第三章 平面与空间直线

合集下载

两平面的夹角

两平面的夹角

作业: P104 5(3) (6)、8、9
返回 18
§3.2 平面与点的相关位置 §3.3 两平面的相关位置
教学时数: 2课时 教学重点:点到平面的距离、两平面的位置关系; 教学难点:1.离差的概念和应用;
2.两平面的位置关系。 教学目标:
1.理解离差的概念; 2.掌握点到平面的距离公式; 3.熟悉两平面的位置关系的充要条件; 4.培养学生的空间想象能力。
第三章 平面与空间直线
§3.1 平面的方程 §3.2-3 平面与点 两平面的相关位置 §3.4 空间直线的方程 §3.5-6 直线与平面 直线与点的相关位置 §3.7 空间两直线的相关位置 §3.8 平面束
返回 1
第三章 平面与空间直线 教学安排说明
教学时数:12课时 本章教学目标及要求:通过本章的学习,使学生掌握空间坐标 系下平面、直线方程的各种形式,熟练掌握平面与空间直线间各种 位置关系的解析条件,会求平面与空间直线间各种距离和夹角。 本章教学重点:1.空间坐标系下平面 、直线方程的几种重要形 式;2. 平面与空间直线间各种位置关系的解析条件;3.平面与空间 直线各种度量关系的量化公式。 本章教学难点:1. 空间直线一般方程向标准方程的转化;2. 综 合运用位置关系解析条件求平面、空间直线方程。
15
二、平面的法式方程
1、向量式法式方程
uuur
若M
0
是自O ur

所作垂线的垂足 P,
uuur
uuur
的法向量取与OP同 ur
向的单位向量n0, 并设 | OP | p,则OP pn0,故平面 的方程
uur r ur
ur r
是:n0 (r pn0 ) 0, 即 n0 r p 0, 叫平面 的向量式法式方程。

解析几何课件(吕林根许子道第四版)

解析几何课件(吕林根许子道第四版)

下一页
返回
定理1.4.2 如果向量e1, e2不共线,那么向量 r与
e1 , e2共面的充要条件是 r可以用向量 e1 , e2线性表示,
或者说向量 r可以分解成e1 , e2的线性组合,即
r xe1 ye2
(1.4-2)
并且系数x, y被e1 , e2 , r唯一确定. 这时e1 , e2叫做平面上向量的基底 . 定理1.4.3 如果向量e1 , e2 , e3不共面,那么空间
OC OA OB
下一页
返回
B
C
O
A
这种求两个向量和的方法叫做平行四边形法则
定理1.2.2 向量的加法满足下面的运算规律:
(1)交换律:
a

b

b

a.
(2)结合律:
a

b

c

(a

b)

c
a

(b

c).
(3)
a

(a)

0.
上一页 下一页
例2 证明四面体对边中点的连线交于一点,且
互相平分.
证 设四面体ABCD一组
D
对边AB,CD的中点E, F的连
线为EF ,它的中点为P1,其余
e3
两组对边中点分别为 P2 , P3 ,
下只需证P1 , P2 , P3三点重合
就可以了.取不共面的三向量 A
F
P1
e2
C
AB e1 , AC e2 , AD e3 ,
在不全为零的 n个数1 , 2 ,, n使得
1 a1 2 a2 n an=0,
(1.4 4)

解析几何第三章

解析几何第三章

M 1 M 2 、 M 1 M 3 不共线
(1)
(2)
(3)
x − x x2 − x1 x3 − x1 y − y1 y2−y1 y3 − y1 = 0 z − z1 z2 − z1 z3 − z1
平面上 任意一点 设 M( x, y, z) 为平面上的任意一点
→ → r r 且 r = OM =( x, y, z), ri = OMi =( xi , yi , zi )(i = 1,2,3)
情形. 类似地可讨论 A = C = 0, B = C = 0 情形
( 4 ) A = B = D = 0,
有z = 0,即xoy面.
例 4 设平面过原点及点( 6,−3, 2) ,且与平面
4 x − y + 2 z = 8 垂直,求此平面方程 垂直,求此平面方程.
解 设平面为 Ax + By + Cz + D = 0, 由平面过原点知 D = 0,
代入体积式
1 1 1 1 1 ∴1 = ⋅ ⋅ ⋅ ⇒t=± , 6 6t t 6t 6
∴ a = ±1,
b = ±6,
c = ±1,
所求平面方程为 6 x + y + 6 z = 6. 或
6 x + y + 6z = −6.
平面的法式方程
z
r n
M
如果一非零向量垂直 于一平面, 于一平面,这向量就叫做 法线向量. 该平面的法线向量 该平面的法线向量.

向量式法式 方程
n0 o
M y
→ r → r r − pn0 = n0⋅ r − p = 0 n ⋅
2 、设
→ x r r = ( x, y, z), n0 = (cosα,cos β,cosγ )

高等数学几何教材答案

高等数学几何教材答案

高等数学几何教材答案第一章:平面几何1. 直线与点的关系考虑直线L和点P,有以下几种情况:(1) P在L上:可以由坐标求解,若点的坐标满足直线的方程,则P 在L上;(2) P在L的延长线上:将直线的方程带入坐标计算,若方程成立,则P在L的延长线上;(3) P在L的两侧:利用点到直线的距离公式,计算出P到L的距离d,若d>0,则P在L的两侧。

2. 直线与直线的位置关系两条直线L1和L2可以有以下几种位置关系:(1) 相交:两直线有且只有一个交点;(2) 平行:两直线没有交点,方程也无解;(3) 重合:两直线完全重合,方程有无数解;(4) 相交于一点的延长线上:两直线有且只有一个交点,但该点在延长线上;(5) 相交于一点的中点上:两直线有且只有一个交点,且该点为两线段的中点。

3. 直线与平面的位置关系考虑直线L和平面P,有以下几种情况:(1) 相交:直线与平面有一个交点;(2) 平行:直线与平面没有交点,方程也无解;(3) 含于平面:直线完全位于平面上,方程有无数解。

第二章:空间几何1. 空间点和点线距离(1) 点P到直线L的距离:利用点到直线的距离公式,计算出P到L的距离;(2) 点P到平面的距离:利用点到平面的距离公式,计算出P到平面的距离;(3) 点P到点集合S的最近距离:计算出P到点集合S中所有点的距离,找出其中的最小值即为最近距离。

2. 线段相交判定法两条线段AB和CD相交的条件有以下几种:(1) AB与CD的延长线相交;(2) A、B在CD的异侧,且C、D在AB的异侧;(3) A、B、C、D四个点共线,且CD的某个端点在AB上;(4) A、B、C、D四个点共线,且AB的某个端点在CD上。

3. 空间直线与直线的位置关系考虑两条直线L1和L2,它们可以有以下几种位置关系:(1) 相交:两直线有且只有一个交点;(2) 零交:两直线没有交点,方程也无解;(3) 平行:两直线没有交点,但方程有解;(4) 共面:两直线在同一个平面内。

3.1:平面的方程

3.1:平面的方程

r OM {x, y, z}, r i OMi {xi, yi, zi},
M1
M3
M2
e3
r1
r3 r2
M
r
O x
(i 1,2,3)
e1
e2
y
(图3-2)
a M 1M 2 r 2 r1 {x 2 x1, y 2 y1, z 2 z1} b M 1M 3 r 3 r1 {x3 x1, y 3 y1, z 3 z1}
y y1 y2 y3
ቤተ መጻሕፍቲ ባይዱ
z z1 z2 z3
1 1 1 1
0.
(3.1-8′)
方程(3.1-5)-(3.1-8′)都叫做平面的三点 z 式方程。 作为三点式的特例, 如果已知三点为平面与 三坐标轴的交点M1 (a,0,0), M2 (0,b,0), M3 (0,0,c) (其中 abc 0 )(图3-3) x M3(0,0,c) O M1(a,0,0) (图3-3) y M2(0,b,0)
它是 截距式方程
y y1 y 2 y1 y 3 y1
z z1
它们都是 z y 1 点位式方程
y1
z 2 z1 0; x 3 z 3 z1 x4
z1
1 1 1
y2 y3
z2 z3
0.
x y z 1. a b c
它们都是 三点式方程
2.平面的一般方程 因为空间任一平面都可以用它上面的一点
Ax+By+D=0
(3.1-10)
当D≠0时, z轴上的任意点(0,0,z)都不满足方程, 所以平面与z轴平行;而当D=0时,z轴上的每一点都

第3章--点、直线和平面的投影

第3章--点、直线和平面的投影

第六节 平面上的直线和点
一. 平面上的直线 判定定理: 1)若一直线通过平面上的两点, 2)若一直线通过平面上的一点,
且与平面内的一直线平行
则该直线在 该平面内
二. 平面上的点
判定定理: 若点通过平面内一直线,则该点在该平面内。
〖例3—5〗已知△ABC的两面投影及△ABC内K点的 水平投影k,作其正面投影k’。
空间两直线的相对位置有: 平行、相交、交叉、垂直(垂直相交或垂直交叉)
1. 两直线平行
判定定理: 三对同面投影均平行,且符合定比性,则二直线平行.
对于一般位置直线,只要有两个同面投影互相平行, 则二直线平行。
判断图中两条直线是否平行?
答案:平行
对于特殊位置直线,只有两个同面投影互相平
行,空间直线不一定平行。
1)在它所垂直的投影面上的投影积 聚成一条斜线,反映该平面对其它两投 影面的夹角实形;
2)其它两面投影为面积缩小的类似 平面图形。
4. 一般位置平面
空间平面与三个投影面都倾斜。
投影特性:三个投影均不反映实形,均为类似形。
一框两直线,定是平行面,框在哪 个面,平行哪个面。
两框一斜线,定是垂直面,斜线哪 个面,垂直哪个面。
〖例3—15〗求 作平面△ABC与四 边形DEFG的交线MN 的两面投影,并表 明可见性。
作图步骤:
1)经试求选定求 作ED、FG与△ABC平 面的交点。四. 两点Βιβλιοθήκη 相对位置1. 两点的相对位置
指两点在空间的上下、前后、左右位置关系。
投 影 面 方 位 图
2. 重影点及其可见性
当空间两点位于同一投影线上时,此两点在该投 影面上的投影重合为一点,该点称为重影点。
请做 本题 练习

高等数学(一)1课程教学大纲

高等数学(一)1课程教学大纲
课程内容:
第一章矢量与坐标
【目的要求】能正确理解矢量的概念,并且能灵活运用这些概念解决一些具体问题;掌握矢量的线性关系及矢量的分解;熟练掌握矢量各种运算的定义、性质、法则以及矢量的各种位置关系及其对应的代数表示式,在此基础上能进行正确的证明、计算;能正确理解矢量的坐标与点的坐标的内在联系和区别,掌握矢量运算的坐标表示及其各种位置关系的坐标表示,并且能熟练地进行运算和论证。
三、泰勒公式
四、函数单调性的判别法
五、函数的极值及其求法
六、函数的最大值和最小值
七、函数的凹凸性与拐点
八、函数图形的描绘
九、曲率
●实践教学内容与安排(4学时)
一、第一章习题
二、描绘函数图形
【作业与思考】第一章部分习题
思考:函数一阶导、二阶导数与函数极值点和拐点有哪些联系?
第六章定积分
【目的要求】掌握积分概念,性质,换元积分法和分部积分法、有理函数、三角函数有理式、简单无理式的积分方法。
【作业与思考】第三章部分习题
思考:微分与积分的联系。
学时分配表
课程内容
学时
理论
第一章中值定理与导数应用
16
第二章不定积分
10
第三章定积分
10
实践
一各章节习题
19
二描绘函数图形
2
三讨论:定积分与不定积分换元法的区别
1
考核
1.第一、二章内容
2
合计
60
教学策略与方法建议:以讲授法为主,辅以练习法、谈话法、讨论法、引导发现法。教学策略上宜以问题的呈现引发学生思考,帮助学生建立数学模型,找出解决问题的一般方法,从而建立概念,掌握有关数学思想方法,巩固定理和法则。
【重点与难点】重点是求导公式及法则。难点是导数与微分概念。

第三章 平面与空间直线

第三章 平面与空间直线

第三章平面与空间直线本章以矢量为工具推导平面和空间直线各种形式的方程,讨论两平面,直线与平面,两直线的相互位置关系,并以矢量为工具推导两平面,直线与平面,两直线间的夹角公式以及点到平面,点到直线,两异面直线间的距离公式,最后又讨论了平面束方程及其应用。

