⊙O 的切线;(2)求由线段AC 、AD 与弧CD 所围成的阴影部分的面积.【解答】(1)证明:连接OC ,交BD 于E ,∵∠B=30°,∠B=12∠COD , ∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC ⊥AC ,∴AC 是⊙O 的切线;(2)解:∵AC ∥BD ,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE=12BD=√3, ∵sin ∠COD=DE OD, ∴OD=2,在Rt △ACO 中,tan ∠COA=AC OC ,∴AC=2√3,∴S 阴影=12×2×2√3﹣60π×22360=2√3﹣2π3. 6.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠D=60°.(1)求∠ABC 的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.【解答】解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵∠ABC=60°,∴∠AOC=120°,∴劣弧AC的长为120⋅π×4180=8π3.7.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D 作DE⊥AC于点E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.【解答】证明:(1)连接CD,∵BC为⊙O的直径,∴CD⊥AB.∵AC=BC,∴AD=BD.(2)连接OD;∵AD=BD,OB=OC,∴OD是△BCA的中位线,∴OD∥AC.∵DE⊥AC,∴DF⊥OD.∵OD为半径,∴DF是⊙O的切线.8.如图,AB是⊙O的直径,C、D两点在⊙O上,若∠C=45°,(1)求∠ABD的度数;(2)若∠CDB=30°,BC=3,求⊙O的半径.【解答】解:(1)∵∠C=45°,∴∠A=∠C=45°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=45°;(2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=∠CDB=30°,BC=3,∴AB=6,∴⊙O的半径为3.9.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.【解答】证明:(1)连接OC,∵CD=AC,∴∠CAD=∠D,又∵∠ACD=120°,∴∠CAD=12(180°﹣∠ACD)=30°,∵OC=OA,∴∠A=∠1=30°,∴∠COD=60°,又∵∠D=30°,∴∠OCD=180°﹣∠COD﹣∠D=90°,∴CD是⊙O的切线;(2)∵∠A=30°,∴∴∠1=2∠A=60°∠1=2∠A=60°.∴∴S扇形OBC =60π×22360=23π,在Rt△OCD中,CD=OC⋅tan60°=2√3.∴S Rt△OCD=12OC×CD=12×2×2√3=2√3.∴图中阴影部分的面积为2√3﹣23π.10.如图,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求线段BC,AD,BD的长.【解答】解:∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵AB=10cm,AC=6cm,∴BC=√AB2−AC2=8(cm),∵∠ACB 的平分线CD 交⊙O 于点D ,∴AD̂=BD ̂, ∴AD=BD ,∴∠BAD=∠ABD=45°,∴AD=BD=AB•cos45°=10×√22=5√2(cm ). 11.如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E .(1)若∠B=70°,求∠CAD 的度数;(2)若AB=4,AC=3,求DE 的长.【解答】解:(1)∵AB 是半圆O 的直径,∴∠ACB=90°,又∵OD ∥BC ,∴∠AEO=90°,即OE ⊥AC ,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD ,∴∠DAO=∠ADO=12(180°﹣∠AOD )=12(180°﹣70°)=55°, ∴∠CAD=∠DAO ﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC 中,BC=√AB 2−AC 2=√42−32=√7.∵OE ⊥AC ,∴AE=EC ,又∵OA=OB ,∴OE=12BC=√72. 又∵OD=12AB=2,∴DE=OD ﹣OE=2﹣√72. 12.如图,△ABC 中,∠C=90°,AC=3,AB=5,点O 在BC 边的中线AD 上,⊙O与BC 相切于点E ,且∠OBA=∠OBC .(1)求证:AB 为⊙O 的切线;(2)求⊙O 的半径;(3)求tan ∠BAD .【解答】(1)证明:如图,作OF 垂直AB 于点F ,∵⊙O 与BC 相切于点E ,∴OE ⊥BC又∠OBA=∠OBC ,∴OE=OF ,∴AB 为⊙O 的切线(2)解:∵∠C=90°,AC=3,AB=5,∴BC=√AB 2−AC 2=4,又D 为BC 的中点,∴CD=DB=2,∵S △ACD +S △COB +S △AOB =S △ABC设⊙O 的半径为r ,即12AC•CD +12BD•r +12AC ⋅BC ∴6+2r +5r=12∴r=67∴⊙O 的半径为67(3)解:∵∠C=90°,OE ⊥BC ,∴OE ∥AC ,∴Rt △ODE ∽Rt △ADC ,∴OE AC =DE DC, ∴DE=47, ∴BF=BE=187, ∴AF=AB ﹣BF=177, ∴tan ∠BAD=OF AF =617.13.如图,⊙O 的直径AD 长为6,AB 是弦,∠A=30°,CD ∥AB ,且CD=√3.(1)求∠C 的度数;(2)求证:BC 是⊙O 的切线;(3)求阴影部分面积.【解答】(1)解:如图,连接BD ,∵AD 为圆O 的直径,∴∠ABD=90°,∴BD=12AD=3, ∵CD ∥AB ,∠ABD=90°,∴∠CDB=∠ABD=90°,在Rt △CDB 中,tanC=BD CD =√3=√3, ∴∠C=60°;(2)证明:连接OB ,∵OA=OB ,∴∠OBA=∠A=30°,∵CD ∥AB ,∠C=60°,∴∠ABC=180°﹣∠C=120°,∴∠OBC=∠ABC ﹣∠ABO=120°﹣30°=90°,∴OB ⊥BC ,∴BC 为圆O 的切线;(3)解:过点O 作OE ⊥AB ,则有OE=12OA=32, ∵AB=√AD 2−BD 2=√62−32=3√3,∴S △OAB =12AB•OE=12×3√3×32=9√34, ∵∠AOB=180°﹣2∠A=120°,∴S 扇形OAB =120×32π360=3π,则S 阴影=S 扇形OAB ﹣S △AOB =3π﹣9√34.14.如图,在△ABC 中,AB=AC ,AE 是∠BAC 的平分线,∠ABC 的平分线BM 交AE 于点M ,点O 在AB 上,以点O 为圆心,OB 的长为半径的圆经过点M ,交BC 于点G ,交AB 于点F .(1)求证:AE 为⊙O 的切线;(2)当BC=4,AC=6时,求⊙O 的半径;(3)在(2)的条件下,求线段BG 的长.