希望杯考前100题 (1)
2010年四年级希望杯复赛考前培训训练题答案
2010年四年级希望杯复赛考前培训训练题(一)【1】【解析】考察去添括号:(2009-509)+(1090+2010)=1500+3100=4600【2】【解析】合理分组。
(100-98)+(96-94)+(92-90)+……+(4-2)=2×25=50【3】【解析】考察提取公因数。
4×11×5×111+5×11×6×111=11×111×(20+30)=1221×50=61050【4】【解析】定义新运算。
3△5=3+4+5+6+7=25.【5】【解析】(2☆3)+(4☆4)+(7☆5)=2×3+4-4+1+7+5=19.【6】【解析】等差数列求和。
10到99中所有奇数的和为(11+99)×45÷2=2475.其中能被9整除的有27,45,63,81,99.他们的和为27+45+63+81+99=315.因此所有不能被9整除的两位奇数的和为2475-315=2160.【7】【解析】200米。
本题的图形是长方形,要用到两直线平行,内错角相等。
【8】【分析与解】画图可得100米。
【9】【解析】45-30=15【10】【解析】540如下图所示,易∠1=∠2,∠3=∠4,∠5=∠6,且∠2+∠4+∠6=180°,所以∠A+∠B+∠C+∠D+∠E+∠F+∠G=(∠A+∠B+∠G+∠5)+(∠C+∠D+∠1)+(∠E+∠F+∠3)-(∠2+∠6+∠4)=360°+180°+180°-180°=540°【11】【解析】130÷5=26,说明这五个连续的自然数的中间数为26,这5个数分别是24,25,26,27,28;把图中的5个数分别标号A,B,C,D,E,那么A+B=53,B+C+D=79,D+E=50,可知D和E为24和26,那么A和B为25和28,知A+E=130-79=51,所以A=25,E=26,那么B=28,C=27,D=24,这五个数依次为25,28,27,24,26.【12】【解析】连接FC,可知平行四边形AMPF的面积与三角形MPO的面积相等,所以菱形MONP的面积应该为24÷6×2=8.【13】【解析】试除法。
希望杯考前100题 (1)
37. 字母 W、M、T、C 分别代表 4 个不同的数字,并且WW × MM + WT + C = 2017 , 求W + M + T + C 的值.
38. 字母 a,b,c 表示 3 个不同的非零数字,若 abc + bc + c = 724 ,求 a + b + c .
常州学而思 双师课堂
受益一生的能力
64. 如图,矩形 ABCD 中,F 为 BC 的中点,CE=2DE,矩形 ABCD 的面积为 3,求阴影部 分的面积.
D
E
C
F
A
B
65. 在边长是 1 米的正六边形内任意丢放 7 颗小石子,则总有两颗小石子的距离不大 1 米, 请说明理由.
常州学而思 双师课堂
受益一生的能力
66. 某次考试共有 10 道判断题.小张划了 5 个钩和 5 个叉,结果对了 8 道;小李划了 2 个 钩和 8 个叉.结果对了 6 道;小王一道都不会,索性全部打叉,那么他至少可以蒙对多 少道题?
12. 桌上有一些纸片,每张纸片上都有编号(不是按顺序编的),马小虎同学错把 6 和 69 拿倒了,导致这些编号的平均数多出 1,问这些纸片共有多少张?
常州学而思 双师课堂
受益一生的能力
13. 有一串数,最前面的 4 个数是 2,0,1,8,从第 5 个数起,每一个数都是它前面相邻 4 个数之和的个位数字,问在这一串数中,会依次出现 2,0,1,7 这 4 个数吗?
14. 某工人每小时内需先生产 2 个 A 产品,再生产 3 个 B 产品,最后生产 1 个 C 产品,则 第 725 个产品是哪种产品?
15. 著名的哥德巴赫猜想可以陈述为:任意大于 2 的偶数,都可表示成两个质数之和.将偶 数 88 表示成两个质数的和,有几种表示方法?( a + b 和 b + a 视为同一种表示方法)
2023年六年级希望杯赛前培训100题答案
2023年六年级希望杯赛前培训100题答案这份文档是为2023年六年级希望杯赛前培训准备的100题答案。
在这个培训中,我们将会涵盖各种题型和知识点,以确保学生们在比赛中取得好成绩。
数学1. 36 ÷ 4 = ?- 答案:92. 187 + 293 = ?- 答案:4803. 982 - 594 = ?- 答案:3884. 85 × 2 = ?- 答案:1705. 953 ÷ 7 = ?- 答案:136英语1. What is the capital city of Australia?- 答案:Canberra2. Which of the following words is spelled incorrectly?I ___ to the cinema every week.A. goB. goesC. going- 答案:A (go)4. Fill in the blank with the correct form of the verb "to be": She ___ 10 years old.A. amB. isC. are- 答案:B (is)5. Which sentence is written in the passive voice?A. John built a house.B. The house was built by John.C. John is building a house.- 答案:B (The house was built by John)语文1. 下列每组成语中,加点的字的读音都不相同的一组是?A. 蒙羞,重峦叠嶂,借箭,右撇子B. 人声鼎沸,工程,自告奋勇,戒骄戒躁C. 绕梁三日,一专多能,集腋成裘,经纬万端- 答案:A2. 请写出:“薛涛初学笛, / 池上清风来。
/ 然后天真殊, / 怀抱亦纤弱。
2015年五年级希望杯100题(完整版)
2015年五年级希望杯100题(完整版)希望杯五年级赛前100题1)计算:0.685×5.6+3.4×0.685+0.685。
2)计算:2015-2014+2013-2012+…+3-2+1。
3)计算:21×20.15+350×2.015+4.1×201.5+0.03×2015。
4)计算:2015×20142015-2014×20152014。
5)5个连续奇数的和是2015,求其中最⼤的奇数。
6)若将2015分解成5个⾃然数的和,则这5个⾃然数的积是“奇数”,“偶数”,还是“奇数或偶数”?7)若a是质数,b是合数,试写出⼀个合数(⽤a,b表⽰)。
8)1,3,8,23,229,2015的和是奇数还是偶数?9)有两个⾃然数,它们的最⼤公约数是14,最⼩公倍数是210,问:这样的⾃然数有多少组?10)由2,0,1,1可以组成多少个读法中只有⼀个“1”的两位⼩数?11)若10个不同整数的和为⼀个偶数,且偶数⽐奇数多,则偶数最少有多少个?12)根据表中的x,y的对应规律,求A的值。
13)10010÷99的余数是多少。
14) 有四个数,其中的每⼀个数与另外三个数的平均数的和分别为19,90,20,15,求原来四个数的平均数。
15) 20142014÷2015的余数是多少。
16) 有⼀列数3、4、2、8、…,从第三个数起,每个数都是它前⾯两个数乘积的个位数字,求这列数的第150个数。
17) 若四位数3a50能同时被2、3、5整除,则a 有多少个不同的值?18) 如果a ,b 都是质数,并且3a+7b=47,求a+b 。
19) 将2017⼈分成若⼲组,要求任意两个组的⼈数都不相同,问:这些⼈之多可以分成多少组?20) 规定:a △b=a ×(a+b),求(2△3)△421) 规定:bc ad d b c a -= ,ba ba b a +-=?,求632 1 4?。
希望杯5年级考前100题题目和答案
