2017六年级希望杯100题答案全无水印.pdf

合集下载

小学奥数2017年希望杯培训一百题六年级第74题

小学奥数2017年希望杯培训一百题六年级第74题
74:张强晚上六点多钟离家锻炼身体,此时时针与分针的夹角是 110°,回家时发现还未到7点,且时针与分针的夹角仍是110°, 问张强外出锻炼了多长时间?
74:张强晚上六点多钟离家锻炼身体,此时时针与分针的夹角是 110°,回家时发现还未到7点,且时针与分针的夹角仍是110°, 问张强外出锻炼了多长时间?
Hale Waihona Puke 74:张强晚上六点多钟离家锻炼身体,此时时针与分针的夹角是 110°,回家时发现还未到7点,且时针与分针的夹角仍是110°, 问张强外出锻炼了多长时间?
74:张强晚上六点多钟离家锻炼身体,此时时针与分针的夹角是 110°,回家时发现还未到7点,且时针与分针的夹角仍是110°, 问张强外出锻炼了多长时间?
分针走过的路程是时针的12倍
74:张强晚上六点多钟离家锻炼身体,此时时针与分针的夹角是 110°,回家时发现还未到7点,且时针与分针的夹角仍是110°, 问张强外出锻炼了多长时间?
分针走过的路程是时针的12倍
74:张强晚上六点多钟离家锻炼身体,此时时针与分针的夹角是 110°,回家时发现还未到7点,且时针与分针的夹角仍是110°, 问张强外出锻炼了多长时间?

2017年第十五届六年级希望杯100题培训题

2017年第十五届六年级希望杯100题培训题

2017第十五届六年级希望杯100题培训题17.已知a=2015×2017,b==2014×2018,c==2016×2016,将a、b、c从大到小排列。

18、在9个数:..70.,3.75,15,21.,1,45,7.8,52中,取一个数作被除数,再取另外两个数,用它们的和作除数,使商为整数,请写出3个算式。

(答案不唯一)19、定义:b 1a a@b +=,求2@(3@4)。

20、若n个互不相同的质数的平均数是15,求n的最大值。

21、若一位数c(c不等于0)是3的倍数,两位数____bc是7的倍数,三位数____abc是11的倍数,求所有符合条件的三位数____abc的和。

22、用a、b、c可以组成6个无重复数字的三位数,且这6个数的和是4662,这6个数都是3的倍数吗?23、已知n!=1×2×3×…×n,计算:1!×3-2!×4-4!×6+…+2015!×2017-2016!。

24、一串分数:, (13)1,101...,,108,109,...,103,102,101,71,72,73,74,75,76,75,74,73,72,71,41,42,43,42,41 求第2016个分数。

25、在不大于循环小数.912.的自然数中有几个质数?26、设n !=1×2×3×…×n ,问2016!的末尾有多少个连续的0?27、四位数_______abcd ,若_______abcd -10(a+b+c+d )=1404,求a+b+d 。

28、A ,a ,b 都是自然数,且A+50=2a ,A+97=2b ,求A.29、求20167的十位数字。

30、若A 是B 的31,B 是C 的52,求CA 。

31、求17个自然数的平均数,结果保留两位小数,甲得11.28,这个数百分位上的数字错了,求正确答案。

小学奥数2017年希望杯培训一百题六年级第50题

小学奥数2017年希望杯培训一百题六年级第50题

50:某超市9时开门营业,开门前就有人等候入场,如果从第一个顾客来时起,每分钟来 的顾客人数一样多,那么开4个门,等候的人要全部进入超市要8分钟;开6个门,等候的 人要全部进入商场要4分钟,第一个顾客的到达50:某超市9时开门营业,开门前就有人等候入场,如果从第一个顾客来时起,每分钟来 的顾客人数一样多,那么开4个门,等候的人要全部进入超市要8分钟;开6个门,等候的 人要全部进入商场要4分钟,第一个顾客的到达的时间是几时几分?
设每个门每分钟进人1份
说明顾客排队每分钟多2份人
50:某超市9时开门营业,开门前就有人等候入场,如果从第一个顾客来时起,每分钟来 的顾客人数一样多,那么开4个门,等候的人要全部进入超市要8分钟;开6个门,等候的 人要全部进入商场要4分钟,第一个顾客的到达的时间是几时几分?
50:某超市9时开门营业,开门前就有人等候入场,如果从第一个顾客来时起,每分钟来 的顾客人数一样多,那么开4个门,等候的人要全部进入超市要8分钟;开6个门,等候的 人要全部进入商场要4分钟,第一个顾客的到达的时间是几时几分?
50:某超市9时开门营业,开门前就有人等候入场,如果从第一个顾客来时起,每分钟来 的顾客人数一样多,那么开4个门,等候的人要全部进入超市要8分钟;开6个门,等候的 人要全部进入商场要4分钟,第一个顾客的到达的时间是几时几分?
设每个门每分钟进人1份
说明顾客排队每分钟多2份人
50:某超市9时开门营业,开门前就有人等候入场,如果从第一个顾客来时起,每分钟来 的顾客人数一样多,那么开4个门,等候的人要全部进入超市要8分钟;开6个门,等候的 人要全部进入商场要4分钟,第一个顾客的到达的时间是几时几分?
设每个门每分钟进人1份
说明顾客排队每分钟多2份人 说明开门前排队已经有16份人 说明开门前8分钟已经有人排队