本章的基本要求如下:A.掌握1.基本概念:平面的方位矢量和法矢量,量,方向角,方向余弦,方向数。

有轴平面束和平行面束。

点与平面间的离差,直线的方向矢量2.平面方程矢量形式的方程:点位式,一般式,参数式,点法式。

坐标形式的方程:点位式,三点式,截距式,一般式,参数式,点法式,法线式。

根据平面的方程画出平面的图形。

3.直线方程矢量形式的方程:点向式,参数式。

坐标形式的方程:对称式,两点式,参数式,一般式,射影式。

4.点,直线,平面的相关位置①用矢量方法讨论两平面的位置关系(相交,平行,重合),并求两平面间的夹角。

②点和平面的位置关系(点在或点不在平面上),利用平面的法线式方程求点与平面的离差和距离。

③用矢量方法讨论直线和平面的位置关系(相交,平行,直线在平面上),并求直线和平面间的夹角。

④点和直线的位置关系(点在直线上或点不在直线上),利用矢量方法求点到直线的距离。

⑤用矢量方法讨论两直线的位置关系(异面,相交,平行,重合)并求两直线间的夹角。

⑥平面束方程,利用平面束方程求空间直线在任一平面上的射影。

⑦空间圆的方程,圆心和半经的求法。

5.基本理论平面基本定理及其证明(定理3,1,1)有轴平面束方程及其证明(定理3,8,1)B.理解利用矢量方法求两异面直线的公垂线和两异面直线间的距离。

知识要求:1.知道决定平面的几何条件及矢量条件,会根据几何条件求出平面方程;2.掌握平面的参数方程、一般方程、法式方程、截距式方程;3.会求点到平面的距离;4.会用矢量条件判断平面与平面的位置关系;5.知道决定空间直线的几何条件及矢量条件,会根据几何条件求出直线方程;6.掌握空间直线的参数方程、两点式方程、一般方程、标准方程,会将参数方程、一般方程转化成标准方程;7.会用矢量条件判断直线与直线、平面与直线的的位置关系; 8.会求两直线之间的夹角;9.会求两异面直线之间的距离与公垂线方程; 10.了解平面束的概念。

第三章 点、直线、平面的投影

第三章 点、直线、平面的投影



C b
O
|YA-YB| X
a b

ab
AB
a
|YA-YB|

|YA-YB|
ab
3 求直线的实长及对侧面投影面的夹角 角
Z
b b Z a
B
a X A a
b a X b a Y a YH O

O b
b YW
|XA-XB|
直线实长
直线实长
直线实长
△Z
△Y
△X
α
水平投影长
β
第三章 点、直线、平面的投影
第一节 点的投影 第二节 直线的投影 第三节 平面的投影
第三章 点、直线、平面的投影
3-1 点的投影
一、点的三面投影
二、点的投影与直角坐标的关系
三、点的投影规律
四、空间点的相对位置
一、点的三面投影
为了统一起见,规定空间点用大写字母表示,如A、B、C等; 水平投影用相应的小写字母表示,如a、b、c等;正面投影用 相应的小写字母加撇表示,如a′、b′、c′;侧面投影用相 应的小写字母加两撇表示,如a″、b″、c″。
b
d d c
b
a
d
A
b
a
例:判断图中两条直线是否平行。

a
a c c c d c b d a b a b b d c b d a c b d
AB与CD平行。
对于一般位置直线, 只要有两组同名投影互 相平行,空间两直线就 平行。

a
d
AB与CD不平行。
对于特殊位置直线, 只有两组同名投影互相 平行,空间直线不一定 平行。
a
X A a O bo b

第三章平面与空间直线28494资料

第三章平面与空间直线28494资料

Ax + By + Cz + D = 0
z
因P(a, 0, 0), Q(0, b, 0), R(0, 0, c) R
三点都在这平面上, 于是
aA + D = 0 bB + D = 0
o P
Qy
x
cC + D = 0
解得: A D a
BD b
C D c
所求平面的方程为:
DxD yDzD0 ab c
垂直于平面,所以平面的一个法向量为 n={1,1,-2}. 又所求平面过点M1M2的中点M0(2,-1,1),故 平面的点法式方程为 (x-2)+(y+1)-2(z-1)=0 整理得
x+y-2z+1=0
三、平面的一般方程
1. 定理1: 任何x, y, z的一次方程. Ax +By +Cz +D = 0 都表示平面,且此平面的一个法向量是: n = {A, B, C}
x x1 u(x2 x1) v(x3 x1)

y

y1

u( y2

y1 )

v( y3

y1 )
(4)
z z1 u(z2 z1) v(z3 z1)
从(3),(4)中分别消去参数u,v可得:
(r-r1,r2-r1,r3-r1)=0
(5)
x x1 x2 x1 x3 x1
616
化简得 1 1 1 , 令 1 1 1 t 6a b 6c 6a b 6c
a 1 , b 1, c 1 ,
6t
t
6t 代入体积式
1 1 1 1 1 6 6t t 6t