第十五届(2017年)小学“希望杯”全国数学邀请赛五年级培训题1. 计算:2016×20172017-2017×20162016.2. 计算:32.2÷2.7+386÷54-4.88÷0.27.3. 计算:6051×0.125-0.375×1949+3.75×1.2.5. 用[a]表示不超过a的最大整数,{a}表示a 的小数部分,即{a}=a-[a],定义一种运算“⊕”:a⊕b=(a-b)÷(b+1),求[3.9]⊕{5.6}+[4.7]的值.6. 找规律,填数:0,2,12,36,80,150,252,______,_______,…7. 如图1 所示的七个圆内填入七个连续自然数,使每相邻圆内的数之和等于连线上的数,求这七个自然数的和.8. 有一串数,最前面的4 个数是2,0,1,6,从第5 个数起,每一个数是它前面相邻4 个数之和的个位数字,问在这一串数中,会依次出现2,0,1,7 这4个数吗?9. 小华在电脑上玩一种游戏:输入一个大于零的自然数,则输出的数比输入的数扩大一倍还多1,若先输入的数既不是质数,也不是合数,再将输出的数输入,…则输出的数中,首先超过100的数是多少?10. 从1123个1×1的正方形纸片中,依次取出1个,3个,5个,7 个,…,(2n-1)个,求最大的n.11. 已知x是两位数,y是一位数,若1123=x×x+11y×y,求x+y.12. 20152015+20162016+20172017的个位数字是多少?(定义:x n表示n个x相乘)13. 1×2×3×4×…×2016×2017 的积的末尾有多少个连续的0?14. 111a是四位数,若111a-3是7的倍数,求自然数a.15. 有三个连续的自然数,它们的和是三位数,并且是31 的倍数,求这三个数的和的最小值.16. 若是四位数,并且-3是7的倍数,那么a + b有多少个不同的值?17. 100 名同学面向老师站成一行.大家先从左至右按1,2,3,…依次报数;再让报数是4 的倍数的同学向后转,接着又让报数是5 的倍数的同学向后转. 问:背向老师的有多少人?18. 一个自然数,它除了1以外的两个不同约数的和最大是60,求这个自然数.19. 三位数中,被6 除,余数是5的有多少个?20. 有一类四位数,除以5余3,除以7余6,除以9余6,求这类四位数中最小的数.21. 求被7除余5,被8除余2的最小的三位数.22. 是三位数,若-a可被13整除,求自然数a的最小值.23 .是三位数,若+1 是7的倍数,-1是13的倍数,求自然数a.24. ,求a÷7 得到的余数.25. 五年级(2)班同学分为5 组,按组活动.第一组到第五组的人数分别是12 人,6人,10人,13人,7 人. 其中有一个小组需要留在教室内,其余四组去操场跑步和跳绳,若跑步的人数比跳绳的人数的2 倍多5人,则留在教室的是第几组?26. 小华将连续偶数2,4,6,8,10,…逐个相加,结果是2016. 验算时发现漏加了一个数,那么,这个漏加的数是多少?27. 三个质数的平方和是390,这三个质数分别是多少?28. 3个不同的质数a,b,c满足a+b=c,且b×c=143,求a×(b+c)的值.29. 下面是著名的百羊问题.原文如下:《算法统宗》(明)程大位甲赶羊群逐草茂,乙拽一羊随其后,戏问甲及一百否? 甲云所说无差谬,所得这般一群凑,再添半群小半群,得你一只来方凑,玄机奥妙谁猜透?原文的意思是说,一个牧羊人赶着一群羊,有人牵着一只羊从后面跟来,问牧羊人:“你这群羊有100 只吗?”牧羊人说:“如果我再有这样一群羊,加上这群羊的一半,再加上一半的一半,连同你这一只羊,就刚好满100 只.”请问牧羊人赶着多少只羊?30. 用两个3,三个2,两个1可以组成多少个互不相同的七位数?31. 从1 到2017的所有奇数的平方数中,个位数是5的有几个?32. 从1 到101这101 个自然数中,(1) 至少选出_____个才能保证其中一定有两个数的和是7的倍数;(2) 如果要保证其中一定有两个数的和是6的倍数至少要选出______个.33. A,B,C,D四人久别重逢.(1) 四人站成一排照相,问有多少种站法?(2) 四人围成一圈照相有多少种站法?34. 电视台打算3天播完6集电视剧,其中可以有若干天不播,共有多少种播出的方法?35. 属相各异的12 位同学按鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、犬、猪的顺序围成一圈传递一袋不足200 颗糖的幸运礼包.每人接到礼包后取出一颗糖,然后将礼包往下传.属牛的最牛,先取糖,将礼包传给属虎的同学,…,若最后取到糖的同学属龙,则(1) 礼包里至少有多少颗糖?(2) 礼包里至多有多少颗糖?36. 纸箱中有赤,橙,黄,绿,青,蓝,紫七色袜子,每种袜子都是单色,且数量足够多,那么从中至少取多少只袜子可以保证有一双同色的袜子?37. 五年(1)班有46 名学生参加3 项活动.其中有24 人参加了数学小组,20 人参加了语文小组,参加美术小组的人数是既参加数学小组又参加美术小组人数的4倍,又是3项都参加的人数的8倍,既参加美术小组也参加语文小组的人数是3项都参加的人数的 3 倍,既参加数学小组又参加语文小组的有10 人,问参加美术小组的人数是多少?38. 有1 克、2克、4 克、8克、16 克重的砝码5枚,若只能在一边放砝码,问:(1) 用这些砝码可称出多少种不同的重量?(2) 若4克的砝码破损后只剩下3克,则可称出多少种不同的重量?39. 小明家住在一条胡同里,这条胡同里的门牌号码从1号、2号、…连续下去.全胡同所有住户的门牌号之和减去小明家的门牌号码,其结果为265. 则(1) 这条胡同共有多少家住户?(2) 小明家的门牌号码是几号?40. 数一数,图2中共有多少个三角形?41. (1) 图3中有多少个长方形(包括正方形)?(2) 图3中包含*的长方形有多少个(包括正方形)?42. 波兰数学家谢尔宾斯基(Sierpinski)在1915年提出了谢尔宾斯基三角形. 以下是它的构造方法:①取一个实心的等边三角形;②沿三边中点的连线,将它分成四个小三角形;③去掉中间的那一个小三角形;④对其余三个小三角形重复②③④.这样下去可以重复无数次操作,如图4 所示. 如果原来的大等边三角形面积为256,那么在4次操作之后,三角形中被去掉的空白部分面积为多少?43. 如图5,8个小等边三角形组成了一个梯形.(1) 数一数图5中有几个等边三角形;(2) 若去掉一个三角形,使得三角形的总数减少1个,你能办得到么?减少两个呢?44. 所谓闭折线,就是一些线段首尾相接构成一个回路.比如五角星,它是一个有5条边的闭折线,并且它的5条边互相相交,共有5个交点(不包括线段的端点交点). 请问:一个有6 条边的闭折线,它的6 条边之间最多可以有多少个交点(不包括线段的端点交点)?45. 如图6,将正面为白色,背面为红色,面积为105 的长方形彩纸背面向正面折起一部分,使这部分重合到彩纸内,这时,白色彩纸的面积只剩下了原来的0.2倍,求被折起的这部分(阴影部分)的面积.46. 如图7,长方形ABCD 中,△ABP 的面积为30,△CDQ 的面积为35,求阴影部分的面积.47. 如图8,8边形的8个内角都是135°.已知AB=EF,BC=20,DE=10,GF=30,求AH的长.48. 如图9,四边形ABCD 是一个正方形,梯形AEBD 的面积是26,△AOE 的面积比△BOD的面积小10,求正方形的边长.49. 如图10,直角梯形ABCD 中,DF⊥BC,AB=10,DE 的长度是EF 的4 倍,阴影部分的面积为90. 求梯形ABCD的面积.50. 如图11,在梯形ABCD中,AB=15,CD=5,梯形的面积为80,求△AOB的面积.51. 如图12,过平行四边形ABCD 内的一点P 作边的平行线EF,GH,若平行四边形BEPH的面积为4,平行四边形PFDG的面积为7,求△PAC 的面积.52. 如图13,△ABC 中,试在AB上取点E,在AC 上取点F,D,连接EF,ED,BD,使得△AEF,△EDF,△BDE,△BCD 的面积都相等(说出一种方法即可,但要证明其正确性).53. 如图14(a)边长分别为13,5 的两个正方形叠放在一起,两个正方形内部的阴影部分的面积差为M. 如图14(b)边长分别为15,9的两个正方形叠放在一起,两个正方形内部的阴影部分的面积差为N. 试比较M与N 的大小.54. 在边长是2米的等边三角形内任意丢放5颗小石子,则总有两颗小石子的距离不大于1米,请说出理由.55. 张大伯利用一堵旧墙AB,用长50m 的篱笆围成一个留有1m 宽的门的梯形场地CDEF(CD∥EF),如图15所示.若DE的长为10m,则梯形场地CDEF的最大面积是多少?56. 如图16,ABCD 是正方形,AEGD,EFHG,FBCH 都是长方形,若图16 中所有长方形(含正方形)的周长之和为190,EF=5,求正方形ABCD的面积.57. 