小学奥数2017年希望杯培训一百题六年级第44题

小学奥数2017年希望杯培训一百题六年级第44题

44:小飞加工一批产品他每加工出一件正品,得报酬0.75元,每 加工出一件次品,罚款1.50元,这天他加工的正品是次品的7倍, 得到11.25元的报酬,求小飞这天加工的产品中共有正品多少件?
44:小飞加工一批产品,他每加工出一件正品,得报酬0.75元,每 加工出一件次品,罚款1.50元,这天他加工的正品是次品的7倍, 得到11.25元的报酬,求小飞这天加工的产品中共有正品多少件?
44:小飞加工一批产品,他每加工出一件正品,得报酬0.75元,每 加工出一件次品,罚款1.50元,这天他加工的正品是次品的7倍, 得到11.25元的报酬,求小飞这天加工的产品中共有正品多少件?
44:小飞加工一批产品,他每加工出一件正品,得报酬0.75元,每 加工出一件次品,罚款1.50元,这天他加工的正品是次品的7倍, 得到11.25元的报酬,求小飞这天加工的产品中共有正品多少件?
44:小飞加工一批产品,他每加工出一件正品,得报酬0.75元,每 加工出一件次品,罚款1.50元,这天他加工的正品是次品的7倍, 得到11.25元的报酬,求小飞这天加工的产品中共有正品多少件?
44:小飞加工一批产品,他每加工出一件正品,得报酬0.75元,每 加工出一件次品,罚款1.50元,这天他加工的正品是次品的7倍, 得到11.25元的报酬,求小飞这天加工的产品中共有正品多少件?

2017六年级希望杯100题答案--全无水印

2017六年级希望杯100题答案--全无水印

第十五届(2017 年)希望杯 100 题 · 六年级
Байду номын сангаас
2 2 2 2 1 2 1 2 1 2 5 1 7 1 9 1 99 1 2 2 2 2 = 48 4 6 6 8 8 10 98 100 1 1 1 1 1 1 1 1 = 48 4 6 6 8 8 10 98 100 1 1 = 48 4 100 6 = 48 . 25 27 3 9.(1) 0.2 7 = = . 99 11 1206 12 199 = (2) 0.12 0 6 = . 9900 1650 428571 571428 999999 = =1. 10.原式 = 999999 999999 999999 3 4 7 1 , 0.571428 = ,所以 0.4 28571 0.5 71428 = 1 . 另解 0 . 4 2 8 5 = 7 7 142857 1 35 = 35 = 5 . 11.原式 = 999999 7 4 7 12.原式 = = 1 . 7 4 16 1 2 999 16 1 = 13.原式 = 2 16 1 19 34 999 20 999 2 22 90 90 90 2000 16 2 90 10 = = . 999 2014 111 234 2 84 232 168 400 495 = 990 990 = 990 = 10 . 14.原式 = 990 568 56 56 512 112 400 11 900 450 900 900 900 15.原式 = 1 2 3 9 0.12 0.23 0.34 0.90 0.01 90 1 12 23 34 = 45 99 99 99 99 99 495 = 45 = 45 5 = 50 . 99 3 n 11 3 n 11 27 33 3 1 16. ,即 72 72 72 , 27 4n 66 , n , 6 n 16 ,所以满 8 18 12 8 18 12 4 2 4 2 3 n 11 足 的自然数 n 有 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 ,共 10 个. 8 18 12 = 1