解析几何第四版吕林根课后习题答案

解析几何第四版吕林根课后习题答案

第三章 平面与空间直线§ 平面的方程1.求下列各平面的坐标式参数方程和一般方程:1通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面2通过点)1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面;3已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D ;求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ∆平面垂直的平面; 解: 1 }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x2由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为:一般方程为:0)5(2)1(7=+--y x ,即01727=--y x ; 3ⅰ设平面π通过直线AB,且平行于直线CD : }1,5,4{--=AB ,}2,0,1{-=CD 从而π的参数方程为:一般方程为:0745910=-++z y x ;ⅱ设平面π'通过直线AB,且垂直于ABC ∆所在的平面∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-⨯--=⨯AC AB均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:042:=+-+z y x π.解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为:1424=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-,∴ 所求平面的参数式方程为:3.证明矢量},,{Z Y X v =平行与平面0=+++D Cz By Ax 的充要条件为:0=++CZ BY AX .证明: 不妨设0≠A ,则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{AC A B --,从而v 平行于平面0=+++D Cz By Ax 的充要条件为:v ,}1,0,{},0,1,{ACA B --共面⇔ ⇔0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标.解: }5,2,3{z AB +-= 而AB 平行于0147=--+z y x 由题3知:0)5(427)3(=+-⨯+⨯-z 从而18=z .5. 求下列平面的一般方程.⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;⑶与平面0325=+-+z y x 垂直且分别通过三个坐标轴的三个平面; ⑷已知两点()()1,2,4,2,1,321--M -M ,求通过1M 且垂直于21,M M 的平面; ⑸原点O 在所求平面上的正射影为()6,9,2-P ;⑹求过点()1,5,31-M 和()2,1,42M 且垂直于平面0138=-+-z y x 的平面.解:平行于x 轴的平面方程为001011112=--+-z y x .即01=-z .同理可知平行于y 轴,z 轴的平面的方程分别为01,01=-+=-y x z . ⑵设该平面的截距式方程为132=+-+-c z y x ,把点()4,2,3-M 代入得1924-=c 故一般方程为02419812=+++z y x .⑶若所求平面经过x 轴,则()0,0,0为平面内一个点,{}2,1,5-和{}0,0,1为所求平面的方位矢量,∴点法式方程为001215000=----z y x ∴一般方程为02=+z y .同理经过y 轴,z 轴的平面的一般方程分别为05,052=-=+y x z x . ⑷{}2121.3,1,1M M --=M M →垂直于平面π,∴该平面的法向量{}3,1,1--=→n ,平面∂通过点()2,1,31-M , 因此平面π的点位式方程为()()()02313=--+--z y x . 化简得023=+--z y x . 5 {}.6,9,2-=→op∴ .116cos ,119cos ,112cos -===∂γβ 则该平面的法式方程为:.011116119112=--+z y x既 .0121692=--+z y x6平面0138=-+-z y x 的法向量为{}3,8,1-=→n ,{}1,6,121=M M ,点从()2,1,4写出平面的点位式方程为0161381214=----z y x ,则,261638-=-=A74282426,141131,21113-=++⨯-=====D C B ,则一般方程,0=+++D Cz By Ax 即:.037713=---z y x 6.将下列平面的一般方程化为法式方程; 解:.3-=D∴将已知的一般方程乘上.301=λ得法式方程.030330530230=-+-z y x()∴-=∴=.21.12λD 将已知的一般方程乘上.21-=λ得法式方程.0212121=-+-y x()∴-=∴=.1.2.3λD 将已知的一般方程乘上.1-=λ得法式方程.02=--x().91.0.4±=∴=λD 即91=λ或91-=λ将已知的一般方程乘上91=λ或.91-=λ得法式方程为0979494=+-z y x 或.0979494=-+-z y x 7.求自坐标原点自以下各平面所引垂线的长和指向平面的单位法矢量的方向余弦;解:().71.35.1=-=λD 化为法式方程为05767372=-++z y x 原点指向平面π的单位法矢量为,76,73,72⎭⎬⎫⎩⎨⎧=u 它的方向余弦为.76cos ,73cos ,72cos ===γβα原点o 到平面π的距离为.5=-=D P λ().31.21.2-==λD 化为法式方程为-07323231=--+-z y x 原点指向平面π的单位法矢量为,32,32,310⎭⎬⎫⎩⎨⎧--=n 它的方向余弦为122cos ,cos ,cos .333αβγ=-==-原点o到平面π的距离7.p D λ=-= 第20页8.已知三角形顶点()()()0,7,0,2,1,1,2,2,2.A B C --求平行于ABC 所在的平面且与她相距为2各单位的平面方程;解:设,.AB a AC b ==点()0,7,0.A -则{}{}2,6,1,2,9,2a b ==写出平面的点位式方程72610292x y z += 设一般方程0. 3.2,6,140.Ax By Cz D A B C D +++=∴====-< 则1. 2.7p D λλ==-=相距为2个单位;则当4p =时28.D =-当0p =时0.D =∴所求平面为326280.x y z -+-=和3260.x y z -+=9.求与原点距离为6个单位,且在三坐标轴,ox oy 与oz 上的截距之比为::1:3:2a b c =-的平面;解:设,3,2.0.a x b x c x abc =-==≠∴设平面的截距方程为 1.x y z a b c++= 即.bcx acy abz abc ++= 又原点到此平面的距离 6.d =6.=∴所求方程为7.32y zx -++= 10.平面1x y z a b c++=分别与三个坐标轴交于点,,.A B C 求ABC 的面积;解 (,0,0)A a , (0,,0)B b ,(0,0,)C c {},,0AB a b =-,{},0,AC a c =-.{},,AB AC bc ca ab ⨯=;2AB AC b ⨯=.∴S ABC11.设从坐标原点到平面的距离为;求证1.p p =∴= 从而有22221111.p a b c =++ § 平面与点的相关位置1.计算下列点和平面间的离差和距离: 1)3,4,2(-M , :π 0322=++-z y x ; 2)3,2,1(-M , :π 0435=++-z y x . 解: 将π的方程法式化,得:01323132=--+-z y x ,故离差为:311332431)2()32()(-=-⨯-⨯+-⨯-=M δ,M 到π的距离.31)(==M d δ2类似1,可求得0354353356355)(=-++-=M δ,M 到π的距离.0)(==M d δ2.求下列各点的坐标:1在y 轴上且到平面02222=--+z y 的距离等于4个单位的点; 2在z 轴上且到点)0,2,1(-M 与到平面09623=-+-z y x 距离相等的点; 3在x 轴上且到平面01151612=++-z y x 和0122=--+z y x 距离相等的点;解:1设要求的点为)0,,0(0y M 则由题意∴ 610=-y ⇒50-=y 或7.即所求的点为0,-5,0及0,7,0; 2设所求的点为),0,0(0z 则由题意知: 由此,20-=z 或-82/13; 故,要求的点为)2,0,0(-及)1382,0,0(-; 3设所求的点为)0,0,(0x ,由题意知: 由此解得:20=x 或11/43; 所求点即2,0,0及11/43,0,0;3.已知四面体的四个顶点为)4,1,1(),5,11,2(),3,5,3(),4,6,0(---C B A S ,计算从顶点S 向底面ABC 所引的高; 解:地面ABC 的方程为: 所以,高335426=+⨯--=h ;4.求中心在)2,5,3(-C 且与平面01132=+--z y x 相切的球面方程; 解:球面的半径为C 到平面π:01132=+--z y x 的距离,它为:142142814116532==+++⨯=R ,所以,要求的球面的方程为:56)2()5()3(222=++++-z y x .即:0184106222=-++-++z y x z y x .5.求通过x 轴其与点()5,4,13M 相距8个单位的平面方程;解:设通过x 轴的平面为0.By Cz +=它与点()5,4,13M 相距8个单位,从而228.481041050.B BC C =∴--=因此()()1235430.B C B C -+=从而得12350B C -=或430.B C +=于是有:35:12B C =或():3:4.B C =-∴所求平面为35120y z +=或340.y z -=6. 求与下列各对平面距离相等的点的轨迹. ⑴053407263=--=--+y x z y x 和; ⑵062901429=++-=-+-z y x z y x 和. 解: ⑴ ()0726371:1=--+z y x π 令()()53451726371--=--+y x z y x化简整理可得:0105113=+-z y x 与07010943=--+z y x . ⑵对应项系数相同,可求42614221'-=+-=+=D D D ,从而直接写出所求的方程:0429=-+-z y x .9 判别点M2 -1 1和N 1 2 -3在由下列相交平面所构成的同一个二面角内,还是在相邻二面角内,或是在对顶的二面角内 11:3230x y z π-+-=与2:240x y z π--+= 21:2510x y z -+-=与2:32610x y z π-+-= 解:1将M2 -1 1,N1 2 -3代入1π,得: 6123032630++-〉⎧⎨---〈⎩则M,N 在1π的异侧 再代入2π,得:221470143440+-+=〉⎧⎨-++=〉⎩∴MN 在2π的同侧 ∴MN 在相邻二面角内2将M2 -1 1N1 2 -3代入1π,得:4151902215180++-=〉⎧⎨---=-〈⎩则MN 在1π的异侧; 再代入2π,得:662113034181200++-=>⎧⎨---=-<⎩则MN 在2π的异侧∴ MN 在对顶的二面角内10 试求由平面1π:2230x y z -+-=与2π:32610x y z +--=所成的二面角的角平分方程,在此二面角内有点1, 2, -3解:设px y z 为二面角的角平分面上的点,点p 到12ππ的距离相等=5332190(1)234240(2)x y z x y z +--=⎧⎨---=⎩把点p 代入到12ππ上,10δ< 20δ> 在1上取点1850 0代入12ππ,''1200δδ>>; 在2上取点0 0 -6代入12ππ,""1200δδ<>∴2为所求,∴解平面的方程为:34240x y z ---=两平面的相关位置1.判别下列各对直线的相关位置: 10142=+-+z y x 与0324=--+z y x ; 20522=---z y x 与013=--+z y x ; 305426=--+z y x 与029639=--+z y x ;解:1 )1(:21:41)4(:2:1-=-, ∴ 1中的两平面平行不重合; 2 )1(:3:1)2(:)1(:2-≠--, ∴ 2中两平面相交; 3 )6(:3:9)4(:2:6-=-, ∴ 3中两平面平行不重合;2.分别在下列条件下确定n m l ,,的值:1使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面;2使0532=-++z my x 与0266=+--z y lx 表示二平行平面; 3使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面; 解:1欲使所给的二方程表示同一平面,则: 即:从而:97=l ,913=m ,937=n ; 2欲使所给的二方程表示二平行平面,则: 所以:4-=l ,3=m ;3欲使所给的二方程表示二垂直平面,则: 所以: 71-=l ;3.求下列两平行平面间的距离: 10218419=++-z y x ,0428419=++-z y x ; 207263=--+z y x ,014263=+-+z y x ; 解:1将所给的方程化为: 所以两平面间的距离为:2-1=1;2同1可求得两平行平面间的距离为1+2=3; 4.求下列各组平面所成的角: 1011=-+y x ,083=+x ;2012632=-+-z y x ,0722=-++z y x ; 解:1设1π:011=-+y x ,2π:083=+x∴ 4),(21πππ=∠或43π; 2设1π:012632=-+-z y x ,2π:0722=-++z y x218cos ),(121-=∠ππ或218cos ),(121--=∠πππ; 5. 求下列平面的方程:1 通过点()1,0,01M 和()0,0,32M 且与坐标面xOy 成060角的平面;2 过z 轴且与平面0752=--+z y x 成060角的平面. 解 ⑴ 设所求平面的方程为.113=++z b y x 又xoy 面的方程为z=0,所以21113110103160cos 222=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅+⋅=b b ο 解得203±=b ,∴所求平面的方程为12633=+±+z yx , 即03326=-+±z y x⑵设所求平面的方程为0=+By Ax ;则21514260cos 22=+++±+=B A BA ο 3,038322BA B AB A =∴=-+或B A 3-= ∴所求平面的方程为03=+y x 或03=-y x .§ 空间直线的方程1.求下列各直线的方程:1通过点)1,0,3(-A 和点)1,5,2(-B 的直线; 2通过点),,(0000z y x M 且平行于两相交平面i π:)2,1(=i 的直线;3通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线;4通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; 5通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线; 解:1由本节—6式,得所求的直线方程为: 即:01553-=-=+z y x ,亦即01113-=-=+z y x ; 2欲求直线的方向矢量为: 所以,直线方程为:221102211022110B A B A z z A C A C y y C B C B x x -=-=-; 3欲求的直线的方向矢量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为:132511--=+=-z y x ; 4欲求直线的方向矢量为:{}{}{}2,1,10,1,11,1,1---=-⨯-, 所以,直线方程为:22111+==-z y x ; 5欲求的直线的方向矢量为:{}5,3,6--, 所以直线方程为:553362-+=--=-z y x ; 2.求以下各点的坐标: 1在直线381821-=-=-z y x 上与原点相距25个单位的点; 2关于直线⎩⎨⎧=+-+=+--03220124z y x z y x 与点)1,0,2(-P 对称的点;解:1设所求的点为),,(z y x M ,则: 又222225=++z y x即:222225)38()8()21(=+++++t t t ,解得:4=t 或762-所以要求的点的坐标为:)7130,76,7117(),20,12,9(---; 2已知直线的方向矢量为:{}{}{}3,6,62,1,24,1,1-=-⨯--,或为{}1,2,2-, ∴过P 垂直与已知直线的平面为:0)1(2)2(2=++--z y x ,即0322=-+-z y x ,该平面与已知直线的交点为)3,1,1(,所以若令),,(z y x P '为P 的对称点,则:221x +=,201y +=,213z+-= ∴7,2,0===z y x ,即)7,2,0(P ';3.求下列各平面的方程: 1通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; 2通过直线115312-+=-+=-z y x 且与直线 平行的平面; 3通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面; 4通过直线⎩⎨⎧=-+-=+-+014209385z y x z y x 向三坐标面所引的三个射影平面;解:1因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于矢量{}3,1,2-,所以要求的平面方程为: 即015=-++z y x ;2已知直线的方向矢量为{}{}{}5,3,11,2,11,1,2-=-⨯-, ∴平面方程为:即015211=-++z y x3要求平面的法矢量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x ; 4由已知方程⎩⎨⎧=-+-=+-+014209385z y x z y x分别消去x ,y ,z 得到:0231136=+-z y ,079=+-z x ,06411=+-y x此即为三个射影平面的方程;4.化下列直线的一般方程为射影式方程与标准方程,并求出直线的方向余弦: 1⎩⎨⎧=---=+-+0323012z y x z y x 2⎩⎨⎧=+--=-+064206z y x z x3⎩⎨⎧==-+20x z y x解:1直线的方向数为:)5(:1:)3(1312:3221:2111--=------∴射影式方程为: ⎪⎩⎪⎨⎧-+-=--+--=59515253z y z x , 即⎪⎩⎪⎨⎧--=+=59515253z y z x ,标准方程为:z y x =-+=-51595352, 方向余弦为:35353553cos ±=±=α,35153551cos =-±=β,3555351cos ±=±=γ;2已知直线的方向数为:)4(:3:44201:2111:1410-=----,射影式方程为:⎪⎩⎪⎨⎧--+-=--+-=4184342444z y z x , 即⎪⎩⎪⎨⎧+-=+-=29436z y z x 标准方程为:z y x =--=--432916, 方向余弦为:4144411cos =-±=α,41344143cos =-±=β, 4144411cos ±=±=γ;3已知直线的方向数为:1:1:0)1(:)1(:00111:1011:0011=--=--, ∴射影式方程为: ⎩⎨⎧-==22z y x ,标准式方程为:z y x =+=-1202, 方向余弦为:0cos =α,21cos ±=β,21cos ±=γ;5. 一线与三坐标轴间的角分别为,,αβγ.证明222sin sin sin 2.αβγ++= 证 ∵222cos cos cos 1αβγ++=, ∴2221sin 1sin 1sin 1αβγ-+-+-=,即222sin sin sin 2.αβγ++=§ 直线与平面的相关位置1.判别下列直线与平面的相关位置:137423zy x =-+=--与3224=--z y x ; 2723z y x =-=与8723=+-z y x ; 3⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ; 4⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x ; 解:1 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-, 而017302)4(234≠=-⨯--⨯-⨯,, 所以,直线与平面平行; 2 0717)2(233≠⨯+-⨯-⨯ 所以,直线与平面相交,且因为772233=--=, ∴ 直线与平面垂直;3直线的方向矢量为:{}{}{}1,9,51,1,22,3,5=--⨯-,0179354=⨯+⨯-⨯,而点)0,5,2(--M 在直线上,又07)5(3)2(4=--⨯--⨯, 所以,直线在平面上; 4直线的方向矢量为{}9,2,1-,∴直线与平面相交;2.试验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角;解: 032111)1(2≠-=⨯-⨯+-⨯∴ 直线与平面相交;又直线的坐标式参数方程为: ⎪⎩⎪⎨⎧+=+=-=t z t y t x 211设交点处对应的参数为0t ,∴10-=t ,从而交点为1,0,-1;又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ, ∴ 6πθ=;3.确定m l ,的值,使: 1直线13241zy x =+=-与平面0153=+-+z y lx 平行; 2直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直;解:1欲使所给直线与平面平行,则须: 即1=l ;2欲使所给直线与平面垂直,则须: 所以:8,4-==m l ;4.决定直线⎩⎨⎧=++=++00222111z C y B x A z C y B x A 和平面0)()()(212121=+++++z C C y B B x A A 的相互位置;解:在直线上任取),,(1111z y x M ,有:这表明1M 在平面上,所以已给的直线处在已给的平面上;5.设直线与三坐标平面的交角分别为.,,υμλ证明.2cos cos cos 222=++υμλ 证明 设直线与X,Y,Z 轴的交角分别为.,,γβα而直线与yoz,zox,xoy 面的交角依次为.,,γμλ那么,υπγμπβλπα-=-=-=2,2,2.而.1cos cos cos 222=++γβα∴.12cos 2cos 2cos 222=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-υπμπλπ从而有.2cos cos cos 222=++υμλ 6.求下列球面的方程1与平面x+2y+3=0相切于点()3,1,1-M 且半径r=3的球面;2 与两平行平面6x-3y-2z-35=0和6x-3y-2z+63=0都相切且于其中之一相切于点()1,1,5--M 的球面.解: ⑴⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+=+=t z t y t x 323321311为过切点M 且垂直与已知平面的直线,显见32,32,31是这条直线的方向余弦. 取3=t ,则得3,2==y x ; 取3-=t ,则得5,1,0-=-==z y x .故所求球面有两个:()()()9132222=++-+-z y x ,与()()951222=++++z y x . ⑵t z t y t x 21,31,65--=--=+=为过点M 且垂直于两平面的直线,将其代入第二个平面方程,得2-=t ,反代回参数方程,得3,5,7==-=z y x .设球之中心为C ,半径为r ,则()()()()49112115,1,2,12222=--+--++=-r C .故所求球面方程为()()()49121222=-+-++z y x .空间直线的相关位置1.直线方程⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 的系数满足什么条件才能使:1直线与x 轴相交; 2直线与x 轴平行; 3直线与x 轴重合; 解:1所给直线与x 轴相交⇔ ∃ 0x 使0101=+D x A 且0202=+D x A⇔02211=D A D A 且 1A ,2A 不全为零;2 x 轴与平面01111=+++D z C y B x A 平行 又x 轴与平面02222=+++D z C y B x A 平行,所以 即021==A A ,但直线不与x 轴重合,∴ 21,D D 不全为零;3参照2有021==A A ,且021==D D ; 2.确定λ值使下列两直线相交: 1⎩⎨⎧=-++=-+-01540623z y x z y x λ与z 轴;2λ12111-=+=-z y x 与z y x ===+11; 解:1若所给直线相交,则有类似题1: 从而 5=λ;2若所给二直线相交,则 从而:45=λ;3.判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面;如果是异面直线,求出它们之间的距离;1⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;2131833-=--=-z y x 与462733-=+=-+z y x ; 3⎪⎩⎪⎨⎧--=+==212t z t y tx 与5217441-+=-=-z y x ; 解:1将所给的直线方程化为标准式,为:-2:3:4=2:-3:-4 ∴二直线平行;又点)0,43,23(与点7,2,0在二直线上,∴矢量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法矢量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x , 即 0919225=++-z y x ;2因为0270423113637833≠-=---++=∆,∴二直线是异面的;二直线的距离:{}{}30327031562704,2,31,1,34231133156222==++=-⨯----=d ;3因为0574121031=--=∆,但是:1:2:-1≠4:7:-5所以,两直线相交,二直线所决定的平面的法矢量为{}{}{}1,1,35,7,412,1--=-⨯-,∴平面的方程为:33++-z y x ;4.给定两异面直线:01123-==-z y x 与10211zy x =-=+,试求它们的公垂线方程;解:因为{}{}{}1,2,11,0,10,1,2--=⨯, ∴公垂线方程为:即⎩⎨⎧=--+=-+-022220852z y x z y x ,亦即⎩⎨⎧=--+=-+-010852z y x z y x ;5.求下列各对直线间的角 1 .61932256231+=-=-=+=-z y x z y x 与 2.02302640220243⎩⎨⎧=+-=--+⎩⎨⎧=-+=--z y z y x z y x z y x 与解 1 777236814436912546cos 222222212121212121±=++++++±=++++++±=z y x z y x z z y y x x θ ∴ .7772arccos 7772arccos -=πθ或(2) 直线43412630230264,11210:0220243+=+=⎩⎨⎧=+-=--+=⎩⎨⎧==-+=--z y x z y z y x zy x z y x z y x 的对称式方程为:的对称式方程为 ∴ .19598arccos 19598arccos-=πθ或 6. 设d 和d '分别是坐标原点到点(,,)M a b c 和(,,)M a b c ''''的距离,证明当aa bb cc dd ''''+++时,直线MM '通过原点.证 {},,OM a b c =,{},,OM a b c ''''=,OM OM aa bb cc ''''⋅=++,而当OM OM OM OM ''⋅=⋅,cos(,)OM OM dd ''=时,必有cos(,)1OM OM '=,∴//OM OM ',∴当aa bb cc dd ''''+++时, 直线MM '通过原点.7.求通过点()2,0,1-P 且与平面0123=-+-z y x 平行,又与直线12341zy x =--=-相交的直线方程.解 设过点()2,0,1-P 的所求直线为∵ 它与已知平面0123=-+-z y x 平行,所以有023=+-z y x 1 又∵ 直线与已知直线相交,那么必共面. ∴ 又有 即 7x+|8y-12z=02由1,2得 31:50:48713:71232:12821::-=----=Z Y X而 ()1:2:431:50:4-≠- ∴ 所求直线的方程为.3125041+==--z y x 8. 求通过点()1,0,4-P 且与两直线⎩⎨⎧=-+=--⎩⎨⎧=--=++4423,221z y x z y x z y x z y x 与都相交的直线方程.解 设所求直线的方向矢量为{}z y x v ,,=→, 则所求直线可写为.14Zz Y y X x +==- ∵ 直线1l 平行于矢量{}{}{}3,3,01,1,21,1,121-=--⨯=⨯→→n n ∴矢量{}3,3,0-=→v 为直线1l 的方向矢量. 由于02111≠-因此令y=o 解方程组得x=1,z=o∴ 点1,o,o 为直线1l 上的一点. ∴ 直线1l 的标准方程为62155+=-=-z y x . ∵ (){}.3,3,01.0,0,1,1121-=→v M l l l l 方向矢量为过点都相交且与∴ 有0330103,,11=--=⎪⎭⎫⎝⎛→→→ZYXv v p m即 X+3Y+3Z=0. 即 X-13Y-3Z=0. 得 X:Y:Z=30:6:-16 又∵ ,3:3:016:6:30-≠- 即 .1→→v v 不平行6:1:516:6:30≠-, 即 .2→→v v 不平行 ∴ 所求直线方程为: 9. 求与直线137182-=-=+z y x 平行且和下列两直线相交的直线. ⑴⎩⎨⎧+=-=⎩⎨⎧+=-=5342,3465y z x z x z x z ⑵⎪⎩⎪⎨⎧=-=+=⎪⎩⎪⎨⎧=+=-=t z t y t x t z t y t x 74105,5332 解 ⑴ 在两直线上分别取两点()(),4,3,0,39,0,921--M M 第一条直线的方向矢量为{}0,1,01→v , 第二条直线的方向矢量为{}6,2,32→v , 作两平面:即 ,03198;03038=---=+-z y x z x将其联立即为所求直线的方程⑵021532,017813253=++-=-+z y x z y x 即1017,0178145710=---=+-z y x z y x 即212联立: .017021532⎩⎨⎧=---=++-z y x z y x这就是所要求的直线方程. 10. .求过点()0,1,2P 且与直线垂直225235:-+==-z y x l 相交的直线方程. 解 设所求直线的方向矢量为{}Z Y X v ,,0=→则所求直线0l 可写为.012Zz Y y X x -=-=- ∴ 3X+2Y-2Z=0 1 即 50X-69Y+6Z=0 2 由1,2得 311:131:120::=Z Y X ∴所求直线0l 为:§ 空间直线与点的相关位置1.直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 通过原点的条件是什么解:已知直线通过原点⇔ 故条件为021==D D ; 2.求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离;解:直线的标准方程为:所以,p 到直线的距离为:1534532025)2(1212392292421243222222===-++-+--+-=d ; § 平面束1.求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面:1通过原点; 2与y 轴平行; 3与平面0352=-+-z y x 垂直;解:1设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ, 故所求的平面方程为: 即:0539=++z y x ; 2同1中所设,可求出51=λ;故所求的平面方程为:0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x ;3如1所设,欲使所求平面与平面0352=-+-z y x 垂直,则须: 从而:3=λ,所以所求平面方程为:05147=++y x ;2.求平面束0)42()53(=+--+-+z y x y x λ,在y x ,两轴上截距相等的平面; 解:所给的方程截距式为: 据要求:λλλλ--=+-345145 ⇒ 1=λ; 所以,所求的平面为:01222=--+z y x ;3.求通过直线⎩⎨⎧=+-=++0405z x zy x 且与平面01284=+--z y x 成4π角的平面;解:设所求的平面为:0)4()5(=+-+++z x z y x λμ 则:22)8()4(1)()5()()8()()4(5)(222222=-+-+-+++-⨯-+-⨯++±λμμλμλμμλμ 从而 ,1:0:=λμ或3:4- 所以所求平面为:04=+-z x或012720=-++z y x ;4.求通过直线32201-=+=+zy x 且与点)2,1,4(p 的距离等于3的平面; 解:直线的一般方程为:设所求的平面的方程为0)223()1(=++++z y x μλ, 据要求,有:∴有λμμλμλ908125)13(92222++=+∴ 1:6:-=μλ或8:3即所求平面为:0)223()1(6=++++-z y x或 0)223(8)1(3=++++z y x即:04236=+--z y x 或01916243=+++z y x ;5. 求与平面0432=-+-z y x 平行且满足下列条件之一的平面. ⑴通过点()3,2,1-; ⑵y 轴上截距为3-; ⑶与原点距离为1.解: ⑴设所求的平面为032=-+-λz y x ,将点()3,2,1-的坐标代入方程得14=λ,则所求平面方程为01432=-+-z y x .⑵设所求的平面为λ=+-z y x 32.6,32,132=-=-=-=-=λλλλλ得令zyx.故所求平面为0632=-+-z y x .⑶设所求的平面为032=++-λz y x ,将其法化为()032141=++-±λz y x ,将原点的坐标代入得141±=λ,故所求平面为014132=±+-z y x .6.设一平面与平面x+3y+2z=0平行,且与三坐标平面围成的四面体体积为6,求这平面的方程;解 设所求平面方程为:x+3y+2z+0=λ 原点到该平面的距离为.14222λ=++=CB A D d∴ λλλ21,31,---分别叫做平面在三坐标轴上的截距. 四面体体积.31Sh V = ∴ )21)(31)((21316λλλ---=∴ .6±=λ∴ 这个平面的方程为0623=±++z y x8.直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 的系数满足什么条件才能使直线在坐标平面XOZ 内解 坐标平面XOZ 属于平面束化简为()()()()021212121=+++++++mD lD z mC lC y mB lB x mA lA 设平面XOZ 面.0,0,0≠≠=z x y有⎪⎩⎪⎨⎧=+=+=+000212121mD lD mC lC mA lA ∴.212121D D C C A A ==。

