初一上学期数学 压轴题 期末复习试卷带答案doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一上学期数学 压轴题 期末复习试卷带答案doc

一、压轴题

1.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.

(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;

(2)当线段CE 运动到点A 在C 、E 之间时,

①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....

); ②求BE 与CF 的数量关系;

(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.

2.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .

(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?

(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.

3.综合试一试

(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.

(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.

(3)a 是不为1的有理数,我们把11a

-称为a 的差倒数.如:2的差倒数是1112=--,

1-的差倒数是()

11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.

(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______

(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.

4.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.

探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

如图①,连接边长为2的正三角形三条边的中点,从上往下看:

边长为1的正三角形,第一层有1个,第二层有3个,共有

个;

边长为2的正三角形一共有1个.

探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有

个;边长为

2的正三角形共有个.

探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,

则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

(仿照上述方法,写出探究过程)

结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

(仿照上述方法,写出探究过程)

应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.

5.观察下列等式:

11

1

122

=-

111

2323

=-

111

3434

=-

,则以上三个等式两边分别相加得:

111111113

1

122334223344

++=-+-+-=

⨯⨯⨯

()1观察发现

()

1

n n1

=

+______;()

1111

122334n n1

+++⋯+=

⨯⨯⨯+______.

()2拓展应用

有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记

2个数的和为1a;第二次再将两个半圆周都分成

1

4

圆周(如图2),在新产生的分点标上相邻的已标的两数之和的

1

2

,记4个数的和为2a;第三次将四个

1

4

圆周分成

1

8

圆周(如图3),在新产生的分点标上相邻的已标的两数之和的

1

3

,记8个数的和为3a;第四次将八个1

8

圆周分成

1

16

圆周,在新产生的分点标上相邻的已标的两个数的和的

1

4

,记16个数的和为4a;⋯⋯如此进行了n次.

n

a=

①______(用含m、n的代数式表示);

②当

n

a6188

=时,求

123n

1111

a a a a

+++⋯⋯+的值.

相关文档
最新文档