希望杯培训题精编打印版六年级.pdf

希望杯培训题精编打印版六年级.pdf

2017年第十五届小学“希望杯”全国数学邀请赛六年级培训题1.计算:671⨯672⨯673-670⨯672⨯674.2.若a ,b 是非0的自然数,并且a <b ,则b b a +的值(填序号)A .是0和1之间的数.B .是1和2之间的数.C .可以是2.D .可以大于23.若p ,q 是非0的自然数,并且p <q ,则四个式子:q p ,p p q -,p q p +,qq p +中,值在1和2之间的是哪一个?4.求三个分数2015201520142014201420142013201320132013,20122012 ,中值最大的.5.计算:2.016⨯1123+2⨯20.16⨯112.4+2⨯201.6⨯11.25+2⨯2016⨯1.126+20160⨯0.1127.6.计算10981 (5431)43213211⨯⨯+⨯⨯+⨯⨯+⨯⨯7.计算20182017201620162016+÷8.计算1-99199......1-9191-7171-51522222222+++++++9.化循环小数为分数:(1)∙∙72.0(2)∙∙6012.010.计算∙∙∙∙+871425.0128574.011.计算35742851.0⨯∙∙12.计算75.1871425.0⨯∙∙13.计算⎪⎭⎫⎝⎛+÷∙∙∙2019261.20610.214.计算45056-856.049584432.0∙∙∙+15.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙+++++++++10.909.898.787.676.565.454.343.232.121.012111883<n<n 有几个?17.已知20162016,20182014,20172015⨯=⨯=⨯=c b a ,将a,b,c 从大到小排列。

18.在9个数:52,7,8,45,1,1.2,15,3.75,0.7中取一个数作被除数,再取另外两个数,用它们的和作除数,使商为整数,请写出3个算式.(答案不唯一)19.定义:a ☆b =ba 1+,求2☆(3☆4).20.若n 个互不相同的质数的平均数是15,求n 的最大值.21.若一位数c (c ≠0)是3的倍数,两位数bc 是7的倍数,三位数abc 是11的倍数,求所有符合条件的三位数abc 的和.22.用a ,b ,c 能组成6个无重复数字的三位数,如abc ,acb 等,且这6个数的和是4662,问:这6个数部是3的倍教吗?23.已知n !=1⨯2⨯3⨯..........⨯ n ,计算:1!⨯ 3 - 2!⨯ 4 + 3!⨯ 5 - 4!⨯ 6 +......+ 2015!⨯ 2017 - 2016!.24.一串分数:,,,,,,,,,,,,,,,,,,,,,,132131101....108109.....10310210171727374757675747372714142434241求第2016个分数.25.在不大于循环小数12.9的自然数中有几个质数?26.设n !=1⨯2⨯3⨯.........⨯ n ,问: 2016! 的末尾连续有多少个 0 ?27.四位数abcd ,若abcd -10(a +b +c +d )=1404,求a +b +d .28.A,a,b都是自然数,且A+50=a2,A+97=b2,求A 29.求72016的十位数字.30.若A是B的1,B是C的352,求CA.31.求17个自然数的平均数,结果保留两位小数,甲得到11.28,这个数百分位上的数字错了,求正确答案.32.从100以内的25个质数中任取两个构成其分数,这样的其分数有几个?假分数有几个。

2017年希望杯六年级考前培训100题-几何答案

2017年希望杯六年级考前培训100题-几何答案

62. (1)当 D 点是 BC 上靠近 B 点的三等分点时,如图,连接 AD ,因为 AE = 所 以 A E=
5 1 1 1 1 = AB A B, BF = AB , 所 以 E F = 1 A B , 于 是 S△DEF 12 3 4 3 4 1 5 1 5 S△DEF = S△ ABC = 36 = 5 ; S△ A B D= S△ A B,所以 C 3 12 3 36
1 1 AB , BF = AB , 3 4 5 = S△ ABD , 又 因 为 12
(2) 当 D 点是 BC 上靠近 C 点三等分点时, 如图. 同 (1) , 得 S△DEF = 所以 S△DEF =
5 2 10 S△ ABC = 36 = 10 .故 S△DEF = 5 或 10 . 12 3 36
第十五届(2017 年)希望杯 100 题 · 六年级
73 . 设 四 个 鱼 形 的 半 径 分 别 为 ra , rb , rc , rd . 则
1 2 5 2 1 3 πra = πrc , πrb2 = πrc2 , 2 2 2 2
1 2 1 2 1 2 1 2 5 2 3 2 1 2 9 2 πrd = πra πrb πrc = πrc πrb πrc = πrc ,即 rd2 = 9rc2 = 3rc 3rc ,故 rd = 3rc . 2 2 2 2 2 2 2 2
S阴影 = S 1= 6 大正方形 S 小正方形 = 2 0 2 0 1 6
. 144
58.如图,过三角形的公共顶点分别作长方形四条边的高,分别记为 a1 厘米, b1 厘米, a2 厘米,
1 1 1 1 1 2 b2 厘米.则阴影三角形的面积分别是 9 a1 平方厘米; 9 a2 平方厘米; 15 b1 平方 2 3 2 3 2 3