解析几何第四版吕林根期末复习课后习题重点详解

解析几何第四版吕林根期末复习课后习题重点详解

解析几何第四版吕林根-期末复习-课后习题(重点)详解第一章 矢量与坐标§1.3 数量乘矢量4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B、D 三点共线.证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B、D 三点共线.6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, , CN 可 以构成一个三角形.证明: )(21AC AB AL += )(21BM +=)(21CB CA CN +=)(21=+++++=++∴BM7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明OB OA ++OC =OL ++.[证明] LA OL OA += MB OM OB += +=)(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++由上题结论知:0=++ ON OM OL OC OB OA ++=++∴从而三中线矢量,,构成一个三角形。

8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明OA +OB +OC +=4.[证明]:因为=21(OA +OC ), =21(OB +OD ), 所以 2OM =21(OA +OB +OC +) 所以OA +OB +OC +=4. 10、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN .→→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴ →→→+=BC AD MN ,即§1.4 矢量的线性关系与矢量的分解 3.、设一直线上三点A , B , P 满足AP =λ(λ≠-1),O 是空间任意一点,求证:OP =λλ++1 [证明]:如图1-7,因为图1-5=OP -, =-OP ,所以 OP -=λ (-OP ), (1+λ)OP =+λ,从而 OP =λλ++1OB. 4.、在ABC ∆中,设,1e =2e =.(1) 设E D 、是边BC 三等分点,将矢量,分解为21,e e 的线性组合;(2)设AT 是角A 的平分线(它与BC 交于T 点),将AT 分解为21,e e 的线性组合解:(1)()12123131,e e e e -==-=-= ,2111231323131e e e e e +=-+=+=,同理123132e e +=(2)因为 ||||TC ||11e 且 BT 与方向相同,所以 BT ||21e e . 由上题结论有AT||||1||212211e e e e e +||||21e e +.5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量对于矢量,,,的分解式。

第三章 点、直线、平面的投影

第三章  点、直线、平面的投影

侧垂线(垂直于W面,同时平行于H、V面的直线)
V
Z a b ab B W O a Ha X O YW a b Z a(b)
A X
b YH
b
Y
侧面投影积聚为一点;水平投 影及正面投影平行于OX轴,且 反映实长。
投影面垂直线的投影特性
投影面垂直线的投影特性可概括如下:
(1)直线在它所垂直的投影面上的投影积聚成一点;
c'
c
例3:已知C点在直线AB上,求作C点的水平投影。
1、用等比分割作图 2、利用侧面投影作图
a" c" b"
c c
例4:根据投影图判断C点是否在直线AB上。
求解一般位置直线的实长及倾角
根据一般位置直线的投影求解其实长及 倾角是画法几何综合习题中的常遇见的基本 问题之一,也是工程实际中经常需要解决的 问题。而用直角三角形法求解实长及倾角最 为简便、快捷。
一、直线投影的形成
连两 影 一 况 即个 , 直 下 可点 只 线 仍 由 。的 需 , 为 于 投作故直直 影出要线线 ,已获,的 再知得且投 将直直两影 它线线点一 们上的决般 相的投定情
V
a'
b'
B
X
A
O b a H
直线的分类
投影面垂直线 特殊位置直线
直 线
投影面平行线 一般位置直线
二、特殊位置直线
水平投影到OX轴的距 离等于侧面投影到OZ轴 的距离(宽相等)。
a
ay YH
可得出点的投影特性如下: (1)点的投影的连线垂直于相应的投影轴。
(2)点的投影到投影轴的距离,反映该点到相应的投影面的距离。
【例3-1】 已知点A的水平投影a和正面投影a′,求其 侧面投影a″ 解: 作图步骤如下

平面和空间直线PPT教学课件

平面和空间直线PPT教学课件
MgB2
练习三
2001年报道的硼和镁形成的纳米颗粒,如图所示的是 该纳米颗粒:镁原子间形成正六棱柱,且棱柱的上下 底面还各有1个镁原子,6个硼原子位于棱柱内。则该 纳米颗粒化学式可表示为
A、MgB Mg2B
B、 MgB2 C、 D、Mg14B6
注意晶胞结构与纳米颗粒、分 子簇的区别
2.晶体硼的基本结构单元都是由硼原子组成 的正二十面体,其中含有20个等边三角形和 一定数目的顶角,每个顶角各有一个原子, 试观察图形回答。这个基本结构单元由_1_2_ 个硼原子组成,共含有_3_0__个B-B键。
B.晶体有自范性但排列无序
C.非晶体无自范性而且排列无序
D.固体SiO2一定是晶体
2.区别晶体与非晶体最可靠的科学 方法是 A.熔沸点 B.硬度
C.颜色 D.x-射线衍射实验 D
1、下列不属于晶体的特点是
() A.一定有固定的几何外形
D
B.一定有各向异性
C.一定有固定的熔点
D.一定是无色透明的固体
说明:
(1)晶体自范性的本质:是晶体中粒 子微观空间里呈现周期性的有序 排列的宏观表象。
在一定条件下晶体能自动地呈现具 有一定对称性的多面体的外形 (晶体的形貌)。
非晶体不能呈现多面体的外形。
(2)晶体自范性的条件之一:生长速 率适当。
水晶石
3.晶体形成的途径
• 熔融态物质凝固. • 气态物质冷却不经液态直接凝固(凝华). • 溶质从溶液中析出.
玛瑙
水晶
晶态石英的谱图 非晶态石英的谱图
非晶态和晶态石英的X-射线粉2
I2 Z = 4
金刚石 C Z= 8
微粒数为:8×1/8 + 6×1/2 = 4
(3)体心立方:在立方体顶点的微粒 为8个晶胞共享,处于体心的金属原 子全部属于该晶胞。