【解答】(1)证明:连接OM ,如图1,∵BM 是∠ABC 的平分线,∴∠OBM=∠CBM ,∵OB=OM ,∴∠OBM=∠OMB ,∴∠CBM=∠OMB ,∴OM ∥BC ,∵AB=AC ,AE 是∠BAC 的平分线,∴AE ⊥BC ,∴OM ⊥AE ,∴AE 为⊙O 的切线;(2)解:设⊙O 的半径为r ,∵AB=AC=6,AE 是∠BAC 的平分线,∴BE=CE=12BC=2, ∵OM ∥BE ,∴△AOM ∽△ABE ,∴OM BE =AO AB ,即r 2=6−r 6,解得r=32, 即设⊙O 的半径为32; (3)解:作OH ⊥BE 于H ,如图,∵OM ⊥EM ,ME ⊥BE ,∴四边形OHEM 为矩形,∴HE=OM=32, ∴BH=BE ﹣HE=2﹣32=12,∵OH⊥BG,∴BH=HG=1 2,∴BG=2BH=1.15.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.【解答】(1)证明:连接OA.∵AE是⊙O切线,∴OA⊥AE,∴∠OAE=90°,∴∠EAD+∠OAD=90°,∵∠ADO=∠ADE,OA=OD,∴∠OAD=∠ODA=∠ADE,∴∠EAD+∠ADE=90°,∴∠AED=90°,∴AE⊥CD;(2)解:过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE 是矩形.∴OF=AE=4cm .又∵OF ⊥CD ,∴DF=12CD=3cm . 在Rt △ODF 中,OD=√OF 2+DF 2=5cm ,即⊙O 的半径为5cm .16.如图,在Rt △ABC 中,∠C=90°,AD 是∠BAC 的平分线,经过A 、D 两点的圆的圆心O 恰好落在AB 上,⊙O 分别与AB 、AC 相交于点E 、F .(1)判断直线BC 与⊙O 的位置关系并证明;(2)若⊙O 的半径为2,AC=3,求BD 的长度.【解答】解:(1)BC 与⊙O 相切.证明:连接OD .∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD .又∵OD=OA ,∴∠OAD=∠ODA .∴∠CAD=∠ODA .∴OD ∥AC .∴∠ODB=∠C=90°,即OD ⊥BC .又∵BC 过半径OD 的外端点D ,∴BC 与⊙O 相切.(2)由(1)知OD ∥AC .∴△BDO ∽△BCA .∴BO BA =DO CA. ∵⊙O 的半径为2,∴DO=OE=2,AE=4.∴BE+2BE+4=23. ∴BE=2.∴BO=4,∴在Rt △BDO 中,BD=√BO 2−OD 2=2√3.17.如图,在△ABC 中,AB=BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点,交BD 于点G ,交AB 于点F .(1)判断直线AC 与⊙O 的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O 的半径.【解答】解:(1)AC 与⊙O 相切.理由如下:连结OE ,如图,∵BE 平分∠ABD ,∴∠OBE=∠DBO ,∵OE=OB ,∴∠OBE=∠OEB ,∴∠OBE=∠DBO ,∴OE ∥BD ,∵AB=BC ,D 是AC 中点,∴BD ⊥AC ,∴OE ⊥AC ,∴AC 与⊙O 相切;(2)设⊙O 半径为r ,则AO=10﹣r ,由(1)知,OE ∥BD ,∴△AOE ∽△ABD ,∴AO AB =OE BD ,即10−r 10=r 6, ∴r=154, 即⊙O 半径是154.18.如图,△ABC 内接于⊙O ,∠B=60°,CD 是⊙O 的直径,点P 是CD 延长线上的一点,且AP=AC .(1)求证:PA 是⊙O 的切线;(2)若AB=4+√3,BC=2√3,求⊙O 的半径.【解答】(1)证明:连接OA ,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC ,∴∠OAC=∠OCA=30°,又∵AP=AC ,∴∠P=∠ACP=30°,∴∠OAP=∠AOC ﹣∠P=90°,∴OA ⊥PA ,∴PA 是⊙O 的切线;(2)解:过点C 作CE ⊥AB 于点E .在Rt △BCE 中,∠B=60°,BC=2√3,∴BE=12BC=√3,CE=3, ∵AB=4+√3,∴AE=AB ﹣BE=4,∴在Rt △ACE 中,AC=√AE 2+CE 2=5,∴AP=AC=5.∴在Rt △PAO 中,OA=5√33, ∴⊙O 的半径为5√33.19.如图,已知⊙O 是以AB 为直径的△ABC 的外接圆,过点A 作⊙O 的切线交OC 的延长线于点D ,交BC 的延长线于点E .(1)求证:∠DAC=∠DCE ;(2)若AB=2,sin ∠D=13,求AE 的长.【解答】解:(1)∵AD 是圆O 的切线,∴∠DAB=90°.∵AB 是圆O 的直径,∴∠ACB=90°.∵∠DAC +∠CAB=90°,∠CAB +∠ABC=90°,∴∠DAC=∠B .∵OC=OB ,∴∠B=∠OCB .又∵∠DCE=∠OCB .∴∠DAC=∠DCE .(2)∵AB=2,∴AO=1.∵sin ∠D=13, ∴OD=3,DC=2.在Rt △DAO 中,由勾股定理得AD=√OD 2−OA 2=2√2.∵∠DAC=∠DCE ,∠D=∠D ,∴△DEC ∽△DCA .∴DC AD =DE DC ,即2√2=ED 2. 解得:DE=√2.∴AE=AD﹣DE=√2.20.如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF;(1)判断AF与⊙O的位置关系并说明理由.(2)若⊙O的半径为4,AF=3,求AC的长.【解答】(1)证明:连接OC,如图所示:∵AB是⊙O直径,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,{OA=OC ∠3=∠2 OF=OF,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切线;(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴OF=√AF 2+OA 2=√32+42=5∵FA ⊥OA ,OF ⊥AC ,∴AC=2AE ,△OAF 的面积=12AF•OA=12OF•AE , ∴3×4=5×AE ,解得:AE=125, ∴AC=2AE=245.21.已知四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D ,∠DAB=45°.(Ⅰ)如图①,判断CD 与⊙O 的位置关系,并说明理由; (Ⅱ)如图②,E 是⊙O 上一点,且点E 在AB 的下方,若⊙O 的半径为3cm ,AE=5cm ,求点E 到AB 的距离.【解答】解:(1)CD 与圆O 相切.证明:如图①,连接OD ,则∠AOD=2∠DAB=2×45°=90°,∵四边形ABCD 是平行四边形,∴AB ∥DC .∴∠CDO=∠AOD=90°.∴OD ⊥CD .∴CD 与圆O 相切.(2)如图②,作EF ⊥AB 于F ,连接BE ,∵AB 是圆O 的直径,∴∠AEB=90°,AB=2×3=6.∵AE=5,∴BE=√AB 2−AE 2=√11,∵sin ∠BAE=BE AB =EF AE. ∴√116=EF 5∴EF=5√116.22.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B作BD ⊥AE 于D .(1)求证:∠DBA=∠ABC ;(2)如果BD=1,tan ∠BAD=12,求⊙O 的半径.【解答】(1)证明:如图,连接OA ,∵AE 为⊙O 的切线,BD ⊥AE ,∴∠DAO=∠EDB=90°,∴∠DBA=∠BAO ,又∵OA=OB ,∴∠ABC=∠BAO ,∴∠DBA=∠ABC ;(2)解:∵BD=1,tan ∠BAD=12, ∴AD=2,∴AB=√22+12=√5,∴cos ∠DBA=√55; ∵∠DBA=∠CBA ,∴BC=AB cos∠CBA =√5√55=5.