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)一、(以下每题6分,共120分)1.(6分)计算:2017×+= .2.(6分)计算:0.4285×6.3﹣0.2857×1= .3.(6分)定义:a☆b=,则2☆(3☆4)= .4.(6分)如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.5.(6分)已知A是B的,B是C的,若A+C=55,则A= .6.(6分)如图所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如:1.9579,3.5791.在所有这样只有一位整数的循环小数中,最大的是.7.(6分)甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.8.(6分)从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.9.(6分)等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.10.(6分)能被5和6整除,并且数字中至少有一个6的三位数有个.11.(6分)小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.12.(6分)已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x= .13.(6分)a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.14.(6分)小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.15.(6分)如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO= 度.16.(6分)如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米.17.(6分)如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.18.(6分)将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a= .19.(6分)张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.20.(6分)甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)参考答案与试题解析一、以下每题6分,共120分)1.(6分)计算:2017×+= 2016 .【分析】把2017看作2016+1,然后根据乘法的分配律与加法的结合律简算即可.【解答】解:2017×+=(2016+1)×+=2016×++=2015+(+)=2015+1=2016;故答案为:2016.【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.2.(6分)计算:0.4285×6.3﹣0.2857×1= .【分析】根据0.4285=,0.2857=把原式化为×6.3﹣×1,再根据混合运算顺序计算即可.【解答】解:因为0.4285=,0.2857=,所以0.4285×6.3﹣0.2857×1=×6.3﹣×1=﹣=﹣=.故答案为:【点评】本题考查了小数的巧算,关键是把原式化为×6.3﹣×1,还用到混合运算顺序.3.(6分)定义:a☆b=,则2☆(3☆4)= 2 .【分析】根据已知的算式a☆b=可得运算法则:计算结果等于☆号前面的数与1的差,然后再除以☆号后面的数,据此解答.【解答】解:3☆4==2☆(3☆4)=2☆()==2;故答案为:2.【点评】定义新运算:这种新运算其实只是变了形的求式子值的问题,只要弄清新的运算法则,然后再分步求值就可得出答案.4.(6分)如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有111 个点.【分析】根据给出的几幅图的点数,我们可以得到:第②比第①多4;第③比第②多6;第④比第③多8;由此可得每一幅图比前一幅图多的点数成等差数列.【解答】解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.【点评】考查等差数列规律的灵活应用.5.(6分)已知A是B的,B是C的,若A+C=55,则A= 15 .【分析】A是B的,B是C的,则:A是C的×=,即A=C,把A+C=55中的A代换成C,然后解这个方程即可得出C,从而得出A.【解答】解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.【点评】解决本题先根据一个数乘分数的意义,得出A和C的关系,再运用代换法和解方程的方法求解.6.(6分)如图所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如:1.9579,3.5791.在所有这样只有一位整数的循环小数中,最大的是.【分析】按题意,要求只有一位整数的最大的数,显然个位最大为9,再看小数点后面第一位数最大的为5,故小数点后第二位即可确定,再依此确定后面的数,即可确定最大的循环小数.【解答】解:根据分析,先确定整数部分的数,显然9是最大的,再确定小数点后第一位的数,9后面最大的为5,再确定第三位,因为是按顺时针排列,7为最大,故此数可以确定为:故答案是:【点评】本题考查了最大与最小,本题突破点是:先确定整数部分,依此确定其它位上的数.7.(6分)甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票45 张.【分析】把不变的量,即邮票的总张数看成单位“1”,根据“甲、乙两人拥有邮票张数的比是5:4,”可得:甲原来是总张数的;有根据“如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.”可得:甲现在是总张数的,则()对应的数量就是甲减少的5张,由此用除法求出总张数.【解答】解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.【点评】本题关键是找出不变的量,把单位“1”统一到不变的数量邮票的总张数上,再根据数量关系求解.8.(6分)从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是1009 .【分析】按题意,1~2016数中,有奇数1008个,偶数1008个,若取的个数小于1008,则有可能取的数都是偶数,就不能出现至少有两个数互质的情况,故n不能小于1008,而当n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况,故n至少是1009.【解答】解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.