高中数学第三章空间向量与立体几何3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定(一)课件苏

高中数学第三章空间向量与立体几何3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定(一)课件苏
→ n1· DA=2x1=0, 即 → AE=2y1+z1=0, n1·
→ → 则 n1⊥DA,n1⊥AE,
x1=0, 得 z1=-2y1,
令z1=2,则y1=-1,所以n1=(0,-1,2). → → 因为FC1· n1=-2+2=0,所以FC1⊥n1. 又因为FC1⊄平面ADE,所以FC1∥平面ADE.
中点,求证: (1)FC1∥平面ADE;
证明
建立如图所示的空间直角坐标系D-xyz, 则有D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2), E(2,2,1),F(0,0,1),B1(2,2,2), → → → 所以FC1=(0,2,1),DA=(2,0,0),AE=(0,2,1). 设n1=(x1,y1,z1)是平面ADE的法向量,
(2)平面ADE∥平面B1C1F. 证明
—→ 因为C1B1=(2,0,0),设 n2=(x2,y2,z2)是平面 B1C1F 的一个法向量. → —→ 由 n2⊥FC1,n2⊥C1B1,
→ n2· FC1=2y2+z2=0, 得 —→ C1B1=2x2=0, n2· x2=0, 得 z2=-2y2.
利用空间向量解决平行问题时,第一,建立立体图形与空间向量的
联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何
问题转化为向量问题;第二,通过向量的运算,研究平行问题;
第三,把向量问题再转化成相应的立体几何问题,从而得出结论.
题型探究
类型一
求直线的方向向量、平面的法向量
例1
如图,四棱锥P-ABCD中,底面ABCDAD= 3,试建立恰当的空间直角坐标系,
求平面ACE的一个法向量.
解答
引申探究 若本例条件不变,试求直线PC的一个方向向量和平面 PCD的一个 法向量.

机械制图电子教案 第三章 点、直线、平面的投影

机械制图电子教案 第三章  点、直线、平面的投影
k′(l′)的可见性时,由于K、L两点的水平投影k比l的y坐标值大,所以当从前往后看时,点K可见,点L不可见,由此可判定AB在CD的前方。同理,从上往下看时,点M可见,点N不可见,可判定CD在AB的上方。
(a) (b)
课后练习
复习思考题;3-2题、3-3题
第3讲
课题
面的投影
课型
理 论
教学
目的
掌握各种位置平面的投影规律
(一)投影面平行线
平行于一个投影面且同时倾斜于另外两个投影面的直线称为投影面平行线。平行于V面的称为正平线;平行于H面的称为水平线;平行于W面的称为侧平线。
直线与投影面所夹的角称为直线对投影面的倾角。α、β、γ分别表示直线对H面、V面、W面的倾角。
投影面平行线的立体图、投影图及投影特征
名称
正平线(//V)
2.一直线和直线外一点
3.相交两直线4.平行两来自线5.任意平面图形,如三角形、四边形、圆形等
在投影图上判定两直线是否平行;若两直线处于一般位置时,则只需观察两直线中的任何两组同面投影是否互相平行即可判定;但当两平行直线平行于某一投影面时,则需观察两直线在所平行的那个投影面上的投影是否互相平行才能确定。如图所示,两直线AB、CD均为侧平线,虽然ab∥cd、a′b′∥c′d′,但不能断言两直线平行,还必需求作两直线的侧面投影进行判定,由于图中所示两直线的侧面投影a″b″与c″d″相交,所以可判定直线AB、CD不平行。
(3)面投影e′f′∥OX轴,侧面投
影e″f″∥OYW,且都小于实长。
(1)侧面投影i//j//反映实长。
(2)侧面投影i″j″与OZ轴和OYW轴的夹角β和α分别为EF对V面和H面的倾角。
(3)正面投影i′j′∥OZ轴,水平投影ij∥OYH,且都小于实长。