∴⊙O 的半径为2.5.23.如图,△ABC 中,AB=AC ,点D 为BC 上一点,且AD=DC ,过A ,B ,D 三点作⊙O ,AE 是⊙O 的直径,连结DE .(1)求证:AC 是⊙O 的切线;(2)若sinC=45,AC=6,求⊙O 的直径.【解答】(1)证明:∵AB=AC ,AD=DC ,∴∠C=∠B ,∠1=∠C ,又∵∠E=∠B ,∴∠1=∠E ,∵AE 是⊙O 的直径,∴∠ADE=90°,∴∠E +∠EAD=90°,∴∠1+∠EAD=90°,即∠EAC=90°,∴AE ⊥AC ,∴AC 是⊙O 的切线;(2)解:过点D 作DF ⊥AC 于点F ,如图,∵DA=DC ,∴CF=12AC=3, 在Rt △CDF 中,∵sinC=DF DC =45, 设DF=4x ,DC=5x ,∴CF=√CD 2−DF 2=3x ,∴3x=3,解得x=1,∴DC=5,∴AD=5,∵∠ADE=∠DFC=90°,∠E=∠C ,∴△ADE ∽△DFC ,∴AE DC =AD DF ,即AE 5=54,解得AE=254, 即⊙O 的直径为254.24.如图,已知三角形ABC 的边AB 是⊙O 的切线,切点为B .AC 经过圆心O 并与圆相交于点D 、C ,过C 作直线CE 丄AB ,交AB 的延长线于点E .(1)求证:CB 平分∠ACE ;(2)若BE=3,CE=4,求⊙O 的半径.【解答】(1)证明:如图1,连接OB ,∵AB 是⊙0的切线,∴OB ⊥AB ,∵CE 丄AB ,∴OB ∥CE ,∴∠1=∠3,∵OB=OC ,∴∠1=∠2∴∠2=∠3,∴CB 平分∠ACE ;(2)如图2,连接BD ,∵CE 丄AB ,∴∠E=90°,∴BC=√BE 2+CE 2=√32+42=5,∵CD 是⊙O 的直径,∴∠DBC=90°,∴∠E=∠DBC ,∴△DBC ∽△CBE ,∴CD BC =BC CE, ∴BC 2=CD•CE ,∴CD=524=254,∴OC=12CD=258,∴⊙O的半径=25 8.25.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=43,AB=14,求线段PC的长.【解答】(1)证明:∵PD切⊙O于点C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC .∵OC=OA ,∴∠ACO=∠CAO ,∴∠DAC=∠CAO ,即AC 平分∠DAB ;(2)证明:∵AD ⊥PD ,∴∠DAC +∠ACD=90°.又∵AB 为⊙O 的直径,∴∠ACB=90°.∴∠PCB +∠ACD=90°,∴∠DAC=∠PCB .又∵∠DAC=∠CAO ,∴∠CAO=∠PCB .∵CE 平分∠ACB ,∴∠ACF=∠BCF ,∴∠CAO +∠ACF=∠PCB +∠BCF ,∴∠PFC=∠PCF ,∴PC=PF ;(3)解:∵∠PAC=∠PCB ,∠P=∠P ,∴△PAC ∽△PCB ,∴PC PB =AP PC. 又∵tan ∠ABC=43, ∴AC BC =43, ∴PC PB =43, 设PC=4k ,PB=3k ,则在Rt △POC 中,PO=3k +7,OC=7,∵PC 2+OC 2=OP 2,∴(4k )2+72=(3k +7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=24.26.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD ⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=4,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.【解答】(1)证明:连接OE,如图,∵CD与⊙O相切于点E,∴OE⊥CD,∵AD⊥CD,∴OE∥AD,∴∠DAE=∠AEO,∵AO=OE,∴∠AEO=∠OAE,∴∠OAE=∠DAE,∴AE平分∠DAC;(2)解:①∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,在Rt △ABE 中,BE=12AB=12×4=2, AE=√3BE=2√3,在Rt △ADE 中,∠DAE=∠BAE=30°,∴DE=12AE=√3, ∴AD=√3DE=√3×√3=3;②∵OA=OB ,∴∠AEO=∠OAE=30°,∴∠AOE=120°,∴阴影部分的面积=S 扇形AOE ﹣S △AOE=S 扇形AOE ﹣12S △ABE =120⋅π⋅22360﹣12•12•2√3•2 =43π﹣√3.27.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,直线DC 与AB 的延长线相交于P .弦CE 平分∠ACB ,交直径AB 于点F ,连结BE .(1)求证:AC 平分∠DAB ;(2)探究线段PC ,PF 之间的大小关系,并加以证明;(3)若tan ∠PCB=34,BE=5√2,求PF 的长.【解答】解:(1)连接OC.∵OA=OC,∴∠OAC=∠OCA.∵PC是⊙O的切线,AD⊥CD,∴∠OCP=∠D=90°,∴OC∥AD.∴∠CAD=∠OCA=∠OAC.即AC平分∠DAB.(2)PC=PF.证明:∵AB是直径,∴∠ACB=90°,∴∠PCB+∠ACD=90°又∵∠CAD+∠ACD=90°,∴∠CAB=∠CAD=∠PCB.又∵∠ACE=∠BCE,∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE.∴∠PFC=∠PCF.∴PC=PF.(3)连接AE.∵∠ACE=∠BCE,̂=BÊ,∴AE∴AE=BE.又∵AB是直径,∴∠AEB=90°.AB=√2BE=10,∴OB=OC=5.∵∠PCB=∠PAC ,∠P=∠P ,∴△PCB ∽△PAC .∴PB PC =BC CA. ∵tan ∠PCB=tan ∠CAB=34. ∴PB PC =BC CA =34. 设PB=3x ,则PC=4x ,在Rt △POC 中,(3x +5)2=(4x )2+52,解得x 1=0,x 2=307.∵x >0,∴x =307,∴PF=PC=1207.28.在△ABC 中,∠ACB=90°,经过点C 的⊙O 与斜边AB 相切于点P .(1)如图①,当点O 在AC 上时,试说明2∠ACP=∠B ;(2)如图②,AC=8,BC=6,当点O 在△ABC 外部时,求CP 长的取值范围.【解答】解:(1)当点O 在AC 上时,OC 为⊙O 的半径,∵BC ⊥OC ,且点C 在⊙O 上,∴BC 与⊙O 相切.∵⊙O 与AB 边相切于点P ,∴BC=BP,∴∠BCP=∠BPC=180°−∠B2,∵∠ACP+∠BCP=90°,∴∠ACP=90°﹣∠BCP=90°﹣180°−∠B2=12∠B.′即2∠ACP=∠B;(2)在△ABC中,∠ACB=90°,AB=√AC2+BC2=10,如图,当点O在CB上时,OC为⊙O的半径,∵AC⊥OC,且点C在⊙O上,∴AC与⊙O相切,连接OP、AO,∵⊙O与AB边相切于点P,∴OP⊥AB,设OC=x,则OP=x,OB=BC﹣OC=6﹣x,∵AC=AP,∴BP=AB﹣AP=10﹣8=2,在△OPA中,∠OPA=90°,根据勾股定理得:OP2+BP2=OB2,即x2+22=(6﹣x)2,解得:x=8 3,在△ACO中,∠ACO=90°,AC2+OC2=AO2,∴AO=√AC2+OC2=83√10.∵AC=AP,OC=OP,∴AO垂直平分CP,∴根据面积法得:CP=2×AC⋅OCAO=85√10,则符合条件的CP长大于85√10.由题意可知,当点P与点A重合时,CP最长,综上,当点O在△ABC外时,8√105<CP≤8.。