【点评】本题考查了最大与最小,本题突破点是:利用奇数和偶数的个数以及互质的特征,求出n的最小值.9.(6分)等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是90 度.【分析】等腰三角形的两底角相等,本题应分为当顶角较小时和当顶角较大时两种情况,当两底角都为1份时,顶角最大,即顶角度数为内角和180°的【解答】解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.【点评】此题主要考查了等腰三角形的性质及三角形内角和定理.注意分清顶角占的份数大则顶角就大的情况.10.(6分)能被5和6整除,并且数字中至少有一个6的三位数有 6 个.【分析】先将6分解质因数:2×3,故这个三位数既要符合被5整除的数的特征,又要符合被2整除的数特征,同时又要满足被3整除的数特征,故结合含有6的数就能求出这样的三位数的个数【解答】解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、690故答案为:6.【点评】本题考查了数的整除知识,突破点是:分解质因数,分析出被这几个数同时整除的特征.11.(6分)小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是20.25 元.【分析】把每个笔记本的售价看作单位“1”,则小红买1支钢笔和3个笔记本共用的36.45元,就相当于单位“1”的(3+),由此用除法即可求出每个笔记本的售价,然后进一步即可求出1支钢笔的售价.【解答】解:36.45÷(3+)=36.45=5.45.4×=20.25(元)答:1支钢笔的售价是 20.25元.故答案为:20.25.【点评】本题关键是找具体数量对应的分率,即统一单位“1”,然后根据分数除法和乘法的意义解答即可.12.(6分)已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x= .【分析】先原来的分数x是,根据变化,用b和c分别表示出两次变化后的分数,它们分别与和相等,这样就可以把这两个等量关系式看成比例式,再根据比例的性质,得出a、b、c三个数之间的关系,然后运用代换法,把b 和c都用a代换,从而得出原来分数是多少.【解答】解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.【点评】解决本题先设出原来的分数,再根据比例的性质和代换法求解.13.(6分)a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是4080 .【分析】根据和一定,要使a,b,c的乘积最大,那么a,b,c三个互不相等的自然数必须尽可能的接近,据此解答即可.【解答】解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.【点评】此题考查了这样一个规律:当三个数的和一定时,三个数越接近积越大.14.(6分)小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有60 道.【分析】本题从后向前逆推,先把第二小时做完后余下的看作单位“1”,此时有24÷(1﹣)=36道;再把第一小时做完全部的后余下的看作单位“1”,此时有36÷(1﹣)=48道;同理,再把全部的练习题看作单位“1”,有48÷(1﹣)=60道;据此解答即可.【解答】解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.【点评】解答此题的关键是,根据题意,运用逆推的方法,求出每次做完后余下的练习题的道数,由此即可得出答案.解题思路:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.15.(6分)如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=30 度.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,得出△OCD是等边三角形,折叠前后角相等以及三角形的内角和定理,求出∠BFC的度数,再根据平角是180度求得∠EFO的度数.【解答】解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称.16.(6分)如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是80 平方厘米.【分析】在七巧板中平行四边形的面积等于正方形的面积等于中三角形的面积,最小的两个三角形的面积和等于中三角形的面积,中三角形的面积等于大三角形面积的一半,即最小的三角形的面积是七巧板面积的,平行四边形的面积、正方形的面积和中三角形的面积是七巧板面积的,大三角形的面积是七巧板面积的,兔子图形的面积就是七巧板的面积,据此解答.【解答】解:10=80(平方厘米)答:兔子图形的面积是80平方厘米.故答案为:80.【点评】本题的重点是让学生掌握各个板占了七巧板面积的几分之几,然后再根据已知一个数的几分之几是多少,求这个数的方法进行解答.17.(6分)如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是1000 立方分米.【分析】首先分析长方体木块锯成6段需要5次横截面增加10个面,求出一个横截面的面积再乘以长度即可.【解答】解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:1000【点评】本题考查对立方体的体积的理解和运用,关键是找到100平方分米对应的是10个面.问题解决.18.(6分)将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a= 300 .【分析】浓度问题中两种溶液混合可用十字交叉法解题,即可求出a的值.【解答】解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:300【点评】本题考查对浓度问题的理解和综合运用,同时关键问题理解十字交叉法的做差和比例关系.问题解决.19.(6分)张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了40 分钟.【分析】首先分析分针落后时针的格数,找到时针和分针的路程差然后除以速度差即可.【解答】解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.【点评】本题考查时间和钟面的理解和运用,关键是找到时针和分针的两次路程差.再除以速度差问题解决.20.(6分)甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行40 千米.【分析】首先分析两人两次在同一地点相遇那么需要两人的速度比例是不变的,根据当甲提高时,乙也同样需要提高即可求解.【解答】解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:40【点评】本题考查对相遇问题的理解和运用,关键问题是找到两者的速度比例是不变的,问题解决.。