用2017 个等腰直角三角形能不能拼成一个正方形? 请说明理由. (注:等腰直角三角形不要求一样大).、58. 一只乌鸦从其鸟巢飞出,飞向其巢北10 千米东7千米的A地,在A地它发现有一个稻草人,所以就转向巢北4 千米东5 千米的B 地飞去,在B 地吃了一些谷物后立即返巢,其所飞的途径构成了一个三角形,这个三角形的面积为多少平方千米?59. 图17 是一个正方体纸盒的展开图,当折叠成纸盒时,与点1 重合的点的编号有哪些?60. 一组积木组成的图形,从正面看是,从侧面看是,则(1) 这组积木最少是用多少块正方体积木摆出来的?(2) 这组积木最多是用多少块正方体积木摆出来的?61. 甲、乙、丙在猜一个完全平方的两位数.甲说:它的因数个数为奇数,而且它比90大.乙说:它是奇数,而且它比80小.丙说:它是偶数,而且它比100小.如果他们三个人每个人都有半句真话,半句假话,那么这个数是多少?62. 如图18,三根绳子系在一起,现在要在绳子的某处点火,如果每分钟火燃烧的距离是1,那么至少需要几分钟才能烧光这些绳子?63. 已知“西门鸡翅”的价格是3元钱2个鸡翅,“好伦哥”的价格是20元自助餐(无论吃多少个鸡翅都是20 元),请根据图19 中的对话判断,小笨至少能吃多少个鸡翅?64. 小笨得到了一笔压岁钱,但却忘了具体有多少钱. 他只记得这个三位数的各位数字之和是17,其中十位数字比个位数字大 1. 如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198. 请你帮小笨算算,这笔压岁钱有多少元?65. 某次考试共有12 道判断题.小聪划了7 个钩和5 个叉,结果对了8 道;小笨划了3 个钩和9 个叉,结果对了10 道;大壮一道不会,索性全部打叉,那么他至少可以蒙对多少道题?66. 如图20,在空格内填入数字1~4,使得每行、每列和每个粗线围成的区域里数字都是1~4恰好各一个,若M+N>4,则M×N 的值是多少?67. 有61 个人坐成一横排.首先,正中间的一个人站起来,然后,按下述方法大家都或坐或站:(1) 如果邻座的人站起来,那么1秒钟后自己也站起来;(2) 站起1秒钟后坐下;(3) 如果左右邻座的人都是站着的,那么即使过了1秒钟,自己仍然坐着.那么最初的那个人站起7秒钟后,有几个人站着?68. 某学生俱乐部有11 个成员,他们的名字分别是A~K.这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11 个人里面,总说谎话的有几个人?”那天,J 和K休息,余下的9个人这样回答:那么这个学生俱乐部的11 个成员中,总说谎话的有多少个人?69. 某单位空降一名总经理,五位职员了解了这位经理的一些情况,现列表如下:这五位职员了解的情况,每人只有1项是正确的,请判定该经理的情况.70. 班长小英让x 名同学去种少于100棵的树苗.若每人种7棵,则余下5棵;若每人种8棵,则有1 人只须种6棵. 求:(1)人数x;(2)树苗的棵数.71. 全家四口人,父亲比母亲大3岁,姐姐比弟弟大2岁. 4年前他们全家的年龄之和是58岁,而现在是73岁. 问现在母亲的年龄是多少岁?72. 有一根木棍有三种刻度,第一种刻度将木棍分成10 等份,第二种刻度将木棍分成12等份,第三种刻度将木棍分成15等份.如果沿每条刻度线将木棍锯断,请问木棍共被锯成多少段?73. 某快递公司已囤积部分快件,但仍有快件不断运来,公司决定用快递专车将快件分给客户,若9 辆车发货,12 小时运完;若用8 辆车发货,16 小时可以运完. 问:如果先用6 辆车运,3小时后需再增加几辆车,再过5小时可以运完?74. 10 点多的某个时刻,小明发现1 分钟后表的时针与1 分钟前表的分针夹角是180°,那么现在是10点几分?75. 三堆苹果共48 个. 先从第一堆中拿出与第二堆个数相等的苹果放入第二堆,再从第二堆中拿出与第三堆个数相等的苹果放入第三堆,最后又从第三堆中拿出与第一堆个数相等的苹果放入第一堆,这时三堆苹果数恰好相等.第一堆苹果原来有多少个?76. 甲、乙共有26 颗糖.甲先拿走乙的一半,乙发现后,也拿走了甲的一半. 甲不服气,又偷偷拿了乙5颗糖,此时甲比乙多2颗,问:乙刚开始时有多少颗糖果?77. 甲、乙两车同时从A,B两地相向而行,在距A地70千米处第一次相遇.各自到达对方出发地后立即返回,途中又在距A 地50 千米处相遇. 问:A,B 两地相距多少千米?78. 一列火车速度不变地驶过长为600米的铁路桥需1分钟,以相同的速度完全穿过长为2200米的隧道需要3分钟,问:火车长多少米? (从车头上桥到车尾离桥即为完全驶过铁路桥)79. 张华从家到学校上课,先用每分钟80 米的速度走了3 分钟,发现这样走下去将迟到3分钟;于是她就改用每分钟110米的速度前进,结果提前了3分钟到校.张华家离学校有多远?80. 有A,B,C 三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用6分钟、10 分钟、12 分钟追上骑车人.现在知道A车每小时行24 千米,B车每小时行20千米,那么,C 车每小时行多少千米?81. 某人沿着电车道旁的便道以4.5千米每小时的速度步行,每14.4 分钟有一辆电车迎面开过,每24 分钟有一辆电车从后面追过来,如果电车按相等的时间间隔以同一速度不停的往返运行,问:电车发车间隔是多少分?82. 星期六小王去球馆打球,去时发现家中的钟没电了,于是换上电池,把钟暂时调整到8 时整,到球馆时球馆的钟刚好是8 时整,打球到11 时整,他以原速度回家发现家中的钟刚好是12 时整,小王根据这些时间关系再次调整了时间,如果小王在路上的速度是60米/分钟,请问:(1) 从家到球馆的路程是多少米?(2) 小王到家的准确时间是几点?83. 某汽车从A 地开往B 地,如果在计划行驶时间的前一半时间每小时行驶30千米,而后一半时间每小时行驶50千米,则按时到达;但汽车以每小时行驶40千米的速度从A地行驶至离A,B中点还差40 千米的地方发生故障,而停车检修半小时,此后以50 千米每小时的速度行驶,仍按时到达B地,问:(1) 原计划时间是几小时?(2) A,B两地的距离是多少千米?84. 甲、乙两名同学从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动. 已知山坡长360 米,甲上山的速度是乙上山的速度的 1.5 倍,并且甲乙下山的速度是各自上山速度的1.5 倍. 当甲第三次到达山顶时,乙所在的位置距山顶多少米?85. 熊大和熊二清晨起床后去学校的环形跑道上跑步锻炼,已知环形跑道的一周是400 米,两只熊分别在相距80 米的A,B 两处同时跑,熊大每秒跑3 米,熊二每秒跑2米,那么熊大和熊二几秒后第一次相遇?86. 甲、乙二人在一条相距20 千米的平直公路的两处同时同向骑自行车(时速不超过60 千米)前进,一小时后两人相距15 千米,已知乙的时速比甲的时速的2倍少10 千米,求甲,乙二人的时速.87. 加工一批零件,如果甲先做4 小时,乙再加入一起做,完成时甲比乙多做400个,如果乙先做4 小时,甲再加入一起做,完成时甲比乙多做40 个. 如果一开始甲乙就一起做,那么,完成时甲比乙多做多少个?88. 猴子A,B 一起上山摘桃子,猴子B 单独摘完需要50 天,如果猴子A 第一天摘,猴子B第二天摘,这样交替摘,恰好整天数可摘完. 如果猴子B 第一天摘,猴子A 第二天摘,这样交替摘,恰好比上次轮流的方法多用半天摘完,那么猴子A单独摘完需要多少天?89. 一个玻璃容器里所装的糖水中含有10克糖,再倒入浓度为5%的糖水200克,配成浓度为2.5%的糖水. 那么原来这个玻璃容器的水有多少克?90. 用黑、白两种颜色的皮块缝制而成的足球,黑色皮块是正五边形,白色皮块是正六边形,若一个球上共有黑、白皮块32 块,则(1) 黑色皮块有多少块?(2) 白色皮块有多少块?91. 小聪与小笨一起爬楼梯上楼,小聪家住5层,小笨算了一下,自己的速度必须是小聪的2倍,这样才可以与小聪同时到达各自家中,那么小笨家住几层?92. 一个牧民买了一头母羊,每年能生2只公羊,4只母羊,每只小母羊两年后,又可以每年生6只羊,其中2只公羊,4只母羊.这样从今年开始到第4年底,一共有多少只羊?93. 一辆长途汽车的起点是甲站,终点是丙站,中途停靠乙站. 