2019年高中数学第3章空间向量与立体几何3.6直线与平面、平面与平面所成的角讲义(含解析)湘教版

2019年高中数学第3章空间向量与立体几何3.6直线与平面、平面与平面所成的角讲义(含解析)湘教版

3.6直线与平面、平面与平面所成的角[读教材·填要点]1.直线与平面所成的角(1)定义:如果直线l 与平面α垂直,l 与平面α所成的角θ为直角,θ=π2.如果直线l 与平面α不垂直,则l 在α内的射影是一条直线l ′,将l 与l ′所成的角θ定义为l 与平面α所成的角.(2)范围:θ∈⎣⎢⎡⎦⎥⎤0,π2.(3)计算:作直线l 的方向向量v 和平面α的法向量n ,并且可选v 与n 所成的角θ1∈⎣⎢⎡⎦⎥⎤0,π2,则l 与平面α所成的角 θ=π2-θ1,sin θ=cos_θ1=|v ·n ||v |·|n |.2.二面角(1)定义:从一条直线l 出发的两个半平面α,β组成的图形叫作二面角,记作α­l ­β. (2)二面角的平面角过二面角α­l ­β的棱l 上任意一点O 作垂直于棱l 的平面,分别与两个面α,β相交得到两条射线OA ,OB ,则∠AOB 称为二面角α­l ­β的平面角.(3)二面角的范围二面角的平面角的度数在0°~180°范围内,特别当二面角α­l ­β是90°时称它为直二面角,此时称两个面α,β相互垂直.3.两个平面所成的角两个相交平面,以交线为棱可以构成四个二面角,其中最小的一个二面角称为这两个平面所成的角,取值范围是⎝⎛⎭⎪⎫0,π2.两个平行平面所成的角为0°.[小问题·大思维]1.当一条直线l 与一个平面α的夹角为0时,这条直线一定在平面内吗? 提示:不一定,这条直线可能与平面平行.2.设直线l 与平面α所成的角为θ,l 的方向向量为a ,平面α的法向量为n ,如何用a 和n 求角θ?提示:sin θ=|cos 〈a ,n 〉|=|a ·n ||a |·|n |.3.二面角的法向量的夹角与二面角的平面角的大小有什么关系?提示:相等或互补.如图,在四棱锥P ­ABCD 中,底面为直角梯形,AD ∥BC ,∠BAD =90°,PA ⊥底面ABCD ,且PA =AD =AB =2BC ,M ,N 分别为PC ,PB 的中点.求BD与平面ADMN 所成的角θ.[自主解答] 如图所示,建立空间直角坐标系,设BC =1, 则A (0,0,0),B (2,0,0),D (0,2,0),P (0,0,2), 则N (1,0,1),∴BD ―→=(-2,2,0),AD ―→=(0,2,0),AN ―→=(1,0,1). 设平面ADMN 的一个法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ·AD ―→=0,n ·AN ―→=0,得⎩⎪⎨⎪⎧y =0,x +z =0,取x =1,则z =-1, ∴n =(1,0,-1).∵cos 〈BD ―→,n 〉=BD ―→·n |BD ―→|·|n |=-28·2=-12,∴sin θ=|cos 〈BD ―→,n 〉|=12.又0°≤θ≤90°,∴θ=30°.利用向量法求直线与平面所成角的步骤为: (1)确定直线的方向向量和平面的法向量; (2)求两个向量夹角的余弦值; (3)确定向量夹角的范围;(4)确定线面角与向量夹角的关系:向量夹角为锐角时,线面角与这个夹角互余;向量夹角为钝角时,线面角等于这个夹角减去90°.1.如图,在三棱锥P ­ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2.求直线PA 与平面DEF 所成角的正弦值.解:如图,以点A 为原点,AB ,AC ,AP 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系A ­xyz .由AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝⎛⎭⎪⎫12,12,0,F ⎝⎛⎭⎪⎫0,12,1.∴PA ―→=(0,0,-2),DE ―→=⎝ ⎛⎭⎪⎫0,12,0,DF ―→=⎝ ⎛⎭⎪⎫-12,12,1.设平面DEF 的法向量为n =(x ,y ,z ). 则⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DF ―→=0,即⎩⎪⎨⎪⎧x ,y ,z ⎝ ⎛⎭⎪⎫0,12,0=0,x ,y ,z⎝ ⎛⎭⎪⎫-12,12,1=0.解得⎩⎪⎨⎪⎧x =2z ,y =0.取z =1,则平面DEF 的一个法向量为n =(2,0,1). 设PA 与平面DEF 所成的角为θ,则 sin θ=|cos 〈PA ―→,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪PA ―→·n | PA ―→|·|n |=55, 故直线PA 与平面DEF 所成角的正弦值为55.如图,四棱柱ABCD ­A 1B 1C 1D 1的所有棱长都相等,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形.(1)证明:O 1O ⊥底面ABCD .(2)若∠CBA =60°,求二面角C 1­OB 1­D 的余弦值.[自主解答] (1)证明:因为四边形ACC 1A 1和四边形BDD 1B 1均为矩形,所以CC 1⊥AC ,DD 1⊥BD ,又CC 1∥DD 1∥OO 1,所以OO 1⊥AC ,OO 1⊥BD , 因为AC ∩BD =O ,所以O 1O ⊥底面ABCD .(2)因为四棱柱的所有棱长都相等,所以四边形ABCD 为菱形,AC⊥BD .又O 1O ⊥底面ABCD ,所以OB ,OC ,OO 1两两垂直.如图,以O 为原点,OB ,OC ,OO 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系.设棱长为2,因为∠CBA =60°,所以OB =3,OC =1, 所以O (0,0,0),B 1(3,0,2),C 1(0,1,2), 平面BDD 1B 1的一个法向量为n =(0,1,0), 设平面OC 1B 1的法向量为m =(x ,y ,z ),则由m ⊥OB 1―→,m ⊥OC 1―→,所以⎩⎨⎧3x +2z =0,y +2z =0.取z =-3,则x =2,y =23, 所以m =(2,23,-3),所以cos 〈m ,n 〉=m·n |m ||n |=2319=25719.由图形可知二面角C 1­OB 1­D 的大小为锐角, 所以二面角C 1­OB 1­D 的余弦值为25719.利用法向量求二面角的步骤为: (1)确定两平面的法向量; (2)求两法向量的夹角的余弦值; (3)确定二面角的范围;(4)确定二面角与面面角的关系:二面角范围的确定要通过图形观察,法向量一般不能体现出来.2.(2016·全国卷Ⅰ)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D ­AF ­E 与二面角C ­BE ­F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E ­BC ­A 的余弦值.解:(1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC . 又AF ⊂平面ABEF , 故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G .由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF ―→的方向为x 轴正方向,|GF ―→|为单位长,建立如图所示的空间直角坐标系G ­xyz .由(1)知∠DFE 为二面角D ­AF ­E 的平面角,故∠DFE =60°,则DF =2,DG =3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C ­BE ­F 的平面角,∠CEF =60°. 从而可得C (-2,0,3).所以EC ―→=(1,0,3),EB ―→=(0,4,0),AC ―→=(-3,-4,3),AB ―→=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量, 则⎩⎪⎨⎪⎧n ·EC ―→=0,n ·EB ―→=0,即⎩⎨⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC ―→=0,m ·AB ―→=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.由图知,二面角E ­BC ­A 为钝角, 故二面角E ­BC ­A 的余弦值为-21919.解题高手 多解题 条条大路通罗马,换一个思路试一试已知PA ⊥平面ABC ,AC ⊥BC ,PA =AC =1,BC =2,求二面角A ­PB ­C 的余弦值. [解] 法一:如图所示,取PB 的中点D ,连接CD .∵PC =BC =2, ∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A ­PB ­C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12.又∵AE =AP ·AB PB =32,CD =1,AC =1, AC ―→=AE ―→+ED ―→+DC ―→,且AE ―→⊥ED ―→,ED ―→⊥DC ―→,∴|AC ―→|2=|AE ―→|2+|ED ―→|2+|DC ―→|2+2|AE ―→|·|DC ―→|cos(π-θ),即1=34+14+1-2·32·1·cos θ, 解得cos θ=33. 故二面角A ­PB ­C 的余弦值为33. 法二:由法一可知,向量DC ―→与EA ―→的夹角的大小就是二面角A ­PB ­C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB 的中点,D ⎝ ⎛⎭⎪⎫12,22,12.又PE EB =AP 2AB 2=13,即E 分PB ―→的比为13. ∴E ⎝ ⎛⎭⎪⎫34,24,34,EA ―→=⎝ ⎛⎭⎪⎫14,-24,-34,DC ―→=⎝ ⎛⎭⎪⎫-12,-22,-12,|EA ―→|=32,|DC ―→|=1,EA ―→·DC ―→=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-24×⎝ ⎛⎭⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA ―→,DC ―→〉=EA ―→·DC ―→| EA ―→|·|DC ―→|=33.故二面角A ­PB ­C 的余弦值为33. 法三:如图所示建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP ―→=(0,0,1),AB ―→=(2,1,0),CB ―→=(2,0,0), CP ―→=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·AP ―→=0,m ·AB ―→=0⇒⎩⎨⎧x ,y ,z,0,=0,x ,y ,z2,1,=0⇒⎩⎨⎧y =-2x ,z =0.令x =1,则m =(1,-2,0).设平面PBC 的法向量为n =(x ′,y ′,z ′),则 ⎩⎪⎨⎪⎧n ·CB ―→=0,n ·CP ―→=0⇒⎩⎨⎧x ′,y ′,z2,0,=0,x ′,y ′,z,-1,=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m |·|n |=33.∴二面角A ­PB ­C 的余弦值为33.1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .以上均错解析:设直线l 与平面α所成的角为θ, 则sin θ=|cos 120°|=12,又∵0<θ≤90°,∴θ=30°. 答案:C2.若正三棱锥的侧面都是直角三角形,则侧面与底面所成的二面角的余弦值为( ) A.63B.33C.23 D.13解析:设正三棱锥P ­ABC ,PA ,PB ,PC 两两互相垂直,设PA =PB =PC =a .取AB 的中点D ,连接PD ,CD ,易知∠PDC 为侧面PAB 与底面ABC 所成的角.易求PD =22a ,CD =62a , 故cos ∠PDC =PDDC =33. 答案:B3.在边长为a 的正△ABC 中,AD ⊥BC 于D ,沿AD 折成二面角B ­AD ­C 后,BC =12a ,这时二面角B ­AD ­C 的大小为( )A .30°B .45°C .60°D .90°解析:由定义知,∠BDC 为所求二面角的平面角, 又BC =BD =DC =12a ,∴△BDC 为等边三角形,∴∠BDC =60°. 答案:C4.若一个二面角的两个面的法向量分别为m =(0,0,3),n =(8,9,2),则这个锐二面角的余弦值为________.解析:cos 〈m ,n 〉=,0,,9,382+92+22=2149=2149149.答案:21491495.正方体ABCD ­A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成的角的正弦值是________. 解析:如图,以DA ,DC ,DD1分别为x 轴、y 轴、z 轴建立空间直角坐标系,取正方体的棱长为1,则A (1,0,0),B (1,1,0),C 1(0,1,1),易证AC 1―→是平面A 1BD 的一个法向量.又AC 1―→=(-1,1,1), BC 1―→=(-1,0,1).所以cos 〈AC 1―→,BC 1―→〉=1+13×2=63.所以BC 1与平面A 1BD 所成角的正弦值为63. 答案:636.(2017·江苏高考)如图,在平行六面体ABCD ­A1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B ­A 1D ­A 的正弦值.解:在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E . 因为AA 1⊥平面ABCD , 所以AA 1⊥AE ,AA 1⊥AD .如图,以{AE ―→,AD ―→,AA 1―→}为正交基底,建立空间直角坐标系A ­xyz . 因为AB =AD =2,AA 1=3,∠BAD =120°,则A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3). (1)A 1B ―→=(3,-1,-3),AC 1―→=(3,1,3). 则cos 〈A 1B ―→,AC 1―→〉=A 1B ―→·AC 1―→|A 1B ―→||AC 1―→|=3-1-37×7=-17.因此异面直线A 1B 与AC 1所成角的余弦值为17.(2)可知平面A 1DA 的一个法向量为AE ―→=(3,0,0). 设m =(x ,y ,z )为平面BA 1D 的一个法向量, 又A 1B ―→=(3,-1,-3),BD ―→=(-3,3,0), 则⎩⎪⎨⎪⎧m ·A 1B ―→=0,m ·BD ―→=0,即⎩⎨⎧3x -y -3z =0,-3x +3y =0.不妨取x =3,则y =3,z =2,所以m =(3,3,2)为平面BA 1D 的一个法向量, 从而cos 〈AE ―→,m 〉=AE ―→·m | AE ―→||m |=333×4=34.设二面角B ­A 1D ­A 的大小为θ,则|cos θ|=34.因为θ∈[0,π],所以sin θ=1-cos 2θ=74. 因此二面角B ­A 1D ­A 的正弦值为74.一、选择题1.若平面α的一个法向量n =(2,1,1),直线l 的一个方向向量为a =(1,2,3),则l 与α所成角的正弦值为( )A.176 B.216 C .-216D.213解析:∵cos 〈a ,n 〉=a ·n|a |·|n |=,2,,1,1+4+9·22+1+1=2+2+314×6=216.∴l 与α所成角的正弦值为216. 答案:B2.如图,过边长为1的正方形ABCD 的顶点A 作线段EA ⊥平面AC ,若EA =1,则平面ADE 与平面BCE 所成的二面角的大小是( )A .120°B .45°C .135°D .60°解析:以A 为原点,分别以AB ,AD ,AE 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系A ­xyz ,则E (0,0,1),B (1,0,0),C (1,1,0),EB ―→=(1,0,-1),EC ―→=(1,1,-1).设平面BCE 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧x -z =0,x +y -z =0,可取n=(1,0,1),又平面EAD 的法向量为AB ―→=(1,0,0),所以cos 〈n ,AB ―→〉=12×1=22,故平面ADE 与平面BCE 所成的二面角为45°.答案:B3.在直角坐标系中,已知A (2,3),B (-2,-3),沿x 轴把直角坐标系折成平面角为θ的二面角A ­Ox ­B ,使∠AOB =90°,则cos θ为( )A .-19B.19C.49D .-49解析: 过A ,B 分别作x 轴垂线,垂足分别为A ′,B ′.则AA ′=3,BB ′=3,A ′B ′=4,OA =OB =13,折后,∠AOB =90°,∴AB =OA 2+OB 2=26.由AB ―→=AA ′―→+A ′B ′―→+B ′B ―→,得|AB ―→|2=|AA ′―→|2+|A ′B ′―→|2+|B ′B ―→|2+2|AA ′―→|·|B ′B ―→|·cos(π-θ). ∴26=9+16+9+2×3×3×cos(π-θ), ∴cos θ=49.答案:C4.已知平面α内有一个以AB 为直径的圆,PA ⊥α,点C 在圆周上(异于点A ,B ),点D ,E 分别是点A 在PC ,PB 上的射影,则( )A .∠ADE 是二面角A ­PC ­B 的平面角 B .∠AED 是二面角A ­PB ­C 的平面角 C .∠DAE 是二面角B ­PA ­C 的平面角D .∠ACB 是二面角A ­PC ­B 的平面角解析:选项A 错误,若DE ⊥PC ,则PC ⊥平面ADE ,所以PC ⊥AE ,又AE ⊥PB ,所以AE ⊥平面PBC ,同理可证:AD ⊥平面PBC ,这是不可能的.选项B 正确,因为PA ⊥BC ,AC ⊥BC ,所以BC ⊥平面PAC ,所以AD ⊥BC ,又AD ⊥PC ,且PC ∩BC =C ,所以AD ⊥平面PBC ,又因为AE ⊥PB ,所以DE ⊥PB ,所以∠AED 为二面角A ­PB ­C的平面角.选项C 错误,因为PA ⊥平面α,所以PA ⊥AC 且PA ⊥AB ,所以∠CAB 为二面角B ­PA ­C 的平面角,因此,∠DAE 不是二面角B ­PA ­C 的平面角.选项D 错误,在△PAC 中,∠PAC =90°,所以AC 与PC 不垂直,因此,∠ACB 不是二面角A ­PC ­B 的平面角.答案:B 二、填空题5.如图所示,已知正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线AD 与平面B 1DC 夹角的正弦值为________.解析:不妨设正三棱柱ABC ­A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B1(3,1,2),D ⎝ ⎛⎭⎪⎫32,-12,2, 则CD ―→=⎝ ⎛⎭⎪⎫32,-12,2, CB 1―→=(3,1,2),设平面B 1DC 的法向量为 n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD ―→=0,n ·CB 1―→=0,解得n =(-3,1,1). 又∵DA ―→=⎝ ⎛⎭⎪⎫32,-12,-2,∴sin θ=|cos 〈DA ―→,n 〉|=45.答案:456.正△ABC 与正△BCD 所在平面垂直,则二面角A ­BD ­C 的正弦值为________.解析:取BC 中点O ,连接AO ,DO .建立如图所示空间直角坐标系,设BC =1,则A ⎝ ⎛⎭⎪⎫0,0,32,B ⎝⎛⎭⎪⎫0,-12,0,D ⎝⎛⎭⎪⎫32,0,0. ∴OA ―→=⎝ ⎛⎭⎪⎫0,0,32,BA ―→=⎝ ⎛⎭⎪⎫0,12,32,BD ―→=⎝ ⎛⎭⎪⎫32,12,0.由于OA ―→=⎝⎛⎭⎪⎫0,0,32为平面BCD 的法向量,可进一步求出平面ABD 的一个法向量n =()1,-3,1,∴cos 〈n ,OA ―→〉=55,sin 〈n ,OA ―→〉=255.∴二面角A ­BD ­C 的正弦值为255.答案:2557.已知三棱锥S ­ABC 中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为________.解析:建立如图所示空间直角坐标系,则S (0,0,3),A (0,0,0),B (3,1,0),C (0,2,0).∴AB ―→=(3,1,0), SB ―→=(3,1,-3),SC ―→=(0,2,-3). 设平面SBC 的法向量为n =(x ,y ,z ). 则⎩⎪⎨⎪⎧n ·SB ―→=3x +y -3z =0,n ·SC ―→=2y -3z =0.令y =3,则z =2,x =3,∴n =(3,3,2). 设AB 与平面SBC 所成的角为θ,则sin θ=|cos 〈n ,AB ―→〉|=|n ·AB ―→||n |·|AB ―→|=3+34×2=34.答案:348.在体积为1的直三棱柱ABC ­A 1B 1C 1中,∠ACB =90°,AC =BC =1,求直线A 1B 与平面BB 1C 1C 所成角的正弦值为________.解析:由题意,可得体积V =CC 1·S △ABC =CC 1·12·AC ·BC =12CC 1=1,∴CC 1=2.建立如图所示空间直角坐标系,得点B (0,1,0),错误!.则A 1B ―→=(-1,1,-2),又平面BB 1C 1C 的法向量为n =(1,0,0).设直线A 1B 与平面BB 1C 1C 所成的角为θ,A 1B ―→与n 的夹角为φ, 则cos φ=A 1B ―→·n |A 1B ―→|·|n |=-66,∴sin θ=|cos φ|=66, 即直线A 1B 与平面BB 1C 1C 所成角的正弦值为66.答案:66三、解答题9.如图,长方体ABCD ­A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值. 解:(1)交线围成的正方形EHGF 如图所示. (2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EM =AA 1=8. 因为四边形EHGF 为正方形, 所以EH =EF =BC =10.于是MH =EH 2-EM 2=6,所以AH =10.以D 为坐标原点,DA ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz ,则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8), FE ―→=(10,0,0), HE ―→=(0,-6,8).设n =(x ,y ,z )是平面EHGF 的法向量,则⎩⎪⎨⎪⎧n ·FE ―→=0,n ·HE ―→=0,即⎩⎪⎨⎪⎧10x =0,-6y +8z =0,所以可取n =(0,4,3). 又AF ―→=(-10,4,8),故|cos 〈n ,AF ―→〉|=|n ·AF ―→||n ||AF ―→|=4515.所以AF 与平面EHGF 所成角的正弦值为4515.10.(2017·全国卷Ⅱ)如图,四棱锥P ­ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M ­AB ­D 的余弦值. 解:(1)证明:取PA 的中点F ,连接EF ,BF . 因为E 是PD 的中点,所以EF ∥AD ,EF =12AD .由∠BAD =∠ABC =90°,得BC ∥AD , 又BC =12AD ,所以EF 綊BC ,所以四边形BCEF 是平行四边形,CE ∥BF ,又BF ⊂平面PAB ,CE ⊄平面PAB , 故CE ∥平面PAB .(2)由已知得BA ⊥AD ,以A 为坐标原点,AB ―→的方向为x 轴正方向,|AB ―→|为单位长度,建立如图所示的空间直角坐标系A ­xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC ―→=(1,0,-3),AB ―→=(1,0,0).设M (x ,y ,z )(0<x <1),则BM ―→=(x -1,y ,z ),PM ―→=(x ,y -1,z -3). 因为BM 与底面ABCD 所成的角为45°, 而n =(0,0,1)是底面ABCD 的法向量, 所以|cos 〈BM ―→,n 〉|=sin 45°,|z |x -2+y 2+z2=22, 即(x -1)2+y 2-z 2=0. ① 又M 在棱PC 上,设PM ―→=λPC ―→, 则x =λ,y =1,z =3-3λ. ②由①②解得⎩⎪⎨⎪⎧x =1+22,y =1,z =-62(舍去),或⎩⎪⎨⎪⎧x =1-22,y =1,z =62,所以M ⎝ ⎛⎭⎪⎫1-22,1,62,从而AM ―→=⎝⎛⎭⎪⎫1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量, 则⎩⎪⎨⎪⎧m ·AM ―→=0,m ·AB ―→=0,即⎩⎨⎧-2x 0+2y 0+6z 0=0,x 0=0,所以可取m =(0,-6,2).于是cos 〈m ,n 〉=m ·n |m ||n |=105.由图知二面角M ­AB ­D 为锐角, 因此二面角M ­AB ­D 的余弦值为105.。