(完整版)2017年第15届希望杯六年级第1试试题及参考答案

(完整版)2017年第15届希望杯六年级第1试试题及参考答案

2017 年小学第十五届“希望杯”全国数学邀请赛六年级第1试一试题以下每题 6 分,共 120 分。

1、计算: 2017×2015+ 1 =。

2016 2016gggg2、计算: 0.142857 ×6.3 — 0.428571 ×12=。

33、定义 a ☆b =a — 1,则 2☆( 3☆ 4)=。

b4、以下列图所示的点阵图中,图1 中有 3 个点,图2 中有 7 个点,图3 中有 13 个点,图4 中有21 个点,按此规律,图 10 中有个点。

5、已知 A 是 B 的 1 ,B 是 C 的 3,若 A +C =55,则 A = 。

2 46、如图 2 所示的圆周上有 12 个数字,按顺时针方向能够构成只有一位整数的循环小数,如gggg1.395791 , 3.957913 。

在所有这样只有一位整数的循环小数中,最大的是 。

7、甲、乙两人拥有邮票张数的比是 5:4,假如甲给乙 5 张邮票,则甲、乙两人邮票张数的比变为 4:5,两人共有邮票张。

8、从 1,2,3, 2016 中随意拿出 n 个数,若拿出的数中起码有两个数互质,则 n 的最小值。

9、等腰三角形 ABC 中,有两个内角的度数的比是 1: 2,则三角形 ABC 的内角中,角度最大可以是度。

11、小红买 1 支钢笔和 3 个笔录本共用了 36.45 元,此中每个笔录本售价的 15 与每支钢笔的4售价相等,则 1 支钢笔的售价是元。

12、已知 X 是最简真分数,若它的分子加 a ,化简得 1 ;若它的分母加 a ,化简得 1,则 X3 4= 。

13、a ,b ,c 是三个互不相等的自然数, 且 a +b +c =48,那么 a ,b ,c 的最大乘积是 。

14、小丽做一份希望杯练习题,第一小时做完了所有的1,第二小时做完了余下的 1 ,第三小54 时做完了余下的 1,这时,余下 24 道题没有做,则这份练习题共有题。

小学奥数2017年希望杯培训一百题六年级第91题

小学奥数2017年希望杯培训一百题六年级第91题

aab型 abb型
91:直线a,b上分别有4个点和2个点,无重合的点,以 这些点为顶点可以画出多少个三角形?
aab型 abb型
aab型
91:直线a,b上分别有4个点和2个点,无重合的点,以 这些点为顶点可以画出多少个三角形?
aab型ቤተ መጻሕፍቲ ባይዱ
91:直线a,b上分别有4个点和2个点,无重合的点,以 这些点为顶点可以画出多少个三角形?
aab型 abb型
91:直线a,b上分别有4个点和2个点,无重合的点,以 这些点为顶点可以画出多少个三角形?
91:直线a,b上分别有4个点和2个点,无重合的点,以 这些点为顶点可以画出多少个三角形?
91:直线a,b上分别有4个点和2个点,无重合的点,以 这些点为顶点可以画出多少个三角形?
aab型
91:直线a,b上分别有4个点和2个点,无重合的点,以 这些点为顶点可以画出多少个三角形?
aab型
91:直线a,b上分别有4个点和2个点,无重合的点,以 这些点为顶点可以画出多少个三角形?
aab型
91:直线a,b上分别有4个点和2个点,无重合的点,以 这些点为顶点可以画出多少个三角形?
aab型
91:直线a,b上分别有4个点和2个点,无重合的点,以 这些点为顶点可以画出多少个三角形?
aab型
91:直线a,b上分别有4个点和2个点,无重合的点,以 这些点为顶点可以画出多少个三角形?
aab型 abb型
91:直线a,b上分别有4个点和2个点,无重合的点,以 这些点为顶点可以画出多少个三角形?
aab型 abb型
91:直线a,b上分别有4个点和2个点,无重合的点,以 这些点为顶点可以画出多少个三角形?
aab型 abb型