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.(1)求证:CE与⊙O相切;(2)若AD=4,∠D=60°,求线段AB,BC的长.【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=2AB= 6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故CF=AC2−AF2=2,从而BC=BF+CF=6+2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,==,OC与AD相交于点AB BC CDE.求证:(1)AD∥BC(2)四边形BCDE为菱形.【答案】(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB=∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE=BC ,证明四边形BCDE 为平行四边形,再根据 BCCD =得到BC=CD ,从而证明菱形.【详解】解:(1)连接BD ,∵ AB BCCD ==,∴∠ADB=∠CBD ,∴AD ∥BC ;(2)连接CD ,∵AD ∥BC ,∴∠EDF=∠CBF ,∵ BCCD =,∴BC=CD ,∴BF=DF ,又∠DFE=∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE=BC ,∴四边形BCDE 是平行四边形,又BC=CD ,∴四边形BCDE 是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF .4.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长.【答案】(1)见解析;(2)【分析】(1)先证得△AOB 为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O 作OM ⊥DF 于M ,DN ⊥OC 于N ,利用勾股定理得出AC=30°的直角三角形的性质得出DN ,再根据垂径定理和勾股定理即可求出GF 的长.【详解】(1)证明:∵AB=OA ,OA=OB∴AB=OA=OB∴△AOB 为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC 是⊙O 的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=∵D 、E 分别为AC 、OA 的中点,∴OE//BC ,DC=过O 作OM ⊥DF 于M ,DN ⊥OC 于N则四边形OMDN 为矩形∴DN=OM在Rt △CDN 中,∠C=30°,∴DN=12DC=∴OM=3连接OG ,∵OM ⊥GF∴GF=2MG=222OG OM -=()22243-=213【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.【答案】(1)35;(2)见解析.【分析】(1)根据M 是CD 的中点,OM 与圆O 直径共线可得OM CD ⊥,OM 平分CD ,则有6MC =,利用勾股定理可求得半径的长;(2)连接AC ,延长AF 交BD 于G ,根据CE EF =,AE FC ⊥,可得AF AC =,12∠=∠,利用圆周角定理可得2D ∠=∠,可得1D ∠=∠,利用直角三角形的两锐角互余,可证得90AGB ∠=︒,即有AF BD ⊥.【详解】(1)解:连接OC ,∵M 是CD 的中点,OM 与圆O 直径共线∴OM CD ⊥,OM 平分CD ,90OMC ∴∠=︒12CD = 6MC ∴=.在Rt OMC △中.OC ===∴圆O 的半径为(2)证明:连接AC ,延长AF 交BD 于G .CE EF = ,AE FC⊥AF AC∴=又CE EF= 12∠∠∴= BCBC = 2D∴∠=∠1D∴∠=∠中在Rt BED∠+∠=︒90D B∴∠+∠=︒B190AGB∴∠=︒90∴⊥AF BD【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.∠是 AD所对的圆周角,6.(2021·浙江中考真题)如图,已知AB是⊙O的直径,ACD∠=︒.30ACD∠的度数;(1)求DABAB=,求DF的(2)过点D作DE AB⊥,垂足为E,DE的延长线交⊙O于点F.若4长.【答案】(1)60︒;(2)23【分析】(1)连结BD ,根据圆周角性质,得B ACD ∠=∠;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含30°角的直角三角形性质,得12AD AB =;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结BD ,30ACD ∠=︒30B ACD \Ð=Ð=°AB Q 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒(2)90ADB ∠=︒ ,30B ∠=︒,4AB =∴122AD AB ==60DAB ∠=︒ ,DE AB ⊥,且AB 是直径sin 60EF DE AD︒∴===2DF DE =∴=.【点睛】本题考查了圆、含30°角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含30°角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.【答案】(1)见解析;(2)5CE =.【分析】(1)连接OD ,由点D 是 BC的中点得OD ⊥BC ,由DE//BC 得OD ⊥DE ,由OD 是半径可得DE 是切线;(2)证明△ODE 是等腰直角三角形,可求出OE 的长,从而可求得结论.【详解】解:(1)连接OD 交BC 于点F ,如图,∵点D 是 BC的中点,∴OD ⊥BC ,∵DE//BC∴OD ⊥DE∵OD 是O 的半径∴直线DE 与O 相切;(2)∵AC 是O 的直径,且AB=10,∴∠ABC=90°,152OC OA AB ===∵OD ⊥BC∴∠OFC=90°∴OD//AB 45BAC ∠=︒∴45DOE ∠=︒∵90ODE ∠=︒∴45OED ∠=∴5DE OD OC ===由勾股定理得,OE =∴5CE OE OC =-=.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在Rt AOB 中,90∠=︒ABO ,30OAB ∠=︒,以点O 为圆心,OB 为半径的圆交BO 的延长线于点C ,过点C 作OA 的平行线,交O 于点D ,连接AD .(1)求证:AD 为O 的切线;(2)若2OB =,求弧CD 的长.【答案】(1)见解析;(2)23π【分析】(1)连接OB ,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得60AOD ∠=︒,再证明AOB AOD △≌△可得90ADO ABO ∠=∠=︒即可;(2)先求出∠COD ,然后再运用弧长公式计算即可.【详解】(1)证明:连接OD∵30OAB ∠=︒,90B ∠=︒∴60AOB ∠=︒又∵//CD AO∴60C AOB ∠=∠=︒∴2120BOD C ∠=∠=︒∴60AOD ∠=︒又∵,OB OD AO AO==∴()AOB AOD SAS ≌∴90ADO ABO ∠=∠=︒又∵点D 在O 上∴AD 是O 的切线;(2)∵120BOD ∠=︒∴60COD ∠=︒∴602223603l ππ=⨯⨯=.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两个点,AC=CD =DB ,连接AD ,过点D 作DE ⊥AC 交AC 的延长线于点E .(1)求证:DE 是⊙O 的切线.(2)若直径AB =6,求AD 的长.【分析】(1)连接OD ,根据已知条件得到∠BOD =13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,=CD =DB ,∵AC∴∠BOD=13×180°=60°,=DB ,∵CD∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=62−32=33.10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6×810=245.11.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB AD==83,∴AD=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF AF=3,∴EF=3AF=12,∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AE DE=23,AF=10,求⊙O的半径.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AE DE=23,∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得∠C=∠ODC ,∠B=∠C ,则∠B=∠ODC ,推出OD ∥AB ,由平行线的性质可得∠ODE=∠DEB=90°,即DE ⊥OD ,据此证明;(2)连接CF ,由(1)知OD ⊥DE ,则OD ∥AB ,易得OD 是△ABC 的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE ∥CF ,推出DE 是△FBC的中位线,得CF=2DE ,设AE=2x ,DE=3k ,CF=6k ,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k 的值,然后求出AC 、OA ,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA Ð=°,40ACD ∠=︒,求证:OAB CDE V V ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵AC 是O 的直径,∴∠ABC=90°,∵PB 切O 于点B ,∴∠OBP=90°,∴90PBA ABO OBC ABO ∠+∠=∠+∠=︒,∴PBA OBC ∠=∠;(2)∵20PBA Ð=°,PBA OBC ∠=∠,∴20OBC ∠=︒,∵OB=OC ,∴20OCB OBC ∠=∠=︒,∴∠AOB=20°+20°=40°,∵OB=OA ,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=12∠AOB=20°,∵AC 是O 的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB ,∵40ACD ∠=︒,∴40ACD AOB ∠=∠=︒,∴OAB CDE V V ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CE AC=AC AB,求出EC即可解决问题.