从甲站到乙站和从乙站到丙站的票价都是2元,而从甲站到丙站的票价是3元,一天这辆长途汽车离开甲站时载有45 名乘客,到了乙站有12 人下车,19 人上车,那么该长途汽车这一天的车票收入是多少元?94. 甲、乙两人共带90 千克行李坐飞机旅行,机场规定:每人所带行李重量不超过规定重量免费,超出部分重量按标准收费.两人分开带行李分别收费是16.8元和13.2 元;如果由一人带行李就要收42元.问:免费规定重量是不超过多少千克?95. 大壮加工一批产品,他每加工出一件正品,得报酬0.75元,每加工出一件次品,罚款1.50元,这天他加工的正品是次品的7倍,得到11.25 元的报酬. 那么他这天加工出几件次品?96. 一个工人与用人单位签订了一个月的短期合同,双方约定,每工作一天得80元,不上班不但没工资,且每天要倒扣10元.月末结账时,该工人领到工资2030元,问这个工人工作了多少天?97. 顾客和店主有如下对话:顾客:老板,这件商品多少元?店主:这件商品五折减5角和六折减6角的结果一样.顾客:按“五折减5 角”的优惠价买可以么?店主:不行!顾客:按“九折减9 角”的优惠价来买可以吗?店主:不行!问:(1) 这件商品的单价是多少?(2) 店主为什么坚持不卖?98. 小聪赶着一头猪到山外的生猪收购站去卖,过秤知猪重150斤,他和收购站的工作人员有如下对话:收购员:你这头猪肚子这么大又这么重,是不是故意让猪吃了很咸的猪食,然后大量喝水造成的?不收!小聪:我们家有诚信的家风,绝不会这样!请收购吧,我走了很远的山路才到这里.收购员:如果马上收购,猪的重量要打九折,如果你明天早上来,当面再称猪的重量,收购价提高两成五,两种选择由你确定!请帮助小聪作出选择,并说明理由.99. 一种商品,甲店:“买四赠一”,乙店:“优惠”,如果只从经济方面考虑,你选择去哪家商店?100. 有27位客人来某厂参观学习,厂领导派车去火车站接人,厂里有两种车子:可乘3 人(司机除外)的小轿车和可乘7 人(司机除外)的面包车,若要求车子全都满载,请确定派车的方案.参考答案1. 02. 13. 304. 105. 5.56. 392,5767. 358. 不会9. 12710. 3311. 3512. 813. 50214. 615. 18616. 1317. 3518. 40 或4519. 15020. 120321. 13822. 123. 9 24. 425. 4或526. 5427. 2,5,1928. 4829. 3630. 21031. 20232. 47,3733. 24,634. 2835. 19636. 837. 2438. 31,2739. 23,1140. 1641. 360,10842. 17543. 10,可以44. 745. 4246. 6547. 2048. 649. 168.7550. 4551. 1.552. 略53. M = N54. 略55. 20556. 10057. 可以58. 1159. 2, 660. 3,961. 8162. 2163. 1464. 47665. 766. 967. 868. 969. 姓黄,男性,年薪240 万.元,硕士学历70. 7,5471. 3172. 2873. 874. 2375. 2276. 1677. 13078. 20079. 2000 80. 1981. 1882. 1800,11:3083. 3,12084. 12085. 32086. 15,20;或5,087. 22088. 2589. 59090. 12,2091. 992. 9793. 16194. 2095. 396. 2697. 1元.98. 略99. 乙100. 9 辆小车或者2 辆小车 3 辆面包车。
第十届六年级希望杯赛前培训题100道(XXXX年)爻大林
2021第十届六年级“但愿杯〞培训题1.计算 129×10 +2210×11 +…+51259×602.计算:1×2×3×4+3×6×9×122×4×6×83.计算4.用简便方法计算3+1949×〔158 -12007 〕+58×〔11949 -12007 〕-2007×〔11949 +158 〕5.图l 所示正方体的展开图是 .(填序号)6.一串数字2134…,从第三个数字起,每个数字都是它前面两个数字之和的个位数字,那么这串数字的第2021个数字是 .7.一个三位数是3的倍数,去掉它的个位数字后,所得的两位数是17的倍数.这个三位数最大是 .8.将被11除余1,被l5除余12的自然数按从小到大的挨次排成一列,,,,321⋅⋅⋅a a a 那么=1a ;假设m m a a <<-20111,那么m = 。
9.某市人口总数与上年比拟的情况是:2007年比2006年增加1%,2021年比2007年又增加1%,2021年比2021年减少1%,2021年比2021年又减少1%,那么2021、年与2006年比拟,该市的人口总数 (填“增加〞或“减少〞)的百分数大约是 .10.用运算符号及括号将1,3,7,8连接成一个算式(每个数只使用一次),试给出一个使用了“÷〞且成果等于24的算式.11.将3,4,5,6,7,,8填入下面的方框里,使两个三位数的乘积最大.□□□×□□□12.将2021年的所有日期的数字依次摆列在一起,组成一个数串:…3031123….那么7月8日中的“8〞排在数串的第 位.13.1001=a ,1011=b ,那么ab b a b a --+-1= 。
14.假设A ,B ,C 别离代表l ~9的某个自然数,等式105881733=++C B A 成立, 那么A = ,B = ,C = .15.请选择一个你喜欢的两位数,将它持续写5遍组成一个十位数(如:两位数12持续写5遍成为1212121212),将这个十位数除以这个两位数,所得到的商再除以9,所得的余数是 .16.图2是一个新月形图案,那么用两条直线最多可以将该图案分成 局部.17.将一个正三角形的三条边别离2、3、4等分,获得一些不异的小正三角形,如图3所示.如果将正三角形的三条边都10等分,那么.得到的不异的小正三角形有 个.图318.六年级1班有30多人,个子最高的小明发现,放学站队时无论是2人、还是3人或者4人站成一排,他都只能本身单独站在最后,没有人与他站一排.那么六年级1班共有 人.19.设a 、b 、c 别离是甲、乙、丙三人单独完成某项工程所需天数.令ba b a A +⨯=,a c c b b a c b a B ⨯+⨯+⨯⨯⨯= 那么A 、B 的大小关系是 .20.公交车的线路号是由数字显示器显示的三位数,此中每个数字由横竖放置的七支荧光管显示,如图4,别离显示689,547和234.图4某公交线路号的数字的应显示器的两支应显示的荧光管不克不及显示,成果线路号的显示成了“234〞,那么该公交线路号有 种可能.21.甲、乙两人的钱数比是3:2,如果甲给乙8元,那么甲、乙两人的钱数比变成2:3,那么两人共有钱 元。
希望杯竞赛赛前培训100题(三年级)[1]
希望杯竞赛赛前培训100题(三年级)类别:希望杯浏览次数:805 发布日期:2011-2-8 10:33:27赛前培训100题1.观察图1的图形的变化进行填空.2.观察图2的图形的变化进行填空.3.图3中,第个图形与其它的图形不同.4.将图4中A图折起来,它能构成B图中的第个图形.5.找出下列各数的排列规律,并填上合适的数.(1)1,4,8,13,19,().(2)2,3,5,8,13,21,().(3)9,16,25,36,49,().(4)1,2,3,4,5,8,7,16,9,().(5)3,8,15,24,35,().6.寻找图5中规律填数.7.寻找图6中规律填数.8.(1)如果“访故”变成“放诂”,那么“1234”就变成.(2)寻找图7中规律填空.9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是.10.图9、图10分别是由汉字组成的算式,不同的汉字代表不同的数字,请你把它们翻译出来.11.在图11、图12算式的空格内,各填入一个合适的数字,使算式成立.12.已知两个四位数的差等于8765,那么这两个四位数和的最大值是.13.中午12点放学的时候,还在下雨.已经连续三天下雨了,大家都盼着晴天,再过36小时会出太阳吗?14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是星期几?15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是.16.