第三章_点、直线与平面的投影

第三章_点、直线与平面的投影

28
退 出
上一页
下一页
返 回
表3-2
投影面垂直线的投影特性



29
退 出
上一页
下一页
返 回
投 影 特 性
(1)水平投影a(b)成一 (1)正面投影c’ 点,有积聚性 (d’)成一点,有积 (2)a’b’=a”b” 聚性 =AB,且a’b’⊥ (2)cd=c”d” OX,a”b”⊥OYW =CD,且cd⊥OX, c”d”⊥OZ
下一页 返 回
41
上一页
①不在同一直线上的三个点; ②一直线和直线外一点; ③相交两直线; ④平行两直线; ⑤任意平面图形。
42
退 出
上一页
下一页
返 回
(二) 用迹线表示平面
在三投影面体系中,空间平面与投影面的交线,称为平面的 迹线。如图4-15所示, 平面P与V面的交线称为平面P的正面迹线, 用表示;平面P与H面的交线称为平面P的水平迹线,用表示;平面 P与W面的交线称为平面P的侧面迹线,用表示。平面P与投影轴的 交点,亦即相邻两迹线的交点,称为迹线集合点,分别用PX、PY、 PZ表示。 如图4-15b所示,在投影图上,通常只标记迹线本身,而不标 出与投影轴重合的另两投影。 特殊位置平面中有积聚性的迹线两 端用短粗实线表示,中间用细实线相连,并标出迹线符号,图415c所示即为用迹线表示的水平面。
20
退 出
上一页
下一页
返 回
(b)
图3-8直线上点的投影
21
退 出
上一页
下一页
返 回
例3-3 如图3-9,已知直线AB的两面投影,N点在直线AB上且 分AB为AN∶NB=2∶5,求N点的两面投影。
图3-9

解析几何全册课件

解析几何全册课件
e
e
上一页
下一页
返回
例5 证明四面体对边中点的连线交于一点,且互相平分.
A
B
C
D
E
F
P1
e1
e2
e3
.
,
,
3
2
1
叫做空间向量的基底
这时
e
e
e
.
,
,
,
.
,
,
,
,
,
,
,
,
3
2
1
1
3
2
1
3
2
1
3
2
1
关系式
线性表示的



先求
取不共面的三向量
就可以了
三点重合
下只需证
两组对边中点分别为
其余
它的中点为
§1.5 标架与坐标
§1.7 两向量的数量积
§1.9 三向量的混合积
§1.8 两向量的向量积
第二章 轨迹与方程
§2.1 平面曲线的方程
§2.2 曲面的方程
§2.3 空间曲线的方程
第三章 平面与空间直线
§3.1 平面的方程
§3.3 两平面的相关位置
1
2
1
2
2
1
1
2
1
2
1
关的向量叫做线性无关
性相
叫做线性相关,不是线
个向量
那么


使得
个数
在不全为零的
,如果存
个向量
对于
定义
n
n
n
n
n
a
a
a
n
a

高中数学 第三章 空间向量与立体几何 3.2 立体几何中的向量方法 3.2.1 直线的方向向量及平面

高中数学 第三章 空间向量与立体几何 3.2 立体几何中的向量方法 3.2.1 直线的方向向量及平面

3.2.1 直线的方向向量及平面的法向量1.用向量表示直线的位置条件直线l上一点A表示直线l方向的向量a(即直线l的□01方向向量)形式在直线l上取AB→=a,那么对于直线l上任意一点P,一定存在实数t使得AP→=□02tAB→作用定位置点A和向量a可以确定直线的位置定点可以具体表示出l上的任意一点(1)通过平面α上的一个定点和两个向量来确定条件平面α内两条□03相交直线的方向向量a,b和交点O形式对于平面α上任意一点P,存在有序实数对(x,y),使得OP→=□04x a+y b(2)通过平面α上的一个定点和法向量来确定平面的法向量□05直线l⊥α,直线l的方向向量,叫做平面α的法向量确定平面位置过点A,以向量a为法向量的平面是完全确定的3.空间中平行、垂直关系的向量表示设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则线线平行l∥m⇔□06a∥b⇔□07a=k b(k∈R)线面平行l∥α⇔□08a⊥u⇔□09a·u=0面面平行α∥β⇔□10u∥v⇔□11u=k v(k∈R)线线垂直 l ⊥m ⇔□12a ⊥b ⇔□13a ·b =0 线面垂直 l ⊥α⇔□14a ∥u ⇔□15a =λu (λ∈R ) 面面垂直 α⊥β⇔□16u ⊥v ⇔□17u ·v =01.判一判(正确的打“√”,错误的打“×”)(1)直线上任意两个不同的点A ,B 表示的向量AB →都可作为该直线的方向向量.( ) (2)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行.( )(3)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.( ) (4)若两条直线平行,则它们的方向向量的方向相同或相反.( ) 答案 (1)√ (2)√ (3)√ (4)√ 2.做一做(请把正确的答案写在横线上)(1)若点A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量的坐标可以是________.(2)已知a =(2,-4,-3),b =(1,-2,-4)是平面α内的两个不共线向量.如果n =(1,m ,n )是α的一个法向量,那么m =________,n =________.(3)(教材改编P 104T 2)设平面α的法向量为(1,3,-2),平面β的法向量为(-2,-6,k ),若α∥β,则k =________.(4)已知直线l 1,l 2的方向向量分别是v 1=(1,2,-2),v 2=(-3,-6,6),则直线l 1,l 2的位置关系为________.答案 (1)(2,4,6) (2)120 (3)4 (4)平行探究1 点的位置向量与直线的方向向量例1 (1)若点A ⎝ ⎛⎭⎪⎫-12,0,12,B ⎝ ⎛⎭⎪⎫12,2,72在直线l 上,则直线l 的一个方向向量为( )A.⎝ ⎛⎭⎪⎫13,23,1B.⎝ ⎛⎭⎪⎫13,1,23C.⎝ ⎛⎭⎪⎫23,13,1D.⎝ ⎛⎭⎪⎫1,23,13(2)已知O 为坐标原点,四面体OABC 的顶点A (0,3,5),B (2,2,0),C (0,5,0),直线BD ∥CA ,并且与坐标平面xOz 相交于点D ,求点D 的坐标.[解析] (1)AB →=⎝ ⎛⎭⎪⎫12,2,72-⎝ ⎛⎭⎪⎫-12,0,12=(1,2,3),⎝ ⎛⎭⎪⎫13,23,1=13(1,2,3)=13AB →,又因为与AB →共线的非零向量都可以作为直线l 的方向向量.故选A.(2)由题意可设点D 的坐标为(x,0,z ), 则BD →=(x -2,-2,z ),CA →=(0,-2,5).∵BD ∥CA ,∴⎩⎪⎨⎪⎧x -2=0,z =5,∴⎩⎪⎨⎪⎧x =2,z =5,∴点D 的坐标为(2,0,5). [答案] (1)A (2)见解析 拓展提升求点的坐标:可设出对应点的坐标,再利用点与向量的关系,写出对应向量的坐标,利用两向量平行的充要条件解题.【跟踪训练1】 已知点A (2,4,0),B (1,3,3),在直线AB 上有一点Q ,使得AQ →=-2QB →,求点Q 的坐标.解 由题设AQ →=-2QB →,设Q (x ,y ,z ),则(x -2,y -4,z )=-2(1-x,3-y,3-z ),∴⎩⎪⎨⎪⎧x -2=-2(1-x ),y -4=-2(3-y ),z =-2(3-z ),解得⎩⎪⎨⎪⎧x =0,y =2,∴Q (0,2,6).z =6,探究2 求平面的法向量例2 如图,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,求平面SCD 与平面SBA 的法向量.[解]∵AD ,AB ,AS 是三条两两垂直的线段,∴以A 为原点,分别以AD →,AB →,AS →的方向为x 轴、y 轴、z 轴的正方向建立坐标系,则A (0,0,0),D ⎝ ⎛⎭⎪⎫12,0,0,C (1,1,0),S (0,0,1),AD →=⎝ ⎛⎭⎪⎫12,0,0是平面SAB 的法向量,设平面SCD 的法向量n =(1,λ,u ),则n ·DC →=(1,λ,u )·⎝ ⎛⎭⎪⎫12,1,0=12+λ=0,∴λ=-12.n ·DS →=(1,λ,u )·⎝ ⎛⎭⎪⎫-12,0,1=-12+u =0,∴u =12,∴n =⎝⎛⎭⎪⎫1,-12,12. 综上,平面SCD 的一个方向向量为n =⎝⎛⎭⎪⎫1,-12,12,平面SBA 的一个法向量为AD →=⎝ ⎛⎭⎪⎫12,0,0.拓展提升设直线l 的方向向量为u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2),则l ⊥α⇔u ∥v ⇔u =k v ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2,其中k ∈R ,平面的法向量的求解方法:①设出平面的一个法向量为n =(x ,y ,z ).②找出(或求出)平面内的两个不共线的向量的坐标:a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).③依据法向量的定义建立关于x ,y ,z 的方程组⎩⎪⎨⎪⎧n ·a =0,n ·b =0.④解方程组,取其中的一个解,即得法向量,由于一个平面的法向量有无数多个,故可在方程组的解中取一个最简单的作为平面的法向量.【跟踪训练2】 在正方体ABCD -A 1B 1C 1D 1中,求证:DB 1→是平面ACD 1的一个法向量.证明 设正方体的棱长为1,分别以DA →,DC →,DD 1→为单位正交基底建立如图所示的空间直角坐标系,则DB 1→=(1,1,1),AC →=(-1,1,0),AD 1→=(-1,0,1).于是有DB 1→·AC →DB 1→⊥AC →,即DB 1⊥AC . 同理,DB 1⊥AD 1,又AC ∩AD 1=A ,所以DB 1⊥平面ACD 1,从而是平面ACD 1的一个法向量. 探究3 利用方向向量、法向量判断线、面 关系例3 (1)设a ,b 分别是不重合的直线l 1,l 2的方向向量,根据下列条件判断l 1与l 2的位置关系:①a =(2,3,-1),b =(-6,-9,3); ②a =(5,0,2),b =(0,4,0); ③a =(-2,1,4),b =(6,3,3).(2)设u ,v 分别是不同的平面α,β的法向量,根据下列条件判断α,β的位置关系: ①u =(1,-1,2),v =⎝ ⎛⎭⎪⎫3,2,-12;②u =(0,3,0),v =(0,-5,0); ③u =(2,-3,4),v =(4,-2,1).(3)设u 是平面α的法向量,a 是直线l 的方向向量(l ⊄α),根据下列条件判断α和l 的位置关系:①u =(2,2,-1),a =(-3,4,2); ②u =(0,2,-3),a =(0,-8,12); ③u =(4,1,5),a =(2,-1,0).[解] (1)①因为a =(2,3,-1),b =(-6,-9,3),所以a =-13b ,所以a ∥b ,所以l 1∥l 2.②因为a =(5,0,2),b =(0,4,0),所以a ·b =0, 所以a ⊥b ,所以l 1⊥l 2.③因为a =(-2,1,4),b =(6,3,3),所以a 与b 不共线,也不垂直,所以l 1与l 2的位置关系是相交或异面.(2)①因为u =(1,-1,2),v =⎝⎛⎭⎪⎫3,2,-12,所以u ·v =3-2-1=0,所以u ⊥v ,所以α⊥β.②因为u =(0,3,0),v =(0,-5,0),所以u =-35v ,所以u ∥v ,所以α∥β.③因为u =(2,-3,4),v =(4,-2,1).所以u 与v 既不共线,也不垂直,所以α,β相交.(3)①因为u =(2,2,-1),a =(-3,4,2),所以u ·a =-6+8-2=0, 所以u ⊥a ,所以直线l 和平面α的位置关系是l ∥α.②因为u =(0,2,-3),a =(0,-8,12),所以u =-14a ,所以u ∥a ,所以l ⊥α.③因为u =(4,1,5),a =(2,-1,0),所以u 和a 不共线也不垂直,所以l 与α斜交. 拓展提升利用向量判断线、面关系的方法(1)两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. (2)直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.(3)两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直.【跟踪训练3】 根据下列条件,判断相应的线、面位置关系: (1)直线l 1,l 2的方向向量分别为a =(1,-3,-1),b =(8,2,2); (2)平面α,β的法向量分别是u =(1,3,0),v =(-3,-9,0);(3)直线l 的方向向量,平面α的法向量分别是a =(1,-4,-3),u =(2,0,3); (4)直线l 的方向向量,平面α的法向量分别是a =(3,2,1),u =(-1,2,-1). 解 (1)因为a =(1,-3,-1),b =(8,2,2),所以a ·b =8-6-2=0,所以a ⊥b ,所以l 1⊥l 2.(2)因为u =(1,3,0),v =(-3,-9,0),所以v =-3u ,所以v ∥u ,所以α∥β. (3)因为a =(1,-4,-3),u =(2,0,3),所以a ≠k u (k ∈R )且a ·u ≠0,所以a 与u 既不共线也不垂直,即l 与α相交但不垂直.(4)因为a =(3,2,1),u =(-1,2,-1),所以a ·u =-3+4-1=0,所以a ⊥u ,所以l ⊂α或l ∥α.1.空间中一条直线的方向向量有无数个.2.线段中点的向量表达式:对于AP →=tAB →,当t =12时,我们就得到线段中点的向量表达式.设点M 是线段AB 的中点,则OM →=12(OA →+OB →),这就是线段AB 中点的向量表达式.,求出向量的横、纵、竖坐标是具有某种关系的,而不是具体的值,可设定某个坐标为常数,再表示其他坐标.(1)设n 是平面α的一个法向量,v 是直线l 的方向向量,则v ⊥n 且l 上至少有一点A ∉α,则l ∥α.(2)根据线面平行的判定定理:“如果平面外直线与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明平面外一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.(1)在一个平面内找到两个不共线的向量都与另一个平面的法向量垂直,那么这两个平面平行.(2)利用平面的法向量,证明面面平行,即如果a ⊥平面α,b ⊥平面β,且a ∥b ,那么α∥β.1.若平面α,β的法向量分别为a =⎝ ⎛⎭⎪⎫12,-1,3,b =(-1,2,-6),则( ) A .a ∥β B .α与β相交但不垂直 C .α⊥β D .α∥β或α与β重合 答案 D解析 ∵b =-2a ,∴b ∥a ,∴α∥β或α与β重合.2.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E ,F 分别是平面A 1B 1C 1D 1,平面BCC 1B 1的中心,以点A 为原点,建立如图所示的空间直角坐标系,则直线EF 的方向向量可以是( )A.⎝ ⎛⎭⎪⎫1,0,22B .(1,0,2) C .(-1,0,2) D .(2,0,-2) 答案 D解析 由已知得E (1,1,2),F ⎝ ⎛⎭⎪⎫2,1,22,所以|EF →|=⎝⎛⎭⎪⎫2,1,22-(1,1,2)=⎝⎛⎭⎪⎫1,0,-22,结合选项可知,直线EF 的方向向量可以是(2,0,-2).3.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( ) A.⎝⎛⎭⎪⎫33,33,-33 B.⎝ ⎛⎭⎪⎫33,-33,33 C.⎝ ⎛⎭⎪⎫-33,33,33 D.⎝ ⎛⎭⎪⎫-33,-33,-33 答案 D解析 由AB →=(-1,1,0),AC →=(-1,0,1),结合选项,验证知应选D.4.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝ ⎛⎭⎪⎫1,12,2,则m =________.答案 -8解析 因为直线l ∥α,所以直线l 的方向向量与平面α的法向量垂直,所以(2,m,1)·⎝⎛⎭⎪⎫1,12,2=2+m 2+2=0,解得m =-8.5.在正方体ABCD -A 1B 1C 1D 1中,P 是DD 1的中点,O 为底面ABCD 的中心,求证:OB →1是平面PAC 的法向量.证明 建立空间直角坐标系如右图所示,不妨设正方体的棱长为2,则A (2,0,0),P (0,0,1),C (0,2,0),B 1(2,2,2),O (1,1,0),于是OB 1→=(1,1,2),AC →=(-2,2,0),AP →=(-2,0,1),∴OB 1→·AC →=-2+2=0,OB 1→·AP →=-2+2=0. ∴OB 1→⊥AC →,OB 1→⊥AP →,即OB 1⊥AC ,OB 1⊥AP . ∵AC ∩AP =A ,∴OB 1⊥平面PAC ,即OB 1→是平面PAC 的法向量.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、平面的坐标式参数方程
ቤተ መጻሕፍቲ ባይዱ
r=r0+ ua+vb
(1)
若设M0,M的坐标分别为(x0,y0,z0),(x,y,z),则 r0={x0,y0,z0},r={x,y,z}
并设
a={X1,Y1,Z1},b={X2,Y2,Z2}
则由(1)可得
x x0 X 1u X 2 v (2) y y0 Y1u Y2 v z z Z u Z v 0 1 2
定理1:两个平面(1)与(2)
相交A1:B1:C1≠A2:B2:C2. A1 B1 C1 D1 平行 A B2 C2 D2 2
A1 B1 C1 D1 B2 C2 D2 重合 A2
2、两平面的夹角
(1)定义 两平面法向量之间的夹角称为两平面的 夹角. (通常取锐角)
2 2 2
0
在取定符号后叫做法式化因子 选取的符号通常与常数项 D 相反的符号
例 把平分面 的方程 3x 2 y 6 z 14 化为法式方程, 0 求自原点指向平面 的单位向量及其方向余弦,并求原点到 平面的距离
第二节
平面与点的相关位置
n
设P0(x0,y0,z0)是平面Ax+By+Cz+D=0外一点,求点 P0到平面的距离。
又点(4, 3, 1)在平面上, 所以
3 B C = 0 C = 3B 所求平面方程为 By 3Bz = 0 即: y 3z = 0
例4: 设平面与x, y, z 轴的交点依次为P(a, 0, 0), Q(0, b, 0), R(0, 0, c)三点, 求这平面的方程. 解: 设所求平面的方程为 Ax + By + Cz + D = 0 因P(a, 0, 0), Q(0, b, 0), R(0, 0, c) 三点都在这平面上, 于是 aA + D = 0 bB + D = 0 cC + D = 0
D 解得: A a D B b
z R
o
P x
Q
y
D C c
所求平面的方程为:
D D D x y zD 0 a b c
即:
x y z 1 a b c
(3)
例 5 求平行于平面6 x y 6 z 5 0 而与三个坐 标面所围成的四面体体积为一个单位的平面方程.
2. 平面方程的几种特殊情形 (1) 过原点的平面方程 由于O(0, 0, 0)满足方程, 所以D = 0. 于是, 过原点的平面方程为: Ax + By + Cz = 0
(2) 平行于坐标轴的方程
考虑平行于x轴的平面Ax + By + Cz + D = 0, 它的法向量n = {A, B, C}与x 轴上的单位向量 i ={1, 0, 0}垂直, 所以 n· i=A· 1+B· 0+C· 0=A=0 于是: 平行于x 轴的平面方程是 By + Cz + D = 0; 平行于y 轴的平面方程是 Ax + Cz + D = 0; 平行于z 轴的平面方程是 Ax + By + D = 0.
从(3),(4)中分别消去参数u,v可得:
(r-r1,r2-r1,r3-r1)=0
(5)
x x1 x2 x1 x3 x1