(完整版)2017年第15届希望杯六年级第1试试题及参考答案

(完整版)2017年第15届希望杯六年级第1试试题及参考答案

2017年小学第十五届“希望杯”全国数学邀请赛六年级 第1试试题以下每题6分,共120分。

1、计算:2017×20152016+12016= 。

2、计算:0.142857g g ×6.3—0.428571g g ×123= 。

3、定义a ☆b =a b —1,则2☆(3☆4)= 。

4、如下图所示的点阵图中,图1中有3个点,图2中有7个点,图3中有13个点,图4中有21个点,按此规律,图10中有 个点。

5、已知A 是B 的12,B 是C 的34,若A +C =55,则A = 。

6、如图2所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如1.395791g g ,3.957913g g。

在所有这样只有一位整数的循环小数中,最大的是 。

7、甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5,两人共有邮票 张。

8、从1,2,3,……2016中任意取出n 个数,若取出的数中至少有两个数互质,则n 的最小值 。

9、等腰三角形ABC 中,有两个内角的度数的比是1:2,则三角形ABC 的内角中,角度最大可以是 度。

10、能被5和6整除,并且数字中至少有一个6的三位数有 个。

11、小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的154与每支钢笔的售价相等,则1支钢笔的售价是元。

12、已知X是最简真分数,若它的分子加a,化简得13;若它的分母加a,化简得14,则X=。

13、a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的最大乘积是。

14、小丽做一份希望杯练习题,第一小时做完了全部的15,第二小时做完了余下的14,第三小时做完了余下的13,这时,余下24道题没有做,则这份练习题共有题。

15、如图,将正方形纸片ABCD折叠,使点A,B重合于O,则∠EFO=度。

16、如图4,由七巧板拼成的兔子形状,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米。

2017六年级希望杯100题--全无水印

2017六年级希望杯100题--全无水印
鱼形 a 的面积是直形 c 的面积的 5 倍.鱼形 b 的面积是鱼形 c 面积的 3 倍,而鱼形 d 的面积是鱼 形 a , b , c 面积的和,那么鱼形 d 的半径是鱼形 c 的半径的多少倍?
83.等腰三角形的两个角之比为 2 : 5 ,则这个三角形是什么三角形(按角分类)?
5
3
泳池里还剩下 30 立方米的水,游泳池原来有水多少立方米?
41.六年级选出男生人数的 1 和12 名女生参加数学竞赛,剩下的男生人数是女生的 2 倍.已知 六 11
年级共有学生156 人.其中男生有多少人?
42.现有苹果、梨、桃三种水果,其中梨的质量比苹果的质量少10% ,桃比梨少1 千克,苹果的质 量比桃的质量多 25% ,求三种水果共多少千克?
49.有红黄白三种球共160 个,如果取出红球的 1 ,黄球的 1 ,白球的 1 ,剩120 个.如果取出红
3
4
5
球的 1 ,黄球的 1 ,白球的 1 ,剩下116 个.求三种球原来各有多少个?
5
4
3
50.某超市 9 时开门营业,开门前就有人等候入场.如果从第一个顾客来时起,每分钟来的顾客人 数一样多.那么开 4 个门,等候的人要全部进入超市要 8 分钟;开 6 个门,等候的人要全部进入商场要 4 分钟.第一个顾客到达的时间是几时几分?
鱼形??b的面积是鱼形??c面积的3倍而鱼形??d的面积是鱼形??a??b??c面积的和那么鱼形??d的半径是鱼形??c的半径的多少倍
.
.
第十五届(2017 年)小学“希望杯”全国数学邀请赛 六年级—数论
20.若 n 个互不相同的质数的平均数是15 ,求 n 的最大值.
21.若一位数 c c 0 是 3 的倍数,两位数 bc 是 7 的倍数,三位数 abc 是11的倍数,求所有符合条
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p
p
q
q
qq
p
q
间的是 p q . q
4 . 因 为 20122012 = 2012 10001 = 2012 , 20132013 = 201310001 = 2013 ,
20132013 201310001 2013
20142014 2014 10001 2014
20142014 = 2015 10001 = 2014 , 1 2012 = 1 , 1 2013 = 1 , 1 2014 = 1 . 因 为
8 18 12
8
18
12
4
24
2
足 3 n 11 的自然数 n 有 7 , 8 , 9 ,10 ,11,12 ,13 ,14 ,15 ,16 ,共10 个. 8 18 12
17. a = 2015 2017 = 2016 12016 1
= 2016 2016 2016 2016 1= c 1,
b = 2014 2018 = 2016 22016 2
= 2016 2016 2 2016 2 2016 4 = c 4 ,
所以 c a b .
第十五届(2017 年)希望杯 100 题 · 六年级
第十五届(2017 年)小学“希望杯”六年级培训题 六年级数论答案
20.要使 n 最大,则比15 小的数就要尽可能多,比15 大的数要尽可能小. 因为除 2 以外的质数与 15 的差都是偶数,所以这 n 个质数中一定不包括 2 .比15 小的质数,有 3 , 5 , 7 ,11,13 ,以15 为 基数,它们分别比15 小12 ,10 , 8 , 4 , 2 ,它们的和是12 10 8 4 2 = 36 .设比15 大的质数分别 写成15 a ,15 b ,15 c ,…则应有12 10 8 4 2 = a b c ,因为比15 大的数要尽可能多, 所以从最小的数开始取.17 、19 , 23 , 29 , 31, 37 , 41 ,…它们分别比15 大 2 , 4 , 8 ,14 ,16 , 22 , 26 , … 而 2 4 8 14 36 , 2 4 8 14 16 36 , 所 以 比 15 大 的 质 数 最 多 取 4 个 , 2 4 8 2=2 2 4 1 4= 1 6,最3多6 有 5 1 4 = 10 个不相同的质数.故 n 的最大值是10 .
, 2