【解析】(1)证明:∵AE=DE,OC是半径,=CD ,∴AC∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC=AC AB,∴CE6=610,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BE CE=12,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC=tan∠BCE=BE CE=12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC=CD AD=12,∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2−AC2==根据相似三角形的性质即可得到结论.【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AE AD=AD AC,108=8AC,∴AC=325,∴CD=AD2−AC2==245,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴OD AC=BD BC,∴5325=BD BD+245,∴BD=1207.18.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC 于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BA=BF BD,∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=12CD,在Rt△AOP中,OP=62+82=10,由(1)知,△AOP∽△CBD,∴DB OP=BC OA=DC AP,即1210=BC6=DC8,∴BC=365,DC=485,∴OE=185,CE=245,在Rt△AEC中,AC=AE2+CE2==20(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线:(2)若2,33OA BE OD ==,求DA 的长.【答案】(1)见解析;(2)910【分析】(1)连接OC ,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC 是圆O 的切线;(2)根据已知得到OA=2DA ,证明△DCO ∽△DEB ,得到DO CO DB EB =,可得DA=310EB ,即可求出DA 的长.【详解】解:(1)如图,连接OC ,由题意可知:∠ACB 是直径AB 所对的圆周角,∴∠ACB=90°,∵OC ,OB 是圆O 的半径,∴OC=OB ,∴∠OCB=∠ABC ,又∵∠DCA=∠ABC ,∴∠DCA=∠OCB ,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC ⊥DC ,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB+===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =,60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF=BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD=30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB=∠CBD ,∵CB=CD ,∴∠CBD=∠CDB ,∴∠ADB=∠CDB ,又BD=BD ,∠BAD=∠BFD=90°,∴△ABD ≌△FBD (AAS ),∴BF=BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=tan30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC 于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AE BC=AD DC=23,推出AO OH=AE BH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解析】(1)证明:连接OA.A∵AB=AC,=AC ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C =4∠ABD ,∵∠DBC+∠C+∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在.综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23,∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a ,∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =∴BC =2BH =23.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC是O的切线:(2)若2,33OA BEOD==,求DA的长.【答案】(1)见解析;(2)9 10【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到DO CODB EB=,可得DA=310EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB +===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE= 90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD ,∠BDC =∠BAD .(1)求证:CD 是⊙O 的切线.(2)若tan∠BED =23,AC =9,求⊙O 的半径.【答案】(1)连接OD ,由圆周角定理得出∠ADB =90°,证出OD ⊥CD ,由切线的判定可得出结论;(2)证明△BDC∽△DAC ,由相似三角形的性质得出CD AC =BC CD =BD DA =23,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(2021·山东菏泽市·中考真题)如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.【答案】(1)见解析;(2)=2BG 【分析】(1)连接OE ,证明OE ⊥EF 即可;(2)由3sin 5F =证得4sin 5G =,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE ,如图,∵OA=OE∴∠OAE=∠OEA .∵EF=PF ,∴∠EPF=∠PEF∵∠APH=∠EPF ,∴∠APH=∠EPF ,∴∠AEF=∠APH .∵CD ⊥AB ,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE ⊥EF .∵OE 是O 的半径∴EF 是圆的切线,(2)∵CD ⊥AB∴FHG ∆是直角三角形∵3sin 5F =∴35GH FG =设3GH x =,则5FG x=由勾股定理得,4FH x=由(1)得,OEG ∆是直角三角形∴4sin 5OE FH x G OG FG x===∴45OE OG =,即45OE OE BG =+∵8OE =∴8485BG =+解得,2BG =【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);的中点,过点B的(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD对应的圆周角,∠COE是CE 对应的圆心角∵∠CAE是CE∴∠COE=2∠CAE的中点∵点B是CE∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE对应的圆周角∵∠ABC与∠AEC是AC∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=90°∴tan∠AEC=AC CE=34∴CE=8∵AE2=CE2+AC2∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC 的外接圆;【分析】(1)利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积.【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=12,∴BC AC=12,∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PC PA=PB PC=BC CA=12,∴PA=8,PB=2,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PB OP=PC PD,即25=4PD,∴PD=10,∴CD=6,∴S△OCD=12OC⋅CD=9【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;(2)根据三角函数的概念可得BC AC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD可得CD,然后根据三角形的面积公式进行计算.29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O直径.【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,。