小李,小王,小赵分别是海员、飞行员、运动员,已知:(1)小李从未坐过船;(2)海员年龄最大;(3)小赵不是年龄最大的,他经常与飞行员散步.则是海员,是飞行员,是运动员.17.用凑整法计算下面各题:(1)1997+66 (2)678+104 (3)987-598 (4)456-307 18.用简便方法计算下列各题:(1)634+(266-137)(2)2011-(364+611)(3)558-(369-342)(4)2010-(374-990-874)19.用基准法计算:108+99+93+102+97+105+103+94+95+10420.用简便方法计算:899999+89999+8999+899+8921.求100以内的所有正偶数的和是多少?22.有一数列3,9,15,…,153,159.请问:(1)这组数列共有多少项?(2)第15项是多少?(3)111是第几项的数?23.有10只盒子,54只乒乓球,把这54只乒乓球放到10只盒子中,要求每个盒子中最少放1只乒乓球,并且每只盒子中的乒乓球的只数都不相同,如果能放,请说出放的方法;如果不能放,请说明理由.24.如图13有一个宝塔算式,从上向下数,第一层的和为1,第二层的和为5,第三层的和为15,…,第十层的和为多少?25.甲、乙、丙三位同学参加希望杯数学竞赛的平均成绩是75分,甲、丙的平均成绩是71分,那么乙得了多少分?26.6名同学在一起打乒乓球,两人轮流上;从上午9点打到上午11点;他们平均休息多少分钟?27.已知七个自然数的和是154,求这七个连续自然数各是什么数?28.张红、王莉、李月、赵兰四人的平均身高是158厘米,再加上刘辉,五人的平均身高是160厘米. 求刘辉的身高.29.从北京到上海的特快列车,中途要停靠7个大站. 这样,有几种不同价格的车票?30.1个五元纸币,2个五角硬币,3个一元硬币,一共可以组成多少种人民币值?31.从图14中O点出发又回到O点,每条线段不能重复走,共有几条不同路线?32.布袋里有五个彩色玻璃球,每次最多只能拿走一个或2个,可分多次取出.问取完五个球,有多少种不同的取法?37.算式()9=13…()中,最大、最小的被除数分别是多少?38.30()=()…6中,除数和商各是多少?39.小胡在计算除法时,把除数87写成78,结果商是64,还余54,正确的商应该是多少?40.149除以一个两位数,余数是5,请写出所有这样的两位数。
2022 奥赛希望杯三年级培训 100题——答案版
2022希望少年俱乐部-三年级培训100题(解析)1【答案】800【解析】原式=28÷7÷34×34×200=4×200=8002【答案】1111【解析】原式=(1+2+3+4)×1111÷(1+2+3+4)=11113【答案】35【解析】(3+4)×5=354【答案】5【解析】1+1+1+1+1=55【答案】5【解析】5×1=5,6+2=8,7-3=46【答案】277【解析】十位5看成2,结果少30,个位7看成1,结果少6,正确为241+30+6=2777【答案】13【解析】15×67+5=1010,1010÷76=12 (22)【解析】第2个-第1个=△+☆=9,△=22-9×2=4,☆=(22-4×3)÷2=59【答案】150【解析】1千米=1000米=3000尺=300丈,300÷2=15010【答案】86415【解析】原式=7+77+777+7777+77777=8641511【答案】43149【解析】原式=2013+20123+21013=4314912【答案】24327【解析】13【答案】5,4【解析】个位;1+2+…+9=45,所以M=5,十位:1+2+…+8=36,36+4=40,所以H=4【解析】96÷12=45-37=815【答案】16【解析】A+B+C+D+E=6+4+1+2+3=1616【答案】42857【解析】3×7末位为1,根据末位推出142857×3=42857117【答案】D【解析】镜子里的时间和准确时间对称18【答案】146【解析】通过数字6判断,第二行和第四行第一个数字是6,那么第三行第3个数字是6,这样可以得到第三行是哪=三个小图数字的组合在一起表示的三位数是14619【答案】一样大【解析】图①1×3=3,图②2×3÷2=320【答案】A【解析】根据长方体展开图判断【解析】两块周长和比原来的两个边长和5×4=20,60+60÷4×2+20=110,一块周长110÷2=5522【答案】204【解析】(60+30)×2+12×2=20423【答案】32【解析】两个长方形折在一起少了4个长,也就是4个正方形边长,48×2÷3=3224【答案】C【解析】三角形位置变化:左上﹣左下﹣右下﹣右上25【答案】12【解析】4+2×3+1×2=1226【答案】20【解析】28×15÷21=2027【答案】80【解析】60÷30=2,2×(8×5)=80【解析】因为1和4、5、2、3相邻,所以1的对面为629【答案】D【解析】D与ABC中﹣上﹣下的长方形,上下的位置相反。
2022希望杯2022年四年级希望杯100题培训题精品word
2022希望杯2022年四年级希望杯100题培训题word①王不在甲厂;②张不在乙厂;③在甲厂的不是钳工;④在乙厂的是车工;⑤王不是车工。
这三个人分别在哪个工厂,干什么工作?49. 一个两位数除以它的各位数字之和,余数最大是多少?50.5 个人围成一圈做游戏,每人都有一袋小石子。
游戏开始时,第一个人给第二个人 1 颗石子,第二个人给第三个人 2 颗石子,第三个人给第四个人 3 颗石子,第四个人给第五个人 4 颗石子,第五个人给第一个人 5 颗石子,……,如此操作 5 圈后所有人袋中的石千都一样多。
假设所有石子的总数为 1990 颗,问游戏前每个人袋中分别有多少颗石子?51. 将 2022 个小球放到10 个箱子中,要求每个箱子中的小球的数目中都带有数字 7. 请给出一种摆放方法。
52. 箱子里有 2022 个小球,编号分别为 1,2,3,…,2022。
现从箱子中摸出 1616 个小球,将它们的编号相乘,求积的个位数字。
53. 自然数 n 的十位数字是 4,个位数字是 2,各个数位上的数字之和为 42,且是 42 的倍数,求满足上述条件的最小的自然数。
54. 一副扑克牌有 52 张,依惯例 A ,J ,Q ,K 依次视为 1 点,11 点,12 点,13 点,任意抽出假设干张牌,不计花色,假设抽出的牌中必定有 3 张牌的点数一样,那么至少要取几张牌?假设抽出的牌中必定有 2 张牌的点数之和等于 15,那么至少要取几张牌?55. 小明、小强、小红三个人在一起玩捉速藏的游戏,小明对小强说:“我在你的正北方 5米处”,小红对小强说:“我在你的正南方 6 米处”。
假设小强走 1 米需要 6 步,那么先抓小明再去抓小红一共需要走多少步?56.10 个50g 的砝码和 5 个 100g 的砝码同时放在天平的左右两侧才能使天平保待平衡,那么在天平左侧放 2 个 1kg 的砝码,右侧放 6 个 300g 的砝码,要使天平保持平衡还要在右侧放几个 50g 的砝码。
六年级希望杯100题及答案
9+6x=14 x+9x=4+7 2x+9=17 8-4x=66x-7=12 7x-9=8x-56=18-7x=1 x-30=126x-21=216x-3=69x=184x-18=135x+9=116-2x=11x+4+8=237x-12=8X-5.7=2.1515 5X-2X=183X 0.7=5x+13=333 -5x=801.8 +6x=546.7x -60.3=6.79 +4x =402x+8=163.5×2=4.2 x26×1.5= 2x0.5×16―16×0.2=4x 9.25-X=0.403 16.9÷X=0.3X÷0.5=2.6 3-5x=801.8-6x=546.7x-60.3=6.79 +4x=400.2x-0.4+0.5=3.79.4x-0.4x=16.212-4x=201/3x+5/6x=1.412x+34x=118x-14x=1223 x-5×14=1412+34x=5622-14x=1223x-14x=14x+14x=6523x=14x+14五年级数学列方程解应用题练习题1、共有1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒?2、故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。