=
1 2
1 1 2
1 2
3
1 2
1 3 3 4
1
8
=
11 29
1 92
191=00
.1 1 45
7. 2016 2016 2016 1 2017 2018
= 2016
2017
1
2016 2017 2016 2018
= 2017 1 = 1 . 2018 2018
8.
999999
7
12.原式 = 4 7 = 1. 74
13.原式 =
2
16 999
20 16
1 1
2
19
=
2
999 16 999
1 22 34
90 90
90
= 2000 16 2 90 = 10 .
999
2014 111
14.原式 =
234 2 84 990 495
568 56 56
=
232 168 990 990 512 112
10.原式 = 428571 571428 = 999999 = 1 . 999999 999999 999999
另解 0 . 4 2 8 5 =7 13 , 0.571428 = 4 ,所以 0.4 28571 0.5 71428 = 1.
7
7
11.原式 = 142857 35 = 1 35 = 5 .
第十五届(2017 年)小学“希望杯”六年级培训题 六年级计算答案
1. 671 672 673 670 672 674
= 672 672 1 672 1 672 2 672 2
= 672 6722 12 6722 22
= 6724 1
= 2016 .
2.由 a b = a 1 及 0 a b ,知1 a b 2 .故填 B.
=
400
990 400
= 10 . 11
900 450 900 900 900
15.原式 = 1 2 3
9
0.12
0.2
3
0.3 4
0.9 0
0.01
=
45
12 99
23 99
34 99
90 99
1 99
= 45 495 = 45 5 = 50 . 99
16. 3 n 11 ,即 72 3 72 n 72 11 , 27 4n 66 , 27 n 33 , 6 3 n 16 1 ,所以满
20152015 2015 10001 2015
2013 2013
2014 2014
2015 2015
1 1 1,所以 2014 2013 2012 .因此,三个分数中,最大的是 20142014 .
2 0 1 5 2 0 1 4 2 0 210135 2014 2013
20152015
5.原式 = 20161.123 2 20161.124 2 20161.125 2 20161.126 20161.127
bb
b
3 . 由 p , q 是 非 0 的 自 然 数 , 并 且 p q , 可 知 0 p 1 , 于 是 有 q p =1 p 1 ,
q
q
q
p q = 1 q 11= 2 ,1 p q = 1 p 2 ,故四个式子: p , q p , p q , p q 中,值在1 和 2 之
= 20161.123 21.124 21.125 21.126 1.127
= 2016 1.123 1.127 2 1.124 1.126 2 1.125
= 20169
= 18144 .
6.因为
n
n
1
1
n
2
=
1 2
n
n 2 n n 1n 2
=
1 2
n
1 n
1
1
n 1
n
52 52
1 172 72源自1 192 921 1
992 992
1 1
=
52 1 52 1
2
72 1 72 1
2
92 1 92 1
2
992 992
1 1
2
第十五届(2017 年)希望杯 100 题 · 六年级
=
1
2 52 1
1
2 72 1
1
2 92 1
1
2 992 1
= 48 2 2 2 2
4 6 6 8 810
98 100
=
48
1 4
1 6
1 6
1 8
1 8
1 10
1 98
1 100
= 48 1 1 4 100
= 48 6 . 25
9.(1) 0.2 7 = 27 = 3 . 99 11
(2) 0.12 0 6 = 1206 12 = 199 . 9900 1650
相关文档
最新文档