初中数学几何证明经典试题(含答案)

初中数学几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二).如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE ,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证.2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二)。

如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证.。

如下图做GH⊥AB,连接EO.由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

APCDBAFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM; (2)若∠BAC =600,求证:AH =AO .(初二)D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 A N FE CDMB · A HEOF2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C,AC 为圆的直径,PEF 为圆的割线,D .求证:AB =DC ,BC =AD .(初三)经典1、已知:△ABC是正三角形,P 是三角形内一点,PA =3,PB =4,PC 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a,PB =2a ,PC =3a ,求正方形的边长.C BD A F PD E CB A APCBACPDA CBPD4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO.由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE ,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

《圆》的计算及证明题之中考真题精选汇编(1)

《圆》的计算及证明题之中考真题精选汇编(1)

《圆》的计算及证明题之中考真题精选汇编(1)1.如图1,在⊙O中,AB为⊙O的直径,点C为⊙O上一点,AD为∠CAB的平分线交⊙O 于点D,连接OD交BC于点E.(1)求∠BED的度数;(2)如图2,过点A作⊙O的切线交BC延长线于点F,过点D作DG∥AF交AB于点G.若AD=2√35,DE=4,求DG的长.2.如图,在平面直角坐标系中,点P在第一象限内,⊙P与x轴相切于点C,与y轴相交于点A(0,8),B(0,2).连接AC,BC.(1)求点P的坐标;(2)求cos∠ACB的值.3.如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠ADB.(1)求证DB平分∠ADC,并求∠BAD的大小;(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.4.如图,已知⊙O是等边三角形ABC的外接圆,连接CO并延长交AB于点D,交⊙O于点E,连接EA,EB.(1)写出图中一个度数为30°的角:,图中与△ACD全等的三角形是;(2)求证:△AED∽△CEB;(3)连接OA,OB,判断四边形OAEB的形状,并说明理由.5.如图,AB是⊙O的直径,FD为⊙O的切线,CD与AB相交于点E.过点D的线DF∥AB,交CA的延长线于点F,CF=CD.(1)求∠F的度数;(2)若DE•DC=8,求⊙O的半径.6.如图,AB是⊙O的直径,C是⊙O上一点,过点C作CD⊥AB于点E,交⊙O于点D,点F是AB延长线上一点,连接CF,AD,∠FCD=2∠DAF.(1)求证:CF是⊙O切线;(2)若AF=10,sin F=23,求CD的长.7.如图,AB为⊙O的直径,D,E是⊙O上的两点,延长AB至点C,连接CD,∠BDC=∠A.(1)求证:△ACD∽△DCB;(2)求证:CD是⊙O的切线;(3)若tanE=35,AC=10,求⊙O的半径.8.如图,AB是⊙O的直径,点C,E在⊙O上,∠CAB=2∠EAB,点F在线段AB的延长线上,且∠AFE=∠ABC.(1)求证:EF与⊙O相切;(2)若BF=1,sin∠AFE=45,求BC的长.9.如图,四边形ABCD是⊙O的内接四边形,AB是直径,C是BD̂的中点,过点C作CE ⊥AD交AD的延长线于点E.(1)求证:CE是⊙O的切线;(2)若BC=6,AC=8,求CE,DE的长.10.如图,AB是⊙O的直径,AC是弦,D是AĈ上一点,P是AB延长线上一点,连接AD,DC,CP.(1)求证:∠ADC﹣∠BAC=90°;(请用两种证法解答)(2)若∠ACP=∠ADC,⊙O的半径为3,CP=4,求AP的长.11.如图,等腰△ABC内接于⊙O,AB=AC,BD是边AC上的中线,过点C作AB的平行线交BD的延长线于点E,BE交⊙O于点F,连接AE,FC.(1)求证:AE为⊙O的切线;(2)若⊙O的半径为5,BC=6,求FC的长.̂的中点,过点C作CD⊥AE,交12.如图,AB为⊙O的直径,E为⊙O上一点,点C为EBAE的延长线于点D,延长DC交AB的延长线于点F.(1)求证:CD是⊙O的切线;(2)若DE=1,DC=2,求⊙O的半径长.13.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,F是AD延长线上一点,连接CD,CF,且∠DCF=∠CAD.(1)求证:CF是⊙O的切线;(2)若AD=10,cos B=35,求FD的长.14.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=2√3.求BD的长.15.综合与实践:数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:,∠BDC=°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC 的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP.16.如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BAC.(1)求证:∠AOB=2∠BOC;(2)若AB=4,BC=√5.求⊙O的半径.̂的中点,弦DE⊥AB,垂足为点F.17.如图,AB为⊙O的直径,C是圆上一点,D是BC(1)求证:BC=DE;̂上一点,AC=6,BF=2,求tan∠BPC;(2)P是AE(3)在(2)的条件下,当CP是∠ACB的平分线时,求CP的长.̂=BD̂,DE⊥AC于点E,DE交BF 18.如图,△ABC内接于⊙O,AB是⊙O的直径,BC于点F,交AB于点G,∠BOD=2∠F,连接BD.(1)求证:BF是⊙O的切线;(2)判断△DGB的形状,并说明理由;(3)当BD=2时,求FG的长.19.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC交BC于点D,点E是斜边AC上一点,以AE为直径的⊙O经过点D,交AB于点F,连接DF.(1)求证:BC是⊙O的切线;(2)若BD=5,tan∠ADB=√3.求图中阴影部分的面积.(结果保留π)20.如图,MN为⊙O的直径,且MN=15,MC与ND为圆内的一组平行弦,弦AB交MC 于点H.点A在MĈ上,点B在NĈ上,∠OND+∠AHM=90°.(1)求证:MH•CH=AH•BH;(2)求证:AĈ=BĈ;(3)在⊙O中,沿弦ND所在的直线作劣弧ND̂的轴对称图形,使其交直径MN于点G.若sin∠CMN=35,求NG的长.21.【感知】如图①,点A、B、P均在⊙O上,∠AOB=90°,则锐角∠APB的大小为度.【探究】小明遇到这样一个问题:如图②,⊙O是等边三角形ABC的外接圆,点P在AC上(点P不与点A、C重合),连接P A、PB、PC.求证:PB=P A+PC.小明发现,延长P A至点E,使AE=PC,连接BE,通过证明△PBC≌△EBA.可推得△PBE是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长P A至点E,使AE=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAE=180°,∴∠BCP=∠BAE,∵△ABC是等边三角形,∴BA=BC,∴△PBC≌△EBA(SAS).请你补全余下的证明过程.【应用】如图③,⊙O是△ABC的外接圆,∠ABC=90°,AB=BC,点P在⊙O上,且点P与点B在AC的两侧,连接P A、PB、PC,若PB=2√2PA,则PBPC的值为.22.如图,作CF⊥OE,交BE于点F,若EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.23.如图,已知△ABC内接于⊙O,CO的延长线交AB于点D,交⊙O于点E,交⊙O的切线AF于点F,且AF∥BC.(1)求证:AO∥BE;(2)求证:AO平分∠BAC.24.如图,PO平分∠APD,P A与⊙O相切于点A,延长AO交PD于点C,过点O作OB ⊥PD,垂足为B.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为4,OC=5,求P A的长.25.如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,∠ADC的平分线DE交AC于点E.以AD上的点O为圆心,OD为半径作⊙O,恰好过点E.(1)求证:AC是⊙O的切线;(2)若CD=12,tan∠ABC=34,求⊙O的半径.26.综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:AA′=√3CA′;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.27.如图,在⊙O中,AB是直径,点C是圆上一点.在AB的延长线上取一点D,连接CD,使∠BCD=∠A.(1)求证:直线CD是⊙O的切线;(2)若∠ACD=120°,CD=2√3,求图中阴影部分的面积(结果用含π的式子表示).28.如图,在菱形ABCD中,DH⊥AB于H,以DH为直径的⊙O分别交AD,BD于点E,F,连接EF.(1)求证:①CD是⊙O的切线;②△DEF∽△DBA;(2)若AB=5,DB=6,求sin∠DFE.29.装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB=50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.计算:在图1中,已知MN=48cm,作OC⊥MN于点C.(1)求OC的长.操作:将图1中的水槽沿GH向右作无滑动的滚动,使水流出一部分,当∠ANM=30°时停止滚动.如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN 于点D.探究:在图2中.(2)操作后水面高度下降了多少?̂的长度,并比较大小.(3)连接OQ并延长交GH于点F,求线段EF与EQ30.(1)如图①,在△OAB中,OA=OB,∠AOB=120°,AB=24.若⊙O的半径为4,点P在⊙O上,点M在AB上,连接PM,求线段PM的最小值;(2)如图②所示,五边形ABCDE是某市工业新区的外环路,新区管委会在点B处,点E处是该市的一个交通枢纽.已知:∠A=∠ABC=∠AED=90°,AB=AE=10000m,BC=DE=6000m.根据新区的自然环境及实际需求,现要在矩形AFDE区域内(含边界)修一个半径为30m的圆型环道⊙O;过圆心O,作OM⊥AB,垂足为M,与⊙O交于点N.连接BN,点P在⊙O上,连接EP.其中,线段BN、EP及MN是要修的三条道路,要在所修道路BN、EP之和最短的情况下,使所修道路MN最短,试求此时环道⊙O的圆心O到AB的距离OM的长.。