天安门广场的面积多少万平方米?3、宁夏的同心县是一个“干渴”的地区,年平均蒸发量是2325mm,比年平均降水量的8倍还多109mm,同心县的年平均降水量多少毫米?4、猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km。
大象最快能达到每小时多少千米?5、世界上最大的洲是亚洲,面积是4400万平方千米,比大洋洲面积的4倍还多812万平方千米。
大洋洲的面积是多少万平方千米?6、大楼高29.2米,一楼准备开商店,层高4米,上面9层是住宅。
住宅每层高多少米?7、太阳系的九大行星中,离太阳最近的是水星。
希望杯赛前模拟试卷
专题1 四则运算1,计算:2.7+7.2+2.8+8.22,计算:2880÷34-648÷34+476÷343,计算:1÷(2÷3)÷(3÷4)÷(4÷5)4,计算:0.2008+2.008+20.08+200.8+20085,计算:7.5×23+3.1×256,计算,2×(18.5-3.15)+6.6÷(0.75-0.2)7,计算:(12.34+23.41+34.12+41.23)÷(1+2+3+4)8,计算:(1+3+5+...+99)-(2+4+6+ (98)9,计算:587÷26.8×19×2.68÷58.7×1.910,计算:1÷0.1÷0.1÷0.1÷0.111,计算:(8.5×13.3×7.2)÷(1.7×1.8×1.9)12,计算:49.2492492÷1.2312312313,已知1.08÷1.2÷2.3=10.8÷囗,其中囗表示的数是14,已知A=3×3×...×3 55个3B=4×4×...×4 44个4C=5×5×...×5 33个5那么A,B,C从大到小的顺序是15,在下面的四个囗中填入+,-,×,÷四个符号,使结果最大,并计算出来:20囗1.5囗18囗12.6囗2.1=专题2 小数与分数1,在下面两个小数的小数部分数字的上方分别加上表示循环节的一个或两个点,使不等式成立0.285<72<0.285 2,设A 、B 为自然数,且A 小于10,如果••=73.0444A B ,那么B= 。
希望杯考前100题 (1)
。
( ) 4.计
算
:4 3
15 9 7 -56+20-12
11 13 -30+42=
。
[ ( )] 5.计算:25.5%
÷
3-
11 5.55×13 -210÷0.4
=
。
·
·
·
·
·
·
·
·
6.0.1+0.2+0.3+0.4+0.5+0.6+0.7+0.8=
。
7.有一 个 整 数,用 它 去 除 160、110、70 得 到 的 三 个 余 数 之 和 是
i=1Biblioteka i=1其中ai 是数串:3,5,7,9,…… 中的第i 个数,则 T5 =
。
23.构造一种新的进位制:第k 位(从右向左数)
上 的 数 字 满k+1进1,即 个 位 满2进1,十 位 满3进
1,依 次 类 推 ……,这 样 的 进 位 制 称 为 “对 应 进
制”(例如:十进制 1,2,3,4,5,6,7,8分 别 对 应“对 应 进 制”
50,则 这 个 整 数 是
。
8.11+22+33+ …… +20020+20031除以7,余数是
。
9.有 三 个 分 子 相 同 的 最 简 假 分 数, 化 成 带 分 数 后
为a
2 3
,b
5 6
,c
7。 8
已
知a,b,c
都
小 于10,则 (a+b)÷c=
。
10.分 母 是 455 的 所 有 最 简 真 分 数 的 和 等 于
“希望杯”集训(1)分类应用题
“希望杯”集训(一)分类应用题1、 某工地上的沙子比水泥多6吨,用两天后余下的数量相同,已知沙子还剩下72,水泥用去8吨,原来有沙子多少吨?2、 某书店运来一批连环画。
第一天卖出1800本,第二天卖出的本数比第一天多91,余下总数的73,第三天正好全部卖完,这批连环画共有多少本? 3、 服装厂一车间人数占全厂的25%,二车间的人数比一车间少51,三车间的人数比二车间多103,三车间有156人,这个服装厂共有工人多少人? 4、 甲、乙两桶共装油44千克,若甲桶倒出51,乙桶倒进2.8千克,则两桶内的油相等。
求甲、乙两桶原来各装油多少千克?5、 六年级有三个班,一班人数占全年级的3310,三班人数比二班多111,如果三班调走4人后和二班人数相等,求六年级共有学生多少人?6、 兄弟四人合买一台电视机,老大用的钱是另外三个人所用钱的一半,老二用的钱是另外三个人所用钱的31,老三用的是另外三兄弟的41,老四用了910元。
买一台电视机要多少元?7、两个书架,甲书架存书的41相当于乙书架的52,甲书架比乙书架多存书120本,乙书架存书多少本?8、某校学生1350人,若组织全校男生的80%和全校女生的43参观静海寺,其余的学生祭扫雨花台烈士陵园,结果发现扫墓的男、女生人数正好相等。
该校男、女生各有多少? 9、甲、乙两人一天共生产零件若干个,已知甲生产的零件数比总数的43少3个,乙生产的零件比总数的31多1个,乙一天生产零件多少个? 10、一辆无人售票车,到达某站时有41乘客下车,这时又有10人上车,这时车上的乘客是原来的1413。
这辆汽车从始发站开出时车上有乘客多少人?11、某校原有跳绳72根,其中短绳根数与长绳根数比是7:2,又买进一批短绳后,短绳根数占跳绳根数的84%,现在学校共有跳绳多少根?12、某校今年招生1166人,是去年招生人数的1.06倍,其中今年招收的男生人数比去年招收的男生人数增加12%,姓比去年减少6人。
六年级数学希望杯竞赛培训试题100题
希望杯六年级培训题1、211⨯+321⨯+431⨯+…+200720061⨯= 。
2、(1+20021+20041+20061)×(20021+20041+20061+20081)-(1+20021+20041+20061+20081)×(20021+20041+20061)3、(220071×3.6+353×720072006)÷43÷534、从21+41+61+81+101+121 中去掉 和 ,余下的分数之和为1.5、99…9×55…5乘积的各位数字之和是 。
6、20031200412005120061 200711±±±±的整数部分是 。
(分母中只有加号)7、已知除法算式:12345678910111213÷31211101987654321,它的计算结果的小数点后的前三位分别是 。
8、一个整数与它的倒数和等于20.05,这个数是 ,它的倒数是 。
2007个9 2007个59、在如图1的加法算式中,每个汉字分别代表1至9中的一个数字,且相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么这个加法算式的和是 。
我 爱 希 望 杯 数 学 竞 赛 + 8 6 4 1 9 7 5 3 2 赛 竞 学 数 杯 望 希 爱 我 10、有一个分数,它的分子加2,可以约简为74;它的分母减2,可以约简为2514。
这个分数是 。
11、四个非零自然数的和为38,这四个自然数的乘积的最小值是 ,最大值是 。
12、已知a 是质数,b 是偶数,且a 2+b=2008,则a+b+1= 。
13、当a =2007时,a-1,a,a+1,a+2中的合数有 个。
14、从1到30这30个自然数连乘各的末尾共 个连续的数码0.15、一个质数p ,使得p+2,p+4同时都是质数,则p1+21±p +41±p = .16、三个质数的倒数之和是20061155,则这三个质数中最大的是17、彼此不等且大于0的偶数a,b,c,d 满足a+b+c+d=20,样的偶数组(a,b,c,d )共有 组。
希望杯数学竞赛五年级培训100题
希望杯数学竞赛五年级培训100题1.对于任意的两个自然数 a 和 b, 规定新运算*:a*b=a(a+1)(a+2)…(a+b-1)。
如果(x*3)*2=3660, 那么 x= ()。
2.3+33+333+..+33..3的末三位数字是()。
2007个33.我们知道,2013,2014,2015的因数个数相同,那么具有这样性质(因数个数相同)的三个连续自然数 n,n+1,n+2 中,n 最小是()。