y y1 y2 y1 y3 y1 0 (6) z z1 z 2 z1 z3 z1 x y z 1 x1 y1 z1 1 0 x2 y2 z 2 1
特别: D = 0时, 平面过坐标轴.
(3) 平行于坐标面的平面方程
平行于xOy 面的平面方程是 Cz + D = 0; 平行于xOz 面的平面方程是 By + D = 0;
平行于yOz 面的平面方程是. Ax + D = 0
例3: 求通过x 轴和点(4, 3, 1)的平面方程.
解: 由于平面过x 轴, 所以 A = D = 0. 设所求平面的方程是 By + Cz = 0
又所求平面过点M1M2的中点M0(2,-1,1),故 平面的点法式方程为
(x-2)+(y+1)-2(z-1)=0 整理得 x+y-2z+1=0
三、平面的一般方程
1. 定理1: 任何x, y, z的一次方程. Ax +By +Cz +D = 0 都表示平面,且此平面的一个法向量是: n = {A, B, C} 证: A, B, C不能全为0, 不妨设A 0, 则方程可以化为 D A x ( ) B( y 0) C ( z 0) 0 A 它表示过定点 M ( D , 0 , 0 ) 0 A 且法向量为 n = {A, B, C}的平面. 注:一次方程: Ax + By + Cz + D = 0 (2)
平面的一般方程 Ax+By+Cz+D=0 与法式方程的互化 取
1 n 1 A B C
2 2 2
乘平面的一般方程 Ax+By+Cz+D=0
可得法式方程
Ax A B C
2 2 2

By A B C
2 2 2

Cz A B C
2 2 2

D A B C
x3 y3 z3 1

(7 )
(5)(6)(7)都有叫做平面的三点式方程。
特别地,若平面与三坐标轴的交点分别 为M1(a,0,0) M2(0,b,0),M3(0,0,c),其中abc≠0,则平面的方程为
x y z 1 a b c
称为平面的截距式方程。 其中a,b,c分别称为平面在 三坐标轴上的截距。
(2)式称为平面的坐标式参数方程。
例1、已知不共线的三点M1(x1,y1,z1),M2(x2,y2,z2), M3(x3,y3,z3),求过这三点的平面的方程。
设M(x,y,z)是平面上任意一点,已知点为Mi的 解: 径矢为ri=OMi,则可取方位向量为
r2-r1=M1M2={x2-x1,y2-y1,z2-z1}, r3-r1=M1M3={x3-x1,y3-y1,z3-z1}, 因此,平面的向量式参数方程为 r=r1+u(r2-r1)+v(r3-r1) (3) 坐标式参数方程为 x x1 u ( x2 x1 ) v( x3 x1 ) y y1 u ( y2 y1 ) v( y3 y1 ) (4) z z u ( z z ) v( z z ) 1 2 1 3 1
O
z M0 M
n
y
x
A(x x0) +B( y y0) +C( z z0) = 0
(1)
例1: 求过点(2, 3, 0)且以 n = {1, 2, 3}为法向量 的平面的方程. 解: 根据平面的点法式方程(1), 可得平面方程为: 1 (x 2) 2 (y + 3) + 3 (z 0) = 0
即:
x 2y + 3z 8 = 0
例2: 求过三点M1(2, 1, 4), M2( 1, 3, 2)和M3(0, 2, 3) 的平面的方程. 解: 先找出该平面的法向量n. 由于n与向量M1M2, M1M3都垂直. 而M1M2={3, 4, 6} 可取n = M1M2 M1M3 M1M3={2, 3, 1}
称为平面的一般方程.
例2: 已知平面过点M0(1, 2, 3), 且平行于
平面2x 3y + 4z 1= 0, 求其方程.
解: 所求平面与已知平面有相同的法向量 n ={2 3, 4} 2(x +1) 3(y 2) + 4(z 3) = 0 即: 2 x 3 y + 4 z 4 = 0
x y z 解 设平面为 1, a b c 1 1 V 1, abc 1, 3 2
1
z
o x
y
由所求平面与已知平面平行得
a b c , (向量平行的充要条件) 6 1 6
1
1
1 1 1 1 1 1 , 令 t 化简得 6a b 6c 6a b 6c 1 1 1 a , b , c , 6t 6t t
M1
n
i j k 3 4 6 = 14i + 9j k 2 3 1 所以, 所求平面的方程为: 14(x 2) + 9(y + 1) (z 4) = 0 即: 14x + 9y z 15 = 0
M3 M2
例3、已知两点M1(1,-2,3),M2(3,0,-1),求线段的垂直 平分面的方程。 解: 因为向量M1M2={2,2,-4}=2{1,1,-2} 垂直于平面,所以平面的一个法向量为 n={1,1,-2}.
代入体积式
1 1 1 1 1 1 t , 6 6t t 6t 6
a 1, b 6, c 1,
所求平面方程为 6 x y 6 z 6.
若平面上的一点 M 0 特殊地取自原点O 向平面 所引垂线的垂足, 而 的法向量取单位向量 n0 ,设 OP p,那么由点 M 0和法向量 0 决定的平面的向量式法式方程为:
在平面上任取一点P1(x1, y1, z1) 则 P1P0 ={x0 x1, y0 y1, z0 z1}
过P0点作一法向量 n ={A, B, C} 于是: P1 P0 n d Pr j n P1 P0 |n|

P0
P1
N
A ( x 0 x1 ) B ( y 0 y1 ) C ( z 0 z 1 ) A2 B 2 C 2
相关文档
最新文档