九年级数学圆证明题专题

九年级数学圆证明题专题

圆证明专题1.如图,已知在⊙O 中,AB =43,AC 是⊙O 的直径,AC ⊥BD 于F ,∠A =30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.2.AB 是⊙O 的直径,BC 是弦,OD ⊥BC 于E ,交弧BC 于D 。

(1)请写出四个正确的结论;(2)若BC=6,ED=2,求⊙O 的半径。

3.已知:如图,ABC △中,AB AC =,以AB 为直径的⊙O 交BC 于点P ,PD AC ⊥于点D .(1)求证:PD 是⊙O 的切线;(2)若1202CAB AB ∠==,,求BC 的值4.如图,在Rt △ABC 中,∠B=90°,∠A 的平分线交BC 于D ,E 为AB 上一点,DE=DC ,以D 为圆心,以DB 的长为半径画圆。

求证:(1)AC 是⊙D 的切线;(2)AB+EB=AC 。

AB C D OF EOBAC DCPBOAD5.已知:⊙O 的直径AB 和弦CD ,且AB ⊥CD 于E ,F 为DC 延长线上一点,连结AF 交⊙O 于M 。

求证:∠AMD =∠FMC 。

6.已知AB 是☉O 的直径,AC 是弦,CD 切☉O 于点C ,交AB 的延长线于点D ,120ACD ∠=,10BD =.(1)求证:CA CD =;(2)求☉O 的半径.7.ABC △内接于⊙O ,点D 在半径OB 的延长线上,30BCD A ∠=∠=°.(1)试判断直线CD 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径长为1,求由弧BC 、线段CD 和BD 所围成的阴影部分面积(结果保留π和根号).8. 如图,PA ,PB 是⊙O 的切线,点A ,B 为切点,AC 是⊙O 的直径,∠ACB =70°.求∠P 的度数.BCOAOC BDOP C BA9. 如图,已知点C 、D 在以O 为圆心,AB 为直径的半圆上,且BD OC ⊥于点M 、AB CF ⊥于点F 交BD 于点E ,8=BD ,2=CM 。

往年中考关于圆的证明汇总(有答案)

往年中考关于圆的证明汇总(有答案)
①求出点 C 的坐标; ②直线 BC 是否为⊙O 的切线?请作出判断,并说明理由.
23 图
24 图
24、如图,⊙M 与 x 轴相切于点 C,与 y 轴的一个交点为 A。
(1)求证:AC 平分∠OAM;(2)如果⊙M 的半径等于 4,∠ACO=300,求 AM 所在直线的解析式.
25、如图,在直角三角形 ABC 中,∠ABC=90°.
1、如图,在⊙O 中,AB,CD 是直径,BE 是切线,B 为切点,连接 AD,BC,BD.
(1)求证:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC 的度数.
1图
2图
2、如图,△ABC 中,∠ACB=90°,D 是边 AB 上的一点,E 是 BC 上的一点,以 EC 为直径的⊙O 经过点 D,OA⊥CD 于点
连接 AF. (1)证明:∠F=∠CAD;(2)试判断直线 AF 与⊙O 的位置关系,并给出证明.
11 图
12 图
12、如图,AB 是半圆 O 的直径,点 C 是⊙O 上一点(不与 A,B 重合) ,连接 AC,BC,过点 O 作 OD∥AC 交 BC 于点 D,
在 OD 的延长线上取一点 E,连接 EB,使∠OEB=∠ABC.
那么图中两个扇形(即阴影部分)的面积之和
两等圆⊙A,⊙B外切, 为.
35 图
36 图
36、如图所示,AB 是⊙O 的直径,AE 是弦,C 是劣弧 AE 的中点,过 C 作 CD⊥AB 于点 D,CD 交 AE 于点 F,过 C 作 CG
∥AE 交 BA 的延长线于点 G.
(1)求证:CG 是⊙O 的切线. (2)求证:AF=CF. (3)若∠EAB=30°,CF=2,求 GA 的长.
33 图

初中经典几何证明练习题集(含答案解析)

初中经典几何证明练习题集(含答案解析)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD∴CD COHG GO =∴CDCO FG EO = ∵EO=CO ∴CD=GF2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。

求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN=21AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM=21BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM=21∠BOC=60°∴∠OBM=30° ∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC ∴DFBGFD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,OP ⊥BC求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)证明:连接BD 交AC 于O 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考几何证明题
1、如图:A 是⊙O 外一点,B 是⊙O 上一点,AO 的延长线交⊙O 于C ,连结BC ,∠C =22.50,∠BAC =450。

第 1 题图
C
2. 如图,割线ABC 与⊙O 相交于B 、C 两点,D 为⊙O 上一点,E 为BC 的中点,OE 交BC 于F ,DE 交AC
于G ,∠ADG =∠AGD . ⑴求证:AD 是⊙O 的切线;
⑵如果AB =2,AD =4,EG =2,求⊙O 的半径.
.
3.,正三角形ABC 的中心O 恰好为扇形ODE 的圆心,且点B 在扇形内.要使扇形ODE 绕点O 无论怎样转动,△ABC 与扇形重叠部分的面积总等于△ABC 的面积的3
1
,扇形的圆心角应为多少度?说明你的结论。

4、如图:已知在Rt △ABC 中,∠B =900,AC =13,AB =5,O 是AB 上的点,以O 为圆心,0B 为半径作⊙O 。

(1)当OB =2.5时,⊙O 交AC 于点D ,求CD 的长。

(2)当OB =2.4
时,AC 与⊙O 的位置关系如何?试证明你的结论。

第 4 题图
C B
D E 第3
题图 第2题 ⌒
5、如图:已知A 、D 两点分别是正三角形DEF 、正三角形ABC 的中心,连结GH 、AD ,延长AD 交BC 于M ,延长DA 交EF 于N ,G 是FD 与AB 的交点,H 是ED 与AC 的交点。