4.把2~11这10个数填到下图的10个方格中,每格填一个数,要求3个2×2的正方形中的4个数之和相等.那么,这个和最小是()。
5.3333×5555+6×4444×2222=()。
6.同学们参加收集废电池的公益活动,甲组同学平均每人收集17个,乙组同学平均每人收集20个,丙组同学平均每人收集21个。
若这三个小组共收集了233个废旧电池,则这三个小组共有学()人。
7.甲、乙、丙、丁四种商品的单价分别为2,3,5,7元,现从中选购6件,共花费36元,其中至少包含3种商品,则购买了________件丁商品。
8.旅游团的游客乘坐汽车出游,要求每辆汽车坐的人数相等。
如果每辆汽车乘坐30人,那么有一人未能上车;如果少一辆汽车,那么所有游客正好能平均分到各辆汽车上。
已知每辆汽车最多容纳40人,那么游客共有()人。
9.在12,22,32,…,952这95个数中,十位数字是奇数的数共有()个。
10.甲乙两车从同一地点同时出发,沿着同一条公路追赶前面的一个骑车人。
甲车追上骑车人用6分钟,乙车追上骑车人用10分钟。
已知甲车速度是24千米/时,乙车速度是20千米/时。
那么,两车出发时距离骑车人()千米。
11.两列火车分别从两座城市同时出发,相向而行,3.3小时后在途中相遇。
如果甲车提前24分钟出发,那么乙车出发3小时后两车还需行14千米才能相遇;如果乙车提前36分钟出发,那么甲车出发3小时后两车还需行9千米才能相遇。
希望杯培训赛试题及答案
希望杯培训赛试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项是希望杯培训赛的宗旨?A. 培养青少年的数学兴趣B. 选拔数学竞赛选手C. 提高数学教学水平D. 增进青少年的身心健康答案:A2. 希望杯培训赛的参赛对象是?A. 小学生B. 初中生C. 高中生D. 大学生答案:B3. 希望杯培训赛的举办周期是?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A4. 希望杯培训赛的试题难度等级是?A. 初级B. 中级C. 高级D. 专家级5. 希望杯培训赛的试题类型包括?A. 选择题B. 填空题C. 解答题D. 所有以上答案:D二、填空题(每题4分,共20分)1. 希望杯培训赛的试题设计旨在提高学生的______能力。
答案:数学解题2. 希望杯培训赛的参赛者需要在______分钟内完成所有题目。
答案:1203. 希望杯培训赛的试题涵盖了数学的______、______和______等部分。
答案:代数、几何、概率4. 希望杯培训赛的试题答案解析将通过______发布。
答案:官方网站5. 希望杯培训赛的获奖者将获得______证书。
答案:荣誉三、解答题(每题10分,共60分)1. 解答以下方程:\[x^2 - 5x + 6 = 0\]答案:\[x = 2, x = 3\]2. 证明:如果一个三角形的两边之和大于第三边,则该三角形是锐角三角形。
3. 计算:\[ \int_{0}^{1} x^2 dx \]答案:\[\frac{1}{3}\]4. 证明:\(\sqrt{2}\) 是无理数。
答案:略5. 计算:\[ \lim_{x \to 0} \frac{\sin x}{x} \]答案:1四、附加题(每题10分,共20分)1. 已知函数\(f(x) = x^3 - 3x^2 + 4\),求\(f(x)\)的导数。
答案:\[f'(x) = 3x^2 - 6x\]2. 证明:对于任意实数\(a\)和\(b\),\(a^2 + b^2 \geq 2ab\)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.计算:25278⨯⨯.2.计算:9876987989+++.3.计算:504812108642+-⋅⋅⋅+-+-+-.4.计算:20172015201620152014201620162017⨯-⨯-⨯+⨯.5.计算:1468715÷+÷.6.已知142857)2(99999=÷÷a ,求a .7.某数被27除,商是8,余数是5,求这个数.8.定义:)2()3(-⨯+=*B A B A ,求1715*.9.除法算式中,余数最大是多少?10.有5个连续偶数之和恰好等于4个连续奇数之和,如1311971210864+++=++++,请写出一个符合要求的式子.11.将36表示成三个大于1的自然数的乘积(不考虑三个自然数的相乘顺序),共有几种不同的表示方法?12.用数字2,0,1,7可以组成多少个不重复的三位数?13.用2295除以一个两位数,丽丽在计算的时候错把这个两位数的十位数字和个位数字写反了,得到的结果是45,则正确的结果应该是?14.如果把某个除法算式的被除数152写成125,则商会比原来的结果小3,且余数不发生变化,求余数.15.2017和某个小于100的自然数的和等于两个连续自然数之积,求这个小于100的自然数.16.某两位数的十位数字与个位数字互换后,新数比原数大36,求原来的两位数.17.abc 是一个三为偶数,已知b 是c 的三倍,且c a b +=,求abc .18.在乘法算式2524232221201918171615⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯的计算结果中,最多有多少个连续的0?19.在2018后面加一个两位数,使它成为一个能被7整除的六位数,则这个两位数最大的是多少?20.求能同时被3,5,7整除的最小的五位数.21.用一个自然数分别去除25,38,43,三个余数之和为18,求这个自然数.22.一个数被3除余2,被5除余4,被7除余6,则这个数最小是几?23.自然数a 是3的倍数,2-a 是4的倍数,3-a 是5的倍数,则a 最小是多少?24.d b a 、、是一位数字,并且21=-cd ab ,611=-ab cd ,则ad 等于多少?25.求能被2,3,5整除的最小四位数.26.488是一个四位数,数学老师说:“我再这个□中先后填入3个数字,所得的3个四位数,依次可被9,11,7整除.”数学老师先后填入的3个数字和是多少?27.从1,2,3,4,5,6这6个数字中,任取2个组成两位数,这些两位数中,3的倍数有多少个?28.已知y x 、是大于0的自然数,且100=+y x ,若x 是3的倍数,y 是5的倍数,则)(y x ,的不同取值有几对?29.如图的算式中,F E D C B A 、、、、、表示不同的一位数,求F E D C B A 、、、、、表示的数.30.在1~500中,不能被2整除,也不能被3整除,又不能被5整除的数有多少?31.在1到200之间去掉所有完全平方数,剩下的自然数的和是多少?32.如图,共端点A 的射线a 与d 互相垂直,a 与c 的夹角是︒60,b 与d 的夹角是︒45,求b 与c 夹角的度数.33.如图,在正方形ABCD 中,BM CM 3=,若梯形AMCD 的周长比ABM ∆的周长大6,求正方形的边长.34.将同样的两张正方形透明塑料薄片部分重合地放于桌面上(如图:=+S S 正方形),已知ABCD 的周长是60厘米,求长方形ABCD 的面积.35.如图,一只小蚂蚁从点A 出发,沿折线爬行一周,问:小蚂蚁爬行了多少米?36.一个长方形的长和宽都增加3厘米后,长方形的面积增加了63平方厘米,求原长方形的周长.37.用长是22厘米的铁丝网围成一个长和宽都是整数厘米数的长方形,有几种方法?38.如图,︒=∠+∠+∠+∠+∠+∠180654321,图中比平角小的角有多少个?39.如图,用11个边长为1的正方形卡片拼成数字“2”,求图中长方形的个数(不包括正方形).40.数一数,图中共有多少个平行四边形?41.数一数,图中有多少个三角形?42.数一数,图中有多少个三角形?43.已知一数列:1,3,4,7,11,18,…,这个数列的第10个数是多少?44.有白棋子和黑棋子共2018枚,按如图规律从左到右排成一行,其中黑子多少枚?45.观察下面按一定规律排列的一列数:,,,,,,,,,,,545352514342413231211……求第2017个数.46.如图,用小正方形摆成下列图形,按摆放规律,第25个图形需要多少个小正方形?47.如图13所示的数字是电子表中经常可见的数字2和5的表示形式、把图中左边的数字2向右翻转一次可得到右边的数字5,再向右翻转一次又会得到原来的数字2、那么将图中所示的数字25翻转一次得到的数字是多少?48.