(1)写出三个不同类型的、必须经过至少两步推理才能得到的正确结论(不要求写出证明过程); (2)问FE 、GH 、BC 有何位置关系?试证明你的结论。

第 5 C
M B
D
H
G A E
N
F
6.如图(a ),已知直线AB 过圆心O ,交⊙O 于A 、B ,直线AF 交⊙O 于F
(不与B 重合),直线l 交⊙O 于C 、D ,交AB 于E ,且与AF 垂直,垂足为G ,连结AC 、AD . 求证:①∠BAD =∠CAG ;②AC ·AD =AE ·AF .
(2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变. ①请你在图(b )中画出变化后的图形,并对照图(a ),标记字母;
②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.
7. 如图,△ABC 中,∠BAC 的平分线AD 交BC 于D ,⊙O 过点A ,且和BC 切于D ,和AB 、AC 分别交于E 、F 。

设EF 交AD 于G ,连结DF 。

(1) 求证:EF ∥BC ;
(2) 已知:DF =2 ,AG =3 ,求
EB
AE 的值。

8、 已知:如图,CD 是Rt △ABC 的斜边AB 上的高,且BC =a ,AB =c ,CD =h ,AD =q ,DB =p 。

求证:q p h
⋅=2
,c p a ⋅=2
8 题
· B
D
C
F E A
G O 图(a)
B O A F D
C G E l · B O A 图(b) 第6题·
9、 已知:如图,线段AM ∥DN ,直线l 与AM 、DN 分别交于点B 、C ,直线l 绕BC 的中点P 旋转(点C 由D 点向N 点方向移动)。

(1)线段BC 与AD 、AB 、CD 围成的图形,在初始状态下,形状是△ABD ,(即△ABC ),请你写出变化过程中其余的各种特殊四边形名称;(5分)
(2)任取变化过程中的两个图形,测量AB 、CD 长度后分别计算同一个图形的AB +CD (精确到1cm ),比较这两个和是否相同,试加以证明。

(7分)
M
10、
已知:如图,边长为2的正五边形ABCDE 内接于⊙O ,AB 、DC 的延长线交于点F ,过点E 作EG ∥CB 交BA 的延长线于点G 。

(1)求证:BF AG AB ⋅=2
(6分)
(2)证明:EG 与⊙O 相切,并求AG 、BF 的长。

(6分)
10 题图
11. 如图9,已知△ABC 内接于⊙O ,直线DE 与⊙O 相切于点A .BD ∥CA . 求证:AB ·DA =BC ·BD .
12. 已知△ABC 中,AC =5,BC =12,∠ACB =90°,P 是AB 边上的动点(与点A 、B 不重合)Q 是BC 边
上的动点(与点B 、C 不重合).
(1)如图10,当PQ ∥AC ,且Q 为BC 的中点时,求线段CP 的长;
(2
)当
PQ 与AC 不平行时,△CPQ 可能为直角三角形吗?若有可能,请求出线段CQ 的长的取值范围;若不可能,请说明理由.
13、如图10是线段AB 上一点,△APC 与△BPD 是等边三角形,请你判断AD 与BC 相等吗?并证明你的判
断。

O
O
图10
30
频率
D
C
B
P
A
14、如图11,已知E 是△ABC 的内心,∠A 的平分线交BC 于点F ,且与△ABC 的外接回相交于点D 。

(1)求证:∠DBE =∠DEB ;
(2)若AD =8cm ,DF ∶FA =1∶3。

求DE 的长。

O O
图11
30频率F E
C
B
A
15. 将正方形ABCD 绕点A 按逆时针方向旋转o
n (00<n<900),得正方形AB 1C 1D 1, B 1C 1交CD 于点E. (1) 求证:B 1E=DE;
(2) 简要说明四边形AB 1ED 存在一个内切圆; (3) 若n=300
,AB=3,求四边形AB 1
ED 内切圆的半径r.
16.
如图,已知⊙A 、⊙B 都经过点C ,BC 是⊙A 的切线,⊙B 交AB 于点D ,连结CD 并延长交⊙A 于点E ,连结AE.(1)求证:AE ⊥AB;(2)求证:DB AD 2DC DE ⋅=⋅;(3)如果8DC DE =⋅,AE=3,求BC 的长.
⒘如图,△
ABC 内接于O ,D 是 BC 的中点,AD 交BC 于E .
求证:AB AD
AE AC =
A
B
C D
E
18.图,在
ABCD 中,O 是对角线AC 的中点,过点O 作AC 的垂线与边AC 、BD 分别交于E 、F

求证:四边形AFCE 是菱形.
19.如图,BD 是O
的直径,E 是O 上的一点,直线AE 交BD 的延长线于点A ,BC AE ⊥于C ,
且CBE DBE ∠=∠ (1) 求证:AC 是O 的切线
(2) 若O 的半径为2
,AE =求DE 的长.
20.如图,直线
2y x =与双曲线8
y x =交于点 A 、E ,直线AB 交双曲线于另一点B ,与x 轴、y 轴分别
交于点C 、D .且1
tan 2BOC ∠=
.直线EB 交x 轴于点F .
⑴ 求
A 、
B 两点的坐标;⑵ 求证:△COD ∽△CBF .
21如图,在平行四边形ABCD 中,点E 、F 在对角线AC 上,且AE=CF 。

请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可)。

(1)连结___________ (2)猜想:__________=__________。

(3)证明:
22知:在∆ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠=∠=B CAE FE FD ,::43。

(1)求证:AF DF =
(2)求∠AED 的余弦值;
(3)如果BD=10,求∆ABC 的面积。

H E O
D
C
B
A
23已知:以Rt ABC ∆的直角边AB 为直径作⊙O ,与斜边AC 交于点D ,E 为BC 边上的中点,连结DE 。

(1)如图,求证:DE 是⊙O 的切线;
(2)连结OE ,AE ,当∠CAB 为何值时,四边形AOED 是平行四边形,并在此条件下求sin ∠CAE 的值。

(第(2)问答题要求:不要求写出解题过程,只需将结果填写在答题卡相应题号的横线上。


24图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD 和EFGH 都是正方形。

求证:△ABF ≌△DAE 。

第 4题
H G
F
E
D
C B
A
25.图是五角星,已知AC =a ,求五角星外接圆的直径(结果用含三角函数的式子表示)。

第 5 题
E
26如图,已知:AC=AD ,BC=BD 求证:∠1=∠2
27(共8分)已知:如图,BE 是△ABC 的外接圆O 的直径,CD 是△ABC 的高。

(1)求证:AC ·BC =BE ·CD (2)已知CD =6、,AD =3、BD =8,求⊙O 的直径BE 的长。

2
A C
B
D
1。

相关文档
最新文档