有张、王、李三个工人、甲、乙、丙三个工厂、以及车工、钳工和电工三种工作、已知:①王不在甲厂;②张不在乙厂;③在甲厂的不是钳工;④在乙厂的是车工;⑤王不是车工这三个人分别在哪个工厂、干什么工作?49.一个两位数除以它的各位数字之和、余数最大是多少?50.5个人围成一圈做游戏、每人都有一袋小石子.游戏开始时、第一个人给第二个人1颗石子第二个人给第三个人2颗石子、第三个人给第四个人3颗石子、第四个人给第五个人4颗石子、第五个人给第一个人5颗石子,……、如此操作5圈后所有人袋中的石子都一样多若所有石子的总数为1990颗、问游戏前每个人袋中分别有多少颗石子?51.将2017个小球放到10个箱子中、要求每个箱子中的小球的数目中都带有数字7请给出一种摆放方法.52.箱子里有2018个小球、编号分别为1,2,3,……,2018,现从箱子中摸出1616个小球、将它们的编号相乘、求积的个位数字.53.自然数n的十位数字是4、个位数字是2、各个数位上的数字之和为42、且n是42的倍数、求满足上述条件的最小的自然数.54.一副扑克牌有52张、依惯例A、J,Q、K依次视为1点、11点、12点、13点、任意抽出若干张牌、不计花色、如果抽出的牌中必定有3张牌的点数相同、那么至少要取几张牌?如果抽出的牌中必定有2张牌的点数之和等于15、那么至少要取几张牌?55.小明、小强、小红三个人在一起玩提迷藏的游戏、小明对小强说:“我在你的正北方5米处”,小红对小强说:“我在你的正南方6米处”,若小强走1米需要6步、那么先抓小明再去抓小红一共需要走多少步?56.10个50g的砝码和5个100g的砝码同时放在天平的左右两侧才能使天平保持平衡、那么在天平左侧放2个1kg的砝码、右侧放6个300g的砝码、要使天平保持平衡还要在右侧放几个50g的砝码?57.在一个周长是200米的池塘周围植树、每隔5米植一棵、需要准备多少稞树苗?58.在120米长的跑道右侧插16面彩旗、求相邻两面彩旗之间的距离.59.今年、小军4岁、爸爸31岁、再过多少年爸爸的年龄是小军的4倍.60.亮亮比品晶小6岁、16年后亮亮的年龄是晶晶今年的年龄的2倍、问:晶晶今年几岁?61.父亲今年45岁、儿子今年15岁、多少年前父亲的年龄是儿子年龄的7倍?62.2011年、妈妈的年齡等于她的两个孩子的年龄和的5倍、2017年她的年龄等于两个孩子的年龄和的2倍、求2018年时妈妈的年龄.63.某学习小组数学成绩的统计图如图所示,求该小组的平均成绩.64.统计十位同学在一次数学考试中的成绩、已知前四名的平均分是95分、后六名的平均分比十人的总平均分少6分、求这十位同学的平均分.65.李家求包了100亩地种玉米、亩产量600斤、刘家比李家少承包了20亩、结果两家的总产量相同.问:(1)刘家玉米的总产量是多少斤?(2)李家玉米的宙产量比刘家的少多少斤?66.桔子、苹果、梨共有六箱、这六箱水果的重量(单位:千克)分别为:15,16,18,19,20,31,其中苹果的重量是梨的一半、桔子只有一箱这六个箱子中分别装的是什么水果?67.每本书的版权页上都印有:开本、印张、宇数、定价等等.如:“开本:720mm*米960mm1/16印张:12字数:240千字”求这本书平均每页有多少宇?(注:16开、即1个印张16页)68.某校规定语文、英语、数学三科考试成绩的平均分在95分以上才有可能被评为三好学生若在一次期末考试中、希希语文考了96分、英语考了92分、那么他数学至少得多少分才有可能被评为三好学生?69.1个西瓜可换5个苹果、2个苹果可换3根香蕉、5根香蕉可换8个桃予、那么60个桃子可换几个西瓜?70.7头牛可换16只羊、2只羊可换21只兔、则3头牛可换多少只兔?71.有两块地、平均亩产粮食650千克、其中第一块地5亩、亩产粮食670千克如果第二块地亩产粮食645千克、第二块地有多少亩?72.妈妈去市场买菜已知买肉和鸡蛋共用了77元、买鸡蛋和青菜共用了60元、买肉和青菜共用了103元、那么、买青菜用了多少钱?73.已知5个连续奇数的和是125、求其中最小的奇数.74.2018是4个连续自然数的和、其中最大的数是多少.75.两个数的和是900、其中较大数是较小数的19倍、则这两个数分别是多少?76.甲、乙、内三数之和为180、乙比两的3倍少2、甲比内的2倍多8、求甲、乙、丙三个数.77.8个连续的自然数从小到大排列、若后5个数的和比前3个数的和的2倍大12、求这8个数中最小的数.78.甲、乙两校共有学生432人、为了照顾学生就近入学、经协商由甲校调入乙校16人、这样甲校比乙校还多24人问甲、乙两校原来各有多少人?79.学校里有排球24个、足球的个数比排球的2倍少5个、学校有排球、足球共多少个?80.某商店从皮具厂以每个100元的价格购进了60个皮箱、这些皮箱共卖了8100元这个商店从这60个皮箱上共获得多少利润?每个皮箱盈利多少元?81.买5斤西红柿用了12元、比买6斤茄子少用了1元8角、求每斤茄子的价钱.82.小娟同学去文具店买笔、已知水彩笔1元7角一支、圆珠笔1元2角一支、她带了15元钱正好用完则小娟购买了多少支水彩笔和多少支圆珠笔?83.甲盒和乙盒内分别放有51个和78个乒乓球、要使甲盒内乒乓球的个数是乙盒内乒乓球个数的两倍、需要从乙盒中取出多少个乒乓球放人甲盒?84.有1元、5元*10元的人民币共46张、面值共计200元、已知1元的比5元的多4张、那么10元的人民币有几张?85.一名商人购进1000个万花筒、每销售一个可以获得2元的利润、每遇到一个残次品则会损失8元、全部售完后、商人共获得1900元利润问:这批万花筒中有多少个残次品?86.解放军某部野外拉练、晴天每天行50千米、雨天每天行40千米、12天内共行550千米、问这期间有多少天是雨天?87.秋天到了、姐姐和妹妹一起去捡地上的枫叶、姐姐捡五角枫(一片树叶有五个角}、妹妹捡三角枫(一片树叶有三个角}、若姐姐妹妹捡的枫叶共有102个角、且姐姐比妹妹捡的枫叶数量多6片、问:姐姐和妹妹分别捡了多少片枫叶?(所有叶的角都是完整的).88.袋子中有黑白两种颜色的棋子、黑子的个数是白子的个数的2倍、每次从袋中同时取出3个黑子和2个白子、某次取完后、白子剩下1个、黑子剩下27个、求袋中原有白子的个数.89.把40枚棋子分成27堆、其中每堆中的棋子数为1、2或3如果只有1枚棋子的堆数是其余堆数的2倍、那么恰含2枚棋子的有几堆?90.已知2017年的元旦是星期日、那么在2017年11月11是星期几?91.一个牧场上长满了牧草、牧草每天均速地生长、17头牛30天可将草吃完、19头牛20天可将草吃完现有若干头牛吃了5天后、卖掉了3头牛、余下的牛再吃2天便将草吃完问:原有多少头牛吃草(草均匀生长).92.一个牧场上长满了牧草、牧草每天匀速地生长、16只羊吃20天可将草吃完、20只羊15天可将草吃完现在牧场上有12只羊吃牧草、5天后、又增加了12只羊、还要多少天可以将牧场上的牧草吃完?93.甲、乙两个机器人分别从A、B两点同时出发、相向而行.甲到达B点时、乙距离点A 还差12米、乙到达A点时、甲超过B点20米、求A、B两点间的距离.94.甲、乙两人分别从A、B两地以65米/分和55米/分的速度同时出发相向而行、10分钟后相遇、求A、B两地的距离是多少米、并求出相遇点距离A、B两地的中点多少米.95.乌龟和兔子在全长为1000米的赛道上比赛、兔子的速度是乌龟速度的15倍但兔子在比赛的过程中休息了一会儿、醒来时发现乌龟刚好到达终点、而此时十兔子还差100米才到终点、则在免子休息期间乌龟爬行了多少米.96.一列火车全长通过长335米的桥需26秒、以同样的速度通过长1075米的桥要63秒、这列火车长多少米?97.甲、乙两地相距300千米、一辆汽车原计划用6小时从甲地到乙地、汽车行驶了一半路程、因故停留了30分钟、如果按原定时间到达乙地、汽车在后半段路程时速度应提高多少?98.一条小船往返于相距144千米的甲、乙两码头之间、从甲到乙顺流航行需要6小时、从乙到甲逆流航行需要8小时那么一个漂流瓶从甲码头顺流漂到乙码头需要多久?99.甲由A地出发去B地、同时乙由B地出发去A地、经过12分钟两人过了相遇点后相距100米、已知甲行全程要20分钟、乙每分钟行65米、A、B两地相距多少米?100.两个顽皮的孩子逆着自动扶梯行驶的方向行走、男孩每秒可走3级梯级、女孩每秒可走2个梯级、结果从扶梯的一端到达另一端男孩走了100秒、女孩走了200秒.问:该扶梯共有多少个台阶?。